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We can extend traditional 
program verification tech-
niques to probabilistic 
programs.
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Probabilistic Programs — Examples

c1 := coin flip(0.5);
c2 := coin flip(0.5);
return (c1, c2)

n := 0;
repeat

n := n + 1;
c := coin flip(0.5)

until (c=heads);
return n

c1

h t

c2
h 1/4 1/4

t 1/4 1/4

n

1 2 … k …

1/2 1/4 1/2k

Output 
Distribution

Output 
Distribution
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Randomization reduces Time Complexity

QS(A) ,
if (|A|  1) then return (A);
i := b|A|/2c;
A< := {a0 2 A | a0 < A[i ]};
A> := {a0 2 A | a0 > A[i ]};
return

�
QS(A<) ++ A[i ] ++ QS(A>)

�

Quicksort: Problem of Quicksort:

There exist “ill-behaved” inputs of size n 
which require O(n2) comparisons.

In the average case, it performs fairly well:

But in the worst case, it does not:

On a random input of size n, it requires on 
average O(n log(n)) comparisons (which 
matches information theory lower bound).

How to narrow the gap between the worst and average case performance?

8
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There exist “ill-behaved” inputs of size n 
which require O(n2) comparisons.

In the average case, it performs fairly well:

But in the worst case, it does not:

On a random input of size n, it requires on 
average O(n log(n)) comparisons (which 
matches information theory lower bound).

How to narrow the gap between the worst and average case performance?

Choose the pivot at random!

For any input, the expected number of 
comparisons matches the average case.

No “ill-behaved” input.

rQS(A) ,
if (|A|  1) then return (A);
i := rand[1 . . . |A|];
A< := {a0 2 A | a0 < A[i ]};
A> := {a0 2 A | a0 > A[i ]};
return

�
QS(A<) ++ A[i ] ++ QS(A>)

�
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Randomization reduces Communication Complexity 
Verifying Data Consistency

communication

RI RII

x=x1 . . . xn y=y1 . . . yn
Goal: RI and RII must communicate to verify 
whether 

Requirement: minimize the # of bits exchanged.

x=y (x , y 2 {0,1}n).

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm 

Idea: use random fingerprints of x and y. 

Routine of RI ,
p

:

= rand{i 2 [2, n

2
] | prime(i)};

s

:

= x mod p;

send(p, s) to RII;

Routine of RII ,
receive(p, s) from RI;

t

:

= y mod p;

if (s=t) then return (“x=y”)

else return (“x 6=y”)
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n=1050

# bits exch.
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266
398
532
664
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Randomization reduces Communication Complexity 
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communication

RI RII

x=x1 . . . xn y=y1 . . . yn
Goal: RI and RII must communicate to verify 
whether 

Requirement: minimize the # of bits exchanged.

x=y (x , y 2 {0,1}n).

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm 

Idea: use random fingerprints of x and y. 

Routine of RI ,
p

:

= rand{i 2 [2, n

2
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s

:

= x mod p;

send(p, s) to RII;

Routine of RII ,
receive(p, s) from RI;

t

:

= y mod p;

if (s=t) then return (“x=y”)

else return (“x 6=y”)

Prot. outputs “x 6=y” x 6=y

Pr[x 6= y | output “x=y”]  ln(n2)

n

n=1010

n=1020

n=1030

n=1040

n=1050

# bits exch.
133
266
398
532
664

prob. error
4.60 x 10-09

9.21 x 10-19

1.38 x 10-28

1.84 x 10-38

2.30 x 10-48
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Randomization circumvents the Limitations of Determinism
The Dinning Philosopher Problem

Theorem (Lehmann & Rabin ’81)  there exists no 
fully distributed and symmetric deterministic 
algorithm for the dining philosopher problem.

Randomized Algorithm 

while (true) do
(* Thinking Time *)

trying := true
while (trying) do
s := rand{left , right}
Wait until fork[s] is available and take it

If fork[¬s] is available
then take it and set trying to false
else drop fork[s]

(* Eating Time *)

Drop both forks

Do not pick always the same fork first. 
Flip a coin to choose. 

If the second fork is not available, 
release the first and flip again the coin.

Idea:

Algorithm is deadlock-free:
At any time, if there is a hungry philosopher, 
with probability one some philosopher will 
eventually eat. Algorithm can also be 
adapted to prevent starvation (ie the hungry 
philosopher will eventually eat).
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Randomization has Countless Application Domains

Miller—Rabin
Primality TestDining Philosophers

Predator—Prey
Population Model Public-Key Encryption

Skill Ranking System
Graph Isomorphism

….

