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repeat
n:=n+4 1;
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® Recap on previous lecture




|
1 wp[c]: (& — [0,1]) — (S — [0,1])

Probabilistic
&=~ .

Initial States n s [C] ([E]) W

¢ 05 probability of terminating
0.3 and establishing E.

0 m wip[c]([E]) >—\,

probability of diverging or
establishing E.




The pGCL language Theorem (Mclver & Morgan ‘96)

€ o= Slsip nop _

i e For pGCL program c, expectation
x=E assignment transformer wp/c] can be defined
if G then C else C conditional - -
(e [p] {C} T by induction on ¢ structure.
while Gdo C while loop
€:4C sequence

wp[skip|(f) = f

wp[abort](f) =0

wp[x = E](f) = f[E/X]

wp[if G then ¢ else o|(f) = [G] - wp[ci](f) + [~G] - wp[c](f)

wp[{c} [p] {c2}](f) = p-wpla](f) + (1-p) - wp[c](f)

wp|ar; 2](f) = (wp[a] o wp|e])(f)

wp[while G do c|(f) = phe ([G]-wp[c](h) + [G] - f)




Example

ci: {x=0}[p] {x =1} wp[x = E](f) = f[E/X]
{y =0} [q] {y =1} wp[{ci} [p] {e}](f) = p-wpla](f) + 5 - wp[e](f)
wplcy; e](f) = wpla|(wp[e](f))
wplc]([x<y])

= (rule for sequential composition)

x =0} [p] {x = 1}] (wp[{y := 0} [q] {y = 1}]([x<]))

rule for probabilistic choice)

wp |{
(
wp [{x =0} [p] {x =1} (q - wply = 0]([x<y]) + G- wply == 1]|([x<y]))
(
[
(

rule for assignment, twice)

wp | {x := 0} [p] {x = 1}](q - [x<0] + § - [x<1])
rule for probabilistic choice)

p-wp[x:=0](q- [x<0] +§ - [x<1]) + 5 - wp[x = 1] (g - [x<0] + § - [x<1])
= (rule for assignment, twice)

p-(q-[0<0]+g-[0<1]) + 5 (g [1<0] + g [1<1])
= (algebra)

p+ pq




Loop Rules

Consider loop while G do ¢ and post-expectation f. Assume that

(1) there exists a standard (ie a predicate) loop invariant /, which restricted to =G is stronger than
the post-expectation 7, and

(2) there exists a bounded variant e, which in each iteration decreases with at least a fixed
probability e>0.

Then, [l] is a valid pre-expectation of the loop w.r.t. post-expectation f (but not necessarily the
weakest).

(1) partial correctness (wlp) (1) +(2) total correctness (wp)



@ Algebraic properties




For any (purely probabilistic) pGCL program c, it holds

Monotonicity
wp[c](f) < wp[c](g) and wip[c](f) < wlip[c](g)

¥ Feasibility f (o)
if Vse f(s)<u
if Vse f(s)> u

Linearity
wp[c](a-f + 3-g) = a-wp[c|(f) + B-wp[c](g)

¥ Strictness / Co-strictness

wp[c](0) =0 and wip[c](1) =1

Connection between both transformers

wip[c](f) = 1 — wp[c](1—f)

it f<g

10



® Extension to unbounded expectations




c: n:=0;
b := true;
while (b=true)do
{b = true} [1/2] {b = false}
n:= n+1;

Probability that the program <5
terminates within 5 iterations ‘ Wp[c]([n— 1)

Expected number of _ Wp[c}()\s . s(n))

iterations to terminate

12



c: n:=0;
b := true;
while (b=true)do
{b = true} [1/2] {b = false}
n:= n+1;

Probability that the program <5
terminates within 5 iterations ‘ Wp[c]([n— 1)

Expected number of _ Wp[c] (As e« s(n))

iterations to terminate
€ ¢s- 01

12



If post-expectation fis bounded by some
constant M>1, ie

Vse f(s) € [0,M]

we can exploit the linearity of wplc]:

wp[c|(f) = M -wplc](7 - f)

