Seminar on "Verification of Probabilistic Programs"

LECTURE 3: PROBABILISITIC PREDICATE TRANSFORMERS II

Federico Olmedo

Software Modeling and Verification Group **RWTH** AACHEN UNIVERSITY

- Lecture on 25th June cancelled
- New lecture on 15th July

Agenda

Recap on previous lecture

Algebraic properties

Extension to unbounded expectations

Connection to relational semantics

Extension to non-deterministic programs

Summary

Agenda

Recap on previous lecture

- Algebraic properties
- Extension to unbounded expectations
- Connection to relational semantics
- Extension to non-deterministic programs
- Summary

Expectation Transformers — Recap

Expectation Transformers — Recap

The pGCL language

С	:=	skip	no
		abort	ab
		$x \coloneqq E$	as
		if G then ${\mathcal C}$ else ${\mathcal C}$	со
		$\{\mathcal{C}\}$ [p] $\{\mathcal{C}\}$	pr
		while G do ${\mathcal C}$	wł
		C; C	see

nop abortion assignment conditional **probabilistic choice** while loop sequence

Theorem (McIver & Morgan '96)

For **pGCL** program *c*, expectation transformer wp[c] can be defined by induction on *c* structure.

$$\begin{split} & \text{wp}[\text{skip}](f) &= f \\ & \text{wp}[\text{abort}](f) &= \underline{0} \\ & \text{wp}[x \coloneqq E](f) &= f[E/x] \\ & \text{wp}[\text{if } G \text{ then } c_1 \text{ else } c_2](f) &= [G] \cdot \text{wp}[c_1](f) + [\neg G] \cdot \text{wp}[c_2](f) \\ & \text{wp}[\{c_1\} \ [p] \ \{c_2\}](f) &= p \cdot \text{wp}[c_1](f) + (1-p) \cdot \text{wp}[c_2](f) \\ & \text{wp}[c_1; c_2](f) &= (\text{wp}[c_1] \circ \text{wp}[c_2])(f) \\ & \text{wp}[\text{while } G \text{ do } c](f) &= \mu h \cdot ([G] \cdot \text{wp}[c](h) + [\neg G] \cdot f) \end{split}$$

Expectation Transformers — Recap

Example

$$egin{aligned} c_1 &:= \{x \coloneqq 0\} \ [p] \ \{x \coloneqq 1\}; \ \{y \coloneqq 0\} \ [q] \ \{y \coloneqq 1\} \end{aligned}$$

The second second

 $wp[x \coloneqq E](f) = f[E/x]$ $wp[\{c_1\} [p] \{c_2\}](f) = p \cdot wp[c_1](f) + \bar{p} \cdot wp[c_2](f)$ $wp[c_1; c_2](f) = wp[c_1](wp[c_2](f))$

wp[c_1]([$x \leq y$]) $\langle rule for sequential composition \rangle$ = $wp[\{x := 0\} [p] \{x := 1\}](wp[\{y := 0\} [q] \{y := 1\}]([x \le y]))$ $\langle rule for probabilistic choice \rangle$ _ $wp[\{x \coloneqq 0\} [p] \{x \coloneqq 1\}](q \cdot wp[y \coloneqq 0]([x \le y]) + \overline{q} \cdot wp[y \coloneqq 1]([x \le y]))$ $\langle rule for assignment, twice \rangle$ _ $wp[\{x := 0\} [p] \{x := 1\}](q \cdot [x \le 0] + \bar{q} \cdot [x \le 1])$ $\langle rule for probabilistic choice \rangle$ = $p \cdot wp[x \coloneqq 0] (q \cdot [x \le 0] + \bar{q} \cdot [x \le 1]) + \bar{p} \cdot wp[x \coloneqq 1] (q \cdot [x \le 0] + \bar{q} \cdot [x \le 1])$ $\langle rule for assignment, twice \rangle$ = $p \cdot (q \cdot [0 \le 0] + \bar{q} \cdot [0 \le 1]) + \bar{p} \cdot (q \cdot [1 \le 0] + \bar{q} \cdot [1 \le 1])$ $\langle algebra \rangle$ = $p + \bar{p}\bar{q}$

Loop Rules

Consider loop while G do c and post-expectation f. Assume that

(1) there exists a standard (ie a predicate) loop invariant *I*, which restricted to $\neg G$ is stronger than the post-expectation *f*, and

(2) there exists a bounded variant e, which in each iteration decreases with at least a fixed probability $\epsilon > 0$.

Then, [I] is a valid pre-expectation of the loop w.r.t. post-expectation f (but not necessarily the weakest).

partial correctness (wlp)

(1) + (2) total correctness (wp)

Agenda

Recap on previous lecture

Algebraic properties

Extension to unbounded expectations

Connection to relational semantics

Extension to non-deterministic programs

Summary

Healthiness Conditions

For any (purely probabilistic) **pGCL** program *c*, it holds

Monotonicity

```
wp[c](f) \le wp[c](g) and wlp[c](f) \le wlp[c](g) if f \le g
```

Feasibility

$$\begin{split} & \mathsf{wp}[c](f) \leq \underline{u} & \text{if } \forall s \cdot f(s) \leq u \\ & \mathsf{wlp}[c](f) \geq \underline{u} & \text{if } \forall s \cdot f(s) \geq u \end{split}$$

Linearity

 $wp[c](\alpha \cdot f + \beta \cdot g) = \alpha \cdot wp[c](f) + \beta \cdot wp[c](g)$

Strictness / Co-strictness

 $wp[c](\underline{0}) = \underline{0}$ and $wlp[c](\underline{1}) = \underline{1}$

Connection between both transformers

$$wlp[c](f) = \underline{1} - wp[c](\underline{1}-f)$$

Agenda

Recap on previous lecture

Algebraic properties

Extension to unbounded expectations

Connection to relational semantics

Extension to non-deterministic programs

Summary

$$\begin{array}{ll} c: & n\coloneqq 0;\\ & b\coloneqq \mathsf{true};\\ & \texttt{while}\,(b{=}\mathsf{true})\,\texttt{do}\\ & \left\{b\coloneqq \mathsf{true}\right\}\,\left[1/2\right]\,\left\{b\coloneqq \mathsf{false}\right\};\\ & n\coloneqq n{+}1; \end{array}$$

