Seminar on "Verification of Probabilistic Programs"

LECTURE 2: PROBABILISITIC PREDICATE TRANSFORMERS I

Federico Olmedo

Software Modeling and Verification Group **RWTH** AACHEN UNIVERSITY

Agenda

Recap on previous lecture

Predicate transformers for deterministic programs

Predicate transformers for probabilistic programs

Summary

Agenda

Recap on previous lecture

Predicate transformers for deterministic programs

Predicate transformers for probabilistic programs

Summary

Recap on Previous Lecture

We can extend traditional program verification techniques to probabilistic programs.

Recap on Previous Lecture

We can extend traditional program verification techniques to probabilistic programs.

Applications in several domains

Relevance of Randomization

Agorithms speed-up

Solution of problem where leterministic techniques fail

Probabilistic Programs — Examples

return n

6

Recap on Previous Lecture

7

Randomization reduces Time Complexity

Quicksort:

Problem of Quicksort:

In the average case, it performs fairly well:

On a random input of size n, it requires on average $O(n \log(n))$ comparisons (which matches information theory lower bound).

But in the worst case, it does not:

There exist "ill-behaved" inputs of size n which require $O(n^2)$ comparisons.

How to narrow the gap between the worst and average case performance?

Randomization reduces Time Complexity

Quicksort:

Problem of Quicksort:

In the average case, it performs fairly well:

On a random input of size n, it requires on average $O(n \log(n))$ comparisons (which matches information theory lower bound).

But in the worst case, it does not:

There exist "ill-behaved" inputs of size n which require $O(n^2)$ comparisons.

How to narrow the gap between the worst and average case performance?

Choose the pivot at random!

For **any** input, the expected number of comparisons matches the average case.

No "ill-behaved" input.

Verifying Data Consistency

- Goal: R_I and R_{II} must communicate to verify whether x=y ($x, y \in \{0,1\}^n$).
- Requirement: minimize the # of bits exchanged.

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

```
Routine of R_{I} \triangleq

p := rand\{i \in [2, n^{2}] \mid prime(i)\};

s := x \mod p;

send(p, s) \text{ to } R_{II};

Routine of R_{II} \triangleq

receive(p, s) \text{ from } R_{I};

t := y \mod p;

if (s=t) \text{ then return } ("x=y")

else return ("x\neq y")
```

Verifying Data Consistency

- Goal: R_I and R_{II} must communicate to verify whether x=y ($x, y \in \{0,1\}^n$).
- Requirement: minimize the # of bits exchanged.

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

```
Routine of R_{I} \triangleq

p := rand\{i \in [2, n^{2}] \mid prime(i)\};

s := x \mod p;

send(p, s) \text{ to } R_{II};

Routine of R_{II} \triangleq

receive(p, s) \text{ from } R_{I};

t := y \mod p;

if (s=t) \text{ then return } ("x=y")

else return ("x\neq y")
```

	# bits exch.
n=10 ¹⁰	133
n=10 ²⁰	266
n=10 ³⁰	398
n=10 ⁴⁰	532
n=10 ⁵⁰	664

Verifying Data Consistency

- Goal: R_I and R_{II} must communicate to verify whether x=y ($x, y \in \{0,1\}^n$).
- Requirement: minimize the # of bits exchanged.

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

```
Routine of R_{I} \triangleq

p := rand\{i \in [2, n^{2}] \mid prime(i)\};

s := x \mod p;

send(p, s) \text{ to } R_{II};

Routine of R_{II} \triangleq

receive(p, s) \text{ from } R_{I};

t := y \mod p;

if (s=t) \text{ then return } ("x=y")

else return ("x\neq y")
```

Prot. outputs "
$$x \neq y$$
" $\implies x \neq y$
Pr $[x \neq y \mid \text{output } "x = y"] \leq \frac{\ln(n^2)}{n}$

	# bits exch.
n=10 ¹⁰	133
n=10 ²⁰	266
n=10 ³⁰	398
n=10 ⁴⁰	532
n=10 ⁵⁰	664

Verifying Data Consistency

- Goal: R_I and R_{II} must communicate to verify whether x=y ($x, y \in \{0,1\}^n$).
- Requirement: minimize the # of bits exchanged.

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

```
Routine of R_{I} \triangleq

p := rand\{i \in [2, n^{2}] \mid prime(i)\};

s := x \mod p;

send(p, s) \text{ to } R_{II};

Routine of R_{II} \triangleq

receive(p, s) \text{ from } R_{I};

t := y \mod p;

if (s=t) \text{ then return } ("x=y")

else return ("x\neq y")
```

Prot. outputs "
$$x \neq y$$
" $\longrightarrow x \neq y$
Pr $[x \neq y \mid \text{output } "x = y"] \leq \frac{\ln(n^2)}{n}$

	# bits exch.	prob. error
n=10 ¹⁰	133	4.60 x 10 ⁻⁰⁹
n=10 ²⁰	266	9.21 x 10 ⁻¹⁹
n=10 ³⁰	398	1.38 x 10 ⁻²⁸
n=10 ⁴⁰	532	1.84 x 10 ⁻³⁸
n=10 ⁵⁰	664	2.30 x 10 ⁻⁴⁸

Randomization circumvents the Limitations of Determinism

The Dinning Philosopher Problem

Theorem (Lehmann & Rabin '81) there exists no fully distributed and symmetric deterministic algorithm for the dining philosopher problem.

