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Expectation Transformers — Recap
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Probabilistic
Program c

Postcondition Q : S ! [0,1]

Precondition P : S ! [0,1]

P(s) = EVJcK(s)(Q)

wp
⇥
·
⇤

0.3
0.5

0.1
0

1

Initial States

wp[c] : (S ! [0,1]) ! (S ! [0,1])

(post-)expectation (pre-)expectation

probability of terminating 
and establishing E.

probability of diverging or 
establishing E.

wp
⇥
c
⇤
([E ])

wlp
⇥
c
⇤
([E ])

Characteristic function of event E



The pGCL language

Expectation Transformers — Recap
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Theorem (McIver & Morgan  ‘96)

For pGCL program c, expectation 
transformer wp[c] can be defined 
by induction on c structure.

C := skip nop

| abort abortion

| x

:= E assignment

| if G then C else C conditional

| {C} [p] {C} probabilistic choice

| while G do C while loop

| C; C sequence

wp[skip](f ) = f

wp[abort](f ) = 0

wp[x := E ](f ) = f [E/x ]

wp[if G then c1 else c2](f ) = [G ] · wp[c1](f ) + [¬G ] · wp[c2](f )
wp[{c1} [p] {c2}](f ) = p · wp[c1](f ) + (1�p) · wp[c2](f )
wp[c1; c2](f ) = (wp[c1] � wp[c2])(f )
wp[while G do c](f ) = µh • ([G ] · wp[c](h) + [¬G ] · f )



Expectation Transformers — Recap
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Example

c1 : {x := 0} [p] {x := 1};
{y := 0} [q] {y := 1}

wp[c1]([xy ])

= hrule for sequential compositioni
wp

⇥
{x := 0} [p] {x := 1}

⇤�
wp

⇥
{y := 0} [q] {y := 1}

⇤
([xy ])

�

= hrule for probabilistic choicei
wp

⇥
{x := 0} [p] {x := 1}

⇤�
q · wp

⇥
y

:= 0
⇤
([xy ]) + q̄ · wp

⇥
y

:= 1
⇤
([xy ])

�

= hrule for assignment, twicei
wp

⇥
{x := 0} [p] {x := 1}

⇤�
q · [x0] + q̄ · [x1]

�

= hrule for probabilistic choicei
p · wp

⇥
x

:= 0
⇤�
q · [x0] + q̄ · [x1]

�
+ p̄ · wp

⇥
x

:= 1
⇤�
q · [x0] + q̄ · [x1]

�

= hrule for assignment, twicei
p · (q · [00] + q̄ · [01]

�
+ p̄ ·

�
q · [10] + q̄ · [11]

�

= halgebrai
p + p̄q̄

wp[x := E ](f ) = f [E/x ]

wp[{c1} [p] {c2}](f ) = p · wp[c1](f ) + p̄ · wp[c2](f )
wp[c1; c2](f ) = wp[c1](wp[c2](f ))



Expectation Transformers — Recap
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(1) there exists a standard (ie a predicate) loop invariant I, which restricted to ¬G is stronger than 
the post-expectation f, and 

(2) there exists a bounded variant e, which in each iteration decreases with at least a fixed 
probability ϵ>0.

Loop Rules

Then, [I] is a valid pre-expectation of the loop w.r.t. post-expectation f (but not necessarily the 
weakest).

(1)               partial correctness (wlp)                        (1) + (2)               total correctness (wp)

Consider loop                             and post-expectation f. Assume that
while G do c
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Healthiness Conditions

Monotonicity
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Feasibility 

Linearity

Strictness / Co-strictness

wp[c](f )  wp[c](g) and wlp[c](f )  wlp[c](g) if f  g

wp[c](0) = 0 and wlp[c](1) = 1

For any (purely probabilistic) pGCL program c, it holds

wp[c](↵·f + � ·g) = ↵·wp[c](f ) + � ·wp[c](g)

wp[c](f )  u if 8s • f (s)  u

wlp[c](f ) � u if 8s • f (s) � u

wlp[c](f ) = 1� wp[c](1�f )

