
Seminar on

“Verification of
Probabilistic Programs”

n := 0;
repeat

n := n + 1;
c := coin flip(0.5)

until (c=heads);
return n

Pr[n = k] =
�
1
2

�k

LECTURE 3:
 PROBABILISITIC PREDICATE TRANSFORMERS II

Federico Olmedo
Software Modeling and Verification Group
RWTH AACHEN UNIVERSITY

Lecture Reschedule

2

Lecture on 25th June cancelled

New lecture on 15th July

Agenda

Algebraic properties

Recap on previous lecture

Extension to unbounded expectations

3

Extension to non-deterministic programs

Summary

Connection to relational semantics

Agenda

Algebraic properties

Recap on previous lecture

Extension to unbounded expectations

4

Extension to non-deterministic programs

Summary

Connection to relational semantics

Expectation Transformers — Recap

5

Probabilistic
Program c

Postcondition Q : S ! [0,1]

Precondition P : S ! [0,1]

P(s) = EVJcK(s)(Q)

wp
⇥
·
⇤

0.3
0.5

0.1
0

1

Initial States

wp[c] : (S ! [0,1]) ! (S ! [0,1])

(post-)expectation (pre-)expectation

probability of terminating
and establishing E.

probability of diverging or
establishing E.

wp
⇥
c
⇤
([E])

wlp
⇥
c
⇤
([E])

Characteristic function of event E

The pGCL language

Expectation Transformers — Recap

6

Theorem (McIver & Morgan ‘96)

For pGCL program c, expectation
transformer wp[c] can be defined
by induction on c structure.

C := skip nop

| abort abortion

| x

:= E assignment

| if G then C else C conditional

| {C} [p] {C} probabilistic choice

| while G do C while loop

| C; C sequence

wp[skip](f) = f

wp[abort](f) = 0

wp[x := E](f) = f [E/x]

wp[if G then c1 else c2](f) = [G] · wp[c1](f) + [¬G] · wp[c2](f)
wp[{c1} [p] {c2}](f) = p · wp[c1](f) + (1�p) · wp[c2](f)
wp[c1; c2](f) = (wp[c1] � wp[c2])(f)
wp[while G do c](f) = µh • ([G] · wp[c](h) + [¬G] · f)

Expectation Transformers — Recap

7

Example

c1 : {x := 0} [p] {x := 1};
{y := 0} [q] {y := 1}

wp[c1]([xy])

= hrule for sequential compositioni
wp

⇥
{x := 0} [p] {x := 1}

⇤�
wp

⇥
{y := 0} [q] {y := 1}

⇤
([xy])

�

= hrule for probabilistic choicei
wp

⇥
{x := 0} [p] {x := 1}

⇤�
q · wp

⇥
y

:= 0
⇤
([xy]) + q̄ · wp

⇥
y

:= 1
⇤
([xy])

�

= hrule for assignment, twicei
wp

⇥
{x := 0} [p] {x := 1}

⇤�
q · [x0] + q̄ · [x1]

�

= hrule for probabilistic choicei
p · wp

⇥
x

:= 0
⇤�
q · [x0] + q̄ · [x1]

�
+ p̄ · wp

⇥
x

:= 1
⇤�
q · [x0] + q̄ · [x1]

�

= hrule for assignment, twicei
p · (q · [00] + q̄ · [01]

�
+ p̄ ·

�
q · [10] + q̄ · [11]

�

= halgebrai
p + p̄q̄

wp[x := E](f) = f [E/x]

wp[{c1} [p] {c2}](f) = p · wp[c1](f) + p̄ · wp[c2](f)
wp[c1; c2](f) = wp[c1](wp[c2](f))

Expectation Transformers — Recap

8

(1) there exists a standard (ie a predicate) loop invariant I, which restricted to ¬G is stronger than
the post-expectation f, and

(2) there exists a bounded variant e, which in each iteration decreases with at least a fixed
probability ϵ>0.

Loop Rules

Then, [I] is a valid pre-expectation of the loop w.r.t. post-expectation f (but not necessarily the
weakest).