Randomized Algorithm

```
while (true) do
  (* Thinking Time *)
  trying := true
  while (trying) do
    s := rand{left, right}
    Wait until fork[s] is available and take it
    If fork[¬s] is available
        then take it and set trying to false
        else drop fork[s]
  (* Eating Time *)
    Drop both forks
```

Idea:

- Do not pick always the same fork first. Flip a coin to choose.
- If the second fork is not available, release the first and flip again the coin.

Algorithm is deadlock-free:

At any time, if there is a hungry philosopher, with probability one some philosopher will eventually eat. Algorithm can also be adapted to prevent starvation (ie the hungry philosopher will eventually eat).

Randomization has Countless Application Domains

Recap on Previous Lecture

We can extend traditional program verification techniques to probabilistic programs.

Weakest pre-condition calculus

Solution of problem where leterministic techniques fail.

Recap on Previous Lecture

We can extend traditional program verification techniques to probabilistic programs.

Today

Weakest pre-condition calculus

Solution of problem where leterministic techniques fail

Agenda

Recap on previous lecture

Predicate transformers for deterministic programs

Predicate transformers for probabilistic programs

Summary

What must be true at the beginning (ie in the initial state) so that a given assertion holds at the end (ie in the final state) of a program execution?

Examples

- For which initial states does program a := a+1; b := b-1 lead to a final state where $a \cdot b = 0$? For those initial states where $a = -1 \lor b = 1$.
- For which initial states does program while $(i \neq 0)$ do i := i 1 terminate? For those initial states where $i \geq 0$.

What must be true at the beginning (ie in the initial state) so that a given assertion holds at the end (ie in the final state) of a program execution?

Examples

- For which initial states does program a := a+1; b := b-1 lead to a final state where $a \cdot b = 0$? For those initial states where $a = -1 \lor b = 1$.
- For which initial states does program while $(i \neq 0)$ do i := i-1 terminate? For those initial states where $i \geq 0$.

Answer e.g. $i \ge 5$ is not right (it is sufficient, but **not necessary** for ensuring termination).

PRECONDTION

What must be true at the beginning (ie in the initial state) so that a given assertion holds at the end (ie in the final state) of a program execution?

POSTCONDTION

Examples

For which initial states does program a := a+1; b := b-1 lead to a final state where $a \cdot b = 0$? For those initial states where $a = -1 \lor b = 1$.

For which initial states does program while $(i \neq 0)$ do i := i-1 terminate? For those initial states where $i \geq 0$.

Answer e.g. $i \ge 5$ is not right (it is sufficient, but **not necessary** for ensuring termination).

PRECONDTION

What must be true at the beginning (ie in the initial state) so that a given assertion holds at the end (ie in the final state) of a program execution?

POSTCONDTION

Examples

For which initial states does program $a \coloneqq a+1$; $b \coloneqq b-1$ lead to a final state where $a \cdot b = 0$? For those initial states where $a = -1 \lor b = 1$.

For which initial states does program while (*i*≠0) do *i* := *i*−1 terminate? For those initial states where *i*≥0. Answer e.g. *i*>5 is not right (it is sufficient, but not necessary for ensuring termination).

Our verification tool

PRECONDTION

What must be true at the beginning (ie in the initial state) so that a given assertion holds at the end (ie in the final state) of a program execution?

POSTCONDTION

Examples

- For which initial states does program $a \coloneqq a+1$; $b \coloneqq b-1$ lead to a final state where $a \cdot b = 0$? For those initial states where $a = -1 \lor b = 1$.
- For which initial states does program while (*i*≠0) do *i* := *i*−1 terminate? For those initial states where *i*≥0. Answer e.g. *i*>5 is not right (it is sufficient, but not necessary for ensuring termination).

Our verification tool

Program states will be variable valuation, i.e. $S \triangleq Var \rightarrow Val$.

Pre and *postconditions* are predicates over program states, or equivalently, set of program states.

For each program *c*, *predicate transformer*

$$wp[c]: \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$$

transforms postconditions into preconditions.

Examples

$$\begin{split} & \text{wp}[a \coloneqq a+1; \ b \coloneqq b-1](a \cdot b=0) \ = \ a=-1 \lor b=1 \\ & \text{wp}[\text{while} \ (i \neq 0) \ \text{do} \ i \coloneqq i-1](\text{true}) \ = \ i \ge 0 \\ & \text{wp}[\text{if} \ (x \ge 0) \ \text{then} \ \{y \coloneqq z+1\} \ \text{else} \ \{y \coloneqq z+2\}](y \ge 0) \end{split}$$

PRECONDTIO

POSTCONDTION

Program states will be variable valuation, i.e. $S \triangleq Var \rightarrow Val$.

Pre and *postconditions* are predicates over program states, or equivalently, set of program states.

For each program *c*, *predicate transformer*

$$wp[c]: \mathcal{P}(\mathcal{S}) \to \mathcal{P}(\mathcal{S})$$

transforms postconditions into preconditions.