If post-expectation f is unbounded, the
technique can be adapted:

the range of expectations must also include oo,
ie E £ S — RV

B the inductive definition of wp[:| remains the same

the loop rule must be adapted

® If post-expectation f takes both positive and
negative values, pre-expectation is not
guaranteed to exist

wp[c]: (§ — [0

1]) =

(& —[0,1])

wp[c](f) = Ase EV[s)(f)

c: n:=0;

b := true;
while (b=true)do
{b = true} [1/2] {b = false};
n = n+1;

wplc](f)(s) =

wp[c] (2

wp[c]((—2)")(s)

> (2) £(s[b, n/false, i)

i>1

- Yo

i>1

> (=1)"

i>1

—1+1— 1 S

13



Loop Rule for Unbounded Expectations

Consider loop while G do c.Assume that

(1) T C S is a set of initial states that guarantee almost sure termination of the loop, ie
[T] = wp[while G do c](1)

(Use the original loop rule to determine T.)

(2) /- S — Rgg is a loop invariant, ie

I-[G] = wplc](/)

(3) the expected value of / - [G] upon the entry of the loop body tends to zero as the loop
“continues to execute” (ie in the long run).

Then
[ -[T] = wp|while G do c|(/-[~G])

14



Application of loop rule for unbounded expectations

c: n=0;
We want to prove that the program b — true:
terminates in average in two iterations, i.e. Thile (b':true) do
wp[c](n) = 2 ;Eb.:nz:tf} /2] 1= false}

wp(c](n)
(rule for seq. comp.)
wp|n = 0; b = true| (wp|while (b=true)do...|(n))
(monoton. of wp[-]; let I := [b] - (n + 2) + [=b] - n) (1) I-[-b]l = n
wp|n = 0; b = true| (wp|while (b=true) do body| (/- [-b]))

(monoton. of wp[:], loop rule with invariant /

(2) true = wp|while b do body|(1)

(3) 1-[b] = wp[body] (/)
and set of initial terminating states S) (@) lim EV;[1-[5] = 0
wp|n = 0; b= true|([b] - (n+ 2) + [-b] - n) o

(rule for seq. comp. and assign.)

2



Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

wp[c](n)
(rule for seq. comp.)
wp|n = 0; b = true| (wp|while (b=true)do...|(n))
(monoton. of wp|-]; let I :== [b] - (n+ 2) + [=b] - n)
wp|n = 0; b = true| (wp|while (b=true) do body| (/- [-b]))
(monoton. of wp[:], loop rule with invariant /
and set of initial terminating states S)
wp|n = 0; b= true|([b] - (n+ 2) + [-b] - n)
(rule for seq. comp. and assign.)
2

n:=0;

b := true;

while (b=true)do
{b = true} [1/2] {b = false};
n:= n+1;

(1) I-[-b] = n

18



Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

wp[c](n)
(rule for seq. comp.)
wp|n = 0; b = true| (wp|while (b=true)do...|(n))
(monoton. of wp|-]; let I :== [b] - (n+ 2) + [=b] - n)
wp|n = 0; b = true| (wp|while (b=true) do body| (/- [-b]))
(monoton. of wp[:], loop rule with invariant /
and set of initial terminating states S)
wp|n = 0; b= true|([b] - (n+ 2) + [-b] - n)
(rule for seq. comp. and assign.)
2

n:=0;

b := true;

while (b=true)do
{b = true} [1/2] {b = false};
n:= n+1;

(2) true = wp|while b do body|(1)

18



Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

wp[c](n)
(rule for seq. comp.)
wp|n = 0; b = true| (wp|while (b=true)do...|(n))
(monoton. of wp|-]; let I :== [b] - (n+ 2) + [=b] - n)
wp|n = 0; b = true| (wp|while (b=true) do body| (/- [-b]))
(monoton. of wp[:], loop rule with invariant /
and set of initial terminating states S)
wp|n = 0; b= true|([b] - (n+ 2) + [-b] - n)
(rule for seq. comp. and assign.)
2

n:=0;

b := true;

while (b=true)do
{b = true} [1/2] {b = false};
n:= n+1;

(2) true = wp|while b do body|(1)