Probability that the program terminates within 5 iterations $wp[c]([n \le 5])$ Expected number of iterations to terminate $wp[c](\lambda s \cdot s(n))$

(

$$\begin{array}{ll} c: & n \coloneqq 0; \\ & b \coloneqq \mathsf{true}; \\ & \mathsf{while}(b = \mathsf{true}) \operatorname{do} \\ & \left\{ b \coloneqq \mathsf{true} \right\} \, \left[\frac{1}{2} \right] \, \left\{ b \coloneqq \mathsf{false} \right\}; \\ & n \coloneqq n + 1; \end{array}$$

If post-expectation *f* is bounded by some constant *M*>1, ie

 $\forall s \bullet f(s) \in [0, M]$

we can exploit the linearity of wp[c]:

$$\operatorname{wp}[c](f) = M \cdot \operatorname{wp}[c](\frac{1}{M} \cdot f)$$

 $\in \mathcal{S} \rightarrow [0,1]$ Go

- If post-expectation f is unbounded, the technique can be adapted:
 - the range of expectations must also include ∞ , ie $\mathbb{E} \triangleq S \to \mathbb{R}_{\infty}^{\geq 0}$

the inductive definition of wp[·] remains the same

the loop rule must be adapted

If post-expectation f takes both positive and negative values, pre-expectation is not guaranteed to exist (post-)expectation (pre-)expectation $wp[c]: (S \rightarrow [0,1]) \rightarrow (S \rightarrow [0,1])$

$$wp[c](f) = \lambda s \cdot EV_{[c](s)}(f)$$

$$\begin{array}{lll} c: & n \coloneqq 0; \\ & b \coloneqq \mathsf{true}; \\ & \mathsf{while}(b{=}\mathsf{true}) \operatorname{do} \\ & \left\{ b \coloneqq \mathsf{true} \right\} \ [1/2] \ \left\{ b \coloneqq \mathsf{false} \right\}; \\ & n \coloneqq n{+}1; \end{array}$$

wp[c](f)(s) =
$$\sum_{i\geq 1} \left(\frac{1}{2}\right)^i f(s[b, n/\text{false}, i])$$

$$wp[c](2^n)(s) = \sum_{i\geq 1} 1 = \infty$$

$$wp[c]((-2)^n)(s) = \sum_{i \ge 1} (-1)^n$$

= $-1 + 1 - 1 + 1 \cdots$

Loop Rule for Unbounded Expectations

Consider loop while G do c. Assume that

(1) $T \subseteq S$ is a set of initial states that guarantee almost sure termination of the loop, ie

 $[T] \Rightarrow wp[while G do c](\underline{1})$

(Use the original loop rule to determine *T*.)

(2) $I: \mathcal{S} \to \mathbb{R}^{\geq 0}_{\infty}$ is a loop invariant, ie

 $I \cdot [G] \Rightarrow wp[c](I)$

(3) the expected value of $I \cdot [G]$ upon the entry of the loop body tends to zero as the loop "continues to execute" (ie in the long run).

Then

$$I \cdot [T] \Rightarrow wp[while G do c](I \cdot [\neg G])$$

We want to prove that the program terminates in average in two iterations, i.e.

$$wp[c](n) = \underline{2}$$

 $\begin{array}{ll} c: & n\coloneqq 0;\\ & b\coloneqq \mathsf{true};\\ & \texttt{while}\,(b{=}\mathsf{true})\,\texttt{do}\\ & \left\{b\coloneqq \mathsf{true}\right\}\,\left[1/2\right]\,\left\{b\coloneqq \mathsf{false}\right\};\\ & n\coloneqq n{+}1; \end{array}$

$$wp[c](n)$$

$$= \langle rule \text{ for seq. comp.} \rangle$$

$$wp[n \coloneqq 0; b \coloneqq true] (wp[while(b=true) do ...](n))$$

$$\Leftrightarrow (monoton. of wp[\cdot]; let I \coloneqq [b] \cdot (n+2) + [\neg b] \cdot n \rangle$$

$$wp[n \coloneqq 0; b \coloneqq true] (wp[while(b=true) do body] (I \cdot [\neg b])$$

$$\Leftrightarrow (monoton. of wp[\cdot], loop rule with invariant I$$
and set of initial terminating states $S \rangle$

$$wp[n \coloneqq 0; b \coloneqq true] ([b] \cdot (n+2) + [\neg b] \cdot n)$$

$$= \langle rule \text{ for seq. comp. and assign.} \rangle$$

$$\frac{2}{2}$$

(1) $I \cdot [\neg b] \Rightarrow n$

(2) true
$$\Rightarrow$$
 wp[while *b* do $body](\underline{1})$

$$(3) \ I \cdot [b] \Rightarrow wp [body](I)$$

$$(4) \lim_{i \to \infty} \mathbf{EV}_i \big[I \cdot [b] \big] = 0$$

We want to prove that the program terminates in average in two iterations, i.e.

$$wp[c](n) = \underline{2}$$

$$\begin{array}{ll} c: & n \coloneqq 0; \\ & b \coloneqq \mathsf{true}; \\ & \texttt{while}(b = \mathsf{true}) \operatorname{do} \\ & \left\{ b \coloneqq \mathsf{true} \right\} \ [1/2] \ \left\{ b \coloneqq \mathsf{false} \right\}; \\ & n \coloneqq n + 1; \end{array}$$

$$wp[c](n) = \langle rule \text{ for seq. comp.} \rangle$$

$$wp[n := 0; b := true] (wp[while (b=true) do ...](n))$$

$$\Leftrightarrow \quad \langle monoton. \text{ of } wp[\cdot]; \text{ let } I := [b] \cdot (n+2) + [\neg b] \cdot n \rangle \quad (1) \ I \cdot [\neg b] \Rightarrow n$$

$$wp[n := 0; b := true] (wp[while (b=true) do \ body] (I \cdot [\neg b]))$$

$$\Leftrightarrow \quad \langle monoton. \text{ of } wp[\cdot], \text{ loop rule with invariant } I$$

$$and \text{ set of initial terminating states } S \rangle$$

$$wp[n := 0; b := true] ([b] \cdot (n+2) + [\neg b] \cdot n)$$

$$= \quad \langle rule \text{ for seq. comp. and assign.} \rangle$$

$$2$$

We want to prove that the program terminates in average in two iterations, i.e.

