Theoretical Foundations of the UML Lecture 11: Safe Realisability

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

7. Juni 2016

Joost-Pieter Katoen Theoretical Foundations of the UML

1/18

< 口 > < 同 >

2 Closure and inference revisited

3 Characterisation and complexity of safe realisability

Joost-Pieter Katoen Theoretical Foundations of the UML

→ Ξ → → Ξ →

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Questions:

Is this possible? (That is, is this decidable?)

→ ∃ → < ∃ →</p>

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Questions:

- Is this possible? (That is, is this decidable?)
- **2** If so, how complex is it to obtain such CFM?

(B)

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Questions:

- Is this possible? (That is, is this decidable?)
- **2** If so, how complex is it to obtain such CFM?
- If so, how do such algorithms work?

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

イロト イポト イヨト イヨト

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

• Consider finite sets of MSCs, given as an enumerated set.

(4) E (4) E

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

- Consider finite sets of MSCs, given as an enumerated set.
- Consider MSGs, that may describe an infinite set of MSCs.

★ 3 → < 3</p>

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

- Consider finite sets of MSCs, given as an enumerated set.
- Consider MSGs, that may describe an infinite set of MSCs.
- Consider MSCs whose set of linearisations is a regular word language.

< E >

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different forms of requirements

- Consider finite sets of MSCs, given as an enumerated set.
- Consider MSGs, that may describe an infinite set of MSCs.
- Consider MSCs whose set of linearisations is a regular word language.
- Consider MSGs that are non-local choice.

(3)

Problem variants (2)

Realisability problem

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different system models

UNIVERSIT

< 回 > < 回 > < 回 > < 回 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different system models

• Consider CFMs without synchronisation messages.

LIMIVERSI

・ 戸 ・ ・ ヨ ・ ・ 日 ・

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different system models

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.

LINIVERSI

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different system models

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.
- Consider CFMs that are deterministic.

伺下 イヨト イヨト

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different system models

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.
- Consider CFMs that are deterministic.
- Consider CFMs that are bounded.

伺下 イヨト イヨト

INPUT: a set of MSCs

OUTPUT: a CFM \mathcal{A} such that $\mathcal{L}(\mathcal{A})$ equals the set of input MSCs.

Different system models

- Consider CFMs without synchronisation messages.
- Allow CFMs that may deadlock. Possibly, a realisation deadlocks.
- Forbid CFMs that deadlock. No realisation will ever deadlock.
- Consider CFMs that are deterministic.
- Consider CFMs that are bounded.

・ 戸 ・ ・ ヨ ・ ・ 日 ・

Joost-Pieter Katoen Theoretical Foundations of the UML

Today's setting

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Theoretical Foundations of the UML Joost-Pieter Katoen

Today's setting

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

→ Ξ → → Ξ →

Today's setting

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

This is known as safe realisability.

→ Ξ → → Ξ →

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free CFMs

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free CFMs

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free CFMs

Results:

 Conditions for realisability of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free CFMs

Results:

• Conditions for realisability of a finite set of MSCs by a deadlock-free weak CFM.

② Checking safe realisability by deadlock-free CFMs is in P.

Realisation of a finite set of MSCs by a deadlock-free weak CFM.

Realisation of a finite set of well-formed words (= language) by a deadlock-free weak CFM.

This is known as safe realisability.

This is the setting of the previous lecture, but now focusing on deadlock-free CFMs

Results:

- Conditions for realisability of a finite set of MSCs by a deadlock-free weak CFM.
- Checking safe realisability by deadlock-free CFMs is in P. (Realisability for weak CFMs that may deadlock is co-NP complete.)

Possibly a set of MSCs is realisable only by a CFM that may deadlock

< 同 ▶

→ Ξ → → Ξ →

Possibly a set of MSCs is realisable only by a CFM that may deadlock

process p and q have to agree on either a or b

∃ ► < ∃ ►</p>

8/18

Possibly a set of MSCs is realisable only by a CFM that may deadlock

process p and q have to agree on either a or b

Realisation of $\{M_1, M_2\}$ by a weak CFM:

Possibly a set of MSCs is realisable only by a CFM that may deadlock

process p and q have to agree on either a or b

Realisation of $\{M_1, M_2\}$ by a weak CFM:

Definition (Safe realisability)

- MSC *M* is safely realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .
- **2** A finite set $\{M_1, \ldots, M_n\}$ of MSCs is safely realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .
- 3 MSG G is safely realisable whenever $\mathcal{L}(G) = \mathcal{L}(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .

伺下 イヨト イヨト

Definition (Safe realisability)

- MSC *M* is safely realisable whenever $\{M\} = \mathcal{L}(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .
- A finite set $\{M_1, \ldots, M_n\}$ of MSCs is safely realisable whenever $\{M_1, \ldots, M_n\} = \mathcal{L}(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .
- Solution MSG G is safely realisable whenever $\mathcal{L}(G) = \mathcal{L}(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .

Phrased using linearisations

 $L \subseteq Act^*$ is safely realisable if $L = Lin(\mathcal{A})$ for some deadlock-free CFM \mathcal{A} .

Note:

Safe realisability implies realisability, but the converse does not hold.

э

2 Closure and inference revisited

Characterisation and complexity of safe realisability

Joost-Pieter Katoen Theoretical Foundations of the UML

< 67 ▶

Weak closure

Joost-Pieter Katoen Theoretical Foundations of the UML

< □ > < □ >

11/18

Weak closure

Definition (Inference relation and closure)

For well-formed $L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

$$L \models w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in L. w \restriction p = v \restriction p)$$

Language L is closed under \models whenever for every $w \in Act^*$, it holds: $L \models w$ implies $w \in L$.

→ ∃ → < ∃ →</p>

11/18

Definition (Inference relation and closure)

For well-formed $L \subseteq Act^*$, and well-formed word $w \in Act^*$, let:

$$L \models w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in L. w \restriction p = v \restriction p)$$

Language L is closed under \models whenever for every $w \in Act^*$, it holds: $L \models w$ implies $w \in L$.

Definition (Weak closure)

Language L is weakly closed under \models whenever for every well-formed prefix w of some word in L, it holds $L \models w$ implies $w \in L$.

Weak closure thus restricts closure under \models to well-formed prefixes in L only. So far, closure was required for all $w \in Act^*$.

For language L, let $pref(L) = \{w \mid \exists u. w \cdot u \in L\}$ the set of prefixes of L.

Joost-Pieter Katoen Theoretical Foundations of the UML

For language L, let $pref(L) = \{w \mid \exists u. w \cdot u \in L\}$ the set of prefixes of L.

Definition ((Deadlock-free) Inference relation)

For well-formed $L \subseteq Act^*$, and proper word $w \in Act^*$, i.e., w is a prefix of a well-formed word, let:

 $L \models^{df} w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in pref(L). w \upharpoonright p \text{ is a prefix of } v \upharpoonright p)$

・ 戸 ト ・ ヨ ト ・ ヨ ト

For language L, let $pref(L) = \{w \mid \exists u. w \cdot u \in L\}$ the set of prefixes of L.

Definition ((Deadlock-free) Inference relation)

For well-formed $L \subseteq Act^*$, and proper word $w \in Act^*$, i.e., w is a prefix of a well-formed word, let:

 $L \models^{df} w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in pref(L). w \upharpoonright p \text{ is a prefix of } v \upharpoonright p)$

Definition (Closure under \models^{df})

Language L is closed under \models^{df} whenever $L \models^{df} w$ implies $w \in pref(L)$.

< 回 > < 回 > < 回 > < 回 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

12/18

For language L, let $pref(L) = \{w \mid \exists u. w \cdot u \in L\}$ the set of prefixes of L.

Definition ((Deadlock-free) Inference relation)

For well-formed $L \subseteq Act^*$, and proper word $w \in Act^*$, i.e., w is a prefix of a well-formed word, let:

 $L \models^{df} w \quad \text{iff} \quad (\forall p \in \mathcal{P}. \exists v \in pref(L). w \upharpoonright p \text{ is a prefix of } v \upharpoonright p)$

Definition (Closure under \models^{df})

Language L is closed under \models^{df} whenever $L \models^{df} w$ implies $w \in pref(L)$.

Intuition

The closure condition asserts that the set of partial MSCs (i.e., prefixes of L) can be constructed from the projections of the MSCs in L onto individual processes.

