
Seminar on

“Verification of
Probabilistic Programs”

n := 0;
repeat

n := n + 1;
c := coin flip(0.5)

until (c=heads);
return n

Pr[n = k] =
�
1
2

�k

LECTURE 2:
 PROBABILISITIC PREDICATE TRANSFORMERS I

Federico Olmedo
Software Modeling and Verification Group
RWTH AACHEN UNIVERSITY

Agenda

Predicate transformers for deterministic programs

Recap on previous lecture

Predicate transformers for probabilistic programs

2

Summary

Agenda

Predicate transformers for deterministic programs

Recap on previous lecture

Predicate transformers for probabilistic programs

3

Summary

Recap on Previous Lecture

4

We can extend traditional
program verification tech-
niques to probabilistic
programs.

Recap on Previous Lecture

5

Probabilistic Programs — Examples

c1 := coin flip(0.5);
c2 := coin flip(0.5);
return (c1, c2)

n := 0;
repeat

n := n + 1;
c := coin flip(0.5)

until (c=heads);
return n

c1

h t

c2
h 1/4 1/4

t 1/4 1/4

n

1 2 … k …

1/2 1/4 1/2k

Output
Distribution

Output
Distribution

6

Recap on Previous Lecture

7

Randomization reduces Time Complexity

QS(A) ,
if (|A|  1) then return (A);
i := b|A|/2c;
A< := {a0 2 A | a0 < A[i]};
A> := {a0 2 A | a0 > A[i]};
return

�
QS(A<) ++ A[i] ++ QS(A>)

�

Quicksort: Problem of Quicksort:

There exist “ill-behaved” inputs of size n
which require O(n2) comparisons.

In the average case, it performs fairly well:

But in the worst case, it does not:

On a random input of size n, it requires on
average O(n log(n)) comparisons (which
matches information theory lower bound).

How to narrow the gap between the worst and average case performance?

8

Randomization reduces Time Complexity

Quicksort: Problem of Quicksort:

There exist “ill-behaved” inputs of size n
which require O(n2) comparisons.

In the average case, it performs fairly well:

But in the worst case, it does not:

On a random input of size n, it requires on
average O(n log(n)) comparisons (which
matches information theory lower bound).

How to narrow the gap between the worst and average case performance?

Choose the pivot at random!

For any input, the expected number of
comparisons matches the average case.

No “ill-behaved” input.

rQS(A) ,
if (|A|  1) then return (A);
i := rand[1 . . . |A|];
A< := {a0 2 A | a0 < A[i]};
A> := {a0 2 A | a0 > A[i]};
return

�
QS(A<) ++ A[i] ++ QS(A>)

�

8

Randomization reduces Communication Complexity
Verifying Data Consistency

communication

RI RII

x=x1 . . . xn y=y1 . . . yn
Goal: RI and RII must communicate to verify
whether

Requirement: minimize the # of bits exchanged.

x=y (x , y 2 {0,1}n).

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

Idea: use random fingerprints of x and y.

Routine of RI ,
p

:

= rand{i 2 [2, n

2
] | prime(i)};

s

:

= x mod p;

send(p, s) to RII;

Routine of RII ,
receive(p, s) from RI;

t

:

= y mod p;

if (s=t) then return (“x=y”)

else return (“x 6=y”)

9

Randomization reduces Communication Complexity
Verifying Data Consistency

communication

RI RII

x=x1 . . . xn y=y1 . . . yn
Goal: RI and RII must communicate to verify
whether

Requirement: minimize the # of bits exchanged.

x=y (x , y 2 {0,1}n).

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

Idea: use random fingerprints of x and y.

Routine of RI ,
p

:

= rand{i 2 [2, n

2
] | prime(i)};

s

:

= x mod p;

send(p, s) to RII;

Routine of RII ,
receive(p, s) from RI;

t

:

= y mod p;

if (s=t) then return (“x=y”)

else return (“x 6=y”)

n=1010

n=1020

n=1030

n=1040

n=1050

bits exch.
133
266
398
532
664

9

Randomization reduces Communication Complexity
Verifying Data Consistency

communication

RI RII

x=x1 . . . xn y=y1 . . . yn
Goal: RI and RII must communicate to verify
whether

Requirement: minimize the # of bits exchanged.

x=y (x , y 2 {0,1}n).

