n := 0;

repeat
n:=n+4 1;
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c; = coin f1ip(0.5);
¢ = coin_f1ip(0.5);
return (ci, &)

n=0;
repeat

n=n-+1;

c = coin_f1ip(0.5)
until (c=heads);
return n

Output
Distribution

—)

Output
Distribution

—

1/2 1/4
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Quicksort: Problem of Quicksort:

In the average case, it performs fairly well:

A . . . .
QS(A) = On a random input of size n, it requires on
if (|A| < 1)then return (A); average O(n log(n)) comparisons (which
i = [lAl/2]; matches information theory lower bound).
Ao ={a e A|lad < A[l};
A, ={a e Alad > All}; But in the worst case, it does not:
return (QS(A<) ++ A[i] ++ QS(A-)) There exist “ill-behaved” inputs of size n

which require O(n?) comparisons.

How to narrow the gap between the worst and average case performance?



Quicksort: Problem of Quicksort:

In the average case, it performs fairly well:

A . . . .
rQS(A) = On a random input of size n, it requires on
if (|JA| < 1)then return(A); average O(n log(n)) comparisons (which
> i:=rand[l...|A]]; <& matches information theory lower bound,).
A.={ad e Al|ld <A}
A ={a e Alad > All}; But in the worst case, it does not:
return (QS(A<) ++ A[i] ++ QS(A>)) There exist “ill-behaved” inputs of size n

which require O(n?) comparisons.

How to narrow the gap between the worst and average case performance?

Choose the pivot at random!

For any input, the expected number of
comparisons matches the average case.

No “ill-behaved” input.



Verifying Data Consistency

® Goal: R and R must communicate to verify = communication o
whether x-y (x.y < {0.1}") e s
® Requirement: minimize the # of bits exchanged. Ri Ru

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

|dea: use random fingerprints of x and y.

Routine of Ry £
p = rand{i € [2, n*] | prime(i)};
s := x mod p;
send(p, s) to Ryi;

Routine of Ry =
receive(p,s) from Ry;
t := y mod p;
if (s=t) then return (“x=y")
else return (“x#y”)
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Randomized Algorithm

|dea: use random fingerprints of x and y. Prot. outputs “x-£y” =y x7y
In(n?)
n

Routine of Ry = Pr[x # y | output “x=y”] <
p = rand{i € [2, n*] | prime(i)};

s := x mod p; # bits exch.

Routine of Ry = n=1020 266
receive(p, s) from Ry; n=1030 398

t := y mod p; n=1040 532
if (s=t) then return (“x=y”) n=1050 664
else return (“x#y”)




Verifying Data Consistency

® Goal: Ry and R must communicate to verify = communication o
whether x=y (x. € {0.1}"). e * s
® Requirement: minimize the # of bits exchanged. Ri Ru

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

|dea: use random fingerprints of x and y. Prot. outputs “x-£y” =y x7y
In(n?)

Routine of Ry £ Pr[x # y | output “x=y”] <
n

p = rand{i € [2, ] | prime(i)};

s := x mod p; # bits exch.

send(p, s) to Ryr; n=1010 133 4.60 x 1000
Routine of Ry £ n=1020 266 9.21 x 10-19
receive(p,s) from Ry; n=1030 398 1.38 x 1028
t ==y mod p; n=1040 532 1.84 x 1038

if (s=t) then return (“x=y”) n=1050 664 2 30 x 1048
else return (“x#y”)




The Dinning Philosopher Problem
Theorem (Lehmann & Rabin ’81) there exists no

A \0/,
fully distributed and symmetric deterministic
\‘ T ./ algorithm for the dining philosopher problem.

Randomized Algorithm

ldea:
while (true) do B Do not pick always the same fork first.
(* Thinking Time *) Flip a coin to choose.
trying = true @ If the second fork is not available,
while (trying) do release the first and flip again the coin.
= rand{left, right}
Wait until fork[s| is available and take it Algorithm is deadlock-free:

If fork|—s] is available At any time, if there is a hungry philosopher,

then take it and set trying to false with probability one some philosopher will
else drop fork|s] eventually eat. Algorithm can also be
(* Eating Time *) adapted to prevent starvation (ie the hungry

Drop both forks philosopher will eventually eat).