$$wp[c](n) = \underline{2}$$

 $\begin{array}{ll} c: & n \coloneqq 0; \\ & b \coloneqq \mathsf{true}; \\ & \texttt{while}(b \! = \! \mathsf{true}) \, \mathsf{do} \\ & \left\{ b \coloneqq \mathsf{true} \right\} \, \left[\frac{1}{2} \right] \, \left\{ b \coloneqq \mathsf{false} \right\}; \\ & n \coloneqq n \! + \! 1; \end{array}$

$$\begin{split} & \mathsf{wp}[c](n) \\ &= & \langle \mathrm{rule \ for \ seq. \ comp.} \rangle \\ & \mathsf{wp}[n \coloneqq 0; \ b \coloneqq \mathsf{true}] \left(\mathsf{wp}[\mathsf{while} \ (b = \mathsf{true}) \ \mathsf{do} \ \dots \](n) \right) \\ & & \langle \mathrm{monoton. \ of \ wp}[\cdot]; \ \mathrm{let} \ I \coloneqq [b] \cdot (n+2) + [\neg b] \cdot n \rangle \\ & & \mathsf{wp}[n \coloneqq 0; \ b \coloneqq \mathsf{true}] \left(\mathsf{wp}[\mathsf{while} \ (b = \mathsf{true}) \ \mathsf{do} \ body \](I \cdot [\neg b]) \right) \\ & & & \langle \mathrm{monoton. \ of \ wp}[\cdot], \ \mathrm{loop \ rule \ with \ invariant} \ I \\ & & \mathrm{and \ set \ of \ initial \ terminating \ states \ } \mathcal{S} \rangle \\ & & & \mathsf{wp}[n \coloneqq 0; \ b \coloneqq \mathsf{true}] \left([b] \cdot (n+2) + [\neg b] \cdot n \right) \\ & & & & \langle \mathrm{rule \ for \ seq. \ comp. \ and \ assign.} \rangle \\ & & & & & \underline{2} \end{split}$$

Application of loop rule for unbounded expectations

We want to prove that the program terminates in average in two iterations, i.e.

$$wp[c](n) = \underline{2}$$

 $\begin{array}{ll} c: & n \coloneqq 0; \\ & b \coloneqq \mathsf{true}; \\ & \texttt{while}(b \! = \! \mathsf{true}) \, \mathsf{do} \\ & \left\{ b \coloneqq \mathsf{true} \right\} \, \left[\frac{1}{2} \right] \, \left\{ b \coloneqq \mathsf{false} \right\}; \\ & n \coloneqq n \! + \! 1; \end{array}$

$$wp[c](n) = \langle rule \text{ for seq. comp.} \rangle$$

$$wp[n \coloneqq 0; b \coloneqq true] (wp[while(b=true) do ...](n)) \\ \Leftrightarrow \langle monoton. \text{ of } wp[\cdot]; \text{ let } I \coloneqq [b] \cdot (n+2) + [\neg b] \cdot n \rangle$$

$$wp[n \coloneqq 0; b \coloneqq true] (wp[while(b=true) do body](I \cdot [\neg b])) \quad (2)$$

$$\Leftrightarrow \langle monoton. \text{ of } wp[\cdot], \text{ loop rule with invariant } I \\ \text{ and set of initial terminating states } S \rangle$$

$$wp[n \coloneqq 0; b \coloneqq true] ([b] \cdot (n+2) + [\neg b] \cdot n) \\ = \langle rule \text{ for seq. comp. and assign.} \rangle$$

Variant [b] decreases with probability 1/2 in each iteration

(2) true \Rightarrow wp[while b do $body](\underline{1})$

We want to prove that the program terminates in average in two iterations, i.e.

$$wp[c](n) = \underline{2}$$

 $\begin{array}{ll} c: & n \coloneqq 0; \\ & b \coloneqq \mathsf{true}; \\ & \texttt{while}(b = \mathsf{true}) \, \mathsf{do} \\ & \left\{ b \coloneqq \mathsf{true} \right\} \, \left[\frac{1}{2} \right] \, \left\{ b \coloneqq \mathsf{false} \right\}; \\ & n \coloneqq n + 1; \end{array}$

 $I \cdot [b] \Rrightarrow wp [body](I)$

$$wp[c](n) = \langle rule \text{ for seq. comp.} \rangle$$

$$wp[n := 0; b := true] (wp[while (b=true) do ...](n))$$

$$\langle \text{monoton. of wp[·]; let } I := [b] \cdot (n+2) + [\neg b] \cdot n \rangle$$

$$wp[n := 0; b := true] (wp[while (b=true) do body] (I \cdot [\neg b]))$$

$$\langle \text{monoton. of wp[·], loop rule with invariant } I$$

$$and set of initial terminating states S \rangle$$

$$wp[n := 0; b := true] ([b] \cdot (n+2) + [\neg b] \cdot n)$$

$$= \langle rule \text{ for seq. comp. and assign.} \rangle$$

$$2$$

We want to prove that the program terminates in average in two iterations, i.e.

$$wp[c](n) = \underline{2}$$

 $\begin{array}{lll} c: & n \coloneqq 0; \\ & b \coloneqq \mathsf{true}; \\ & \texttt{while}(b \! = \! \mathsf{true}) \, \mathsf{do} \\ & \left\{ b \coloneqq \mathsf{true} \right\} \, \left[\frac{1}{2} \right] \, \left\{ b \coloneqq \mathsf{false} \right\}; \\ & n \coloneqq n \! + \! 1; \end{array}$