Probabilistic
Programs

11
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Hoare logic

Weakest pre-condition calculus
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Weakest pre-condition calculus

Today
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Predicate Transformers — Intuition

14

What must be true at the beginning (ie in the initial state) so that a given 
assertion holds at the end (ie in the final state) of a program execution?

Examples

For which initial states does program                                           terminate? 
For those initial states where        . i�0

while (i 6=0) do i := i�1

For which initial states does program                                     lead to a final state where                ? 
For those initial states where                         .

a · b = 0a := a+1; b := b�1
a=� 1 _ b=1



Predicate Transformers — Intuition

14

What must be true at the beginning (ie in the initial state) so that a given 
assertion holds at the end (ie in the final state) of a program execution?

Examples

For which initial states does program                                           terminate? 
For those initial states where        . i�0

Answer e.g.         is not right (it is sufficient, but not necessary for ensuring termination).i�5

while (i 6=0) do i := i�1

For which initial states does program                                     lead to a final state where                ? 
For those initial states where                         .

a · b = 0a := a+1; b := b�1
a=� 1 _ b=1



Predicate Transformers — Intuition

14

What must be true at the beginning (ie in the initial state) so that a given 
assertion holds at the end (ie in the final state) of a program execution?

Examples

For which initial states does program                                           terminate? 
For those initial states where        . i�0

Answer e.g.         is not right (it is sufficient, but not necessary for ensuring termination).i�5

PRECONDTION

POSTCONDTION

while (i 6=0) do i := i�1

For which initial states does program                                     lead to a final state where                ? 
For those initial states where                         .

a · b = 0a := a+1; b := b�1
a=� 1 _ b=1



Predicate Transformers — Intuition

14

What must be true at the beginning (ie in the initial state) so that a given 
assertion holds at the end (ie in the final state) of a program execution?

Examples

For which initial states does program                                           terminate? 
For those initial states where        . i�0

Answer e.g.         is not right (it is sufficient, but not necessary for ensuring termination).i�5

PRECONDTION

POSTCONDTION

Postcondtion

Program

Precondtion

Our verification tool

while (i 6=0) do i := i�1

For which initial states does program                                     lead to a final state where                ? 
For those initial states where                         .

a · b = 0a := a+1; b := b�1
a=� 1 _ b=1



Predicate Transformers — Intuition

14

What must be true at the beginning (ie in the initial state) so that a given 
assertion holds at the end (ie in the final state) of a program execution?

Examples

For which initial states does program                                           terminate? 
For those initial states where        . i�0

Answer e.g.         is not right (it is sufficient, but not necessary for ensuring termination).i�5

PRECONDTION

POSTCONDTION

Predicate 
Transformer

wp[·]

Postcondtion

Program

Precondtion

Our verification tool

while (i 6=0) do i := i�1

For which initial states does program                                     lead to a final state where                ? 
For those initial states where                         .

a · b = 0a := a+1; b := b�1
a=� 1 _ b=1



Predicate Transformers — Intuition
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Examples

Program states will be variable valuation, i.e.                           .


Pre and postconditions are predicates over program states, or equivalently, set of program states. 


For each program c, predicate transformer  
 
 
 
transforms postconditions into preconditions.


S , Var ! Val

wp[c] : P(S) ! P(S)

PRECONDTION

POSTCONDTION

wp[if (x�0) then {y := z+1} else {y := z+2}](y�0)

wp[a := a+1; b := b�1](a·b=0) = a=� 1 _ b=1

wp[while (i 6=0) do i := i�1](true) = i�0
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PRECONDTION

POSTCONDTION

wp[c](Q)

Initial States Final States

Q

wp[c](Q) is the weakest precondition that guarantees Q: if initial 

state s leads to a final state in Q, then s must satisfy wp[c](Q). 

Allowed Execution

Forbidden Execution

(1)  Every execution from     terminates.


(2)  Every execution from     lands on     . 


(3)  No execution from        lands on     . ¬
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PRECONDTION

POSTCONDTION

wp[c](Q)

Initial States Final States

Q

wp[c](Q) is the weakest precondition that guarantees Q: if initial 

state s leads to a final state in Q, then s must satisfy wp[c](Q). 

Allowed Execution

Forbidden Execution

(1)  Every execution from     terminates.


(2)  Every execution from     lands on     . 


(3)  No execution from        lands on     . ¬
wp[c](Q) gives the necessary (3) and sufficient 
(1-2) condition for guaranteeing Q.