(1) partial correctness (wlp) (1) + (2) total correctness (wp)

Consider loop and post-expectation f. Assume that
while G do c

Agenda

Algebraic properties

Recap on previous lecture

Extension to unbounded expectations

9

Extension to non-deterministic programs

Summary

Connection to relational semantics

Healthiness Conditions

Monotonicity

10

Feasibility

Linearity

Strictness / Co-strictness

wp[c](f)  wp[c](g) and wlp[c](f)  wlp[c](g) if f  g

wp[c](0) = 0 and wlp[c](1) = 1

For any (purely probabilistic) pGCL program c, it holds

wp[c](↵·f + � ·g) = ↵·wp[c](f) + � ·wp[c](g)

wp[c](f)  u if 8s • f (s)  u

wlp[c](f) � u if 8s • f (s) � u

wlp[c](f) = 1� wp[c](1�f)

Connection between both transformers

Agenda

Algebraic properties

Recap on previous lecture

Extension to unbounded expectations

11

Extension to non-deterministic programs

Summary

Connection to relational semantics

Generalizing Expectations

12

Probability that the program  
terminates within 5 iterations

wp
⇥
c
⇤
([n5])

Expected number of  
iterations to terminate

wp
⇥
c
⇤
(�s • s(n))

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

Generalizing Expectations

12

Probability that the program  
terminates within 5 iterations

wp
⇥
c
⇤
([n5])

Expected number of  
iterations to terminate

wp
⇥
c
⇤
(�s • s(n))

62 S ! [0,1]

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

Generalizing Expectations

13

wp[c] : (S ! [0,1]) ! (S ! [0,1])

(post-)expectation (pre-)expectation

wp[c](f) = �s • EVJcK(s)(f)

If post-expectation f is unbounded, the
technique can be adapted:

If post-expectation f is bounded by some
constant , ie 
 
 
we can exploit the linearity of wp[c]: 

2 S ! [0,1]

8s • f (s) 2 [0,M]

wp[c](f) = M · wp[c]
�

1
M · f

�

the loop rule must be adapted

the inductive definition of remains the same wp[·]

the range of expectations must also include ,  
ie

1

If post-expectation f takes both positive and
negative values, pre-expectation is not
guaranteed to exist

M>1

wp[c]
�
2n
�
(s) =

X

i�1

1 = 1

wp[c]
�
(�2)n

�
(s) =

X

i�1

(�1)n

= � 1 + 1� 1 + 1 · · ·

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](f)(s) =
X

i�1

�
1
2

�i
f (s[b, n/false, i])

E , S ! R�0
1

Generalizing Expectations

14

Loop Rule for Unbounded Expectations

Then

Consider loop . Assume that
while G do c

(1) is a set of initial states that guarantee almost sure termination of the loop, ie 
 
 
(Use the original loop rule to determine T.)

T ✓ S

[T] V wp[while G do c](1)

I : S ! R�0
1(2) is a loop invariant, ie

(3) the expected value of upon the entry of the loop body tends to zero as the loop
“continues to execute” (ie in the long run).

I · [G]

I · [T] V wp[while G do c](I · [¬G])

I · [G] V wp[c](I)

Generalizing Expectations

15

Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)

= hrule for seq. comp.i
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do . . .

⇤
(n)

�

W hmonoton. of wp[·]; let I := [b] · (n + 2) + [¬b] · ni
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do body

⇤�
I · [¬b]

��

W hmonoton. of wp[·], loop rule with invariant I

and set of initial terminating states Si
wp

⇥
n := 0; b := true

⇤�
[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

I · [¬b] V n(1)

true V wp
⇥
while b do body

⇤
(1)(2)

I · [b] V wp
⇥
body

⇤
(I)(3)

(4) lim
i!1

EVi

⇥
I · [b]

⇤
= 0

Generalizing Expectations

15

Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)

= hrule for seq. comp.i
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do . . .

⇤
(n)

�

W hmonoton. of wp[·]; let I := [b] · (n + 2) + [¬b] · ni
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do body

⇤�
I · [¬b]

��

W hmonoton. of wp[·], loop rule with invariant I

and set of initial terminating states Si
wp

⇥
n := 0; b := true

⇤�
[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

I · [¬b] V n(1)

Generalizing Expectations

15

Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)

= hrule for seq. comp.i
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do . . .

⇤
(n)

�

W hmonoton. of wp[·]; let I := [b] · (n + 2) + [¬b] · ni
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do body

⇤�
I · [¬b]

��

W hmonoton. of wp[·], loop rule with invariant I

and set of initial terminating states Si
wp

⇥
n := 0; b := true

⇤�
[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

true V wp
⇥
while b do body

⇤
(1)(2)

Generalizing Expectations

15

Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)

= hrule for seq. comp.i
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do . . .