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

Idea: use random fingerprints of x and y.

Routine of RI ,
p

:

= rand{i 2 [2, n

2
] | prime(i)};

s

:

= x mod p;

send(p, s) to RII;

Routine of RII ,
receive(p, s) from RI;

t

:

= y mod p;

if (s=t) then return (“x=y”)

else return (“x 6=y”)

Prot. outputs “x 6=y” x 6=y

Pr[x 6= y | output “x=y”]  ln(n2)

n

n=1010

n=1020

n=1030

n=1040

n=1050

bits exch.
133
266
398
532
664

9

Randomization reduces Communication Complexity
Verifying Data Consistency

communication

RI RII

x=x1 . . . xn y=y1 . . . yn
Goal: RI and RII must communicate to verify
whether

Requirement: minimize the # of bits exchanged.

x=y (x , y 2 {0,1}n).

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

Idea: use random fingerprints of x and y.

Routine of RI ,
p

:

= rand{i 2 [2, n

2
] | prime(i)};

s

:

= x mod p;

send(p, s) to RII;

Routine of RII ,
receive(p, s) from RI;

t

:

= y mod p;

if (s=t) then return (“x=y”)

else return (“x 6=y”)

Prot. outputs “x 6=y” x 6=y

Pr[x 6= y | output “x=y”]  ln(n2)

n

n=1010

n=1020

n=1030

n=1040

n=1050

bits exch.
133
266
398
532
664

prob. error
4.60 x 10-09

9.21 x 10-19

1.38 x 10-28

1.84 x 10-38

2.30 x 10-48

9

Randomization circumvents the Limitations of Determinism
The Dinning Philosopher Problem

Theorem (Lehmann & Rabin ’81) there exists no
fully distributed and symmetric deterministic
algorithm for the dining philosopher problem.

Randomized Algorithm

while (true) do
(* Thinking Time *)

trying := true
while (trying) do
s := rand{left , right}
Wait until fork[s] is available and take it

If fork[¬s] is available
then take it and set trying to false
else drop fork[s]

(* Eating Time *)

Drop both forks

Do not pick always the same fork first.
Flip a coin to choose.

If the second fork is not available,
release the first and flip again the coin.

Idea:

Algorithm is deadlock-free:
At any time, if there is a hungry philosopher,
with probability one some philosopher will
eventually eat. Algorithm can also be
adapted to prevent starvation (ie the hungry
philosopher will eventually eat).

10

Randomization has Countless Application Domains

Miller—Rabin
Primality TestDining Philosophers

Predator—Prey
Population Model Public-Key Encryption

Skill Ranking System
Graph Isomorphism

….

Probabilistic
Programs

11

Recap on Previous Lecture

12

Hoare logic

Weakest pre-condition calculus

Recap on Previous Lecture

12

Weakest pre-condition calculus

Today

Agenda

Predicate transformers for deterministic programs

Recap on previous lecture

Predicate transformers for probabilistic programs

13

Summary

Predicate Transformers — Intuition

14

What must be true at the beginning (ie in the initial state) so that a given
assertion holds at the end (ie in the final state) of a program execution?

Examples

For which initial states does program terminate? 
For those initial states where . i�0

while (i 6=0) do i := i�1

For which initial states does program lead to a final state where ? 
For those initial states where .

a · b = 0a := a+1; b := b�1
a=� 1 _ b=1

Predicate Transformers — Intuition

14

What must be true at the beginning (ie in the initial state) so that a given
assertion holds at the end (ie in the final state) of a program execution?

Examples

For which initial states does program terminate? 
For those initial states where . i�0

Answer e.g. is not right (it is sufficient, but not necessary for ensuring termination).i�5

while (i 6=0) do i := i�1

For which initial states does program lead to a final state where ? 
For those initial states where .

a · b = 0a := a+1; b := b�1
a=� 1 _ b=1

Predicate Transformers — Intuition

14

What must be true at the beginning (ie in the initial state) so that a given
assertion holds at the end (ie in the final state) of a program execution?