Summary



The GCL language

Predicate Transformers — Formal Definition

17

C := skip nop

| abort abortion

| x

:= E assignment

| if G then C else C conditional

| while G do C while loop

| C; C sequence

Theorem (Dĳkstra ‘75)

For GCL program c, predicate 
transformer wp[c] can be defined 
by induction on c structure.

wp[skip](Q) = Q

wp[abort](Q) = false

wp[x := E ](Q) = Q[E/x ]

wp[if G then c1 else c2](Q) = (G ) wp[c1](Q)) ^ (¬G ) wp[c2](Q))

wp[c1; c2](Q) = (wp[c1] � wp[c2]) (Q)

wp[while G do c](Q) = µP • ((G ) wp[c](P)) ^ (¬G ) Q))



Predicate Transformers — Application Example
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wp[if (x�0) then {y := z+1} else {y := z+2}](y�0)

= hrule for conditionalsi

(x�0 =) wp[y := z+1](y�0)) ^ (x<0 =) wp[y := z+2](y�0))

= hrule for assignments, twicei

(x�0 =) z+1�0)) ^ (x<0 =) z+2�0))

= hsimplificationi

(x�0 ^ z��1)) _ (x<0 ^ z��2))

wp[x := E ](Q) = Q[E/x ]

wp[if G then c1 else c2](Q) = (G ) wp[c1](Q)) ^ (¬G ) wp[c2](Q))



Predicate Transformers — The Liberal Version

19

PRECONDTION

POSTCONDTION

wp[c](Q)

Initial States Final States

Q
Allowed Execution

Forbidden Execution

wp[c](Q) gives the necessary (3) and sufficient 
(1-2) condition for establishing Q.

Summary
(1)  Every execution from     terminates.


(2)  Every execution from     lands on     . 


(3)  No execution from        lands on     . 


(4)  No execution from        diverges. 

¬

¬
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Only the rules for abort and while—loops change 

wlp[abort](Q) = true

wlp[while G do c](Q) = ⌫P • ((G ) wlp[c](P)) ^ (¬G ) Q))
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Postcondition Q : S ! {0,1}

Probabilistic
Program c

Postcondition Q : S ! {0,1}

Deterministic Setting Probabilistic Setting
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Initial States
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Program c

Precondition P : S ! {0,1}

P(s) = Q(JcK(s))

Postcondition Q : S ! {0,1}

Probabilistic
Program c

Postcondition Q : S ! [0,1]

Precondition P : S ! [0,1]

Expected value of Q wrt distribution of final states

P(s) = EVJcK(s)(Q)

Deterministic Setting Probabilistic Setting

P(s) =
X

s02S
Pr[JcK(s) = s 0] · Q(s 0)
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wp[c] : (S ! [0,1]) ! (S ! [0,1])

wp[c](f ) = �s • EVJcK(s)(f )



Probabilistic Predicate Transformer

23

For each program c, expectation transformer  
 
 
 
 
 
transforms post-expectations into pre-expectations.

We let                         be the set of         -valued expectations (formally, random variables).                           E , S ! [0,1] [0,1]

wp[c] : E ! E
(post-)expectation (pre-)expectation

wp[c](f ) = �s • EVJcK(s)(f )



Probabilistic Predicate Transformer

23

In general, post-expectation f can be viewed as a reward function over the set of final states and 
wp[c](f) gives, for each initial state, the “avarage” reward of program c.

For each program c, expectation transformer  
 
 
 
 
 
transforms post-expectations into pre-expectations.

We let                         be the set of         -valued expectations (formally, random variables).                           E , S ! [0,1] [0,1]

wp[c] : E ! E
(post-)expectation (pre-)expectation

If we instantiate  f = [Q] with the characteristic function of predicate Q, we recover the probability of 
establishing Q at the end of the program execution.

wp[c](f ) = �s • EVJcK(s)(f )



Probabilistic Predicate Transformer 

24

c2 : n := 0;
repeat

n := n + 1;
c := coin flip(0.5)

until (c=heads)

 

 

Examples

c1 : {x := 0} [p] {x := 1};
{y := 0} [q] {y := 1}

wp[c1](f ) = �s •
pq · f (s[x , y/0, 0]) + pq̄ · f (s[x , y/0, 1])

+ p̄q · f (s[x , y/1, 0]) + p̄q̄ · f (s[x , y/1, 1])

Pr[n  5] =
X

1i5

�
1
2

�i
= 31

32

wp[c2](f ) = �s •
X

i�1

�
1
2

�i
f (s[c , n/heads, i ])

Pr[x  y ] = pq + pq̄ + p̄q̄ = p + p̄q̄



The pGCL language

Probabilistic Predicate Transformers — Calculation
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Theorem (McIver & Morgan  ‘96)

For pGCL program c, expectation 
transformer wp[c] can be defined 
by induction on c structure.

