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Realisabiliy and safe realisability

Definition (Realisability)

1 MSC M is realisable whenever {M} = L(A) for some CFM A.

2 A finite set {M1, . . . ,Mn} of MSCs is realisable whenever
{M1, . . . ,Mn} = L(A) for some CFM A.

3 MSG G is realisable whenever L(G) = L(A) for some CFM A.

Joost-Pieter Katoen Theoretical Foundations of the UML 4/30



Realisabiliy and safe realisability

Definition (Realisability)

1 MSC M is realisable whenever {M} = L(A) for some CFM A.

2 A finite set {M1, . . . ,Mn} of MSCs is realisable whenever
{M1, . . . ,Mn} = L(A) for some CFM A.

3 MSG G is realisable whenever L(G) = L(A) for some CFM A.

Definition (Safe realisability)

Same as above except that the CFM should be deadlock-free.
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Summary of results

Approach so far:

The (safe) realisation of a (finite) set of MSCs by a weak CFM is the
one where the automaton Ap of process p generates the projections of
these MSCs on p.
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Summary of results

Approach so far:

The (safe) realisation of a (finite) set of MSCs by a weak CFM is the
one where the automaton Ap of process p generates the projections of
these MSCs on p.

Results so far:
1 Conditions for (safe) realisability for finite sets of MSCs.

2 Checking safe realisability for finite sets of MSCs is in P.

3 Checking realisability for finite sets of MSCs is co-NP complete.

Joost-Pieter Katoen Theoretical Foundations of the UML 5/30



Some remaining questions

Can similar results be obtained for larger classes of MSGs?
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Some remaining questions

Can similar results be obtained for larger classes of MSGs?

What happens if we allow synchronisation messages?

recall that weak CFMs do not involve synchronisation messages

How do we obtain a CFM realising an MSG algorithmically?

in particular, for non-local choice MSGs

Are there simple conditions on MSGs that guarantee realisability?

e.g., easily identifiable subsets of (safe) realisable MSGs
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Regular MSCs

Let M be the set of MSCs over P and C.

Definition (Regular)

1 M = {M1, . . . ,Mn } with n ∈ N ∪ {∞} is called regular if
Lin(M) =

⋃n
i=1 Lin(Mi) is a regular word language over Act

∗.

2 MSG G is regular if Lin(G) is a regular word language over Act
∗.

3 CFM A is regular if Lin(A) is a regular word language over Act
∗.

Here, Act is the set of actions in M, G, and A, respectively.
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Regular MSCs

Let M be the set of MSCs over P and C.

Definition (Regular)

1 M = {M1, . . . ,Mn } with n ∈ N ∪ {∞} is called regular if
Lin(M) =

⋃n
i=1 Lin(Mi) is a regular word language over Act

∗.

2 MSG G is regular if Lin(G) is a regular word language over Act
∗.

3 CFM A is regular if Lin(A) is a regular word language over Act
∗.

Here, Act is the set of actions in M, G, and A, respectively.

Lemma:

Every ∀-bounded CFM is regular. Why?
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Examples

On the black board.
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Regularity and well-formedness

Theorem [Henriksen et. al, 2005]

The decision problem “is a regular language L ⊆ Act
∗ well-formed”?

—that is, does L represent a set of MSCs?— is decidable.

Proof.
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Regularity and well-formedness

Theorem [Henriksen et. al, 2005]

The decision problem “is a regular language L ⊆ Act
∗ well-formed”?

—that is, does L represent a set of MSCs?— is decidable.

Proof.

Since L is regular, there exists a minimal DFA A = (S,Act , s0, δ, F )
with L(A) = L. Consider the productive states in this DFA, i.e., all
states from which some state in F can be reached. We label every
productive state s with a channel-capacity function Ks : Ch → N such
that four constraints (cf. next slide) are fulfilled. Then: L is well-formed
iff each productive state in the DFA A can be labelled with Ks

satisfying these constraints. In fact, if a state-labelling violates any of
these constraints, it is due to a word that is not well-formed.
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Constraints on state-labelling

1 s ∈ F ∪ {s0}, implies Ks((p, q)) = 0 for every channel (p, q).
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1 s ∈ F ∪ {s0}, implies Ks((p, q)) = 0 for every channel (p, q).

2 δ(s, !(p, q, a)) = s′ implies

Ks′(c) =

{
Ks(c) + 1 if c = (p, q)

Ks(c) otherwise.