18



Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

wp[c](n)
(rule for seq. comp.)
wp|n = 0; b = true| (wp|while (b=true)do...|(n))
(monoton. of wp|-]; let I :== [b] - (n+ 2) + [=b] - n)
wp|n = 0; b = true| (wp|while (b=true) do body| (/- [-b]))
(monoton. of wp[:], loop rule with invariant /
and set of initial terminating states S)
wp|n = 0; b= true|([b] - (n+ 2) + [-b] - n)
(rule for seq. comp. and assign.)
2

n:=0;

b := true;

while (b=true)do
{b = true} [1/2] {b = false};
n:= n+1;

(3) I-[b] = wp[body] (1)

18



Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

wp[c](n)
(rule for seq. comp.)
wp|n = 0; b = true| (wp|while (b=true)do...|(n))
(monoton. of wp|-]; let I :== [b] - (n+ 2) + [=b] - n)
wp|n = 0; b = true| (wp|while (b=true) do body| (/- [-b]))
(monoton. of wp[:], loop rule with invariant /
and set of initial terminating states S)
wp|n = 0; b= true|([b] - (n+ 2) + [-b] - n)
(rule for seq. comp. and assign.)
2

n:=0;

b := true;

while (b=true)do
{b = true} [1/2] {b = false};
n:= n+1;

(4) lim EV,[I-[b]] =0

18



Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

wp[c](n)
(rule for seq. comp.)
wp|n = 0; b = true| (wp|while (b=true)do...|(n))
(monoton. of wp|-]; let I :== [b] - (n+ 2) + [=b] - n)
wp|n = 0; b = true| (wp|while (b=true) do body| (/- [-b]))
(monoton. of wp[:], loop rule with invariant /
and set of initial terminating states S)
wp|n = 0; b= true|([b] - (n+ 2) + [-b] - n)
(rule for seq. comp. and assign.)
2

n:=0;

b := true;

while (b=true)do
{b = true} [1/2] {b = false};
n:= n+1;

18



Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

wp[c](n)
(rule for seq. comp.)
wp|n = 0; b = true| (wp|while (b=true)do...|(n))
(monoton. of wp|-]; let I :== [b] - (n+ 2) + [=b] - n)
wp|n = 0; b = true| (wp|while (b=true) do body| (/- [-b]))
(monoton. of wp[:], loop rule with invariant /
and set of initial terminating states S)
wp|n = 0; b= true|([b] - (n+ 2) + [-b] - n)
(rule for seq. comp. and assign.)
2

. wplc](n) =2

n:=0;

b := true;

while (b=true)do
{b = true} [1/2] {b = false};
n:= n+1;

18



We can show that
wp[c](n) < 2
by proving that
0 = wp[c](2—n)

since

0 < wplcl(2—n) = 2—wplc](n)

c: n=0;
b := true;
while (b=true)do
{b = true} [1/2] {b = false};
n:= n+1;

wplc](F)(s) = 3 (3) f(s[b, n/false, i])

i>1

16



® Connection to relational semantics




Relational view
Ic]: S — D(S)

In|t|al state s

Probabilistic
Program c

Dlstrlbutlon of
final states

Expectation transformer view

wp[c]: E — E
wp[skip|(f) = f
wp[abort](f) =0
wp[x = E]|(f) = f[E/x]
wp[if G then c¢; else o|(f) = [G] - wp[ci|(f) + [~G] - wp[c](f)
wp[{ai} [p] {c2}](f) = p-wplal(f) + (1-p) - wpe](f)
wp[cr; e (f) = (wp[a] o wp[e2])(f)
wp[while G do c](f) = phe ([G]-wp[c](h) + [-G]-f)

Connection between
the two views

Wp[C](f) — MAS o EV[M](S)(IC)

18



Distributions over program states

We let D(S) be the set of

missing probability

1 —w([c](s))

Related notation and operations

over program states.

q probability of non-termination
from initial state s

Dirac distribution (s € S)

null distribution

convex combination between distributions
p1 and pip - (p € [0, 1], p1, 2 € D(S))

distribution Y, . Pr[pu=a] - f(a)
(u € D(A), f: A— D(S))

19



For pGCL program c, the semantic function

lc]: S — D(S)

Is defined by induction on c¢ structure as follows:

[skip]

[abort]

[x = E]

[if G then ¢ else o]
{a} [p] {c}]

[c1: ]

[while G do c]

= AS e 17

= Ase« 0

= Ase 7 where s’ = s[E/x]

= Ase [a](s) < [G](s) > [c](s)