Examples

$$\begin{split} & \text{wp}[a \coloneqq a+1; \ b \coloneqq b-1](a \cdot b=0) \ = \ a=-1 \lor b=1 \\ & \text{wp}[\text{while} \ (i \neq 0) \ \text{do} \ i \coloneqq i-1](\text{true}) \ = \ i \ge 0 \\ & \text{wp}[\text{if} \ (x \ge 0) \ \text{then} \ \{y \coloneqq z+1\} \ \text{else} \ \{y \coloneqq z+2\}](y \ge 0) \\ & = \ (x \ge 0 \ \Longrightarrow \ z+1 \ge 0) \land (x < 0 \ \Longrightarrow \ z+2 \ge 0) \end{split}$$

PRECONDTIO

POSTCONDTION

Allowed Execution Forbidden Execution - - >

- (1) Every execution from terminates.
- (2)

(3) No execution from \neg lands on \bigcirc .

wp[c](Q) is the weakest precondition that guarantees Q: if initial state s leads to a final state in Q, then s must satisfy wp[c](Q).

Allowed Execution
Forbidden Execution

wp[c](Q) gives the **necessary** (3) and sufficient (1-2) condition for guaranteeing *Q*.

wp[c](Q) is the weakest precondition that guarantees Q: if initial state s leads to a final state in Q, then s must satisfy wp[c](Q).

Predicate Transformers — Formal Definition

The GCL language

С	:=	skip	nop
		abort	abor
		$x \coloneqq E$	assig
		if ${\mathcal G}$ then ${\mathcal C}$ else ${\mathcal C}$	cond
		while G do ${\mathcal C}$	while
		C; C	sequ

nop abortion assignment conditional while loop sequence

Theorem (Dijkstra '75)

For **GCL** program *c*, predicate transformer *wp[c]* can be defined by induction on *c* structure.

$$\begin{split} & \texttt{wp[skip]}(Q) &= Q \\ & \texttt{wp[abort]}(Q) &= \texttt{false} \\ & \texttt{wp[x \coloneqq E]}(Q) &= Q[E/x] \\ & \texttt{wp[if G then c_1 else $c_2]}(Q) &= (G \Rightarrow \texttt{wp}[c_1](Q)) \land (\neg G \Rightarrow \texttt{wp}[c_2](Q)) \\ & \texttt{wp[c_1; } c_2](Q) &= (\texttt{wp}[c_1] \circ \texttt{wp}[c_2])(Q) \\ & \texttt{wp[while G do $c]}(Q) &= \mu P \bullet ((G \Rightarrow \texttt{wp}[c](P)) \land (\neg G \Rightarrow Q)) \end{split}$$

Predicate Transformers — Application Example

$$\begin{split} & \operatorname{wp}[x\coloneqq E](Q) &= Q[E/x] \ & \operatorname{wp}[\operatorname{if} G \operatorname{then} c_1 \operatorname{else} c_2](Q) &= (G \Rightarrow \operatorname{wp}[c_1](Q)) \wedge (\neg G \Rightarrow \operatorname{wp}[c_2](Q)) \end{split}$$

$$\begin{split} & \text{wp}[\text{if } (x \ge 0) \text{ then } \{y \coloneqq z+1\} \text{ else } \{y \coloneqq z+2\}](y \ge 0) \\ &= & \langle \text{rule for conditionals} \rangle \\ & (x \ge 0 \implies \text{wp}[y \coloneqq z+1](y \ge 0)) \land (x < 0 \implies \text{wp}[y \coloneqq z+2](y \ge 0)) \\ &= & \langle \text{rule for assignments, twice} \rangle \\ & (x \ge 0 \implies z+1 \ge 0)) \land (x < 0 \implies z+2 \ge 0)) \end{split}$$

= (simplification)

 $(x \ge 0 \land z \ge -1)) \lor (x < 0 \land z \ge -2))$

PRECONDTIO

PRECONDTIO

Connection between predicate transformers

PRECONDTIO

Connection between predicate transformers

 $wp[c](Q) = wlp[c](Q) \land wp[c](true)$

Only the rules for abort and while—loops change

$$\begin{split} & \texttt{wlp[abort]}(Q) &= \underline{\texttt{true}} \\ & \texttt{wlp[while} \ G \ \texttt{do} \ c](Q) = \nu P \bullet \left((G \Rightarrow \texttt{wlp}[c](P)) \land (\neg G \Rightarrow Q) \right) \end{split}$$

Agenda

Recap on previous lecture

Predicate transformers for deterministic programs

Predicate transformers for probabilistic programs

Summary

The Program Verification Problem — Deterministic vs Probabilistic Setting

Deterministic Setting

Postcondition $Q: S \rightarrow \{0,1\}$ Probabilistic **Initial States** Program *c*

Probabilistic Setting
Deterministic Setting

Postcondition $Q: S \rightarrow \{0,1\}$ Probabilistic **Initial States** Program *c*