C := skip nop

| abort abortion

| x

:= E assignment

| if G then C else C conditional

| {C} [p] {C} probabilistic choice

| while G do C while loop

| C; C sequence

wp[skip](f ) = f

wp[abort](f ) = 0

wp[x := E ](f ) = f [E/x ]

wp[if G then c1 else c2](f ) = [G ] · wp[c1](f ) + [¬G ] · wp[c2](f )
wp[{c1} [p] {c2}](f ) = p · wp[c1](f ) + (1�p) · wp[c2](f )
wp[c1; c2](f ) = (wp[c1] � wp[c2])(f )
wp[while G do c](f ) = µh • ([G ] · wp[c](h) + [¬G ] · f )



Probabilistic Predicate Transformers — Calculation
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Example

c1 : {x := 0} [p] {x := 1};
{y := 0} [q] {y := 1}

wp[c1]([xy ])

= hrule for sequential compositioni
wp

⇥
{x := 0} [p] {x := 1}

⇤�
wp

⇥
{y := 0} [q] {y := 1}

⇤
([xy ])

�

= hrule for probabilistic choicei
wp

⇥
{x := 0} [p] {x := 1}

⇤�
q · wp

⇥
y

:= 0
⇤
([xy ]) + q̄ · wp

⇥
y

:= 1
⇤
([xy ])

�

= hrule for assignment, twicei
wp

⇥
{x := 0} [p] {x := 1}

⇤�
q · [x0] + q̄ · [x1]

�

= hrule for probabilistic choicei
p · wp

⇥
x

:= 0
⇤�
q · [x0] + q̄ · [x1]

�
+ p̄ · wp

⇥
x

:= 1
⇤�
q · [x0] + q̄ · [x1]

�

= hrule for assignment, twicei
p · (q · [00] + q̄ · [01]

�
+ p̄ ·

�
q · [10] + q̄ · [11]

�

= halgebrai
p + p̄q̄

wp[x := E ](f ) = f [E/x ]

wp[{c1} [p] {c2}](f ) = p · wp[c1](f ) + p̄ · wp[c2](f )
wp[c1; c2](f ) = wp[c1](wp[c2](f ))
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while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}
0 NN-11

1/2 1/2
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Does this program almost 
surely terminate?

there exists a standard (ie a predicate) loop invariant I, which restricted to ¬G is stronger than the post-
expectation f, and 

there exists a bounded variant e, which in each iteration decreases with at least a fixed probability ϵ>0.

Loop Rule for Total Correctness

Then, [I] is a valid pre-expectation of the loop w.r.t. post-expectation f (but not necessarily the weakest).

Consider loop while G do c and post-expectation f. Assume that

[¬G ^ I ] V f [G ^ I ] V wp[c]([I ])

9l ,u 2 Z • G ^ I ) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I ] V wp[while G do c](f )

? f V g , 8s 2 S • f (s)  g(s)
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while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}

The loop (above) terminates almost surely from any initial state. To conclude this, we 
apply the loop rule with instances

and get the following proof obligations:

[¬G ^ I ] V f [G ^ I ] V wp[c]([I ])

9l ,u 2 Z • G ^ I ) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I ] V wp[while G do c](f )

Application example

[i mod N = 0] V 1

[i mod N 6= 0] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
(1)

1
2 [i mod N 6=0^ i mod N=n] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
([i mod N<n])

f = 1 I = true e = i mod N (l , u) = (0,N � 1) ✏ = 1/2

0  i mod N  N�1



                                           


                                                                                            


                                    


 

Probabilistic Predicate Transformers — Loop Rule

28

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}

The loop (above) terminates almost surely from any initial state. To conclude this, we 
apply the loop rule with instances

and get the following proof obligations:

[¬G ^ I ] V f [G ^ I ] V wp[c]([I ])

9l ,u 2 Z • G ^ I ) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I ] V wp[while G do c](f )

Application example

[i mod N = 0] V 1

[i mod N 6= 0] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
(1)

1
2 [i mod N 6=0^ i mod N=n] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
([i mod N<n])

1 ✔ (trivial since     is the weakest expectation)

f = 1 I = true e = i mod N (l , u) = (0,N � 1) ✏ = 1/2

0  i mod N  N�1



                                           