= Ase p-[a](s) + (1-p) - [](s)

= Ase [c1](s) » [c2]

= Ifp(F) where F(f) = As« ([c](s) » f) < [G](s) > ns

20



For any (purely probabilistic) pGCL program ¢ and post-expectation ¥,
wplc|(f) = Ase EV[s)(f)

® This theorem proves both the soundness and the completeness of the expectation
transformer semantics wrt the relational semantics:

~ wplc]([P])(s) =a = Pr[P c ﬂc]](s)] = «
Pr[P c [[C]](S)} =a = wp[c|([P])(s) =«

21



For any (purely probabilistic) pGCL program ¢ and post-expectation ¥,
wplc|(f) = Ase EV[)(f)

® This theorem proves both the soundness and the completeness of the expectation
transformer semantics wrt the relational semantics:

0 wp[c|[([P])(s) =a = Pr[P c ﬂc]](s)} = «
Pr[P e [[C]](S)} =a = wp[c|([P])(s) =«

® The connection between the two semantics can be recast in a more uniform manner:

g =wplc|(f) iff VYueD(S)e EV,(g) = EVp[q(f)

21



For any (purely probabilistic) pGCL program ¢ and post-expectation ¥,
wplc|(f) = Ase EV[)(f)

® This theorem proves both the soundness and the completeness of the expectation
transformer semantics wrt the relational semantics:

0 wp[c|[([P])(s) =a = Pr[P c ﬂc]](s)} = «
Pr[P e [[C]](S)} =a = wp[c|([P])(s) =«

® The connection between the two semantics can be recast in a more uniform manner:
g =wplc](f) iff VueD(S)e EV,(g) = EV p[(f)
P=wplc](Q) iff VseS « P(s) = Q(c](s)) (isminiic)

21



# Extension to non-deterministic programs




Syntax
The pGCL language

s — skip nop
abort abortion
e = assignment
if G then C else C conditional
@ ol probabilistic choice
{C) ElE) non-deterministic choice
while Gdo C while loop
EE sequence

Semantics
Scheduler Induced Prob.
B Non-determinism is resolved by means of a {L, L} ~  Pr[A]=0.20
scheduler who decides, on each occurrence of {£ R} ~ Pr[A]=0.80
a non-deterministic choice, which branch (left {Q 9 (R.L} ~ PrlAI=0.05 @
{R, R} ~  Pr[A]=0.60

or right) to execute.

B Demonic model: we adopt the scheduler that minimizes the probability of the event at
stake (scheduler varies according to the post-expectation and initial state)

23



Examples

! {x = true} 00 {x = false};
{y = true} [/3] {y = false};

Pr[x=y|] = min {PrL[X:y], PrR[X:y]}

= min{3 3} =3

b := true;
while (b=true)do
{b = true} [/2] {b = false};

Pritrue] = 1

24



Examples

{x = true} O {x := false};
{y = true} [1/3] {y = false};

Pr[x=y|] = min {PrL[X:y], PrR[X:y]}

b := true;

while (b=true)do
{b = true} [/2] {b = false};
{skip}O{b = —b}

Prtrue] =

24



Examples

{x = true} O {x := false};
{y = true} [1/3] {y = false};

Pr[x=y|] = min {PrL[X:y], PrR[X:y]}

i : 1 27 _1
- m|n{3,3 = 3

b := true;

while (b=true)do
{b = true} [/2] {b = false};
{skip}O{b = —b}

Prltrue] = 0

24



Examples

{x = true} 00 {x = false}; £ b == true:
ly = truej} [Y/3] {y = false}; while (b=true)do
{b : true} [1/2] {b = false};
Pr[x=y|] = min {PrL[X:y], PrR[X:y]} (skip}U1b = b}
= min{3 3} =3 Prtrue] = 0

Extension of expectation transformers

wp[{ci} O {c}|(f) = min{wp[ci](f), wp[e](f)} 1

y‘“o\*-y expected value of f from state s

cV

Wp [C} (f)(S) 1/3 sched. £
%A greatest lower bound for the

expected value of f from state s

2/3 sched. R

24



Examples

{x = true} 00 {x = false}; £ b = true:
ly = truej} [Y/3] {y = false}; while (b=true)do
{b = true} [1/2] {b = false};

