

Theoretical Foundations of the UML SS 2016

- Series 2 -

Hand in until May 12 before the exercise class

Exercise 1 (Races in MSC)

(2 Points)

Consider the MSC M:

- a) Draw the Hasse diagram of M.
- b) Determine all races in the MSC M and justify your answer (e.g., by means of another Hasse diagram for \ll).

Exercise 2 (MSG)

(3 Points)

Consider the MSG $\mathcal{G}:$

- a) Give 3 different accepting paths of the MSG \mathcal{G} and the MSC language $L(\mathcal{G})$.
- b) Determine the word language $Lin(L(\mathcal{G}))$ of MSG \mathcal{G} .
- c) Determine the races in the MSG ${\mathcal G}$ and justify your answer.

Exercise 3 (Finite state automata & MSG)

(5 Points)

Given a finite-state automaton P and an MSG graph G, let $\mathcal{L}(P)$ and $\mathcal{L}(G)$ be the languages of P and G, respectively. (Hence, $\mathcal{L}(P)$ is regular.)

<u>Prove that</u> the decision problem whether $\mathcal{L}(P) \cap \mathcal{L}(G) = \emptyset$ is undecidable.