Randomization has Countless Application Domains
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Recap on Previous Lecture

We can extend traditional
program verification tech-

niques to probabilistic
programs.

@ Hoare logic

B Weakest pre-condition calculus
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® Predicate transformers for deterministic programs




must be true (ie in the initial state) so that a given
holds (ie in the final state) of a execution?

Examples

For which initial states does program a :— a+1; b := b—1 lead to a final state where 2- b — 0?
For those initial states where

@ For which initial states does program while (/#0) do / == /-1 ?
For those initial states where

14



must be true (ie in the initial state) so that a given
holds (ie in the final state) of a execution?

Examples

For which initial states does program a :— a+1; b := b—1 lead to a final state where 2- b — 0?
For those initial states where

# For which initial states does program while (/#0) do / == /-1 ?
For those initial states where

Answer e.q. is not right (it is sufficient, but not necessary for ensuring termination).

14



must be true ot (ie in the initial state) so that a given

assfertion holds at theTend (ie in the final state) of a program execution?

POSTCONDTION

Examples

B For which initial states does program a :— a+1; b .= b—1 lead to a final state where a - b — 0?
For those initial states where

B For which initial states does program while (/#0) do / == /—1 terminate?
For those initial states where

Answer e.q. is not right (it is sufficient, but not necessary for ensuring termination).

14
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assfertion holds at the?end (ie in the final state) of a program execution?

POSTCONDTION

Examples

B For which initial states does program a :— a+1; b .= b—1 lead to a final state where a - b — 0?
For those initial states where

B For which initial states does program while (/#0) do / == /—1 terminate?
For those initial states where

Answer e.q. is not right (it is sufficient, but not necessary for ensuring termination).

Our verification tool

= -,
-
=

14



must be true (ie in the initial state) so that a given

as?rtion holds at the?end (ie in the final state) of a program execution?

POSTCONDTION

Examples

B For which initial states does program a :— a+1; b .= b—1 lead to a final state where a - b — 0?
For those initial states where

B For which initial states does program while (/#0) do / == /—1 terminate?
For those initial states where

Answer e.q. is not right (it is sufficient, but not necessary for ensuring termination).

Our verification tool

Postcondtion
- e §  Predicate

Transformer

= -

14



will be variable valuation, i.e. S = Var — Val.
& and are predicates over program states, or equivalently, set of program states.
For each program c,

wp|c]: —

transforms postconditions into preconditions.

Examples
wpla = a+1; b= b—1]( ) =

wp[while (i#£0) do i := i—1](true) =

wp[if (x>0) then {y := z+1} else {y := z+2}](y>0)



will be variable valuation, i.e. S = Var — Val.
& and are predicates over program states, or equivalently, set of program states.
For each program c,

wp|c]: —

transforms postconditions into preconditions.

Examples
wpla = a+1; b= b—1]( ) =

wp[while (i#£0) do i := i—1](true) =

wp[if (x>0) then {y := z+1} else {y := z+2}](y>0)



wp[c](Q)

Initial States Final States

(1) Every execution from © terminates.
(2) Every execution from ( lands on @.

(3) No execution from lands on @ .

wp[c](Q) is the weakest precondition that guarantees Q: if initial
state s leads to a final state in Q, then s must satisfy wp/[c](Q).

POSTCONDTION

—> Allowed Execution

Forbidden Execution

—_—

16



POSTCONDTION

wp[c](Q) —>» Allowed Execution

Forbidden Execution

Initial States Final States

(1) Every execution from © terminates.
Summary

(2) Every execution from ( landson @. wp/[c](Q) gives the necessary (3) and sufficient

i 1-2) condition for guaranteeing Q.
(3) No execution from lands on @ . (1-2) 9 g

wp[c](Q) is the weakest precondition that guarantees Q: if initial
state s leads to a final state in Q, then s must satisfy wp/[c](Q).