Probabilistic Setting

Deterministic Setting

Deterministic Setting

Probabilistic Program c \rightarrow {0,1} Initial States

Probabilistic Setting

Deterministic Setting

Postcondition $Q: S \rightarrow \{0,1\}$ Probabilistic **Initial States** Program *c* • 0.5 **0.3** _1 **0.1** •0 **Precondition** $P: S \rightarrow [0,1]$ $P(s) = \Pr[Q \in \llbracket c \rrbracket(s)]$

Probabilistic Setting

Deterministic Setting

Postcondition $Q: S \rightarrow \{0,1\}$ Probabilistic **Initial States** Program *c* • 0.5 0.3 **0.1** •0 **Precondition** $P: S \rightarrow [0,1]$ $P(s) = \Pr[Q \in \llbracket c \rrbracket(s)]$

Probabilistic Setting

$$P(s) = \sum_{s' \in \mathcal{S}} \Pr[\llbracket c \rrbracket(s) = s'] \cdot Q(s')$$

22

Deterministic Setting

Postcondition $Q: S \rightarrow [0,1]$ Probabilistic **Initial States** Program *c* • 0.5 0.3 **0.1** •0 **Precondition** $P: S \rightarrow [0,1]$

Probabilistic Setting

 $P(s) = \Pr[Q \in \llbracket c
rbracket(s)]$

$$P(s) = \sum_{s' \in S} \Pr[\llbracket c \rrbracket(s) = s'] \cdot Q(s')$$

Deterministic Setting

Probabilistic Setting

$$P(s) = \sum_{s' \in S} \Pr[\llbracket c \rrbracket(s) = s'] \cdot Q(s')$$

Expected value of *Q* wrt distribution of final states

 $\operatorname{wp}[c] \colon (\mathcal{S} \to [0,1]) \to (\mathcal{S} \to [0,1])$ $\operatorname{wp}[c](f) = \lambda s \cdot \operatorname{EV}_{\llbracket c \rrbracket(s)}(f)$ We let $\mathbb{E} \triangleq S \rightarrow [0,1]$ be the set of [0,1]-valued expectations (formally, random variables).

For each program c, expectation transformer

(post-)expectation

$$wp[c] \colon \mathbb{E} \to \mathbb{E}$$

$$wp[c](f) = \lambda s \cdot \mathbf{EV}_{[[c]](s)}(f)$$

transforms post-expectations into pre-expectations.

We let $\mathbb{E} \triangleq S \rightarrow [0,1]$ be the set of [0,1]-valued expectations (formally, random variables).

For each program c, expectation transformer

(post-)expectation

$$wp[c]: \mathbb{E} \to \mathbb{E}$$

$$wp[c](f) = \lambda s \cdot \mathbf{EV}_{[[c]](s)}(f)$$

transforms post-expectations into pre-expectations.

- In general, post-expectation f can be viewed as a reward function over the set of final states and wp[c](f) gives, for each initial state, the "avarage" reward of program c.
- If we instantiate f = [Q] with the characteristic function of predicate Q, we recover the probability of establishing Q at the end of the program execution.

Probabilistic Predicate Transformer

Examples

$$c_1: \{x \coloneqq 0\} [p] \{x \coloneqq 1\}; \ \{y \coloneqq 0\} [q] \{y \coloneqq 1\}$$

 $wp[c_1](f) = \lambda s \bullet pq \cdot f(s[x, y/0, 0]) + p\bar{q} \cdot f(s[x, y/0, 1])$ $+ \bar{p}q \cdot f(s[x, y/1, 0]) + \bar{p}\bar{q} \cdot f(s[x, y/1, 1])$ $Pr[x \le y] = pq + p\bar{q} + \bar{p}\bar{q} = p + \bar{p}\bar{q}$

$$c_2: n \coloneqq 0;$$

repeat
 $n \coloneqq n + 1;$
 $c \coloneqq \operatorname{coin_flip}(0.5)$
until ($c = heads$)

$$wp[c_2](f) = \lambda s \cdot \sum_{i \ge 1} \left(\frac{1}{2}\right)^i f(s[c, n/heads, i])$$
$$Pr[n \le 5] = \sum_{1 \le i \le 5} \left(\frac{1}{2}\right)^i = \frac{31}{32}$$

Probabilistic Predicate Transformers — Calculation

The pGCL language

C	:=	skip	noj
		abort	abo
		$x \coloneqq E$	ass
		if G then ${\mathcal C}$ else ${\mathcal C}$	cor
		$\{\mathcal{C}\}$ [p] $\{\mathcal{C}\}$	\mathbf{pr}
		while G do ${\mathcal C}$	wh
		C; C	sec

nop abortion assignment conditional **probabilistic choice** while loop sequence

Theorem (McIver & Morgan '96)

For **pGCL** program *c*, expectation transformer wp[c] can be defined by induction on *c* structure.