Connection between both transformers
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Generalizing Expectations
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Probability that the program  
terminates within 5 iterations


wp
⇥
c
⇤
([n5])

Expected number of  
iterations to terminate


wp
⇥
c
⇤
(�s • s(n))

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;



Generalizing Expectations
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Probability that the program  
terminates within 5 iterations


wp
⇥
c
⇤
([n5])

Expected number of  
iterations to terminate


wp
⇥
c
⇤
(�s • s(n))

62 S ! [0,1]

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;



Generalizing Expectations
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wp[c] : (S ! [0,1]) ! (S ! [0,1])

(post-)expectation (pre-)expectation

wp[c](f ) = �s • EVJcK(s)(f )

If post-expectation f is unbounded, the 
technique can be adapted:

If post-expectation f is bounded by some 
constant        , ie 
 
 
we can exploit the linearity of wp[c]: 

2 S ! [0,1]

8s • f (s) 2 [0,M]

wp[c](f ) = M · wp[c]
�

1
M · f

�

the loop rule must be adapted

the inductive definition of          remains the same wp[·]

the range of expectations must also include     ,  
ie 

1

If post-expectation f takes both positive and 
negative values, pre-expectation is not 
guaranteed to exist

M>1

wp[c]
�
2n
�
(s) =

X

i�1

1 = 1

wp[c]
�
(�2)n

�
(s) =

X

i�1

(�1)n

= � 1 + 1� 1 + 1 · · ·

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](f )(s) =
X

i�1

�
1
2

�i
f (s[b, n/false, i ])

E , S ! R�0
1



Generalizing Expectations
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Loop Rule for Unbounded Expectations

Then

Consider loop                            . Assume that
while G do c

(1)             is a set of initial states that guarantee almost sure termination of the loop, ie 
 
 
(Use the original loop rule to determine T.)

T ✓ S

[T ] V wp[while G do c](1)

I : S ! R�0
1(2)                      is a loop invariant, ie 

(3) the expected value of            upon the entry of the loop body tends to zero as the loop 
“continues to execute” (ie in the long run).    

I · [G ]

I · [T ] V wp[while G do c](I · [¬G ])

I · [G ] V wp[c](I )



Generalizing Expectations
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Application of loop rule for unbounded expectations

We want to prove that the program 
terminates in average in two iterations, i.e. 

wp[c](n) = 2

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)

= hrule for seq. comp.i
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do . . .

⇤
(n)

�

W hmonoton. of wp[·]; let I := [b] · (n + 2) + [¬b] · ni
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do body

⇤�
I · [¬b]

��

W hmonoton. of wp[·], loop rule with invariant I

and set of initial terminating states Si
wp

⇥
n := 0; b := true

⇤�
[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

I · [¬b] V n(1)

true V wp
⇥
while b do body

⇤
(1)(2)

I · [b] V wp
⇥
body

⇤
(I )(3)

(4) lim
i!1

EVi

⇥
I · [b]

⇤
= 0
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�

= hrule for seq. comp. and assign.i
2

I · [¬b] V n(1)
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[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

Variant [b] decreases with
probability

1/2 in each iteration

true V wp
⇥
while b do body

⇤
(1)(2)
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wp
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n := 0; b := true

⇤�
[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

[b] · (n + 2)

beginning of

i-th itaration

z }| {✓�
1
2

�i�1 · 1 +
�
1
2

�i�1 · 0
◆ z }| {

 i + 2

limi!1
�
1
2

�i�1 · (i+2) = 0

(4) lim
i!1

EVi

⇥
I · [b]

⇤
= 0
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) wp[c](n) � 2



Generalizing Expectations
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We can show that
c : n := 0;

b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)  2

by proving that

0 V wp[c](2�n)

since wp[c](f )(s) =
X

i�1

�
1
2

�i
f (s[b, n/false, i ])

0  wp[c](2�n) = 2� wp[c](n)
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Two Semantical Views of Probabilistic Programs
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Expectation transformer view

Distribution of 
final states

Probabilistic
Program c

Output

P
ro
b

JcK(s)