—_—

16



The GCL language

Eani=— acleip nop

Theorem (Dijkstra ‘75)

abort abortion For GCL program c, predicate
= 12 assignment transformer wp/c] can be defined
3G then G clse @ conditional bv inducti ; ;
iR . y induction on c structure.
Eo e sequence

wp|skip](Q) = Q

wp[abort](Q) = false

wp[x = E|(Q) = Q[E/X]

wp[if G then ¢ else &](Q) = (G = wp[c1](Q)) A (=G = wp[a](Q))

wplcr; 2] (Q) = (wp[a] o wp[e]) (Q)
wp[while G do c](Q) = puP e+ ((G = wp[c](P)) A(—G = Q))




wp[x = E|(Q) = Q[E/X]
wp[if G then ¢; else ](Q) = (G = wp[ca](Q)) A (=G = wp[c:](Q))

wp[if (x>0) then {y := z+1} else {y = z+2}|(y>0)
(rule for conditionals)

(x=0 = wply = z+1](y=0)) A (x<0 = wply = z+2](y=0))
(rule for assignments, twice)

(x>0 = z+1>0)) A (x<0 = z+2>0))
(simplification)

(x>0AN z>—-1)) V (x<0 A z>-2))

18



wp|c|(Q)

POSTCONDTION

—>» Allowed Execution

Forbidden Execution

Initial States

(2) Every execution from
(3) No execution from

(4) No execution from

lands on @ .
lands on . :

diverges.

Final States

Summary

wp[c](Q) gives the necessary (3) and sufficient
(1-2) condition for establishing Q.

—_—
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POSTCONDTION

S wIp[c](Q) —>» Allowed Execution

Forbidden Execution

Initial States Final States

Summary

(2) Every execution from © landson @ .

wip[c](Q) gives the necessary (3) and sufficient
(3) No execution from lands on . _ (2) condition for establishing Q or ¢ divergence.

(4) No execution from diverges.

—_—

19



- wlp[c](Q) Q —>» Allowed Execution

Forbidden Execution

Initial States Final States

Summary

(2) Every execution from " lands on wip[c](Q) gives the necessary (3) and sufficient

(3) No execution from lands on _ (2) condition for establishing Q or ¢ divergence.

(4) No execution from diverges.

Connection between predicate transformers

19



- wlp[c](Q) Q —>» Allowed Execution

Forbidden Execution

Initial States Final States

Summary

(2) Every execution from " lands on wip[c](Q) gives the necessary (3) and sufficient

(3) No execution from lands on _ (2) condition for establishing Q or ¢ divergence.

(4) No execution from diverges.

Connection between predicate transformers

wp[c](Q) = wlip[c](Q) A wp|[c](true)



Only the rules for abort and while—loops change

wlp[abort](Q) = true
wlp[while G do c|(Q) = vP+ ((G = wlp[c](P)) A (=G = Q))

20



¥ Predicate transformers for probabilistic programs




Deterministic Setting | Probabilistic Setting

Postcondition Q: S — {0,1} Postcondition Q: S — {0,1}
Deterministic # Probabilistic *

Initial States Initial States

22



Deterministic Setting | Probabilistic Setting

Postcondition Q: S — {0,1} Postcondition Q: S — {0,1}
Deterministic # Probabilistic *

Initial States Initial States

22



Deterministic Setting | Probabilistic Setting

Postcondition Q: S — {0,1} Postcondition Q: S — {0,1}
Deterministic # Probabilistic *

Initial States Initial States

22



Deterministic Setting | Probabilistic Setting

Postcondition Q: S — {0,1} Postcondition Q: S — {0,1}
Deterministic # Probabilistic *

Initial States

Initial States
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° 0.3
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Postcondition Q: S — {0,1} Postcondition Q: S — {0,1}
Deterministic # Probabilistic *

Initial States Initial States
. X
X e 0.5
° 0.3
(] V e V
X

P(s) = Y Prllc](s) = - Q(s")

s’eS
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Deterministic Setting | Probabilistic Setting