⇤
(n)

�

W hmonoton. of wp[·]; let I := [b] · (n + 2) + [¬b] · ni
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do body

⇤�
I · [¬b]

��

W hmonoton. of wp[·], loop rule with invariant I

and set of initial terminating states Si
wp

⇥
n := 0; b := true

⇤�
[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

Variant [b] decreases with
probability

1/2 in each iteration

true V wp
⇥
while b do body

⇤
(1)(2)

Generalizing Expectations

15

Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)

= hrule for seq. comp.i
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do . . .

⇤
(n)

�

W hmonoton. of wp[·]; let I := [b] · (n + 2) + [¬b] · ni
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do body

⇤�
I · [¬b]

��

W hmonoton. of wp[·], loop rule with invariant I

and set of initial terminating states Si
wp

⇥
n := 0; b := true

⇤�
[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

I · [b] V wp
⇥
body

⇤
(I)(3)

Generalizing Expectations

15

Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)

= hrule for seq. comp.i
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do . . .

⇤
(n)

�

W hmonoton. of wp[·]; let I := [b] · (n + 2) + [¬b] · ni
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do body

⇤�
I · [¬b]

��

W hmonoton. of wp[·], loop rule with invariant I

and set of initial terminating states Si
wp

⇥
n := 0; b := true

⇤�
[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

[b] · (n + 2)

beginning of

i-th itaration

z }| {✓�
1
2

�i�1 · 1 +
�
1
2

�i�1 · 0
◆ z }| {

 i + 2

limi!1
�
1
2

�i�1 · (i+2) = 0

(4) lim
i!1

EVi

⇥
I · [b]

⇤
= 0

Generalizing Expectations

15

Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)

= hrule for seq. comp.i
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do . . .

⇤
(n)

�

W hmonoton. of wp[·]; let I := [b] · (n + 2) + [¬b] · ni
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do body

⇤�
I · [¬b]

��

W hmonoton. of wp[·], loop rule with invariant I

and set of initial terminating states Si
wp

⇥
n := 0; b := true

⇤�
[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

Generalizing Expectations

15

Application of loop rule for unbounded expectations

We want to prove that the program
terminates in average in two iterations, i.e.

wp[c](n) = 2

c : n := 0;
b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)

= hrule for seq. comp.i
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do . . .

⇤
(n)

�

W hmonoton. of wp[·]; let I := [b] · (n + 2) + [¬b] · ni
wp

⇥
n := 0; b := true

⇤�
wp

⇥
while (b=true) do body

⇤�
I · [¬b]

��

W hmonoton. of wp[·], loop rule with invariant I

and set of initial terminating states Si
wp

⇥
n := 0; b := true

⇤�
[b] · (n + 2) + [¬b] · n

�

= hrule for seq. comp. and assign.i
2

) wp[c](n) � 2

Generalizing Expectations

16

We can show that
c : n := 0;

b := true;
while (b=true) do
{b := true} [1/2] {b := false};
n := n+1;

wp[c](n)  2

by proving that

0 V wp[c](2�n)

since wp[c](f)(s) =
X

i�1

�
1
2

�i
f (s[b, n/false, i])

0  wp[c](2�n) = 2� wp[c](n)

Agenda

Algebraic properties

Recap on previous lecture

Extension to unbounded expectations

17

Extension to non-deterministic programs

Summary

Connection to relational semantics

Two Semantical Views of Probabilistic Programs

18

Expectation transformer view

Distribution of
final states

Probabilistic
Program c

Output

P
ro
b

JcK(s)

Initial state s

Relational view

Connection between
the two views

wp[c] : E ! EJcK : S ! D(S)

wp[c](f) = �s • EVJcK(s)(f)

wp[skip](f) = f

wp[abort](f) = 0

wp[x := E](f) = f [E/x]

wp[if G then c1 else c2](f) = [G] · wp[c1](f) + [¬G] · wp[c2](f)
wp[{c1} [p] {c2}](f) = p · wp[c1](f) + (1�p) · wp[c2](f)
wp[c1; c2](f) = (wp[c1] � wp[c2])(f)
wp[while G do c](f) = µh • ([G] · wp[c](h) + [¬G] · f)

Relational Semantics — Preliminaries

19

We let be the set of sub-probability distributions over program states.

missing probability

D(S)

probability of non-termination

from initial state s

Total mass of JcK(s)

Related notation and operations

Distributions over program states

1� w
�
JcK(s)

�

⌘s

0

p · µ1 + (1�p) · µ2

µ I f

Dirac distribution (s 2 S)

null distribution

convex combination between distributions

µ1 and µ2 (p 2 [0, 1], µ1,µ2 2 D(S))

distribution

P
a2A Pr

⇥
µ=a

⇤
· f (a)