(4) $\lim_{i\to\infty} \mathbf{EV}_i [I \cdot [b]] = 0$

$$wp[c](n) = \langle rule \text{ for seq. comp.} \rangle$$

$$wp[n \coloneqq 0; b \coloneqq true] (wp[while(b=true) do ...](n)) \\ \Leftrightarrow (monoton. of wp[\cdot]; let I \coloneqq [b] \cdot (n+2) + [\neg b] \cdot n \rangle$$

$$wp[n \coloneqq 0; b \coloneqq true] (wp[while(b=true) do body] (I \cdot [\neg b])) \\ \Leftrightarrow (monoton. of wp[\cdot], loop rule with invariant I and set of initial terminating states S \rangle$$

$$wp[n \coloneqq 0; b \coloneqq true] ([b] \cdot (n+2) + [\neg b] \cdot n) \\ = (rule \text{ for seq. comp. and assign.}) \\ \underline{2}$$

 $\leq i+2$

We want to prove that the program terminates in average in two iterations, i.e.

$$wp[c](n) = \underline{2}$$

 $\begin{array}{ll} c: & n\coloneqq 0;\\ & b\coloneqq \mathsf{true};\\ & \mathsf{while}\,(b{=}\mathsf{true})\,\mathsf{do}\\ & \left\{b\coloneqq \mathsf{true}\right\}\,\left[1/2\right]\,\left\{b\coloneqq \mathsf{false}\right\};\\ & n\coloneqq n{+}1; \end{array}$

$$wp[c](n)$$

$$= \langle rule \text{ for seq. comp.} \rangle$$

$$wp[n \coloneqq 0; b \coloneqq true] (wp[while(b=true) do ...](n))$$

$$\Leftrightarrow (monoton. of wp[\cdot]; let I \coloneqq [b] \cdot (n+2) + [\neg b] \cdot n \rangle$$

$$wp[n \coloneqq 0; b \coloneqq true] (wp[while(b=true) do body] (I \cdot [\neg b]))$$

$$\Leftrightarrow (monoton. of wp[\cdot], loop rule with invariant I$$
and set of initial terminating states $S \rangle$

$$wp[n \coloneqq 0; b \coloneqq true] ([b] \cdot (n+2) + [\neg b] \cdot n)$$

$$= \langle rule \text{ for seq. comp. and assign.} \rangle$$

$$2$$

We want to prove that the program terminates in average in two iterations, i.e.

$$wp[c](n) = \underline{2}$$

 $\begin{array}{ll} c: & n \coloneqq 0; \\ & b \coloneqq \mathsf{true}; \\ & \texttt{while}(b \! = \! \mathsf{true}) \, \mathsf{do} \\ & \left\{ b \coloneqq \mathsf{true} \right\} \, \left[\frac{1}{2} \right] \, \left\{ b \coloneqq \mathsf{false} \right\}; \\ & n \coloneqq n \! + \! 1; \end{array}$

 $\therefore \operatorname{wp}[c](n) \geq \underline{2}$

We can show that

$$wp[c](n) \leq \underline{2}$$

by proving that

$$\underline{0} \Rightarrow wp[c](2-n)$$

since

$$\underline{0} \leq wp[c](2-n) = \underline{2} - wp[c](n)$$

$$\begin{array}{ll} c: & n \coloneqq 0; \\ & b \coloneqq \mathsf{true}; \\ & \texttt{while}(b \! = \! \mathsf{true}) \, \mathsf{do} \\ & \left\{ b \coloneqq \mathsf{true} \right\} \, \left[\frac{1}{2} \right] \, \left\{ b \coloneqq \mathsf{false} \right\}; \\ & n \coloneqq n \! + \! 1; \end{array}$$

wp[c](f)(s) =
$$\sum_{i\geq 1} \left(\frac{1}{2}\right)^i f(s[b, n/false, i])$$

Agenda

Recap on previous lecture

Algebraic properties

Extension to unbounded expectations

Connection to relational semantics

Extension to non-deterministic programs

Summary

Two Semantical Views of Probabilistic Programs

Relational view

 $\llbracket c \rrbracket \colon \mathcal{S} o \mathcal{D}(\mathcal{S})$

Expectation transformer view

 $wp[c] \colon \mathbb{E} \to \mathbb{E}$

Connection between the two views

$$wp[c](f) = \lambda s \cdot EV_{[c](s)}(f)$$

Relational Semantics — Preliminaries

Distributions over program states

We let $\mathcal{D}(S)$ be the set of *sub-probability distributions* over program states.

Related notation and operations

η_{s}	Dirac distribution $(s \in S)$
0	null distribution
$p\cdot \mu_1 + (1{-}p)\cdot \mu_2$	convex combination between distributions μ_1 and μ_2 ($p \in [0, 1], \mu_1, \mu_2 \in \mathcal{D}(S)$)
$\mu \blacktriangleright f$	distribution $\sum_{a \in A} \Pr[\mu = a] \cdot f(a)$ $(\mu \in \mathcal{D}(A), f : A \to \mathcal{D}(S))$

Relational Semantics — Definition

For pGCL program c, the semantic function

 $\llbracket c \rrbracket : \mathcal{S} \to \mathcal{D}(\mathcal{S})$

is defined by induction on *c* structure as follows:

Connection between Relational and Expectation Transformer Semantics

Theorem

For any (purely probabilistic) pGCL program c and post-expectation f,

$$wp[c](f) = \lambda s \cdot EV_{[[c]](s)}(f)$$

This theorem proves both the soundness and the completeness of the expectation transformer semantics wrt the relational semantics:

SOUNDNESS
$$wp[c]([P])(s) = \alpha \implies Pr[P \in [[c]](s)] = \alpha$$
COMPLETENESS $Pr[P \in [[c]](s)] = \alpha \implies wp[c]([P])(s) = \alpha$

Connection between Relational and Expectation Transformer Semantics

Theorem

For any (purely probabilistic) pGCL program c and post-expectation f,

$$wp[c](f) = \lambda s \cdot EV_{[[c]](s)}(f)$$

This theorem proves both the soundness and the completeness of the expectation transformer semantics wrt the relational semantics:

SOUNDNESS
$$wp[c]([P])(s) = \alpha \implies Pr[P \in [[c]](s)] = \alpha$$
COMPLETENESS $Pr[P \in [[c]](s)] = \alpha \implies wp[c]([P])(s) = \alpha$

The connection between the two semantics can be recast in a more uniform manner:

$$g = wp[c](f)$$
 iff $\forall \mu \in \mathcal{D}(S) \cdot EV_{\mu}(g) = EV_{\mu \blacktriangleright \llbracket c \rrbracket}(f)$