Initial state s

Relational view

Connection between  
the two views

wp[c] : E ! EJcK : S ! D(S)

wp[c](f ) = �s • EVJcK(s)(f )

wp[skip](f ) = f

wp[abort](f ) = 0

wp[x := E ](f ) = f [E/x ]

wp[if G then c1 else c2](f ) = [G ] · wp[c1](f ) + [¬G ] · wp[c2](f )
wp[{c1} [p] {c2}](f ) = p · wp[c1](f ) + (1�p) · wp[c2](f )
wp[c1; c2](f ) = (wp[c1] � wp[c2])(f )
wp[while G do c](f ) = µh • ([G ] · wp[c](h) + [¬G ] · f )



Relational Semantics — Preliminaries
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We let           be the set of sub-probability distributions over program states.

missing probability

D(S)

probability of non-termination 

from initial state s

Total mass of JcK(s)

Related notation and operations

Distributions over program states

1� w
�
JcK(s)

�

⌘s

0

p · µ1 + (1�p) · µ2

µ I f

Dirac distribution (s 2 S)

null distribution

convex combination between distributions

µ1 and µ2 (p 2 [0, 1], µ1,µ2 2 D(S))

distribution

P
a2A Pr

⇥
µ=a

⇤
· f (a)

(µ 2 D(A), f : A ! D(S))



Relational Semantics — Definition
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For pGCL program c, the semantic function

is defined by induction on c structure as follows:
JcK : S ! D(S)

: (S ! D(S)) ! (S ! D(S))

JskipK = �s • ⌘s

JabortK = �s • 0

Jx := EK = �s • ⌘s0 where s

0 = s[E/x ]

Jif G then c1 else c2K = �s • Jc1K(s) C JGK(s) B Jc2K(s)
J{c1} [p] {c2}K = �s •

p · Jc1K(s) + (1�p) · Jc2K(s)
Jc1; c2K = �s • Jc1K(s) I Jc2K
Jwhile G do cK = lfp(F ) where F (f ) = �s • (JcK(s) I f ) C JGK(s) B ⌘s



Connection between Relational and Expectation Transformer Semantics
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Theorem

For any (purely probabilistic) pGCL program c and post-expectation f,

wp[c](f ) = �s • EVJcK(s)(f )

wp[c]([P])(s) = ↵ =) Pr
⇥
P 2 JcK(s)

⇤
= ↵

Pr
⇥
P 2 JcK(s)

⇤
= ↵ =) wp[c]([P])(s) = ↵

This theorem proves both the soundness and the completeness of the expectation 
transformer semantics wrt the relational semantics:

SOUNDNESS

COMPLETENESS
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This theorem proves both the soundness and the completeness of the expectation 
transformer semantics wrt the relational semantics:

SOUNDNESS

COMPLETENESS

The connection between the two semantics can be recast in a more uniform manner:

g = wp[c](f ) i↵ 8µ 2 D(S) • EVµ(g) = EVµIJcK(f )

P = wp[c](Q) i↵ 8s 2 S • P(s) = Q(JcK(s))
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This theorem proves both the soundness and the completeness of the expectation 
transformer semantics wrt the relational semantics:

SOUNDNESS

COMPLETENESS

The connection between the two semantics can be recast in a more uniform manner:

✓
deterministic

counterpart

◆

g = wp[c](f ) i↵ 8µ 2 D(S) • EVµ(g) = EVµIJcK(f )

P = wp[c](Q) i↵ 8s 2 S • P(s) = Q(JcK(s))

g = wp[c](f ) i↵ 8µ 2 D(S) • EVµ(g) = EVµIJcK(f )
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Non-deterministic Programs
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The pGCL language
C := skip nop

| abort abortion

| x

:= E assignment

| if G then C else C conditional

| {C} [p] {C} probabilistic choice

| {C}⇤ {C} non-deterministic choice

| while G do C while loop

| C; C sequence

Syntax

Semantics 

Non-determinism is resolved by means of a 
scheduler who decides, on each occurrence of 
a non-deterministic choice, which branch (left 
or right) to execute.

Demonic model: we adopt the scheduler that minimizes the probability of the event at 
stake (scheduler varies according to the post-expectation and initial state)

Scheduler Induced Prob.