Pr[x=y|] = min {PrL[X:y], PrR[X:y]} (skip}U1b = b}

: 1 2 1
= min{3 3} =3 Pr[true] = 0

Extension of expectation transformers

Wp[{Cl}D{CQ}](f) = min {Wp[Cl](f),Wp[CQ](f)} 1]

vy 01O% expected value of f from state s
=" \
wpc|(f)(s) \ e i [0
€ 00~y greatest lower bound for the .y

expected value of f from state s bounds for EV(f)

24



ci: {x=t}0{x:="f};
{y =t} [Y3]| {y =f}

wp|c1 | ([x=y])
(rule for seq. comp.)

wp[x = E](f) = f[E/X]

wp[{ci} [p] {c2}(f) = p-wpla](f) + 5 - wp[e](f)
wp[{ci} O{c}](f) = min {wp[ci](f), wp[c](f)}
wplcr; &](f) = wp[a](wple](f))

wp[{x:=t} O {x:=f}] (wp[{y:=t} [V3] {y=F}]([x=y]))

rule for prob. choice and assgn.)

wp | {x:=t} O {x ::f}] (% - [x=t] + % : [x:f])

min {3 - [t=t] + 5 - [t=f], § - [f=t] + § - [f=f]}

<
(rule for non-det. choice and assgn.)
n
<

simplification)

25



-

{x =t} 0{x =f};
W=t [V =1

wp[x = E](f)
wp[{ci} [p] {c2}](f)
wp[{ci} O{c}|(f)

wplcr; 2] (f)

wp|c1 | ([x=y])
(rule for seq. comp.)

wp[{x:=t} O {x:=f}] (wp[{y:=t} [V3] {y=F}]([x=y]))

rule for prob. choice and assgn.)

{
Wp[{x::t} O {x ::f}] (% - [x=t] + % - [x:f])

(rule for non-det. choice and assgn.)

min {% - [t=t] + % - [t=f], % - [f=t] + % ' [f:f]}

(simplification)

|l

FIE/X]

p-wplal](f) + B - wp[c](f)
min {Wp[C1](f), WP[C2](f)}

wp[ei](wpleo](f))

C.

{y =t} [Y3] {y =f};
{x =t} 0{x :="f}

25



C1-

wp[x = E](f) flE/x]

{X = t} D {X = f}’ wp[{ci} [p] {c2}](f) Z p-wplci](f) + p - wp[c](f) . {.y = t} [1/3] {.y = f}’
{y =1t} [Y3] {y =1} wol{a} o {e](f) = min {wpla](f), wele:](F)} {x =t}0{x =f}
wplcr; ] (f) = wp[ai](wp[e](f))
wp ] ([x=y]) wp|c2| ([x=y])
(rule for seq. comp.) = (rule for seq. comp.)
wp | {x =t} O {x:=f}| (wp[{y:=t} [I/3] {y=f}|([x=y])) wp[{y =t} [1/3] {y:=F}] (wp[{x==t} O {x=f}|([x=y]))
(rule for prob. choice and assgn.) = (rule for non-det. choice and assgn.)
wp[{xi=t} O {x:=f}] (5 - [x=t] + § - [x=f]) wp[{y =t} [V3] {y:=f}] (min{[t=y] [f=y]})
(rule for non-det. choice and assgn.) = (rule for prob. choice and assgn.)
min {% - [t=t] + % - [t=f], % - [f=t] + % : [f:f]} % : min{[t:t], [f:t]} - % : min{[t:f], [f:f]}
(simplification) = (simplification)
H 0

B A scheduler can “look” the past, but not the future.

® In c2 the scheduler has access to the value of y, and can then assign x the
opposite value, yielding a zero probability that x=y.

® In cs the scheduler must choose a single value for x, which will be the same
for both branches of the probabilistic choice assigning the value to y.