Connection between Relational and Expectation Transformer Semantics

Theorem

For any (purely probabilistic) pGCL program c and post-expectation f,

$$wp[c](f) = \lambda s \cdot EV_{[[c]](s)}(f)$$

This theorem proves both the soundness and the completeness of the expectation transformer semantics wrt the relational semantics:

SOUNDNESS
$$wp[c]([P])(s) = \alpha \implies Pr[P \in [[c]](s)] = \alpha$$
COMPLETENESS $Pr[P \in [[c]](s)] = \alpha \implies wp[c]([P])(s) = \alpha$

The connection between the two semantics can be recast in a more uniform manner:

$$g = wp[c](f) \quad \text{iff} \quad \forall \mu \in \mathcal{D}(S) \bullet \mathsf{EV}_{\mu}(g) = \mathsf{EV}_{\mu \blacktriangleright \llbracket c \rrbracket}(f)$$
$$P = wp[c](Q) \quad \text{iff} \quad \forall s \in S \bullet P(s) = Q(\llbracket c \rrbracket(s)) \quad \begin{pmatrix} \text{deterministic} \\ \text{counterpart} \end{pmatrix}$$

Agenda

Recap on previous lecture

Algebraic properties

Extension to unbounded expectations

Connection to relational semantics

Extension to non-deterministic programs

Summary

Syntax

The pGCL language

С	:=	skip
		abort
		$x \coloneqq E$
		if G then $\mathcal C$ else $\mathcal C$
		$\{\mathcal{C}\} [p] \{\mathcal{C}\}$
		$\{\mathcal{C}\} \square \{\mathcal{C}\}$
		while G do $\mathcal C$
		C; C

nop abortion assignment conditional probabilistic choice **non-deterministic choice** while loop sequence

Semantics

Non-determinism is resolved by means of a scheduler who decides, on each occurrence of a non-deterministic choice, which branch (left or right) to execute.

Demonic model: we adopt the scheduler that minimizes the probability of the event at stake (scheduler varies according to the post-expectation and initial state)

Examples

$$\{x \coloneqq \mathsf{true}\} \Box \{x \coloneqq \mathsf{false}\}; \\ \{y \coloneqq \mathsf{true}\} \ [1/3] \ \{y \coloneqq \mathsf{false}\};$$

$$\Pr[x=y] = \min \left\{ \Pr^{\mathcal{L}}[x=y], \Pr^{\mathcal{R}}[x=y] \right\} \\ = \min \left\{ \frac{1}{3}, \frac{2}{3} \right\} = \frac{1}{3}$$

 $egin{aligned} b &\coloneqq \mathsf{true}; \ \mathsf{while} \left(b{=}\mathsf{true}
ight) \mathsf{do} \ \left\{ b &\coloneqq \mathsf{true}
ight\} \left[1/2
ight] \left\{ b &\coloneqq \mathsf{false}
ight\}; \end{aligned}$

Pr[true] = 1

Examples

$$\{x \coloneqq \mathsf{true}\} \Box \{x \coloneqq \mathsf{false}\}; \\ \{y \coloneqq \mathsf{true}\} \ [1/3] \ \{y \coloneqq \mathsf{false}\};$$

$$\Pr[x=y] = \min \left\{ \Pr^{\mathcal{L}}[x=y], \Pr^{\mathcal{R}}[x=y] \right\} \\ = \min \left\{ \frac{1}{3}, \frac{2}{3} \right\} = \frac{1}{3}$$

 $\begin{array}{l} b\coloneqq \mathsf{true};\\ \texttt{while}(b=\mathsf{true})\,\texttt{do}\\ \{b\coloneqq \mathsf{true}\} \ [1/2] \ \{b\coloneqq \mathsf{false}\};\\ \{\texttt{skip}\} \ \Box \ \{b\coloneqq \neg b\} \end{array}$

 $\mathsf{Pr}[\mathsf{true}] \; = \;$

Examples

$$\{x \coloneqq \mathsf{true}\} \Box \{x \coloneqq \mathsf{false}\}; \\ \{y \coloneqq \mathsf{true}\} \ [1/3] \ \{y \coloneqq \mathsf{false}\};$$

$$\Pr[x=y] = \min \left\{ \Pr^{\mathcal{L}}[x=y], \Pr^{\mathcal{R}}[x=y] \right\} \\ = \min \left\{ \frac{1}{3}, \frac{2}{3} \right\} = \frac{1}{3}$$

 $\begin{array}{l} b\coloneqq \mathsf{true};\\ \texttt{while}(b=\texttt{true})\,\texttt{do}\\ \left\{b\coloneqq \mathsf{true}\right\} \, \left[\frac{1}{2}\right] \, \left\{b\coloneqq \mathsf{false}\right\};\\ \left\{\texttt{skip}\right\} \square \left\{b\coloneqq \neg b\right\} \end{array}$

Pr[true] = 0

Examples

wp[c](f)(s)

$$\{x \coloneqq \mathsf{true}\} \Box \{x \coloneqq \mathsf{false}\}; \\ \{y \coloneqq \mathsf{true}\} \ [1/3] \ \{y \coloneqq \mathsf{false}\};$$

$$Pr[x=y] = \min \left\{ Pr^{\mathcal{L}}[x=y], Pr^{\mathcal{R}}[x=y] \right\} \\ = \min \left\{ \frac{1}{3}, \frac{2}{3} \right\} = \frac{1}{3}$$

$$\begin{array}{l} b\coloneqq \mathsf{true};\\ \texttt{while}(b=\mathsf{true})\,\texttt{do}\\ \left\{b\coloneqq \mathsf{true}\right\} \, \left[\frac{1}{2}\right] \, \left\{b\coloneqq \mathsf{false}\right\};\\ \left\{\texttt{skip}\right\} \square \left\{b\coloneqq \neg b\right\} \end{array}$$

Pr[true] = 0

Extension of expectation transformers

c purely prob.

c non-det.