(µ 2 D(A), f : A ! D(S))

Relational Semantics — Definition

20

For pGCL program c, the semantic function

is defined by induction on c structure as follows:
JcK : S ! D(S)

: (S ! D(S)) ! (S ! D(S))

JskipK = �s • ⌘s

JabortK = �s • 0

Jx := EK = �s • ⌘s0 where s

0 = s[E/x]

Jif G then c1 else c2K = �s • Jc1K(s) C JGK(s) B Jc2K(s)
J{c1} [p] {c2}K = �s •

p · Jc1K(s) + (1�p) · Jc2K(s)
Jc1; c2K = �s • Jc1K(s) I Jc2K
Jwhile G do cK = lfp(F) where F (f) = �s • (JcK(s) I f) C JGK(s) B ⌘s

Connection between Relational and Expectation Transformer Semantics

21

Theorem

For any (purely probabilistic) pGCL program c and post-expectation f,

wp[c](f) = �s • EVJcK(s)(f)

wp[c]([P])(s) = ↵ =) Pr
⇥
P 2 JcK(s)

⇤
= ↵

Pr
⇥
P 2 JcK(s)

⇤
= ↵ =) wp[c]([P])(s) = ↵

This theorem proves both the soundness and the completeness of the expectation
transformer semantics wrt the relational semantics:

SOUNDNESS

COMPLETENESS

Connection between Relational and Expectation Transformer Semantics

21

Theorem

For any (purely probabilistic) pGCL program c and post-expectation f,

wp[c](f) = �s • EVJcK(s)(f)

wp[c]([P])(s) = ↵ =) Pr
⇥
P 2 JcK(s)

⇤
= ↵

Pr
⇥
P 2 JcK(s)

⇤
= ↵ =) wp[c]([P])(s) = ↵

This theorem proves both the soundness and the completeness of the expectation
transformer semantics wrt the relational semantics:

SOUNDNESS

COMPLETENESS

The connection between the two semantics can be recast in a more uniform manner:

g = wp[c](f) i↵ 8µ 2 D(S) • EVµ(g) = EVµIJcK(f)

P = wp[c](Q) i↵ 8s 2 S • P(s) = Q(JcK(s))

Connection between Relational and Expectation Transformer Semantics

21

Theorem

For any (purely probabilistic) pGCL program c and post-expectation f,

wp[c](f) = �s • EVJcK(s)(f)

wp[c]([P])(s) = ↵ =) Pr
⇥
P 2 JcK(s)

⇤
= ↵

Pr
⇥
P 2 JcK(s)

⇤
= ↵ =) wp[c]([P])(s) = ↵

This theorem proves both the soundness and the completeness of the expectation
transformer semantics wrt the relational semantics:

SOUNDNESS

COMPLETENESS

The connection between the two semantics can be recast in a more uniform manner:

✓
deterministic

counterpart

◆

g = wp[c](f) i↵ 8µ 2 D(S) • EVµ(g) = EVµIJcK(f)

P = wp[c](Q) i↵ 8s 2 S • P(s) = Q(JcK(s))

g = wp[c](f) i↵ 8µ 2 D(S) • EVµ(g) = EVµIJcK(f)

P = wp[c](Q) i↵ 8s 2 S • P(s) = Q(JcK(s))

Agenda

Algebraic properties

Recap on previous lecture

Extension to unbounded expectations

22

Extension to non-deterministic programs

Summary

Connection to relational semantics

Non-deterministic Programs

23

The pGCL language
C := skip nop

| abort abortion

| x

:= E assignment

| if G then C else C conditional

| {C} [p] {C} probabilistic choice

| {C}⇤ {C} non-deterministic choice

| while G do C while loop

| C; C sequence

Syntax

Semantics

Non-determinism is resolved by means of a
scheduler who decides, on each occurrence of
a non-deterministic choice, which branch (left
or right) to execute.

Demonic model: we adopt the scheduler that minimizes the probability of the event at
stake (scheduler varies according to the post-expectation and initial state)

Scheduler Induced Prob.