{L,L}  Pr[A]=0.20

{L,R}  Pr[A]=0.80

{R,L}  Pr[A]=0.05

{R,R}  Pr[A]=0.60



Non-deterministic Programs

24

Examples

Pr[x=y ] = min
n

PrL[x=y ], PrR[x=y ]
o

= min
�

1
3 ,

2
3

 

= 1
3

b := true;
while (b=true) do
{b := true} [1/2] {b := false};

{x := true}⇤ {x := false};
{y := true} [1/3] {y := false};

     

Pr[true] = 1
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Examples

Pr[x=y ] = min
n

PrL[x=y ], PrR[x=y ]
o

= min
�

1
3 ,

2
3

 

= 1
3

{x := true}⇤ {x := false};
{y := true} [1/3] {y := false};

     

Pr[true] =

b := true;
while (b=true) do
{b := true} [1/2] {b := false};
{skip}⇤ {b := ¬b}
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⇤
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�
wp[c1](f ), wp[c2](f )
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wp
⇥
c1

⇤
([x=y ])

= hrule for seq. comp.i
wp

⇥
{x :=t}⇤ {x :=f}

⇤�
wp

⇥
{y :=t} [1/3] {y :=f}

⇤
([x=y ])

�

= hrule for prob. choice and assgn.i
wp

⇥
{x :=t}⇤ {x :=f}

⇤�
1
3 · [x=t] + 2

3 · [x=f]
�

= hrule for non-det. choice and assgn.i
min

�
1
3 · [t=t] + 2

3 · [t=f], 1
3 · [f=t] + 2

3 · [f=f]
 

= hsimplificationi
1
3

c1 : {x := t}⇤ {x := f};
{y := t} [1/3] {y := f}

wp[x := E ](f ) = f [E/x ]

wp[{c1} [p] {c2}](f ) = p · wp[c1](f ) + p̄ · wp[c2](f )
wp[{c1}2 {c2}](f ) = min

�
wp[c1](f ), wp[c2](f )

 

wp[c1; c2](f ) = wp[c1](wp[c2](f ))
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wp
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⇤
([x=y ])

= hrule for seq. comp.i
wp

⇥
{y :=t} [1/3] {y :=f}

⇤�
wp

⇥
{x :=t}⇤ {x :=f}

⇤
([x=y ])

�

= hrule for non-det. choice and assgn.i
wp

⇥
{y :=t} [1/3] {y :=f}

⇤�
min

�
[t=y ], [f=y ]

 �

= hrule for prob. choice and assgn.i
1
3 ·min

�
[t=t], [f=t]

 
+ 2

3 ·min
�
[t=f], [f=f]

 

= hsimplificationi
0

wp
⇥
c1

⇤
([x=y ])

= hrule for seq. comp.i
wp

⇥
{x :=t}⇤ {x :=f}

⇤�
wp

⇥
{y :=t} [1/3] {y :=f}

⇤
([x=y ])

�

= hrule for prob. choice and assgn.i
wp

⇥
{x :=t}⇤ {x :=f}

⇤�
1
3 · [x=t] + 2

3 · [x=f]
�

= hrule for non-det. choice and assgn.i
min

�
1
3 · [t=t] + 2

3 · [t=f], 1
3 · [f=t] + 2

3 · [f=f]
 

= hsimplificationi
1
3

c2 : {y := t} [1/3] {y := f};
{x := t}⇤ {x := f}

c1 : {x := t}⇤ {x := f};
{y := t} [1/3] {y := f}

wp[x := E ](f ) = f [E/x ]

wp[{c1} [p] {c2}](f ) = p · wp[c1](f ) + p̄ · wp[c2](f )
wp[{c1}2 {c2}](f ) = min

�
wp[c1](f ), wp[c2](f )

 

wp[c1; c2](f ) = wp[c1](wp[c2](f ))

A scheduler can “look” the past, but not the future. 
In c2 the scheduler has access to the value of y, and can then assign x the 
opposite value, yielding a zero probability that x=y.  
In c1 the scheduler must choose a single value for x, which will be the same 
for both branches of the probabilistic choice assigning the value to y.
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The Law of Total Probabilities holds for purely probabilistic programs, ie

wp[c]([P]) + wp[c]([¬P]) = wp[c](1)