25



The Law of Total Probabilities holds for purely probabilistic programs, ie
wp[c]([P]) + wp[c]([=P]) = wp[c](1)

It follows from the linearity of wpjc], ie

a-wple](F) + f-wplcl(g) = wlel(a-f + 5-g)

For non-deterministic programs we only have

wp[c]([P]) + wp[c]([=P]) < wp[c](1) Ix =t 0 {x = f}
: . . _ wp || ([x=y]) =0
since only sub-linearity of wpjc] holds, ie wp[er] (y]) = 0

a-wplc](F) + B-wplcl(g) < wplcl(a-f + B-g)

Q: {y =ty [}y =1k

26



Distribution of
Initial state final states

> Purely Probabilistic >

Program

Prob

Output

For any (purely probabilistic) pGCL program c
and post-expectation f,

Wp[C](f) = ASe EV[[C]](S)(f)

27



Set of distributions

Initial state of final states / &
— Non-deterministic — A A
Program ' N

For any (possibly non-deterministic) pGCL
program ¢ and post-expectation f,

wplcl(F) = s inf {EV,,(F) | 1’ € [c](s)}

G wp[c](f)(s)

27



Set of distributions

Initial state of final states / &
— Non-deterministic — A A
Program ' N
Y
!
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program ¢ and post-expectation f,

wplcl(F) = s inf {EV,,(F) | 1’ € [c](s)}

G wp[c](f)(s)
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Probabilistically closed subsets

A set of distributions P C D(S) is probabilistically closed iff it is

@ upclosed: pn€P = p' ' €P forall p' > p

® non-empty

® convex: pp €P = X u+(1-X)-p' € P forall A €]0,]]
&

Cauchy-closed: closed in the topological space Rio

We let C(S) be the family of all probabilistically closed subsets.

(C(S).C,|l) defines a a complete partial order with bottom element, being

01 C 0, £ 01 D6, L |6: 2 ()6 L £ DS)
ieN IeEN

*u<p 2 VsecSe Priu=s] <Prly =g 28



The relational semantics of a possibly non-deterministic pGCL program c, is

given by function

[c]: S — C(S)

defined by induction on ¢ structure as follows:

[skip] =
[abort] =
[x = E] =
[if G then ¢ else ] =
[{c1} [Pl {c2}] =
[{ci} O{c}] =
[a1; & =

[while G do c] =

As e {ns}

As e D(S)

Ase {ns} where s’ = s[E/x]
Ase [al(s) < [G](s) > [e](s)
As e [al(s) @p [e2](s)

As o pet[g ) [e1](s) ©p [l (s)

AS o {,u » | u€ Jca](s) and f € det_ref([[CQ]])}
lfp(F) where

F(fy=MAse {u» h|pe[c](s) and h € det_ref(f)} < [G](s) > {ns}

*01®pbr = {p-p1+(1—p) - po | p1 €61 Apo € 6>}

29



Assume we have only one program variable x, which is Boolean. Then the set of
distributions over program states D(S) can be represented in the cartesian plane.

A
Pr[x=f]
1\ Fair coin
Degenerate biased coin
|
1
a :
|
|
|
|
|
1 \ >
0 1 1 Pr[x=t]

30



A
Prl=/]

Convexity

AN

1

Pr[x=t]

Prlx=f]

Prix=/] Up-closure

0 1 Prix=t]

Cauchy-closure

1 Pr[x=t]
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A
Prl=/]

Convexity

1

Pr[x=t]

Prlx=f]

Prix=/] Up-closure

0 1 Prix=t]

Cauchy-closure

1 Pr[x=t]
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A
Prx=f] Convexity Prix=/] Up-closure
N
>
0 1\ Pr[;:t] 0 1\ Pr[x=t]

Cauchy-closure
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A
Prx=f] Convexity Prix=/] Up-closure
A
>
0 1\ Pr[;:t] 0 1\ Pr[x=t]
A
Pr[x=f]
N Cauchy-closure
]

1\ Pr[x=t]
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Demonic choice between

Prix=f] 4 two biased coins
1
>
0 1 Pr[x=t]

{x=t [pl x=fYO{x=t [q] x=f}

[x = E]

[{a}o{c}]

= Ase {ns} where s’ = s[E/x]

[{a} [Pl {e2}] = Ase [al(s) @p [2](s)

= Ase U [al(s) ®p [e](s)

p<[0,1]

A
Prl=/]

Wl
1

W[ ==

1

Pr[x=t]
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Demonic choice between

Prix=f] 4 two biased coins
;
>
0 1" Prlx=t]
[x = E] = Ase {ns} where s’ = s[E/x]

[{a}o{c}]