 $wp[{c_1} \square {c_2}](f) = min {wp[c_1](f), wp[c_2](f)}$

expected value of f from state s

greatest lower bound for the expected value of *f* from state *s*

Examples

$$\{x \coloneqq \mathsf{true}\} \Box \{x \coloneqq \mathsf{false}\}; \\ \{y \coloneqq \mathsf{true}\} \ [1/3] \ \{y \coloneqq \mathsf{false}\};$$

$$Pr[x=y] = \min \left\{ Pr^{\mathcal{L}}[x=y], Pr^{\mathcal{R}}[x=y] \right\} \\ = \min \left\{ \frac{1}{3}, \frac{2}{3} \right\} = \frac{1}{3}$$

$$\begin{array}{l} b\coloneqq \mathsf{true};\\ \texttt{while}(b=\mathsf{true})\,\texttt{do}\\ \left\{b\coloneqq \mathsf{true}\right\} \, \left[\frac{1}{2}\right] \, \left\{b\coloneqq \mathsf{false}\right\};\\ \left\{\texttt{skip}\right\} \square \left\{b\coloneqq \neg b\right\} \end{array}$$

Pr[true] = 0

Extension of expectation transformers

c non-det.

 $wp[{c_1} \square {c_2}](f) = min {wp[c_1](f), wp[c_2](f)}$

greatest lower bound for the expected value of *f* from state *s*

Interaction between Non-deterministic and Probabilistic Choice

 $c_1: \quad \{x \coloneqq t\} \square \{x \coloneqq f\}; \\ \{y \coloneqq t\} \ [1/3] \ \{y \coloneqq f\}$

wp[x := E](f) = f[E/x] $wp[\{c_1\} [p] \{c_2\}](f) = p \cdot wp[c_1](f) + \bar{p} \cdot wp[c_2](f)$ $wp[\{c_1\} \Box \{c_2\}](f) = min \{wp[c_1](f), wp[c_2](f)\}$ $wp[c_1; c_2](f) = wp[c_1](wp[c_2](f))$

 $wp[c_1]([x=y]) = \langle rule \text{ for seq. comp.} \rangle$ $wp[\{x:=t\} \square \{x:=f\}] (wp[\{y:=t\} [1/3] \{y:=f\}]([x=y]))$ $= \langle rule \text{ for prob. choice and assgn.} \rangle$ $wp[\{x:=t\} \square \{x:=f\}] (\frac{1}{3} \cdot [x=t] + \frac{2}{3} \cdot [x=f])$ $= \langle rule \text{ for non-det. choice and assgn.} \rangle$ $min \{\frac{1}{3} \cdot [t=t] + \frac{2}{3} \cdot [t=f], \frac{1}{3} \cdot [f=t] + \frac{2}{3} \cdot [f=f]\}$ $= \langle simplification \rangle$ $\frac{1}{3}$

Interaction between Non-deterministic and Probabilistic Choice

 $c_1: \quad \{x \coloneqq t\} \square \{x \coloneqq f\}; \\ \{y \coloneqq t\} \ [1/3] \ \{y \coloneqq f\}$

wp[x := E](f) = f[E/x] $wp[\{c_1\} [p] \{c_2\}](f) = p \cdot wp[c_1](f) + \bar{p} \cdot wp[c_2](f)$ $wp[\{c_1\} \Box \{c_2\}](f) = min \{wp[c_1](f), wp[c_2](f)\}$ $wp[c_1; c_2](f) = wp[c_1](wp[c_2](f))$

$$c_2: \{y \coloneqq t\} [1/3] \{y \coloneqq f\}; \\ \{x \coloneqq t\} \Box \{x \coloneqq f\}$$

$$\begin{split} & \mathsf{wp}\big[c_1\big]\big([x=y]\big) \\ &= & \langle \mathrm{rule \ for \ seq. \ comp.} \rangle \\ & \mathsf{wp}\big[\{x:=t\} \square \{x:=f\}\big] \big(\mathsf{wp}\big[\{y:=t\} \ [^1/3] \ \{y:=f\}\big] \big([x=y]\big)\big) \\ &= & \langle \mathrm{rule \ for \ prob. \ choice \ and \ assgn.} \rangle \\ & \mathsf{wp}\big[\{x:=t\} \square \{x:=f\}\big] \big(\frac{1}{3} \cdot [x=t] + \frac{2}{3} \cdot [x=f]\big) \\ &= & \langle \mathrm{rule \ for \ non-det. \ choice \ and \ assgn.} \rangle \\ & \min \big\{\frac{1}{3} \cdot [t=t] + \frac{2}{3} \cdot [t=f], \frac{1}{3} \cdot [f=t] + \frac{2}{3} \cdot [f=f]\big\} \\ &= & \langle \mathrm{simplification} \rangle \\ & & \frac{1}{3} \end{split}$$

Interaction between Non-deterministic and Probabilistic Choice

 $c_1: \quad \{x \coloneqq t\} \square \{x \coloneqq f\}; \\ \{y \coloneqq t\} \ [1/3] \ \{y \coloneqq f\}$

wp[x := E](f) = f[E/x] $wp[\{c_1\} [p] \{c_2\}](f) = p \cdot wp[c_1](f) + \bar{p} \cdot wp[c_2](f)$ $wp[\{c_1\} \Box \{c_2\}](f) = min \{wp[c_1](f), wp[c_2](f)\}$ $wp[c_1; c_2](f) = wp[c_1](wp[c_2](f))$

$$c_2: \{y \coloneqq t\} [1/3] \{y \coloneqq f\}; \\ \{x \coloneqq t\} \Box \{x \coloneqq f\}$$