$$\begin{split} & \text{wp}[\text{skip}](f) &= f \\ & \text{wp}[\text{abort}](f) &= \underline{0} \\ & \text{wp}[x \coloneqq E](f) &= f[E/x] \\ & \text{wp}[\text{if } G \text{ then } c_1 \text{ else } c_2](f) &= [G] \cdot \text{wp}[c_1](f) + [\neg G] \cdot \text{wp}[c_2](f) \\ & \text{wp}[\{c_1\} \ [p] \ \{c_2\}](f) &= p \cdot \text{wp}[c_1](f) + (1-p) \cdot \text{wp}[c_2](f) \\ & \text{wp}[c_1; c_2](f) &= (\text{wp}[c_1] \circ \text{wp}[c_2])(f) \\ & \text{wp}[\text{while } G \text{ do } c](f) &= \mu h \cdot ([G] \cdot \text{wp}[c](h) + [\neg G] \cdot f) \end{split}$$

Probabilistic Predicate Transformers — Calculation

Example

$$c_1: \{x := 0\} [p] \{x := 1\};$$

 $\{y := 0\} [q] \{y := 1\}$

and the second

wp[x := E](f) = f[E/x] $wp[\{c_1\} [p] \{c_2\}](f) = p \cdot wp[c_1](f) + \bar{p} \cdot wp[c_2](f)$ $wp[c_1; c_2](f) = wp[c_1](wp[c_2](f))$

 $wp[c_1]([x \leq y])$

$$= \langle rule \text{ for sequential composition} \rangle$$

$$wp[\{x := 0\} [p] \{x := 1\}](wp[\{y := 0\} [q] \{y := 1\}]([x \le y]))$$

= (rule for probabilistic choice)

$$\mathsf{wp}\big[\{x \coloneqq 0\} \ [p] \ \{x \coloneqq 1\}\big]\big(q \cdot \mathsf{wp}\big[y \coloneqq 0\big]([x \le y]) + \bar{q} \cdot \mathsf{wp}\big[y \coloneqq 1\big]([x \le y])\big)$$

$$=$$
 (rule for assignment, twice)

$$\mathsf{wp}\big[\{x \coloneqq 0\} \ [p] \ \{x \coloneqq 1\}\big]\big(q \cdot [x \le 0] + \bar{q} \cdot [x \le 1]\big)$$

= \langle rule for probabilistic choice \rangle

$$p \cdot \mathsf{wp} \big[x \coloneqq 0 \big] \big(q \cdot [x \le 0] + \bar{q} \cdot [x \le 1] \big) + \bar{p} \cdot \mathsf{wp} \big[x \coloneqq 1 \big] \big(q \cdot [x \le 0] + \bar{q} \cdot [x \le 1] \big)$$

= (rule for assignment, twice)

$$p \cdot \left(q \cdot \left[0 \leq 0
ight] + ar{q} \cdot \left[0 \leq 1
ight]
ight) + ar{p} \cdot \left(q \cdot \left[1 \leq 0
ight] + ar{q} \cdot \left[1 \leq 1
ight]
ight)$$

= $\langle algebra \rangle$

$$p + \bar{p}\bar{q}$$

Will this man get his drink?

Will this man get his drink?

Does this program almost surely terminate?

while $(i \mod N \neq 0)$ do $\{i \coloneqq i+1\} \ [1/2] \ \{i \coloneqq i-1\}$

Will this man get his drink?

Does this program almost surely terminate?

while $(i \mod N \neq 0)$ do $\{i \coloneqq i+1\} \ [1/2] \ \{i \coloneqq i-1\}$

Loop Rule for Total Correctness

Consider loop while G do c and post-expectation f. Assume that

- there exists a standard (ie a predicate) loop invariant *I*, which restricted to $\neg G$ is stronger than the post-expectation *f*, and
- there exists a bounded variant e, which in each iteration decreases with at least a fixed probability $\epsilon > 0$.

Then, [I] is a valid pre-expectation of the loop w.r.t. post-expectation f (but not necessarily the weakest).

$$\begin{array}{l} [\neg G \land I] \Rrightarrow f \qquad [G \land I] \Rrightarrow \mathsf{wp}[c]([I]) \\ \hline \exists l, u \in \mathbb{Z} \bullet \ G \land I \Rightarrow l \leq e \leq u \qquad \exists \epsilon \in (0, 1] \bullet \ \epsilon \ [G \land I \land e=n] \Rrightarrow \mathsf{wp}[c]([e < n]) \\ \hline [I] \Rrightarrow \mathsf{wp}[\mathsf{while} \ G \ \mathsf{do} \ c](f) \end{array}$$

Application example

while $(i \mod N \neq 0)$ do $\{i \coloneqq i+1\} \ [1/2] \ \{i \coloneqq i-1\}$ $\begin{array}{l} [\neg G \land I] \Rrightarrow f \qquad [G \land I] \Rrightarrow \operatorname{wp}[c]([I]) \\ \\ \exists l, u \in \mathbb{Z} \bullet \ G \land I \Rightarrow l \leq e \leq u \qquad \exists \epsilon \in (0, 1] \bullet \ \epsilon \ [G \land I \land e=n] \Rrightarrow \operatorname{wp}[c]([e < n]) \\ \\ \hline [I] \Rrightarrow \operatorname{wp}[\operatorname{while} \ G \ \operatorname{do} \ c](f) \end{array}$

The loop (above) terminates almost surely from any initial state. To conclude this, we apply the loop rule with instances

$$f = \underline{1}$$
 $I = \underline{true}$ $e = i \mod N$ $(I, u) = (0, N - 1)$ $\epsilon = \frac{1}{2}$