Postcondition Q: S — {0,1}
Deterministic #

Postcondition Q: S — [0,1]

Probabilistic *

Initial States Initial States
X
° x ® 05
° 0.3
[ J V e V
X

P(s) = Y Prllc](s) = - Q(s")

s’eS
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Deterministic Setting | Probabilistic Setting

Postcondition Q: S — {0,1}
Deterministic #

Postcondition Q: S — [0,1]

Probabilistic *

Initial States Initial States
X
° x ® 05
° 0.3
[ J V e V
X

P(s) = ) Prllc](s) =] Q(s")

s’eS
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Probabilistic Predicate Transformer

wp|c]: (§ — [0,1]) — (S — [0,1])
wp[c|(f) = Ase EV[s)(f)




We let E = S — [0,1] be the set of [0,1]-valued expectations (formally, random variables).

® For each program c,

wp[c|: E —
wp[c](f) = Ase EVs)(f)

transforms post-expectations into pre-expectations.

23



We let E = S — [0,1] be the set of [0,1]-valued expectations (formally, random variables).
For each program c,

wp[c|: E —
wp[c](f) = Ase EVs)(f)

transforms post-expectations into pre-expectations.

In general, post-expectation f can be viewed as a reward function over the set of final states and
wp/[c](f) gives, for each initial state, the “avarage” reward of program c.

If we instantiate f = [Q] with the characteristic function of predicate Q, we recover the probability of
establishing Q at the end of the program execution.

23



Examples

wp[ci](f) = Ase pq-f(s[x,y/0,0]) + pq- f(s[x,y/0,1])
+ pq - f(s[x,y/1.0]) + pgG- f(s[x,y/1,1])

Prix<y|] = pqg + pg + pg=p+ pg

ci: {x:=0} [p] {x =1},
{y =0} [q] {y =1}

c: n=20; i .
I wp[e](f) = ; (3)" f(s[c, n/heads, i])
n=n++1; I
c .= coin f1ip(0.5) Pr[n < 5] = (5)

until (c=heads)



The pGCL language Theorem (Mclver & Morgan ‘96)

€ o= Slsip nop _

i e For pGCL program c, expectation
x=E assignment transformer wp/c] can be defined
if G then C else C conditional - -
(e [p] {C} T by induction on ¢ structure.
while Gdo C while loop
€:4C sequence

wp[skip|(f) = f

wp[abort](f) =0

wp[x = E](f) = f[E/X]

wp[if G then ¢ else o|(f) = [G] - wp[ci](f) + [~G] - wp[c](f)

wp[{c} [p] {c2}](f) = p-wpla](f) + (1-p) - wp[c](f)

wp|ar; 2](f) = (wp[a] o wp|e])(f)

wp[while G do c|(f) = phe ([G]-wp[c](h) + [G] - f)

25



Example

C1:

{X -— 0} [,D] {X — 1}; wp[x = E]|(f) = f[E/x]

1y = [ =1 wpl{cr} [o] {3 1(F) = p-wolal(F) + 5+ wplel(F)
wplcr; e(f) = wp[a](wp[e](f))

wpl[a|([x<y])

(rule for sequential composition)

x =0} [p] {x = 1}] (wp[{y := 0} [q] {y = 1}]([x<]))

rule for probabilistic choice)

wp {
(
wp [{x = 0} [p] {x =1}](q - wply =0]([x<y]) + G- wply = 1]([x<y]))
(
[
{

rule for assignment, twice)

wp | {x = 0} [p] {x = 1}](q - [x<0] + ¢ - [x<1])
rule for probabilistic choice)

p-wp[x:=0](q- [x<0] +§-[x<1]) + 5 - wp[x = 1] (g - [x<0] + § - [x<1])
(rule for assignment, twice)

p-(q-[0<0]+g-[0<1]) + 5 (g [1<0] + g - [1<1])
(algebra)

p+ pq

26



Probabilistic Predicate Transformers — Loop Rule

Will this man get his drink?




Will this man get his drink?