{L,L} Pr[A]=0.20

{L,R} Pr[A]=0.80

{R,L} Pr[A]=0.05

{R,R} Pr[A]=0.60

Non-deterministic Programs

24

Examples

Pr[x=y] = min
n

PrL[x=y], PrR[x=y]
o

= min
�

1
3 ,

2
3

= 1
3

b := true;
while (b=true) do
{b := true} [1/2] {b := false};

{x := true}⇤ {x := false};
{y := true} [1/3] {y := false};

Pr[true] = 1

Non-deterministic Programs

24

Examples

Pr[x=y] = min
n

PrL[x=y], PrR[x=y]
o

= min
�

1
3 ,

2
3

= 1
3

{x := true}⇤ {x := false};
{y := true} [1/3] {y := false};

Pr[true] =

b := true;
while (b=true) do
{b := true} [1/2] {b := false};
{skip}⇤ {b := ¬b}

Non-deterministic Programs

24

Examples

Pr[x=y] = min
n

PrL[x=y], PrR[x=y]
o

= min
�

1
3 ,

2
3

= 1
3

{x := true}⇤ {x := false};
{y := true} [1/3] {y := false};

Pr[true] = 0

b := true;
while (b=true) do
{b := true} [1/2] {b := false};
{skip}⇤ {b := ¬b}

Non-deterministic Programs

24

Examples

Pr[x=y] = min
n

PrL[x=y], PrR[x=y]
o

= min
�

1
3 ,

2
3

= 1
3

{x := true}⇤ {x := false};
{y := true} [1/3] {y := false};

Pr[true] = 0

1/3

2/3

0

1

sched.R

sched.L

Extension of expectation transformers

wp
⇥
c
⇤
(f)(s)

expected value of f from state s

greatest lower bound for the
expected value of f from state s

c purely prob.

c non-det.

wp
⇥
{c1}⇤ {c2}

⇤
(f) = min

�
wp[c1](f), wp[c2](f)

b := true;
while (b=true) do
{b := true} [1/2] {b := false};
{skip}⇤ {b := ¬b}

Non-deterministic Programs

24

Examples

Pr[x=y] = min
n

PrL[x=y], PrR[x=y]
o

= min
�

1
3 ,

2
3

= 1
3

{x := true}⇤ {x := false};
{y := true} [1/3] {y := false};

Pr[true] = 0

0

1

wp [c](f)(s)

safe lower

bounds for EV(f)

Extension of expectation transformers

wp
⇥
c
⇤
(f)(s)

expected value of f from state s

greatest lower bound for the
expected value of f from state s

c purely prob.

c non-det.

wp
⇥
{c1}⇤ {c2}

⇤
(f) = min

�
wp[c1](f), wp[c2](f)

b := true;
while (b=true) do
{b := true} [1/2] {b := false};
{skip}⇤ {b := ¬b}

Interaction between Non-deterministic and Probabilistic Choice

25

wp
⇥
c1

⇤
([x=y])

= hrule for seq. comp.i
wp

⇥
{x :=t}⇤ {x :=f}

⇤�
wp

⇥
{y :=t} [1/3] {y :=f}

⇤
([x=y])

�

= hrule for prob. choice and assgn.i
wp

⇥
{x :=t}⇤ {x :=f}

⇤�
1
3 · [x=t] + 2

3 · [x=f]
�

= hrule for non-det. choice and assgn.i
min

�
1
3 · [t=t] + 2

3 · [t=f], 1
3 · [f=t] + 2

3 · [f=f]

= hsimplificationi
1
3

c1 : {x := t}⇤ {x := f};
{y := t} [1/3] {y := f}

wp[x := E](f) = f [E/x]

wp[{c1} [p] {c2}](f) = p · wp[c1](f) + p̄ · wp[c2](f)
wp[{c1}2 {c2}](f) = min

�
wp[c1](f), wp[c2](f)

wp[c1; c2](f) = wp[c1](wp[c2](f))

Interaction between Non-deterministic and Probabilistic Choice

25

wp
⇥
c1

⇤
([x=y])

= hrule for seq. comp.i
wp

⇥
{x :=t}⇤ {x :=f}

⇤�
wp

⇥
{y :=t} [1/3] {y :=f}

⇤
([x=y])

�

= hrule for prob. choice and assgn.i
wp

⇥
{x :=t}⇤ {x :=f}

⇤�
1
3 · [x=t] + 2

3 · [x=f]
�

= hrule for non-det. choice and assgn.i
min

�
1
3 · [t=t] + 2

3 · [t=f], 1
3 · [f=t] + 2

3 · [f=f]

= hsimplificationi
1
3

c2 : {y := t} [1/3] {y := f};
{x := t}⇤ {x := f}

c1 : {x := t}⇤ {x := f};
{y := t} [1/3] {y := f}

wp[x := E](f) = f [E/x]

wp[{c1} [p] {c2}](f) = p · wp[c1](f) + p̄ · wp[c2](f)
wp[{c1}2 {c2}](f) = min

�
wp[c1](f), wp[c2](f)

wp[c1; c2](f) = wp[c1](wp[c2](f))