Examples

For which initial states does program terminate? 
For those initial states where . i�0

Answer e.g. is not right (it is sufficient, but not necessary for ensuring termination).i�5

PRECONDTION

POSTCONDTION

while (i 6=0) do i := i�1

For which initial states does program lead to a final state where ? 
For those initial states where .

a · b = 0a := a+1; b := b�1
a=� 1 _ b=1

Predicate Transformers — Intuition

14

What must be true at the beginning (ie in the initial state) so that a given
assertion holds at the end (ie in the final state) of a program execution?

Examples

For which initial states does program terminate? 
For those initial states where . i�0

Answer e.g. is not right (it is sufficient, but not necessary for ensuring termination).i�5

PRECONDTION

POSTCONDTION

Postcondtion

Program

Precondtion

Our verification tool

while (i 6=0) do i := i�1

For which initial states does program lead to a final state where ? 
For those initial states where .

a · b = 0a := a+1; b := b�1
a=� 1 _ b=1

Predicate Transformers — Intuition

14

What must be true at the beginning (ie in the initial state) so that a given
assertion holds at the end (ie in the final state) of a program execution?

Examples

For which initial states does program terminate? 
For those initial states where . i�0

Answer e.g. is not right (it is sufficient, but not necessary for ensuring termination).i�5

PRECONDTION

POSTCONDTION

Predicate
Transformer

wp[·]

Postcondtion

Program

Precondtion

Our verification tool

while (i 6=0) do i := i�1

For which initial states does program lead to a final state where ? 
For those initial states where .

a · b = 0a := a+1; b := b�1
a=� 1 _ b=1

Predicate Transformers — Intuition

15

Examples

Program states will be variable valuation, i.e. .

Pre and postconditions are predicates over program states, or equivalently, set of program states.

For each program c, predicate transformer  
 
 
 
transforms postconditions into preconditions.

S , Var ! Val

wp[c] : P(S) ! P(S)

PRECONDTION

POSTCONDTION

wp[if (x�0) then {y := z+1} else {y := z+2}](y�0)

wp[a := a+1; b := b�1](a·b=0) = a=� 1 _ b=1

wp[while (i 6=0) do i := i�1](true) = i�0

Predicate Transformers — Intuition

15

Examples

Program states will be variable valuation, i.e. .

Pre and postconditions are predicates over program states, or equivalently, set of program states.

For each program c, predicate transformer  
 
 
 
transforms postconditions into preconditions.

S , Var ! Val

wp[c] : P(S) ! P(S)

PRECONDTION

POSTCONDTION

wp[if (x�0) then {y := z+1} else {y := z+2}](y�0)

= (x�0 =) z+1�0) ^ (x<0 =) z+2�0)

wp[a := a+1; b := b�1](a·b=0) = a=� 1 _ b=1

wp[while (i 6=0) do i := i�1](true) = i�0

Predicate Transformers — Intuition

16

PRECONDTION

POSTCONDTION

wp[c](Q)

Initial States Final States

Q

wp[c](Q) is the weakest precondition that guarantees Q: if initial

state s leads to a final state in Q, then s must satisfy wp[c](Q).

Allowed Execution

Forbidden Execution

(1) Every execution from terminates.

(2) Every execution from lands on .

(3) No execution from lands on . ¬

Predicate Transformers — Intuition

16

PRECONDTION

POSTCONDTION

wp[c](Q)

Initial States Final States

Q

wp[c](Q) is the weakest precondition that guarantees Q: if initial

state s leads to a final state in Q, then s must satisfy wp[c](Q).

Allowed Execution

Forbidden Execution

(1) Every execution from terminates.

(2) Every execution from lands on .

(3) No execution from lands on . ¬
wp[c](Q) gives the necessary (3) and sufficient
(1-2) condition for guaranteeing Q.