[{a} [Pl {e2}] = Ase [al(s) @p [2](s)

= Ase U [al(s) ®p [e](s)

p<[0,1]

A
Prl=/]

Wl
1

W[ ==

1

Pr[x=t]
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Demonic choice between

Prix=f] 4 two biased coins
1
>
0 1\ Pr[x=t]
=0
X — E]] = XS {775/} where s’ = S[E/X]

[{a}o{c}]

[{a} [Pl {e2}] = Ase [al(s) @p [2](s)

= Ase U [al(s) ®p [e](s)

p<[0,1]

A
Prl=/]

Wl
1

W[ ==

1

Pr[x=t]

32



Demonic choice between

Prix=f] 4 two biased coins
N
>
0 1\ Pr[x=t]

[x = E]

[{a}o{c}]

= Ase {ns} where s’ = s[E/x]

[{a} [Pl {e2}] = Ase [al(s) @p [2](s)

= Ase U [al(s) ®p [e](s)

p<[0,1]

A
Prl=/]

Wl
1

W[ ==

1

Pr[x=t]

32



Demonic choice between

A : :
Prlx=/] two biased coins
1
(p.1-p)
>
0 1 Pr[x=t]
{x=t [p] x:=f}
[x = E] = Ase {ns} where s’ = s[E/x]

[{a}o{c}]

[{a} [Pl {e2}] = Ase [al(s) @p [2](s)

= Ase U [al(s) ®p [e](s)

p<[0,1]

A
Prl=/]

Wl
1

W[ ==

1

Pr[x=t]
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Demonic choice between

A
Prlx=f]

two biased coins

;
\ (g.1—q)

(p.1-p)

0

>
1 Pr[x=t]

{x=t [pl x=f} {x=t [q] x=f}

[x = E]

[{a}o{c}]

= Ase {ns} where s’ = s[E/x]

[{a} [Pl {e2}] = Ase [al(s) @p [2](s)

= Ase U [al(s) ®p [e](s)

p<[0,1]

A
Prlx=f]

Wl
1

W[ ==

1

Pr[x=t]
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Demonic choice between

A
Prlx=f]

two biased coins

;
\ (g.1—q)

(p.1-p)

0

>
1 Pr[x=t]

{x=t [pl x=fYO{x=t [q] x=f}

[x = E]

[{a}o{c}]

= Ase {ns} where s’ = s[E/x]

[{a} [Pl {e2}] = Ase [al(s) @p [2](s)

= Ase U [al(s) ®p [e](s)

p<[0,1]

A
Prlx=f]

Wl
1

W[ ==

1

Pr[x=t]
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Demonic 9hoice bgtween Non-terminating
two biased coins

A A : :
Pr[x=f] Pr[x=f] fair coin

1 1
\ (g.1—q)

(p,1-p) 1]
> : >
0 1 Pr[x=t] 0 ! 1 Pr[x=t]
{ x=t [p] x=f}O{x=t [q9] x=f} {abort} [1/3] {x:=t [Y/2] x:=f}
[x = E] = Ase {ns} where s’ = s[E/x]

[{ar} [Pl {e2i] = Ase [al(s) @p [](s)
{atofeil = As. U [al(s)®p le](s)

p<[0,1]
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Relational Semantics of Non-det. Programs — Geometric Interpretation

o~ Wl
a a

{abort} [1/3] {x:=t [Y/2] x:=f}
[]

{abort} [V/3] {x:=t [3/4] x:=f}




. {abort} [V/3] {x:=t [Y/2] x=f}
{abort} [V/3] {x:=t [3/a] x:=f}

A= Wl
a a

wp c] ([x=t] + 2 - [x=f])




. {abort} [1/3] {x:=t [Y/2] x:=f}
{abort} [V/3] {x:=t [3/4] x:=f}

wp [c] ([x:t] + 2. [x:f])




. {abort} [1/3] {x:=t [Y/2] x:=f}
{abort} [V/3] {x:=t [3/4] x:=f}

wp || ([x=t] + 2 [x=f]) = %




® Summary




Unbounded Non-deterministic
expectations programs

l Initial state
Non-deterministic
program c

l - wplcl(F) = As+ inf {EV,u(f) | 4/ € [c](s)}

of final states

A