3 δ(s, ?(p, q, a)) = s′ implies Ks((q, p)) > 0 and

Ks′(c) =

{
Ks(c)− 1 if c = (q, p)

Ks(c) otherwise.

4 δ(s, α) = s1 and δ(s1, β) = s2 with α ∈ Actp and β ∈ Actq, p 6= q,
implies

not (α = !(p, q, a) and β =?(q, p, a)), or Ks((p, q)) > 0
implies δ(s, β) = s′

1
and δ(s′

1
, α) = s2 for some s′

1
∈ S.

These constraints can be checked in linear time in the size of relation δ.
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Yannakakis’ example

1A00

3A20

2A10 2C00

3C10

3A11

3B21

2B11

2B20

3B30

2B02

3B12

3A02

1B01

2A01

!a

!a
!a

?a

?b !a

?a

!b

?a

!b

!a ?a

?a

?b

3B03

3C01
!b!a

?b

?a

!b

?a

!b?b

!a!b

?a

?b

?b

!a
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Boundedness and regularity

Definition (B-bounded words)

Let B ∈ N and B > 0. A word w ∈ Act
∗ is called B-bounded if for any

prefix u of w and any channel (p, q) ∈ Ch:

0 6
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) 6 B
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Boundedness and regularity

Definition (B-bounded words)

Let B ∈ N and B > 0. A word w ∈ Act
∗ is called B-bounded if for any

prefix u of w and any channel (p, q) ∈ Ch:

0 6
∑

a∈C

|u|!(p,q,a) −
∑

a∈C

|u|?(q,p,a) 6 B

Corollary:

For any regular, well-formed language L, there exists B ∈ N and B > 0
such that every w ∈ L is B-bounded.

Proof.
The bound B is the largest value attained by the channel-capacity functions

assigned to productive states in the proof of the previous theorem.
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Regularity and realisability

Theorem: [Henriksen et al., 2005], [Baudru & Morin, 2007]

For any set L of well-formed words, the following four statements are
equivalent:

1 L is regular.

2 L is realisable by a ∀-bounded CFM.

3 L is realisable by a deterministic ∀-bounded CFM.

4 L is safely realisable by a ∀-bounded CFM.

Joost-Pieter Katoen Theoretical Foundations of the UML 16/30



Regularity and realisability

Theorem: [Henriksen et al., 2005], [Baudru & Morin, 2007]

For any set L of well-formed words, the following four statements are
equivalent:

1 L is regular.

2 L is realisable by a ∀-bounded CFM.

3 L is realisable by a deterministic ∀-bounded CFM.

4 L is safely realisable by a ∀-bounded CFM.

Lemma:
The maximal size of the CFM realising L is such that for each process p, the
number |Qp| of states of local automaton Ap is:

1 double exponential in the bound B and k2, where k = |P|, and

2 exponential in m logm where m is the size of the minimal DFA for L.
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Regularity for MSGs is undecidable

Theorem [Henriksen et. al, 2005]

The decision problem “is MSG G regular“? is undecidable.

Proof

Outside the scope of this lecture.
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Towards structural conditions for regular MSGs

MSG G is regular if Lin(G) is a regular language
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Towards structural conditions for regular MSGs

MSG G is regular if Lin(G) is a regular language

Regularity yields deterministic, or safe, but bounded CFMs

But, “is MSG G regular“? is unfortunately undecidable

Is it possible to impose structural conditions on MSGs that
guarantee regularity?

Yes we can. For instance, by constraining:
1 the communication structure of the MSCs in loops of G, or
2 the structure of expressions describing the MSCs in G
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Communication graph

Definition (Communication graph)

The communication graph of the MSC M = (P, E, C, l,m,<) is the
directed graph (V,→) with:

V = P \ { p ∈ P | Ep = ∅ }, the set of active processes

(p, q) ∈ → if and only if L(e) = !(p, q, a) for some e ∈ E and a ∈ C
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Definition (Communication graph)

The communication graph of the MSC M = (P, E, C, l,m,<) is the
directed graph (V,→) with:

V = P \ { p ∈ P | Ep = ∅ }, the set of active processes

(p, q) ∈ → if and only if L(e) = !(p, q, a) for some e ∈ E and a ∈ C

Example

p1 p2 p3 p4
a
b
a

b a

an example MSC
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Communication graph

Definition (Communication graph)

The communication graph of the MSC M = (P, E, C, l,m,<) is the
directed graph (V,→) with:

V = P \ { p ∈ P | Ep = ∅ }, the set of active processes

(p, q) ∈ → if and only if L(e) = !(p, q, a) for some e ∈ E and a ∈ C

Example

p1 p2 p3 p4
a
b
a

b a

an example MSC

p1 p2 p3 p4

its communication graph
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Strongly connected components

Let G = (V,→) be a directed graph.