Interaction between Non-deterministic and Probabilistic Choice

25

wp
⇥
c2

⇤
([x=y])

= hrule for seq. comp.i
wp

⇥
{y :=t} [1/3] {y :=f}

⇤�
wp

⇥
{x :=t}⇤ {x :=f}

⇤
([x=y])

�

= hrule for non-det. choice and assgn.i
wp

⇥
{y :=t} [1/3] {y :=f}

⇤�
min

�
[t=y], [f=y]

 �

= hrule for prob. choice and assgn.i
1
3 ·min

�
[t=t], [f=t]

+ 2

3 ·min
�
[t=f], [f=f]

= hsimplificationi
0

wp
⇥
c1

⇤
([x=y])

= hrule for seq. comp.i
wp

⇥
{x :=t}⇤ {x :=f}

⇤�
wp

⇥
{y :=t} [1/3] {y :=f}

⇤
([x=y])

�

= hrule for prob. choice and assgn.i
wp

⇥
{x :=t}⇤ {x :=f}

⇤�
1
3 · [x=t] + 2

3 · [x=f]
�

= hrule for non-det. choice and assgn.i
min

�
1
3 · [t=t] + 2

3 · [t=f], 1
3 · [f=t] + 2

3 · [f=f]

= hsimplificationi
1
3

c2 : {y := t} [1/3] {y := f};
{x := t}⇤ {x := f}

c1 : {x := t}⇤ {x := f};
{y := t} [1/3] {y := f}

wp[x := E](f) = f [E/x]

wp[{c1} [p] {c2}](f) = p · wp[c1](f) + p̄ · wp[c2](f)
wp[{c1}2 {c2}](f) = min

�
wp[c1](f), wp[c2](f)

wp[c1; c2](f) = wp[c1](wp[c2](f))

A scheduler can “look” the past, but not the future.
In c2 the scheduler has access to the value of y, and can then assign x the
opposite value, yielding a zero probability that x=y.
In c1 the scheduler must choose a single value for x, which will be the same
for both branches of the probabilistic choice assigning the value to y.

Algebraic Properties of Non-deterministic Programs

26

The Law of Total Probabilities holds for purely probabilistic programs, ie

wp[c]([P]) + wp[c]([¬P]) = wp[c](1)

It follows from the linearity of wp[c], ie

↵·wp[c](f) + � ·wp[c](g) = wp[c](↵·f + � ·g)

For non-deterministic programs we only have

since only sub-linearity of wp[c] holds, ie

↵·wp[c](f) + � ·wp[c](g)  wp[c](↵·f + � ·g)

wp[c]([P]) + wp[c]([¬P])  wp[c](1)

c2 : {y := t} [1/3] {y := f};
{x := t}⇤ {x := f}

wp
⇥
c2

⇤
([x=y]) = 0

wp
⇥
c2

⇤
([x 6=y]) = 0

Connection between the two Semantics for Non-deterministic Programs

27

Theorem

For any (purely probabilistic) pGCL program c
and post-expectation f,

Initial state
Distribution of

final states

Output

P
ro
b

wp[c](f) = �s • EVJcK(s)(f)

Purely Probabilistic
Program

Connection between the two Semantics for Non-deterministic Programs

27

Output

P
ro
b

Output

P
ro
b

Output

P
ro
b

Output

P
ro
b

Output

P
ro
b

Theorem

Initial state

wp[c](f) = �s • inf
n

EVµ0(f) | µ0 2 JcK(s)
o

For any (possibly non-deterministic) pGCL
program c and post-expectation f,

Set of distributions
of final states

Non-deterministic
Program

0

1

wp[c](f)(s)

Connection between the two Semantics for Non-deterministic Programs

27

Output

P
ro
b

Output

P
ro
b

Output

P
ro
b

Output

P
ro
b

Output

P
ro
b

Theorem

Initial state

wp[c](f) = �s • inf
n

EVµ0(f) | µ0 2 JcK(s)
o

For any (possibly non-deterministic) pGCL
program c and post-expectation f,

Set of distributions
of final states

Non-deterministic
Program

PROBABILISTICALLY
CLOSED SET

0

1

wp[c](f)(s)

Probabilistic Powerdomain

28⇤ µ  µ0 , 8s 2 S • Pr[µ = s]  Pr[µ0 = s]