- $\blacksquare \quad [i \mod N = 0] \Rightarrow \underline{1}$
- $[i \mod N \neq 0] \Rightarrow wp [\{i \coloneqq i+1\} [1/2] \{i \coloneqq i-1\}](\underline{1})$
- $0 \le i \mod N \le N-1$
- $\frac{1}{2} [i \mod N \neq 0 \land i \mod N = n] \Rightarrow wp [\{i \coloneqq i+1\} [1/2] \{i \coloneqq i-1\}] ([i \mod N < n])$

Application example

while $(i \mod N \neq 0)$ do $\{i \coloneqq i+1\} \ [1/2] \ \{i \coloneqq i-1\}$ $\begin{array}{l} [\neg G \land I] \Rrightarrow f \qquad [G \land I] \Rrightarrow \operatorname{wp}[c]([I]) \\ \\ \exists l, u \in \mathbb{Z} \bullet \ G \land I \Rightarrow l \leq e \leq u \qquad \exists \epsilon \in (0, 1] \bullet \ \epsilon \ [G \land I \land e=n] \Rrightarrow \operatorname{wp}[c]([e < n]) \\ \\ \hline [I] \Rrightarrow \operatorname{wp}[\operatorname{while} \ G \ \operatorname{do} \ c](f) \end{array}$

The loop (above) terminates almost surely from any initial state. To conclude this, we apply the loop rule with instances

$$f = \underline{1}$$
 $I = \underline{true}$ $e = i \mod N$ $(I, u) = (0, N - 1)$ $\epsilon = \frac{1}{2}$

- **i** $[i \mod N = 0] \Rightarrow \underline{1}$ **i** (trivial since $\underline{1}$ is the weakest expectation)
- $[i \mod N \neq 0] \Rightarrow wp [\{i \coloneqq i+1\} [1/2] \{i \coloneqq i-1\}](\underline{1})$
- $0 \le i \mod N \le N-1$
- $\frac{1}{2} [i \mod N \neq 0 \land i \mod N = n] \Rightarrow wp [\{i \coloneqq i+1\} [1/2] \{i \coloneqq i-1\}] ([i \mod N < n])$

Application example

while $(i \mod N \neq 0)$ do $\{i \coloneqq i+1\} \ [1/2] \ \{i \coloneqq i-1\}$ $\begin{array}{l} [\neg G \land I] \Rrightarrow f \qquad [G \land I] \Rrightarrow \operatorname{wp}[c]([I]) \\ \\ \exists l, u \in \mathbb{Z} \bullet \ G \land I \Rightarrow l \leq e \leq u \qquad \exists \epsilon \in (0, 1] \bullet \ \epsilon \ [G \land I \land e=n] \Rrightarrow \operatorname{wp}[c]([e < n]) \\ \\ \hline [I] \Rrightarrow \operatorname{wp}[\operatorname{while} \ G \ \operatorname{do} \ c](f) \end{array}$

The loop (above) terminates almost surely from any initial state. To conclude this, we apply the loop rule with instances

$$f = \underline{1}$$
 $I = \underline{true}$ $e = i \mod N$ $(I, u) = (0, N - 1)$ $\epsilon = \frac{1}{2}$

- $\blacksquare \quad [i \mod N = 0] \Rightarrow \underline{1} \quad \checkmark \text{ (trivial since } \underline{1} \text{ is the weakest expectation)}$
- $[i \mod N \neq 0] \Rightarrow wp [\{i \coloneqq i+1\} [1/2] \{i \coloneqq i-1\}](\underline{1}) \quad \checkmark \text{ (loop body is AST)}$
- $0 \le i \mod N \le N-1$
- $\frac{1}{2} [i \mod N \neq 0 \land i \mod N = n] \Rightarrow wp [\{i \coloneqq i+1\} [1/2] \{i \coloneqq i-1\}] ([i \mod N < n])$

Application example

while $(i \mod N \neq 0)$ do $\{i \coloneqq i+1\} \ [1/2] \ \{i \coloneqq i-1\}$ $\begin{array}{l} [\neg G \land I] \Rrightarrow f \qquad [G \land I] \Rrightarrow \operatorname{wp}[c]([I]) \\ \\ \exists l, u \in \mathbb{Z} \bullet \ G \land I \Rightarrow l \leq e \leq u \qquad \exists \epsilon \in (0, 1] \bullet \ \epsilon \ [G \land I \land e=n] \Rrightarrow \operatorname{wp}[c]([e < n]) \\ \\ \hline [I] \Rrightarrow \operatorname{wp}[\operatorname{while} \ G \ \operatorname{do} \ c](f) \end{array}$

The loop (above) terminates almost surely from any initial state. To conclude this, we apply the loop rule with instances

$$f = \underline{1}$$
 $I = \underline{true}$ $e = i \mod N$ $(I, u) = (0, N - 1)$ $\epsilon = \frac{1}{2}$