$$\begin{split} & \mathsf{wp}\big[c_1\big]([x=y]) & \mathsf{wp}\big[c_2\big]([x=y]) \\ & = & \langle \mathsf{rule for seq. comp.} \rangle & \mathsf{wp}\big[\{x:=t\} \square \{x:=f\}\big](\mathsf{wp}\big[\{y:=t\} \ [^1/_3] \ \{y:=f\}\big]([x=y])) \\ & = & \langle \mathsf{rule for prob. choice and assgn.} \rangle & \mathsf{wp}\big[\{y:=t\} \ [^1/_3] \ \{y:=f\}\big](\mathsf{wp}\big[\{x:=t\} \square \{x:=f\}\big]([x=y])) \\ & = & \langle \mathsf{rule for non-det. choice and assgn.} \rangle & \mathsf{wp}\big[\{y:=t\} \ [^1/_3] \ \{y:=f\}\big](\mathsf{min}\big\{[t=y], [f=y]\big\}) \\ & = & \langle \mathsf{rule for non-det. choice and assgn.} \rangle & \mathsf{wp}\big[\{y:=t\} \ [^1/_3] \ \{y:=f\}\big](\mathsf{min}\big\{[t=y], [f=y]\big\}) \\ & = & \langle \mathsf{rule for non-det. choice and assgn.} \rangle & \mathsf{wp}\big[\{y:=t\} \ [^1/_3] \ \{y:=f\}\big](\mathsf{min}\big\{[t=y], [f=y]\big\}) \\ & = & \langle \mathsf{rule for non-det. choice and assgn.} \rangle & \mathsf{wp}\big[\{y:=t\} \ [^1/_3] \ \{y:=f\}\big](\mathsf{min}\big\{[t=y], [f=y]\big\}) \\ & = & \langle \mathsf{rule for non-det. choice and assgn.} \rangle & \mathsf{wp}\big[\{y:=t\}, [f=t]\big\} + \frac{2}{3} \cdot \mathsf{min}\big\{[t=f], [f=f]\big\} \\ & = & \langle \mathsf{simplification} \rangle & \mathsf{min}\big\{\frac{1}{3} \cdot [\mathsf{t}=t] + \frac{2}{3} \cdot [\mathsf{t}=f], \frac{1}{3} \cdot [\mathsf{f}=t] + \frac{2}{3} \cdot [\mathsf{f}=f]\big\} & \mathsf{min}\big\{[\mathsf{t}=t], [f=t]\big\} + \frac{2}{3} \cdot \mathsf{min}\big\{[\mathsf{t}=f], [\mathsf{f}=f]\big\} \\ & = & \langle \mathsf{simplification} \rangle & \mathsf{min}\big\{\frac{1}{3} \cdot [\mathsf{min}\big\{[\mathsf{t}=t], \mathsf{f}=f]\big\} + \frac{2}{3} \cdot \mathsf{min}\big\{[\mathsf{t}=f], \mathsf{f}=f]\big\} \\ & = & \langle \mathsf{simplification} \rangle & \mathsf{min}\big\{[\mathsf{t}=t], \mathsf{min}\big\{[\mathsf{t}=t], \mathsf{f}=f]\big\} + \frac{2}{3} \cdot \mathsf{min}\big\{[\mathsf{t}=f], \mathsf{f}=f]\big\} \\ & = & \langle \mathsf{simplification} \rangle & \mathsf{min}\big\{\mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f], \mathsf{f}=f]\big\} \\ & = & \langle \mathsf{simplification} \rangle & \mathsf{min}\big\{\mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f]\big\}, \mathsf{min}\big\{\mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f]\big\}, \mathsf{min}\big\{\mathsf{min}\big\{[\mathsf{t}=f], \mathsf{min}\big\{[\mathsf{t}=f]\big\}, \mathsf{min}\big\{\mathsf{min}\big\{[\mathsf{t}=f]\big\}, \mathsf{min}\big\{\mathsf{min}\big\{[\mathsf{t}=f]\big\}, \mathsf{min}\big\{\mathsf{min}\big\{[\mathsf{t}=f]\big\}, \mathsf{min}\big\{[\mathsf{t}=f]\big\}, \mathsf{min}\big\{\mathsf{min}\big\{[\mathsf{t}=f]\big\}, \mathsf{min}\big\{$$

- A scheduler can "look" the past, but not the future.
- In c₂ the scheduler has access to the value of y, and can then assign x the opposite value, yielding a zero probability that x=y.
- In c1 the scheduler must choose a single value for x, which will be the same for both branches of the probabilistic choice assigning the value to y.

Algebraic Properties of Non-deterministic Programs

The Law of Total Probabilities holds for purely probabilistic programs, ie

 $wp[c]([P]) + wp[c]([\neg P]) = wp[c](\underline{1})$

It follows from the linearity of wp[c], ie

 $\alpha \cdot wp[c](f) + \beta \cdot wp[c](g) = wp[c](\alpha \cdot f + \beta \cdot g)$

For non-deterministic programs we only have $wp[c]([P]) + wp[c]([\neg P]) \leq wp[c](\underline{1})$

since only sub-linearity of wp[c] holds, ie

 $\alpha \cdot \mathsf{wp}[c](f) + \beta \cdot \mathsf{wp}[c](g) \leq \mathsf{wp}[c](\alpha \cdot f + \beta \cdot g)$

 $c_2: \{y \coloneqq t\} [1/3] \{y \coloneqq f\}; \\ \{x \coloneqq t\} \Box \{x \coloneqq f\}$

 $wp[c_2]([x=y]) = 0$ $wp[c_2]([x\neq y]) = 0$

Connection between the two Semantics for Non-deterministic Programs

Theorem

For any (purely probabilistic) pGCL program *c* and post-expectation *f*,

 $wp[c](f) = \lambda s \cdot EV_{[c](s)}(f)$

Connection between the two Semantics for Non-deterministic Programs

Theorem

For any (possibly non-deterministic) pGCL program *c* and post-expectation *f*,

$$wp[c](f) = \lambda s \cdot inf \left\{ \mathsf{EV}_{\mu'}(f) \mid \mu' \in \llbracket c \rrbracket(s) \right\}$$

Connection between the two Semantics for Non-deterministic Programs

Probabilistic Powerdomain

Probabilistically closed subsets

A set of distributions $P \subseteq \mathcal{D}(S)$ is probabilistically closed iff it is

- **up-closed:** $\mu \in P \implies \mu' \in P$ for all $\mu' \ge \mu$
- non-empty
- **convex:** $\mu, \mu' \in P \implies \lambda \cdot \mu + (1-\lambda) \cdot \mu' \in P$ for all $\lambda \in [0, 1]$
- **Cauchy-closed:** closed in the topological space $\mathbb{R}_{>0}^{\mathcal{S}}$

We let $\mathbb{C}(S)$ be the family of all probabilistically closed subsets.