A set of distributions is probabilistically closed iff it is
up-closed:

non-empty

convex:

Cauchy-closed:

µ 2 P =) µ0 2 P for all µ0 � µ

µ,µ0 2 P =) � · µ+ (1��) · µ0 2 P for all � 2 [0, 1]

closed in the topological space RS
�0

Probabilistically closed subsets

We let be the family of all probabilistically closed subsets.C(S)

P ✓ D(S)

(C(S),v,
F
) defines a a complete partial order with bottom element, being

✓1 v ✓2 , ✓1 ◆ ✓2
G

i2N
✓i ,

\

i2N
✓i ? , D(S)

Relational Semantics of Non-deterministic Programs — Definition

29

The relational semantics of a possibly non-deterministic pGCL program c, is
given by function

JcK : S ! C(S)

defined by induction on c structure as follows:

: (S ! C(S)) ! (S ! C(S))

⇤ ✓1 �p ✓2 ,
�
p · µ1 + (1�p) · µ2 | µ1 2 ✓1 ^ µ2 2 ✓2

JskipK = �s • {⌘s}
JabortK = �s • D(S)
Jx := EK = �s • {⌘s0} where s

0 = s[E/x]

Jif G then c1 else c2K = �s • Jc1K(s) C JGK(s) B Jc2K(s)
J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)

Jc1; c2K = �s •
�
µ I f | µ 2 Jc1K(s) and f 2 det ref (Jc2K)

Jwhile G do cK = lfp(F) where

F (f) = �s •
�
µ I h | µ 2 JcK(s) and h 2 det ref (f)

C JGK(s) B {⌘s}

Relational Semantics of Non-det. Programs — Geometric Interpretation

30

Assume we have only one program variable x, which is Boolean. Then the set of
distributions over program states can be represented in the cartesian plane.D(S)

1

1

Pr[x=f]

Pr[x=t]0 1
2

1
2

Fair coin

Degenerate biased coin

D(S)

Relational Semantics of Non-det. Programs — Geometric Interpretation

31

1

1

Pr[x=f]

Pr[x=t]0

1

1

Pr[x=f]

Pr[x=t]0

1

1

Pr[x=f]

Pr[x=t]0

Convexity Up-closure

Cauchy-closure

Relational Semantics of Non-det. Programs — Geometric Interpretation

31

1

1

Pr[x=f]

Pr[x=t]0

1

1

Pr[x=f]

Pr[x=t]0

1

1

Pr[x=f]

Pr[x=t]0

Convexity Up-closure

Cauchy-closure

Relational Semantics of Non-det. Programs — Geometric Interpretation

31

1

1

Pr[x=f]

Pr[x=t]0

1

1

Pr[x=f]

Pr[x=t]0

1

1

Pr[x=f]

Pr[x=t]0

Convexity Up-closure

Cauchy-closure

Relational Semantics of Non-det. Programs — Geometric Interpretation

31

1

1

Pr[x=f]

Pr[x=t]0

1

1

Pr[x=f]

Pr[x=t]0

1

1

Pr[x=f]

Pr[x=t]0

Convexity Up-closure

Cauchy-closure

Relational Semantics of Non-det. Programs — Geometric Interpretation

32

1

1

Pr[x=f]

Pr[x=t]0 1
3

1

1

Pr[x=f]

Pr[x=t]0

x

:= t
x

:= f[p] ⇤{ } [q]
x

:= t
x

:= f{ }

1
3

Demonic choice between
two biased coins

Jx := EK = �s • {⌘s0} where s

0 = s[E/x]

J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)

Relational Semantics of Non-det. Programs — Geometric Interpretation

32

1

1

Pr[x=f]

Pr[x=t]0 1
3

1

1

Pr[x=f]

Pr[x=t]0

1
3

Demonic choice between
two biased coins

Jx := EK = �s • {⌘s0} where s

0 = s[E/x]

J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)

Relational Semantics of Non-det. Programs — Geometric Interpretation

32

1

1

Pr[x=f]

Pr[x=t]0 1
3

1

1

Pr[x=f]

Pr[x=t]0

x

:= t

1
3

Demonic choice between
two biased coins

Jx := EK = �s • {⌘s0} where s

0 = s[E/x]

J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)

Relational Semantics of Non-det. Programs — Geometric Interpretation

32

1

1

Pr[x=f]

Pr[x=t]0 1
3

1

1

Pr[x=f]