Example

Joost-Pieter Katoen Theoretical Foundations of the UML

Example

Example

 $L = Lin(\{M_1, M_2\})$ is not closed under \models^{df} :

$$w = !(p, q, a)!(q, p, b) \notin \operatorname{pref}(L)$$

But: $L \models^{df} w$ since w is a proper prefix of a well-formed word, and

- for process p, there exists $u \in L$ with $w \upharpoonright p = !(p, q, \mathbf{a}) \in pref(\{u \upharpoonright p\})$, and
- for process q, there exists $v \in L$ with $w \upharpoonright q = !(q, p, b) \in pref(\{v \upharpoonright q\})$.

Note that L is closed under \models . So this shows that closure under \models does not imply closure under \models^{df} .

Lemma:

For every deadlock-free weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models^{df} .

Proof.

Similar proof strategy as for the closure of weak CFMs under \models (see previous lecture).

E ▶ .

Joost-Pieter Katoen Theoretical Foundations of the UML

Lemma:

For every deadlock-free weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models^{df} .

Proof.

Similar proof strategy as for the closure of weak CFMs under \models (see previous lecture). Basic intuition is that if $w \upharpoonright p$ is a prefix of $v^p \upharpoonright p$, then from the point of view of process p, w can be prolonged with a word u, say, such that $w \cdot u = v^p$.

Lemma:

For every deadlock-free weak CFM \mathcal{A} , $Lin(\mathcal{A})$ is closed under \models^{df} .

Proof.

Similar proof strategy as for the closure of weak CFMs under \models (see previous lecture). Basic intuition is that if $w \upharpoonright p$ is a prefix of $v^p \upharpoonright p$, then from the point of view of process p, w can be prolonged with a word u, say, such that $w \cdot u = v^p$. This applies to all processes, and as the weak CFM is deadlock-free, such continuation is always possible.

2 Closure and inference revisited

3 Characterisation and complexity of safe realisability

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Joost-Pieter Katoen Theoretical Foundations of the UML

[Alur et al., 2001]

 $L \subseteq Act^*$ is safely realisable iff L is weakly closed under \models and closed under \models^{df} .

16/18

[Alur et al., 2001]

 $L \subseteq Act^*$ is safely realisable iff L is weakly closed under \models and closed under \models^{df} .

Proof

On the black board.

(신문) (문)

Joost-Pieter Katoen Theoretical Foundations of the UML

[Alur et al., 2001]

 $L \subseteq Act^*$ is safely realisable iff L is weakly closed under \models and closed under \models^{df} .

Proof

On the black board.

Corollary

The finite set of MSCs $\{M_1, \ldots, M_n\}$ is safely realisable iff $\bigcup_{i=1}^n Lin(M_i)$ is closed under \models and \models^{df} .

For any well-formed $L \subseteq Act^*$:

L is regular and closed under \models if and only if $L = Lin(\mathcal{A})$ for some \forall -bounded weak CFM \mathcal{A} .

・ 同 ト ・ ヨ ト ・ ヨ ト

17/18

For any well-formed $L \subseteq Act^*$:

 $L \text{ is regular and closed under} \models \\ \text{if and only if} \\ L = Lin(\mathcal{A}) \text{ for some } \forall \text{-bounded weak CFM } \mathcal{A}.$

Theorem

For any well-formed $L \subseteq Act^*$:

L is regular, weakly closed under \models and closed under \models^{df} if and only if

 $L = Lin(\mathcal{A})$ for some \forall -bounded deadlock-free weak CFM \mathcal{A} .

・ 同 ト ・ ヨ ト ・ ヨ

[Alur et al., 2001]

The decision problem "is a given set of MSCs safely realisable?" is in P.

Joost-Pieter Katoen Theoretical Foundations of the UML

[Alur et al., 2001]

(B)

The decision problem "is a given set of MSCs safely realisable?" is in P.

Proof

- For a given finite set of MSCs, safe realisability can be checked in time $\mathcal{O}((n^2 + r) \cdot k)$ where k is the number of processes, n the number of MSCs, and r the number of events in all MSCs together.
- If the MSCs are not safely realisable, the algorithm returns an MSC which is implied, but not included in the input set of MSCs.

(We skip the details in this lecture.)