Strongly connected component

T ⊆ V is strongly connected if for every v,w ∈ T , vertices v and w

are mutually reachable (via →) from each other.
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Strongly connected components

Let G = (V,→) be a directed graph.

Strongly connected component

T ⊆ V is strongly connected if for every v,w ∈ T , vertices v and w

are mutually reachable (via →) from each other.

T is a strongly connected component (SCC) of G it T is strongly
connected and T is not properly contained in another SCC.

Determining the SCCs of a digraph can be done in linear time in the
size of V and →.
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Communication closedness
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Communication closedness

A loop is simple if it visits a vertex at most once, except for the start- and

end-vertex which are visited twice.
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Communication closedness

A loop is simple if it visits a vertex at most once, except for the start- and

end-vertex which are visited twice.

Definition (Communication closedness)

MSG G is communication-closed if for every simple loop π = v1v2 . . . vn
(with v1 = vn) in G, the communication graph of the MSC
M(π) = λ(v1) • λ(v2) • . . . • λ(vn) is strongly connected.
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Example
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Communication-closed vs. regularity

Theorem:

Every communication-closed MSG G is regular.

Example

Example on the black board.

Note:

The converse does not hold (cf. next slide).
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Communication-closed vs. regularity

Communication-closedness is not a necessary condition for regularity:

p1 p2 p3 p4
a

b

p1 p2 p3 p4
a

b

G:

MSG G is not communication-closed, but Lin(G) is regular.
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Checking communication-closedness

Theorem: [Genest et. al, 2006]

The decision problem “is MSG G communication closed?” is co-NP
complete.
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Checking communication-closedness

Theorem: [Genest et. al, 2006]

The decision problem “is MSG G communication closed?” is co-NP
complete.

Proof
1 Membership in co-NP can be proven in a standard way: guess a

sub-graph of G, check in polynomial time whether this sub-graph has a

loop passing through all its vertices, and check whether its

communication graph is not strongly connected.

2 Co-NP hardness can be shown by a reduction from the 3-SAT problem.
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Communication-closed vs. regularity

Definition (Asynchronous iteration)

For M1,M2 ⊆ M sets of MSCs, let:

M1 •M2 = {M1 •M2 | M1 ∈ M1,M2 ∈ M2 }

For M ⊆ M let

Mi =

{
{Mǫ} if i=0, where Mǫ denotes the empty MSC

M•Mi−1 if i > 0

The asynchronous iteration of M is now defined by:

M∗ =
⋃

i>0

Mi.
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Finitely generated

Definition (Finitely generated)

Set of MSCs M is finitely generated if there is a finite set of MSCs M̂
such that M ⊆ M̂∗.
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Finitely generated

Definition (Finitely generated)

Set of MSCs M is finitely generated if there is a finite set of MSCs M̂
such that M ⊆ M̂∗.

Remarks:
1 Each set of MSCs defined by an MSG G is finitely generated.

2 Not every regular well-formed language is finitely generated.

3 Not every finitely generated set of MSCs is regular.

4 It is decidable to check whether a set of MSCs is finitely generated.
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Characterisation of communication-closedness

Theorem: [Henriksen et. al, 2005]

Let M be a (possibly infinite) set of MSCs. Then:

M is finitely generated and regular

iff

M = L(G) for some communication-closed MSG G.
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Local communication-closedness

Definition (Local communication-closedness)

MSG G is locally communication-closed if for each vertex (v, v′) in G,
the MSCs λ(v), λ(v′), and λ(v) • λ(v′) all have weakly connected
communication graphs.
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Local communication-closedness

Definition (Local communication-closedness)

MSG G is locally communication-closed if for each vertex (v, v′) in G,
the MSCs λ(v), λ(v′), and λ(v) • λ(v′) all have weakly connected
communication graphs.

Notes:
1 A directed graph is weakly connected if its induced undirected

graph (obtained by ignoring the directions of edges) is strongly
connected.

2 Checking whether MSG G is locally communication-closed can be
done in linear time.
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Locally communication-closed MSGs are realisable

Theorem: [Genest et al., 2006]

Every locally communication-closed MSG G is realisable by a CFM A
of size mO(|P|) where m is the number of vertices in G.
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