- =

1/2 /1%
- —® s..«- -
| N-1

N

Does this program almost
surely terminate?

while (i mod N # 0)do
{i=i+1} [Y2] {i = i-1}

27



Will this man get his drink? Does this program almost
surely terminate?

- = |
v fQ while (i mod N % 0)do
= - - e {i=i+1} [Y2] {i = i—-1}

| N-1 N

Loop Rule for Total Correctness

Consider loop while G do ¢ and post-expectation f. Assume that

¥ there exists a standard (ie a predicate) loop invariant /, which restricted to =G is stronger than the post-
expectation 7, and

' there exists a bounded variant e, which in each iteration decreases with at least a fixed probability e>0.

Then, [l] is a valid pre-expectation of the loop w.r.t. post-expectation f (but not necessarily the weakest).

FGAl =[G AT = wplc([1])
AueZe GANl=[1<e<u de € (0,1] « € [G AT A e=n] = wp[c]([e<n])
[/] = wp|while G do c|(f)

*f=>g = VseS. f(s) <gls) 27



App“CﬂtiOﬂ example [FGAIl=f (G A 1] = wp[c]([1])
AueZe GANI=1<e<u Jde € (0,1] « €[G AT N e=n] = wp[c]([e<n])

while (I mod N 7& 0) do [l] = wp|while G do c](f)

(i = i+1} [Y2] {i = i-1}

The loop (above) terminates almost surely from any initial state. To conclude this, we
apply the loop rule with instances

f=1 | = true e=1imodN (/,u)=(0,N—-1) e =1/2

and get the following proof obligations:
B [imod N=0]=1
m [imod N #0]= wp[{i =i+1} [V2] {i =i—1}|(1)
B 0<imodN<<N-1

m 1[imod N£0Aimod N=n] = wp[{i := i+1} [Y2] {i = i—1}]([i mod N<n])

28
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App“CﬂtiOﬂ example [FGAIl=f (G A 1] = wp[c]([1])
AueZe GANI=1<e<u Jde € (0,1] « €[G AT N e=n] = wp[c]([e<n])

while (I mod N 7& 0) do [l] = wp|while G do c](f)

(i = i+1} [Y2] {i = i-1}

The loop (above) terminates almost surely from any initial state. To conclude this, we
apply the loop rule with instances

f=1 | = true e=1imodN (/,u)=(0,N—-1) e =1/2

and get the following proof obligations:

B [imod N=0]=1 (trivial since 1 is the weakest expectation)
B [imod N #0]= wp|{i:=i+1} [2] {i = i—-1}](1) (loop body is AST)
B 0</mod NIN-1 (trivial)

m 1[imod N£0Aimod N=n] = wp[{i := i+1} [Y2] {i = i—1}]([i mod N<n])

28



Application example [FGAI=F  [GAI]= wpld([])
AueZe GANI=1<e<u Jde € (0,1] « €[G AT N e=n] = wp[c]([e<n])
[l] = wp|while G do c](f)

while (/i mod N # 0)do

(i = i+1} [Y2] {i = i-1}

The loop (above) terminates almost surely from any initial state. To conclude this, we
apply the loop rule with instances

f=1 | = true e=1imodN (/,u)=(0,N—-1) e =1/2

and get the following proof obligations:
B [imod N=0]=1 (trivial since 1 is the weakest expectation)
m [imod N #0]= wp[{i =i+1} [V2] {i =i—1}|(1) (loop body is AST)
B 0</mod N<N-1 (trivial)

£ %[I mod N#0A i mod N=n| = Wp[{i = i+1} [Y/2] {i = i—1}]([i mod N<n|) (case analysis
on i = N-1)

28



[-GAIll=f [G A 1] = wp[c]([/])

Rule is not Complete HueZe GANl=1<e<u de € (0,1] » €[G AT A e=n] = wp[c]([e<n])
[l] = wp|while G do c](f)

i == 100;
while (i>0)do Rule fails to prove AST of the LHS loop.
{i=i+1} [V2] {i =i-1}

Rule leads only {0,1}—valued pre-expectations.