Summary

The GCL language

Predicate Transformers — Formal Definition

17

C := skip nop

| abort abortion

| x

:= E assignment

| if G then C else C conditional

| while G do C while loop

| C; C sequence

Theorem (Dĳkstra ‘75)

For GCL program c, predicate
transformer wp[c] can be defined
by induction on c structure.

wp[skip](Q) = Q

wp[abort](Q) = false

wp[x := E](Q) = Q[E/x]

wp[if G then c1 else c2](Q) = (G) wp[c1](Q)) ^ (¬G) wp[c2](Q))

wp[c1; c2](Q) = (wp[c1] � wp[c2]) (Q)

wp[while G do c](Q) = µP • ((G) wp[c](P)) ^ (¬G) Q))

Predicate Transformers — Application Example

18

wp[if (x�0) then {y := z+1} else {y := z+2}](y�0)

= hrule for conditionalsi

(x�0 =) wp[y := z+1](y�0)) ^ (x<0 =) wp[y := z+2](y�0))

= hrule for assignments, twicei

(x�0 =) z+1�0)) ^ (x<0 =) z+2�0))

= hsimplificationi

(x�0 ^ z��1)) _ (x<0 ^ z��2))

wp[x := E](Q) = Q[E/x]

wp[if G then c1 else c2](Q) = (G) wp[c1](Q)) ^ (¬G) wp[c2](Q))

Predicate Transformers — The Liberal Version

19

PRECONDTION

POSTCONDTION

wp[c](Q)

Initial States Final States

Q
Allowed Execution

Forbidden Execution

wp[c](Q) gives the necessary (3) and sufficient
(1-2) condition for establishing Q.

Summary
(1) Every execution from terminates.

(2) Every execution from lands on .

(3) No execution from lands on .

(4) No execution from diverges.

¬

¬

Predicate Transformers — The Liberal Version

19

PRECONDTION

POSTCONDTION

Initial States Final States

Q
Allowed Execution

Forbidden Execution

Summary

wlp[c](Q)

wlp[c](Q) gives the necessary (3) and sufficient
(2) condition for establishing Q or c divergence.

WEAKEST LIBERAL
PRECONDITION

(1) Every execution from terminates.

(2) Every execution from lands on .

(3) No execution from lands on .

(4) No execution from diverges.

¬

¬

Predicate Transformers — The Liberal Version

19

PRECONDTION

POSTCONDTION

Initial States Final States

Q
Allowed Execution

Forbidden Execution

Summary

wlp[c](Q)

wlp[c](Q) gives the necessary (3) and sufficient
(2) condition for establishing Q or c divergence.

WEAKEST LIBERAL
PRECONDITION

Connection between predicate transformers

(1) Every execution from terminates.

(2) Every execution from lands on .

(3) No execution from lands on .

(4) No execution from diverges.

¬

¬

Predicate Transformers — The Liberal Version

19

PRECONDTION

POSTCONDTION

Initial States Final States

Q
Allowed Execution

Forbidden Execution

Summary

wlp[c](Q)

wlp[c](Q) gives the necessary (3) and sufficient
(2) condition for establishing Q or c divergence.

WEAKEST LIBERAL
PRECONDITION

wp[c](Q) = wlp[c](Q) ^ wp[c](true)

Connection between predicate transformers

(1) Every execution from terminates.

(2) Every execution from lands on .

(3) No execution from lands on .

(4) No execution from diverges.

¬

¬

Predicate Transformers — The Liberal Version

20

Only the rules for abort and while—loops change

wlp[abort](Q) = true

wlp[while G do c](Q) = ⌫P • ((G) wlp[c](P)) ^ (¬G) Q))

Agenda

Predicate transformers for deterministic programs

Recap on previous lecture

Predicate transformers for probabilistic programs

21

Summary

The Program Verification Problem — Deterministic vs Probabilistic Setting

22

Initial States Initial States
Deterministic

Program c

Postcondition Q : S ! {0,1}

Probabilistic
Program c

Postcondition Q : S ! {0,1}

Deterministic Setting Probabilistic Setting

The Program Verification Problem — Deterministic vs Probabilistic Setting

22

✔

✘

✔

✘
✘

Initial States Initial States
Deterministic

Program c

Postcondition Q : S ! {0,1}

Probabilistic
Program c

Postcondition Q : S ! {0,1}

Deterministic Setting Probabilistic Setting

The Program Verification Problem — Deterministic vs Probabilistic Setting

22

✔

✘

✔

✘
✘

Initial States Initial States
Deterministic

Program c

Precondition P : S ! {0,1}

P(s) = Q(JcK(s))