- $[i \mod N = 0] \Rightarrow \underline{1} \quad \checkmark \text{ (trivial since } \underline{1} \text{ is the weakest expectation)}$
- $[i \mod N \neq 0] \Rightarrow wp [\{i \coloneqq i+1\} [1/2] \{i \coloneqq i-1\}](\underline{1}) \quad \checkmark \text{ (loop body is AST)}$
- $0 \leq i \mod N \leq N-1$ 🖌 (trivial)
- $\frac{1}{2} [i \mod N \neq 0 \land i \mod N = n] \Rightarrow wp [\{i \coloneqq i+1\} [1/2] \{i \coloneqq i-1\}] ([i \mod N < n])$

Application example

while $(i \mod N \neq 0)$ do $\{i \coloneqq i+1\} \ [1/2] \ \{i \coloneqq i-1\}$ $\begin{array}{l} [\neg G \land I] \Rrightarrow f \qquad [G \land I] \Rrightarrow \operatorname{wp}[c]([I]) \\ \\ \exists l, u \in \mathbb{Z} \bullet \ G \land I \Rightarrow l \leq e \leq u \qquad \exists \epsilon \in (0, 1] \bullet \ \epsilon \ [G \land I \land e=n] \Rrightarrow \operatorname{wp}[c]([e < n]) \\ \\ \hline [I] \Rrightarrow \operatorname{wp}[\operatorname{while} \ G \ \operatorname{do} \ c](f) \end{array}$

The loop (above) terminates almost surely from any initial state. To conclude this, we apply the loop rule with instances

$$f = \underline{1}$$
 $I = \underline{true}$ $e = i \mod N$ $(I, u) = (0, N - 1)$ $\epsilon = \frac{1}{2}$

and get the following proof obligations:

- $[i \mod N = 0] \Rightarrow \underline{1} \quad \checkmark \text{ (trivial since } \underline{1} \text{ is the weakest expectation)}$
- $[i \mod N \neq 0] \Rightarrow wp [\{i \coloneqq i+1\} [1/2] \{i \coloneqq i-1\}](\underline{1}) \quad \checkmark \text{ (loop body is AST)}$
- $0 \leq i \mod N \leq N-1$ ✓ (trivial)
- $\frac{1}{2} [i \mod N \neq 0 \land i \mod N = n] \Rightarrow wp [\{i \coloneqq i+1\} [1/2] \{i \coloneqq i-1\}] ([i \mod N < n]) \checkmark$

(case analysis on i = N-1)

Rule is not complete

 $\begin{array}{l} [\neg G \land I] \Rrightarrow f \qquad [G \land I] \Rrightarrow \mathsf{wp}[c]([I]) \\ \\ \hline \exists l, u \in \mathbb{Z} \bullet \ G \land I \Rightarrow l \leq e \leq u \qquad \exists \epsilon \in (0, 1] \bullet \ \epsilon \ [G \land I \land e=n] \Rrightarrow \mathsf{wp}[c]([e < n]) \\ \hline [I] \Rrightarrow \mathsf{wp}[\mathsf{while} \ G \ \mathsf{do} \ c](f) \end{array}$

i := 100;while (i>0) do $\{i := i+1\} \ [1/2] \ \{i := i-1\}$

Rule fails to prove AST of the LHS loop.

Rule leads only {0,1} – valued pre-expectations.

Probabilistic Predicate Transformers — The Liberal Version

Intuition

wp[c]([P]) probability of terminating and establishing *P*.

wlp[c]([P]) probability of diverging or establishing *P*.

Example

$$c: \quad \{\{x \coloneqq 0\} \ [p] \ \{x \coloneqq 1\}\} \ [q] \ \{\texttt{abort}\}$$

$$wp[c]([x=0]) = \underline{pq}$$
$$wlp[c]([x=0]) = \underline{pq} + \overline{q}$$

Formal Definition

Only the rules for abort and while-loops change

 $wlp[abort](f) = \underline{1}$ wlp[while G do c](f) = $\nu h \cdot ([G] \cdot wlp[c](h) + [\neg G] \cdot f)$

Proof rule for loops

No "variant" argument required (cf $wp[\cdot]$)

 $\frac{[\neg G \land I] \Rrightarrow f \qquad [G \land I] \Rrightarrow wlp[c]([I])}{[I] \Rrightarrow wlp[while G do c](f)}$

Relation between transformers

 $wp[c](f) \iff wlp[c](f) \& wp[c](\underline{1})$

where $a \& b \triangleq \max\{a+b-1, 0\}$

A CONTRACTOR

For deterministic programs, $wp[c](Q) = wlp[c](Q) \land wp[c](true)$

DETERMINISTIC SETTING

PROBABILISTIC SETTING

PROGRAM OUTCOME

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in \mathcal{S}$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition		

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in \mathcal{S}$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q: S \rightarrow \{0,1\}$	

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q \colon \mathcal{S} \to \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q \colon \mathcal{S} \to \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME		

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q: S \rightarrow \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q: S \rightarrow \{0,1\}$	$[0,1] - valued expectation f: S \rightarrow [0,1]$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value $E_{\mu'}(f)$

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
POSTCONDITION	Predicate over program state $Q: S \rightarrow \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value ${\sf E}_{\mu'}(f)$
WEAKEST PRE-CONDITION		