29



Intuition
wp[c|([P]) == probability of terminating and establishing P.

W|P[ }([P]) # probability of diverging or establishing P.

Example
wplc|([x=0]) = pg

c: {{x =0} [p] {x =1}} [q] {abort}

wip[c|([x=0]) = pq+4

Formal Definition

Only the rules for abort and while—loops change

wlp[abort](f) =
wlp[while G do c|(f) = vhe ([G]- wlp[c](h) + [~G] - f)

|
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Proof rule for loops

No “variant” argument required (cf wp[])

-G A= |G AT = wlp[c]([/])

[/] = wlp[while G do c](f)

Relation between transformers
wp[c](f) < wlp[c](f) & wp[c](1)

where a& b = max{a+b—1,0}

For deterministic programs,

wp[c](Q) = wip[c](Q) A wp[c](true)
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Deterministic vs probabilistic world
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PROGRAM OUTCOME

DETERMINISTIC SETTING PROBABILISTIC SETTING
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Deterministic vs probabilistic world

PROGRAM OUTCOME

DETERMINISTIC SETTING PROBABILISTIC SETTING

Final state
sseS
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Deterministic vs probabilistic world

P Final state Distribution of final states
ROGRAM OUTCOME s ecS ,u’ c D(S)
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PROGRAM OUTCOME

POSTCONDITION

A

DETERMINISTIC SETTING PROBABILISTIC SETTING

Final state Distribution of final states
sseS u' € D(S)
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PROGRAM OUTCOME
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DETERMINISTIC SETTING PROBABILISTIC SETTING

Final state Distribution of final states
seS u' € D(S)
Predicate over program state [0,1]—valued expectation
Q: S — {01} f: S —[0,1]
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Final state Distribution of final states
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Membership (or satisfiability)
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PROGRAM OUTCOME

POSTCONDITION

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

WEAKEST PRE-CONDITION

DETERMINISTIC SETTING PROBABILISTIC SETTING

Final state Distribution of final states
seS u' € D(S)
Predicate over program state [0,1]—valued expectation
Q: S — {01} f: S —[0,1]
Membership (or satisfiability) Expected value
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PROGRAM OUTCOME

POSTCONDITION

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

WEAKEST PRE-CONDITION

DETERMINISTIC SETTING PROBABILISTIC SETTING

Final state Distribution of final states
seS u' € D(S)
Predicate over program state [0,1]—valued expectation
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Membership (or satisfiability) Expected value
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PROGRAM OUTCOME

POSTCONDITION

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

WEAKEST PRE-CONDITION

TERMINATION

DETERMINISTIC SETTING PROBABILISTIC SETTING

Final state Distribution of final states
seS u' € D(S)
Predicate over program state [0,1]—valued expectation
Q: S — {01} f: S —[0,1]
Membership (or satisfiability) Expected value
s €@ (ors' EQ) E,. ()
true 1
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® Summary




Postcondition Q: S — [0,1] The pGCL language

@ — Skap nop
abort abortion
e o assignment

Theorem (Mclver & Morgan ‘96)

1 if G then C else C conditional
Probabilistic | {c} o {c} probabilistic choice
Program c while Gdo C while loop
€ C sequence

For pGCL program c, expectation

transformer wp/[c/ can be defined by
iInduction on ¢ structure.

wp[c|([P]) wmmp

wip[c|([P])
-

wp|{c1} [p) {c2}](Q)

probability of terminating
and establishing P. p-wpla|(f) + (1—p) - wp[c](f)

probability of diverging or
establishing P.
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Proof rules for loops (deterministic case)

INGAe>k = wp|c|(] N e=k) IN-GC = Q I\ e<0 = -G
| — wp[while G do c|(Q)

I NG = wilp[c](] N e=k) IN-GC = Q
| = wlp[while G do ¢](Q)

Alternative characterisation of expectation transformer

Vs € S wplc](f)(s) = Eps(f) = VueD(S)- Eulwplc](f)) = Efqulf)
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