Postcondition Q : S ! {0,1}

Probabilistic
Program c

Postcondition Q : S ! {0,1}

Deterministic Setting Probabilistic Setting

The Program Verification Problem — Deterministic vs Probabilistic Setting

22

✔

✘

✔

✘
✘

Initial States

0.3
0.5

0.1
0

1

Initial States
Deterministic

Program c

Precondition P : S ! {0,1}

P(s) = Q(JcK(s))

Postcondition Q : S ! {0,1}

Probabilistic
Program c

Postcondition Q : S ! {0,1}

Deterministic Setting Probabilistic Setting

The Program Verification Problem — Deterministic vs Probabilistic Setting

22

✔

✘

✔

✘
✘

Initial States

0.3
0.5

0.1
0

1

Initial States
Deterministic

Program c

Precondition P : S ! {0,1}

P(s) = Q(JcK(s))

Postcondition Q : S ! {0,1}

Probabilistic
Program c

Postcondition Q : S ! {0,1}

Precondition P : S ! [0,1]

P(s) = Pr[Q 2 JcK(s)]

Deterministic Setting Probabilistic Setting

The Program Verification Problem — Deterministic vs Probabilistic Setting

22

✔

✘

✔

✘
✘

Initial States

0.3
0.5

0.1
0

1

Initial States
Deterministic

Program c

Precondition P : S ! {0,1}

P(s) = Q(JcK(s))

Postcondition Q : S ! {0,1}

Probabilistic
Program c

Postcondition Q : S ! {0,1}

Precondition P : S ! [0,1]

P(s) = Pr[Q 2 JcK(s)]

Deterministic Setting Probabilistic Setting

P(s) =
X

s02S
Pr[JcK(s) = s 0] · Q(s 0)

The Program Verification Problem — Deterministic vs Probabilistic Setting

22

✔

✘

✔

✘
✘

Initial States

0.3
0.5

0.1
0

1

Initial States
Deterministic

Program c

Precondition P : S ! {0,1}

P(s) = Q(JcK(s))

Postcondition Q : S ! {0,1}

Probabilistic
Program c

Postcondition Q : S ! [0,1]

Precondition P : S ! [0,1]

P(s) = Pr[Q 2 JcK(s)]

Deterministic Setting Probabilistic Setting

P(s) =
X

s02S
Pr[JcK(s) = s 0] · Q(s 0)

The Program Verification Problem — Deterministic vs Probabilistic Setting

22

✔

✘

✔

✘
✘

Initial States

0.3
0.5

0.1
0

1

Initial States
Deterministic

Program c

Precondition P : S ! {0,1}

P(s) = Q(JcK(s))

Postcondition Q : S ! {0,1}

Probabilistic
Program c

Postcondition Q : S ! [0,1]

Precondition P : S ! [0,1]

Expected value of Q wrt distribution of final states

P(s) = EVJcK(s)(Q)

Deterministic Setting Probabilistic Setting

P(s) =
X

s02S
Pr[JcK(s) = s 0] · Q(s 0)

Probabilistic Predicate Transformer

23

wp[c] : (S ! [0,1]) ! (S ! [0,1])

wp[c](f) = �s • EVJcK(s)(f)

Probabilistic Predicate Transformer

23

For each program c, expectation transformer  
 
 
 
 
 
transforms post-expectations into pre-expectations.

We let be the set of -valued expectations (formally, random variables). E , S ! [0,1] [0,1]

wp[c] : E ! E
(post-)expectation (pre-)expectation

wp[c](f) = �s • EVJcK(s)(f)

Probabilistic Predicate Transformer

23

In general, post-expectation f can be viewed as a reward function over the set of final states and
wp[c](f) gives, for each initial state, the “avarage” reward of program c.

For each program c, expectation transformer  
 
 
 
 
 
transforms post-expectations into pre-expectations.