It follows from the linearity of wp[c], ie

↵·wp[c](f ) + � ·wp[c](g) = wp[c](↵·f + � ·g)

For non-deterministic programs we only have

since only sub-linearity of wp[c] holds, ie

↵·wp[c](f ) + � ·wp[c](g)  wp[c](↵·f + � ·g)

wp[c]([P]) + wp[c]([¬P])  wp[c](1)

c2 : {y := t} [1/3] {y := f};
{x := t}⇤ {x := f}

wp
⇥
c2

⇤
([x=y ]) = 0

wp
⇥
c2

⇤
([x 6=y ]) = 0
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Theorem

For any (purely probabilistic) pGCL program c 
and post-expectation f,

Initial state
Distribution of 

final states

Output

P
ro
b

wp[c](f ) = �s • EVJcK(s)(f )

Purely Probabilistic
Program
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Initial state

wp[c](f ) = �s • inf
n

EVµ0(f ) | µ0 2 JcK(s)
o

For any (possibly non-deterministic) pGCL 
program c and post-expectation f,

Set of distributions 
of final states

Non-deterministic
Program

0

1

wp[c](f )(s)
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Initial state

wp[c](f ) = �s • inf
n

EVµ0(f ) | µ0 2 JcK(s)
o

For any (possibly non-deterministic) pGCL 
program c and post-expectation f,

Set of distributions 
of final states

Non-deterministic
Program

PROBABILISTICALLY  
CLOSED SET

0

1

wp[c](f )(s)
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28⇤ µ  µ0 , 8s 2 S • Pr[µ = s]  Pr[µ0 = s]

A set of distributions                   is probabilistically closed iff it is
up-closed: 

non-empty

convex:

Cauchy-closed:

µ 2 P =) µ0 2 P for all µ0 � µ

µ,µ0 2 P =) � · µ+ (1��) · µ0 2 P for all � 2 [0, 1]

closed in the topological space RS
�0

Probabilistically closed subsets

We let           be the family of all probabilistically closed subsets.C(S)

P ✓ D(S)

(C(S),v,
F
) defines a a complete partial order with bottom element, being

✓1 v ✓2 , ✓1 ◆ ✓2
G

i2N
✓i ,

\

i2N
✓i ? , D(S)
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The relational semantics of a possibly non-deterministic pGCL program c, is 
given by function 


JcK : S ! C(S)

defined by induction on c structure as follows:

: (S ! C(S)) ! (S ! C(S))

⇤ ✓1 �p ✓2 ,
�
p · µ1 + (1�p) · µ2 | µ1 2 ✓1 ^ µ2 2 ✓2

 

JskipK = �s • {⌘s}
JabortK = �s • D(S)
Jx := EK = �s • {⌘s0} where s

0 = s[E/x ]

Jif G then c1 else c2K = �s • Jc1K(s) C JGK(s) B Jc2K(s)
J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)

Jc1; c2K = �s •
�
µ I f | µ 2 Jc1K(s) and f 2 det ref (Jc2K)

 

Jwhile G do cK = lfp(F ) where

F (f ) = �s •
�
µ I h | µ 2 JcK(s) and h 2 det ref (f )

 
C JGK(s) B {⌘s}
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Assume we have only one program variable x, which is Boolean. Then the set of 
distributions over program states           can be represented in the cartesian plane.D(S)

1

1

Pr[x=f ]

Pr[x=t ]0 1
2

1
2

Fair coin 

Degenerate biased coin

D(S)
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Convexity Up-closure

Cauchy-closure
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1

1

Pr[x=f ]

Pr[x=t ]0 1
3

1

1

Pr[x=f ]

Pr[x=t ]0

x

:= t
x

:= f[p] ⇤{ } [q]
x

:= t
x

:= f{ }

1
3

Demonic choice between  
two biased coins

Jx := EK = �s • {⌘s0} where s

0 = s[E/x ]

J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)
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1
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1
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:= f }

{abort} [1/3] {x := t [3/4] x

:= f }
⇤
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⇥
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