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in \mathcal{S}$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q \colon \mathcal{S} o \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value $E_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	
	DETERMINISTIC SETTING	PROBABILISTIC SETTING
---	---	---
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q: S \rightarrow \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value ${\sf E}_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	<u>1</u>

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
POSTCONDITION	Predicate over program state $Q: S \rightarrow \{0,1\}$	$[0,1] - valued expectation f: S \rightarrow [0,1]$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value $E_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	<u>1</u>
TERMINATION		

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
POSTCONDITION	Predicate over program state $Q: S \rightarrow \{0,1\}$	$[0,1] - valued expectation f: S \rightarrow [0,1]$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value $E_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	<u>1</u>
TERMINATION	wp[·](<u>true</u>)	

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in \mathcal{S}$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q: S \rightarrow \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value ${\sf E}_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	<u>1</u>
TERMINATION	wp[·](<u>true</u>)	$wp[\cdot](\underline{1})$

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in \mathcal{S}$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q \colon \mathcal{S} \to \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value ${\sf E}_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	<u>1</u>
TERMINATION	wp[·](<u>true</u>)	$wp[\cdot](\underline{1})$
IMPLICATION		

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
POSTCONDITION	Predicate over program state $Q: S \rightarrow \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value ${\sf E}_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	<u>1</u>
TERMINATION	wp[·](<u>true</u>)	$wp[\cdot](\underline{1})$
IMPLICATION	$P \Rightarrow Q$	

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in \mathcal{S}$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
POSTCONDITION	Predicate over program state $Q \colon \mathcal{S} \to \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value ${\sf E}_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	<u>1</u>
TERMINATION	wp[·](<u>true</u>)	$wp[\cdot](\underline{1})$
IMPLICATION	$P \Rightarrow Q$	$f \Rrightarrow g$

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in S$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q: S \rightarrow \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value ${\sf E}_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	<u>1</u>
TERMINATION	wp[·](<u>true</u>)	$wp[\cdot](\underline{1})$
	$P \Rightarrow Q$	$f \Rrightarrow g$
CONJUNCTION		

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in \mathcal{S}$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
Postcondition	Predicate over program state $Q: S \rightarrow \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value ${\sf E}_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	<u>1</u>
TERMINATION	wp[·](<u>true</u>)	$wp[\cdot](\underline{1})$
	$P \Rightarrow Q$	$f \Rrightarrow g$
CONJUNCTION	$P \wedge Q$	

	DETERMINISTIC SETTING	PROBABILISTIC SETTING
PROGRAM OUTCOME	Final state $s' \in \mathcal{S}$	Distribution of final states $\mu' \in \mathcal{D}(\mathcal{S})$
POSTCONDITION	Predicate over program state $Q \colon \mathcal{S} \to \{0,1\}$	$\begin{matrix} [0,1]-\text{valued expectation} \\ f: \mathcal{S} \rightarrow [0,1] \end{matrix}$
EVALUATION OF POSTCONDITION ON PROGRAM OUTCOME	Membership (or satisfiability) $s' \in Q ext{ (or } s' \models Q)$	Expected value ${\sf E}_{\mu'}(f)$
WEAKEST PRE-CONDITION	true	<u>1</u>
TERMINATION	wp[·](<u>true</u>)	$wp[\cdot](\underline{1})$
	$P \Rightarrow Q$	$f \Rrightarrow g$
CONJUNCTION	$P \wedge Q$	f & g

Agenda

Recap on previous lecture

Predicate transformers for deterministic programs

Predicate transformers for probabilistic programs

Summary

The pGCL language

- C := skip | abort | x := E | if G then C else C $| \{C\} [p] \{C\}$ | while G do C | C; C
- nop abortion assignment conditional **probabilistic choice** while loop sequence

Theorem (McIver & Morgan '96)

For **pGCL** program *c*, expectation transformer *wp[c]* can be defined by induction on *c* structure.

probability of terminating and establishing *P*.

wlp[c]([P])

probability of diverging or establishing *P*.

 $wp[\{c_1\} [p] \{c_2\}](Q) = \\ p \cdot wp[c_1](f) + (1-p) \cdot wp[c_2](f)$

Backup Slide

Proof rules for loops (deterministic case)

$$\frac{I \wedge G \wedge e > k \Longrightarrow wp[c](I \wedge e = k) \qquad I \wedge \neg G \Longrightarrow Q \qquad I \wedge e \le 0 \Longrightarrow \neg G}{I \Longrightarrow wp[while G \text{ do } c](Q)}$$
$$\frac{I \wedge G \Longrightarrow wlp[c](I \wedge e = k) \qquad I \wedge \neg G \Longrightarrow Q}{I \Longrightarrow wlp[while G \text{ do } c](Q)}$$

Alternative characterisation of expectation transformer

$$\forall s \in \mathcal{S} \bullet \ \mathsf{wp}[c](f)(s) = \mathsf{E}_{\llbracket c \rrbracket s}(f) \quad \equiv \quad \forall \mu \in \mathcal{D}(\mathcal{S}) \bullet \ \mathsf{E}_{\mu}(\mathsf{wp}[c](f)) = \mathsf{E}_{\llbracket c \rrbracket \mu}(f)$$