We let be the set of -valued expectations (formally, random variables). E , S ! [0,1] [0,1]

wp[c] : E ! E
(post-)expectation (pre-)expectation

If we instantiate f = [Q] with the characteristic function of predicate Q, we recover the probability of
establishing Q at the end of the program execution.

wp[c](f) = �s • EVJcK(s)(f)

Probabilistic Predicate Transformer

24

c2 : n := 0;
repeat

n := n + 1;
c := coin flip(0.5)

until (c=heads)

Examples

c1 : {x := 0} [p] {x := 1};
{y := 0} [q] {y := 1}

wp[c1](f) = �s •
pq · f (s[x , y/0, 0]) + pq̄ · f (s[x , y/0, 1])

+ p̄q · f (s[x , y/1, 0]) + p̄q̄ · f (s[x , y/1, 1])

Pr[n  5] =
X

1i5

�
1
2

�i
= 31

32

wp[c2](f) = �s •
X

i�1

�
1
2

�i
f (s[c , n/heads, i])

Pr[x  y] = pq + pq̄ + p̄q̄ = p + p̄q̄

The pGCL language

Probabilistic Predicate Transformers — Calculation

25

Theorem (McIver & Morgan ‘96)

For pGCL program c, expectation
transformer wp[c] can be defined
by induction on c structure.

C := skip nop

| abort abortion

| x

:= E assignment

| if G then C else C conditional

| {C} [p] {C} probabilistic choice

| while G do C while loop

| C; C sequence

wp[skip](f) = f

wp[abort](f) = 0

wp[x := E](f) = f [E/x]

wp[if G then c1 else c2](f) = [G] · wp[c1](f) + [¬G] · wp[c2](f)
wp[{c1} [p] {c2}](f) = p · wp[c1](f) + (1�p) · wp[c2](f)
wp[c1; c2](f) = (wp[c1] � wp[c2])(f)
wp[while G do c](f) = µh • ([G] · wp[c](h) + [¬G] · f)

Probabilistic Predicate Transformers — Calculation

26

Example

c1 : {x := 0} [p] {x := 1};
{y := 0} [q] {y := 1}

wp[c1]([xy])

= hrule for sequential compositioni
wp

⇥
{x := 0} [p] {x := 1}

⇤�
wp

⇥
{y := 0} [q] {y := 1}

⇤
([xy])

�

= hrule for probabilistic choicei
wp

⇥
{x := 0} [p] {x := 1}

⇤�
q · wp

⇥
y

:= 0
⇤
([xy]) + q̄ · wp

⇥
y

:= 1
⇤
([xy])

�

= hrule for assignment, twicei
wp

⇥
{x := 0} [p] {x := 1}

⇤�
q · [x0] + q̄ · [x1]

�

= hrule for probabilistic choicei
p · wp

⇥
x

:= 0
⇤�
q · [x0] + q̄ · [x1]

�
+ p̄ · wp

⇥
x

:= 1
⇤�
q · [x0] + q̄ · [x1]

�

= hrule for assignment, twicei
p · (q · [00] + q̄ · [01]

�
+ p̄ ·

�
q · [10] + q̄ · [11]

�

= halgebrai
p + p̄q̄

wp[x := E](f) = f [E/x]

wp[{c1} [p] {c2}](f) = p · wp[c1](f) + p̄ · wp[c2](f)
wp[c1; c2](f) = wp[c1](wp[c2](f))

Probabilistic Predicate Transformers — Loop Rule

27

Will this man get his drink?

0 NN-11

1/2 1/2

i

Probabilistic Predicate Transformers — Loop Rule

27

Will this man get his drink?

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}
0 NN-11

1/2 1/2

i

Does this program almost
surely terminate?

Probabilistic Predicate Transformers — Loop Rule

27

Will this man get his drink?

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}
0 NN-11

1/2 1/2

i

Does this program almost
surely terminate?

there exists a standard (ie a predicate) loop invariant I, which restricted to ¬G is stronger than the post-
expectation f, and

there exists a bounded variant e, which in each iteration decreases with at least a fixed probability ϵ>0.

Loop Rule for Total Correctness

Then, [I] is a valid pre-expectation of the loop w.r.t. post-expectation f (but not necessarily the weakest).