Pr[x=t]0

x

:= t
x

:= f

1
3

Demonic choice between
two biased coins

Jx := EK = �s • {⌘s0} where s

0 = s[E/x]

J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)

Relational Semantics of Non-det. Programs — Geometric Interpretation

32

1

1

Pr[x=f]

Pr[x=t]0 1
3

1

1

Pr[x=f]

Pr[x=t]0

(p, 1�p)

x

:= t
x

:= f[p]{ }

1
3

Demonic choice between
two biased coins

Jx := EK = �s • {⌘s0} where s

0 = s[E/x]

J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)

Relational Semantics of Non-det. Programs — Geometric Interpretation

32

1

1

Pr[x=f]

Pr[x=t]0 1
3

1

1

Pr[x=f]

Pr[x=t]0

(p, 1�p)

(q, 1�q)

x

:= t
x

:= f[p]{ } [q]
x

:= t
x

:= f{ }

1
3

Demonic choice between
two biased coins

Jx := EK = �s • {⌘s0} where s

0 = s[E/x]

J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)

Relational Semantics of Non-det. Programs — Geometric Interpretation

32

1

1

Pr[x=f]

Pr[x=t]0 1
3

1

1

Pr[x=f]

Pr[x=t]0

(p, 1�p)

(q, 1�q)

x

:= t
x

:= f[p] ⇤{ } [q]
x

:= t
x

:= f{ }

1
3

Demonic choice between
two biased coins

Jx := EK = �s • {⌘s0} where s

0 = s[E/x]

J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)

Relational Semantics of Non-det. Programs — Geometric Interpretation

32

1

1

Pr[x=f]

Pr[x=t]0 1
3

1

1

Pr[x=f]

Pr[x=t]0

(p, 1�p)

(q, 1�q)

x

:= t
x

:= f[p] ⇤{ } [q]
x

:= t
x

:= f{ }

1
3

Demonic choice between
two biased coins

Non-terminating
fair coin

{abort} [1/3] {x := t [1/2] x

:= f }

Jx := EK = �s • {⌘s0} where s

0 = s[E/x]

J{c1} [p] {c2}K = �s • Jc1K(s)�p Jc2K(s)
J{c1}2 {c2}K = �s •

S
p2[0,1]

Jc1K(s)�p Jc2K(s)

Relational Semantics of Non-det. Programs — Geometric Interpretation

33

1
3

1

1

Pr[x=f]

Pr[x=t]0

1
3
1
6

1
2

{abort} [1/3] {x := t [1/2] x

:= f }

{abort} [1/3] {x := t [3/4] x

:= f }
⇤

Relational Semantics of Non-det. Programs — Geometric Interpretation

33

1
3

1

1

Pr[x=f]

Pr[x=t]0

1
3
1
6

1
2

{abort} [1/3] {x := t [1/2] x

:= f }

{abort} [1/3] {x := t [3/4] x

:= f }
⇤

wp
⇥
c

⇤�
[x=t] + 2 · [x=f]

�

Relational Semantics of Non-det. Programs — Geometric Interpretation

33

1
3

1

1

Pr[x=f]

Pr[x=t]0

1
3
1
6

1
2

{abort} [1/3] {x := t [1/2] x

:= f }

{abort} [1/3] {x := t [3/4] x

:= f }
⇤

x + 2
y = 0

wp
⇥
c

⇤�
[x=t] + 2 · [x=f]

�

Relational Semantics of Non-det. Programs — Geometric Interpretation

33

1
3

1

1

Pr[x=f]

Pr[x=t]0

1
3
1
6

1
2

{abort} [1/3] {x := t [1/2] x

:= f }

{abort} [1/3] {x := t [3/4] x

:= f }
⇤

x + 2
y = 0

x + 2
y = 1

2 + 2 1
6 = 5

6

= 5
6wp

⇥
c

⇤�
[x=t] + 2 · [x=f]

�

Agenda

Algebraic properties

Recap on previous lecture

Extension to unbounded expectations

34

Extension to non-deterministic programs

Summary

Connection to relational semantics

Summary

35

Unbounded
expectations

Non-deterministic
programs

Extensions
Monotonicity

Feasibility

Linearity

(Co-)Strictness

Algebraic Properties

Output

P
ro
b

Output

P
ro
b

Output

P
ro
b

Output

P
ro
b

Output

P
ro
b

Relational Semantics

Set of distribution
of final states

Non-deterministic
program c

Initial state

Connection between the
two semantical views

wp[c](f) = �s • inf
n

EVµ0(f) | µ0 2 JcK(s)
o