 $(\mathbb{C}(S), \sqsubseteq, \sqcup)$ defines a a complete partial order with bottom element, being

$$\theta_1 \sqsubseteq \theta_2 \triangleq \theta_1 \supseteq \theta_2 \qquad \bigsqcup_{i \in \mathbb{N}} \theta_i \triangleq \bigcap_{i \in \mathbb{N}} \theta_i \qquad \bot \triangleq \mathcal{D}(\mathcal{S})$$

$${}^* \ \mu \leq \mu' \, riangleq \, orall s \in \mathcal{S} ullet \, \mathsf{Pr}[\mu = s] \leq \mathsf{Pr}[\mu' = s]$$

Relational Semantics of Non-deterministic Programs — Definition

The relational semantics of a possibly non-deterministic pGCL program c, is given by function

 $\llbracket c \rrbracket : \mathcal{S} \to \mathbb{C}(\mathcal{S})$

defined by induction on c structure as follows:

Assume we have only one program variable *x*, which is Boolean. Then the set of distributions over program states $\mathcal{D}(S)$ can be represented in the cartesian plane.

 $\{ x := t \ [p] \ x := f \} \square \{ x := t \ [q] \ x := f \}$

$$\begin{bmatrix} x \coloneqq E \end{bmatrix} = \lambda s \cdot \{\eta_{s'}\} \text{ where } s' = s[E/x]$$
$$\begin{bmatrix} \{c_1\} [p] \{c_2\} \end{bmatrix} = \lambda s \cdot \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$
$$\begin{bmatrix} \{c_1\} \Box \{c_2\} \end{bmatrix} = \lambda s \cdot \bigcup_{p \in [0,1]} \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$

 $\begin{bmatrix} x \coloneqq E \end{bmatrix} = \lambda s \cdot \{\eta_{s'}\} \text{ where } s' = s[E/x]$ $\begin{bmatrix} \{c_1\} [p] \{c_2\} \end{bmatrix} = \lambda s \cdot \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$ $\begin{bmatrix} \{c_1\} \Box \{c_2\} \end{bmatrix} = \lambda s \cdot \bigcup_{p \in [0,1]} \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$

x := t

$\begin{bmatrix} x \coloneqq E \end{bmatrix} = \lambda s \cdot \{\eta_{s'}\} \text{ where } s' = s[E/x]$ $\begin{bmatrix} \{c_1\} [p] \{c_2\} \end{bmatrix} = \lambda s \cdot \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$ $\begin{bmatrix} \{c_1\} \Box \{c_2\} \end{bmatrix} = \lambda s \cdot \bigcup_{p \in [0,1]} \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$

x := t x := f

and the second

$$\begin{bmatrix} x \coloneqq E \end{bmatrix} = \lambda s \cdot \{\eta_{s'}\} \text{ where } s' = s[E/x]$$
$$\begin{bmatrix} \{c_1\} [p] \{c_2\} \end{bmatrix} = \lambda s \cdot \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$
$$\begin{bmatrix} \{c_1\} \Box \{c_2\} \end{bmatrix} = \lambda s \cdot \bigcup_{p \in [0,1]} \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$

 $\Pr[x=f]$

1

 $\{ x := t [p] x := f \}$

A PART DAY

$$\begin{bmatrix} x \coloneqq E \end{bmatrix} = \lambda s \cdot \{\eta_{s'}\} \text{ where } s' = s[E/x]$$
$$\begin{bmatrix} \{c_1\} [p] \{c_2\} \end{bmatrix} = \lambda s \cdot \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$
$$\begin{bmatrix} \{c_1\} \Box \{c_2\} \end{bmatrix} = \lambda s \cdot \bigcup_{p \in [0,1]} \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$

 $\{ x := t \ [p] \ x := f \} \ \{ x := t \ [q] \ x := f \}$

Land Market

$$\begin{bmatrix} x \coloneqq E \end{bmatrix} = \lambda s \cdot \{\eta_{s'}\} \text{ where } s' = s[E/x]$$
$$\begin{bmatrix} \{c_1\} [p] \{c_2\} \end{bmatrix} = \lambda s \cdot \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$
$$\begin{bmatrix} \{c_1\} \Box \{c_2\} \end{bmatrix} = \lambda s \cdot \bigcup_{p \in [0,1]} \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$

 $\{ x := t \ [p] \ x := f \} \square \{ x := t \ [q] \ x := f \}$

The second second

$$\begin{bmatrix} x \coloneqq E \end{bmatrix} = \lambda s \cdot \{\eta_{s'}\} \text{ where } s' = s[E/x]$$
$$\begin{bmatrix} \{c_1\} [p] \{c_2\} \end{bmatrix} = \lambda s \cdot \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$
$$\begin{bmatrix} \{c_1\} \Box \{c_2\} \end{bmatrix} = \lambda s \cdot \bigcup_{p \in [0,1]} \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$

 $\Pr[x=f]$

1

{abort} [1/3] {x := t [1/2] x := f}

1

 $\Pr[x=t]$

Non-terminating

fair coin

The Day

$$\begin{bmatrix} x \coloneqq E \end{bmatrix} = \lambda s \cdot \{\eta_{s'}\} \text{ where } s' = s[E/x]$$
$$\begin{bmatrix} \{c_1\} [p] \{c_2\} \end{bmatrix} = \lambda s \cdot \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$
$$\begin{bmatrix} \{c_1\} \Box \{c_2\} \end{bmatrix} = \lambda s \cdot \bigcup_{p \in [0,1]} \begin{bmatrix} c_1 \end{bmatrix} (s) \oplus_p \begin{bmatrix} c_2 \end{bmatrix} (s)$$

 $wp[c]([x=t]+2 \cdot [x=f])$

 $wp[c]([x=t]+2 \cdot [x=f])$

$$wp[c]([x=t]+2\cdot [x=f]) = \frac{5}{6}$$

Agenda

Recap on previous lecture

Algebraic properties

Extension to unbounded expectations

Connection to relational semantics

Extension to non-deterministic programs

Summary

Summary

Connection between the two semantical views

$$\mathsf{wp}[c](f) = \lambda s \cdot \mathsf{inf} \left\{ \mathsf{EV}_{\mu'}(f) \mid \mu' \in \llbracket c \rrbracket(s) \right\}$$