Consider loop while G do c and post-expectation f. Assume that

[¬G ^ I] V f [G ^ I] V wp[c]([I])

9l ,u 2 Z • G ^ I) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I] V wp[while G do c](f)

? f V g , 8s 2 S • f (s)  g(s)

Probabilistic Predicate Transformers — Loop Rule

28

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}

The loop (above) terminates almost surely from any initial state. To conclude this, we
apply the loop rule with instances

and get the following proof obligations:

[¬G ^ I] V f [G ^ I] V wp[c]([I])

9l ,u 2 Z • G ^ I) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I] V wp[while G do c](f)

Application example

[i mod N = 0] V 1

[i mod N 6= 0] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
(1)

1
2 [i mod N 6=0^ i mod N=n] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
([i mod N<n])

f = 1 I = true e = i mod N (l , u) = (0,N � 1) ✏ = 1/2

0  i mod N  N�1

Probabilistic Predicate Transformers — Loop Rule

28

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}

The loop (above) terminates almost surely from any initial state. To conclude this, we
apply the loop rule with instances

and get the following proof obligations:

[¬G ^ I] V f [G ^ I] V wp[c]([I])

9l ,u 2 Z • G ^ I) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I] V wp[while G do c](f)

Application example

[i mod N = 0] V 1

[i mod N 6= 0] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
(1)

1
2 [i mod N 6=0^ i mod N=n] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
([i mod N<n])

1 ✔ (trivial since is the weakest expectation)

f = 1 I = true e = i mod N (l , u) = (0,N � 1) ✏ = 1/2

0  i mod N  N�1

Probabilistic Predicate Transformers — Loop Rule

28

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}

The loop (above) terminates almost surely from any initial state. To conclude this, we
apply the loop rule with instances

and get the following proof obligations:

[¬G ^ I] V f [G ^ I] V wp[c]([I])

9l ,u 2 Z • G ^ I) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I] V wp[while G do c](f)

Application example

[i mod N = 0] V 1

[i mod N 6= 0] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
(1)

1
2 [i mod N 6=0^ i mod N=n] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
([i mod N<n])

1 ✔ (trivial since is the weakest expectation)

 ✔ (loop body is AST)

f = 1 I = true e = i mod N (l , u) = (0,N � 1) ✏ = 1/2

0  i mod N  N�1

Probabilistic Predicate Transformers — Loop Rule

28

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}

The loop (above) terminates almost surely from any initial state. To conclude this, we
apply the loop rule with instances

and get the following proof obligations:

[¬G ^ I] V f [G ^ I] V wp[c]([I])

9l ,u 2 Z • G ^ I) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I] V wp[while G do c](f)

Application example

[i mod N = 0] V 1

[i mod N 6= 0] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
(1)

1
2 [i mod N 6=0^ i mod N=n] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
([i mod N<n])

1 ✔ (trivial since is the weakest expectation)

 ✔ (loop body is AST)

 ✔ (trivial)

f = 1 I = true e = i mod N (l , u) = (0,N � 1) ✏ = 1/2

0  i mod N  N�1

Probabilistic Predicate Transformers — Loop Rule

28

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}

The loop (above) terminates almost surely from any initial state. To conclude this, we
apply the loop rule with instances

and get the following proof obligations:

[¬G ^ I] V f [G ^ I] V wp[c]([I])

9l ,u 2 Z • G ^ I) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I] V wp[while G do c](f)

Application example

[i mod N = 0] V 1

[i mod N 6= 0] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
(1)

1
2 [i mod N 6=0^ i mod N=n] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
([i mod N<n])

1 ✔ (trivial since is the weakest expectation)

 ✔ (loop body is AST)

 ✔ (trivial)

f = 1 I = true e = i mod N (l , u) = (0,N � 1) ✏ = 1/2

 ✔ (case analysis
on)i = N�1

0  i mod N  N�1

Probabilistic Predicate Transformers — Loop Rule

29

[¬G ^ I] V f [G ^ I] V wp[c]([I])

9l ,u 2 Z • G ^ I) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I] V wp[while G do c](f)

i := 100;

while (i>0) do

{i := i+1} [1/2] {i := i�1}
Rule fails to prove AST of the LHS loop.

Rule is not complete

Rule leads only {0,1}—valued pre-expectations.

Probabilistic Predicate Transformers — The Liberal Version

30

probability of terminating and establishing P.

probability of diverging or establishing P.

c : {{x := 0} [p] {x := 1}} [q] {abort}

Intuition

Example
wp[c]([x=0]) = pq

wlp[c]([x=0]) = pq + q̄

wp
⇥
c
⇤
([P])

wlp
⇥
c
⇤
([P])

Formal Definition

Only the rules for abort and while—loops change

wlp[abort](f) = 1

wlp[while G do c](f) = ⌫h • ([G] · wlp[c](h) + [¬G] · f)

Probabilistic Predicate Transformers — The Liberal Version

31

[¬G ^ I] V f [G ^ I] V wlp[c]([I])

[I] V wlp[while G do c](f)

Proof rule for loops

Relation between transformers

wp[c](Q) = wlp[c](Q) ^ wp[c](true)

For deterministic programs,

where a & b , max{a+b�1, 0}

wp[c](f) W wlp[c](f) & wp[c](1)

No “variant” argument required (cf)wp[·]

Deterministic vs probabilistic world

32

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state

s 0 2 S

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

s 0 2 S µ0 2 D(S)

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION

s 0 2 S µ0 2 D(S)

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state

s 0 2 S µ0 2 D(S)

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

s 0 2 S µ0 2 D(S)

f : S ! [0,1]Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

s 0 2 S µ0 2 D(S)

f : S ! [0,1]Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability)

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q)

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true 1

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

TERMINATION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true 1

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

TERMINATION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true 1

wp[·](true)

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

TERMINATION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true 1

wp[·](1)wp[·](true)

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

TERMINATION

IMPLICATION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true 1

wp[·](1)wp[·](true)

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

TERMINATION

IMPLICATION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true 1

wp[·](1)wp[·](true)

P) Q

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

TERMINATION

IMPLICATION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true 1

wp[·](1)wp[·](true)

P) Q f V g

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

TERMINATION

IMPLICATION

CONJUNCTION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true 1

wp[·](1)wp[·](true)

P) Q f V g

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

TERMINATION

IMPLICATION

CONJUNCTION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true 1

wp[·](1)wp[·](true)

P) Q f V g

P ^ Q

Q : S ! {0,1}

Deterministic vs probabilistic world

32

DETERMINISTIC SETTING PROBABILISTIC SETTING

PROGRAM OUTCOME
Final state Distribution of final states

POSTCONDITION
Predicate over program state [0,1]—valued expectation

EVALUATION OF POSTCONDITION
ON PROGRAM OUTCOME

Membership (or satisfiability) Expected value

WEAKEST PRE-CONDITION

TERMINATION

IMPLICATION

CONJUNCTION

s 0 2 S µ0 2 D(S)

f : S ! [0,1]

s 0 2 Q (or s 0 |= Q) Eµ0(f)

true 1

wp[·](1)wp[·](true)

P) Q f V g

f & gP ^ Q

Q : S ! {0,1}

Agenda

Predicate transformers for deterministic programs

Recap on previous lecture

Predicate transformers for probabilistic programs

33

Summary

Summary

34

Probabilistic
Program c

Postcondition Q : S ! [0,1]

Precondition P : S ! [0,1]

P(s) = EVJcK(s)(Q)

Theorem (McIver & Morgan ‘96)
For pGCL program c, expectation
transformer wp[c] can be defined by
induction on c structure.

The pGCL language
C := skip nop

| abort abortion

| x

:= E assignment

| if G then C else C conditional

| {C} [p] {C} probabilistic choice

| while G do C while loop

| C; C sequence

wp
⇥
{c1} [p] {c2}

⇤
(Q)

=
p · wp[c1](f) + (1�p) · wp[c2](f)

probability of terminating
and establishing P.

probability of diverging or
establishing P.

wp
⇥
c
⇤
([P])

wlp
⇥
c
⇤
([P])

Backup Slide

35

I ^ G ^ e>k =) wp[c](I ^ e=k) I ^ ¬G =) Q I ^ e0 =) ¬G
I =) wp[while G do c](Q)

I ^ G =) wlp[c](I ^ e=k) I ^ ¬G =) Q

I =) wlp[while G do c](Q)

 Proof rules for loops (deterministic case)

 Alternative characterisation of expectation transformer

8s 2 S • wp[c](f)(s) = EJcKs(f) ⌘ 8µ 2 D(S) • Eµ(wp[c](f)) = EJcKµ(f)