                                                                                            


                                    


 

Probabilistic Predicate Transformers — Loop Rule

28

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}

The loop (above) terminates almost surely from any initial state. To conclude this, we 
apply the loop rule with instances

and get the following proof obligations:

[¬G ^ I ] V f [G ^ I ] V wp[c]([I ])

9l ,u 2 Z • G ^ I ) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I ] V wp[while G do c](f )

Application example

[i mod N = 0] V 1

[i mod N 6= 0] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
(1)

1
2 [i mod N 6=0^ i mod N=n] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
([i mod N<n])

1 ✔ (trivial since     is the weakest expectation)

 ✔ (loop body is AST)

f = 1 I = true e = i mod N (l , u) = (0,N � 1) ✏ = 1/2

0  i mod N  N�1



                                           


                                                                                            


                                    


 

Probabilistic Predicate Transformers — Loop Rule

28

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}

The loop (above) terminates almost surely from any initial state. To conclude this, we 
apply the loop rule with instances

and get the following proof obligations:

[¬G ^ I ] V f [G ^ I ] V wp[c]([I ])

9l ,u 2 Z • G ^ I ) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I ] V wp[while G do c](f )

Application example

[i mod N = 0] V 1

[i mod N 6= 0] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
(1)

1
2 [i mod N 6=0^ i mod N=n] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
([i mod N<n])

1 ✔ (trivial since     is the weakest expectation)

 ✔ (loop body is AST)

 ✔ (trivial)

f = 1 I = true e = i mod N (l , u) = (0,N � 1) ✏ = 1/2

0  i mod N  N�1



                                           


                                                                                            


                                    


 

Probabilistic Predicate Transformers — Loop Rule

28

while (i mod N 6= 0) do

{i := i+1} [

1/2] {i := i�1}

The loop (above) terminates almost surely from any initial state. To conclude this, we 
apply the loop rule with instances

and get the following proof obligations:

[¬G ^ I ] V f [G ^ I ] V wp[c]([I ])

9l ,u 2 Z • G ^ I ) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I ] V wp[while G do c](f )

Application example

[i mod N = 0] V 1

[i mod N 6= 0] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
(1)

1
2 [i mod N 6=0^ i mod N=n] V wp

⇥
{i := i+1} [

1/2] {i := i�1}
⇤
([i mod N<n])

1 ✔ (trivial since     is the weakest expectation)

 ✔ (loop body is AST)

 ✔ (trivial)

f = 1 I = true e = i mod N (l , u) = (0,N � 1) ✏ = 1/2

 ✔ (case analysis           
on                 )i = N�1

0  i mod N  N�1
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[¬G ^ I ] V f [G ^ I ] V wp[c]([I ])

9l ,u 2 Z • G ^ I ) l  e  u 9✏ 2 (0, 1] • ✏ [G ^ I ^ e=n] V wp[c]([e<n])

[I ] V wp[while G do c](f )

i := 100;

while (i>0) do

{i := i+1} [1/2] {i := i�1}
Rule fails to prove AST of the LHS loop.

Rule is not complete

Rule leads only {0,1}—valued pre-expectations. 
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probability of terminating and establishing P.


probability of diverging or establishing P.

c : {{x := 0} [p] {x := 1}} [q] {abort}

Intuition

Example
wp[c]([x=0]) = pq

wlp[c]([x=0]) = pq + q̄

wp
⇥
c
⇤
([P])

wlp
⇥
c
⇤
([P])

Formal Definition

Only the rules for abort and while—loops change 

wlp[abort](f ) = 1

wlp[while G do c](f ) = ⌫h • ([G ] · wlp[c](h) + [¬G ] · f )
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[¬G ^ I ] V f [G ^ I ] V wlp[c]([I ])

[I ] V wlp[while G do c](f )

Proof rule for loops

Relation between transformers

wp[c](Q) = wlp[c](Q) ^ wp[c](true)

For deterministic programs, 

where a & b , max{a+b�1, 0}

wp[c](f ) W wlp[c](f ) & wp[c](1)

No “variant” argument required (cf         )wp[·]
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Probabilistic
Program c

Postcondition Q : S ! [0,1]

Precondition P : S ! [0,1]

P(s) = EVJcK(s)(Q)

Theorem (McIver & Morgan  ‘96)
For pGCL program c, expectation 
transformer wp[c] can be defined by 
induction on c structure.

The pGCL language
C := skip nop

| abort abortion

| x

:= E assignment

| if G then C else C conditional

| {C} [p] {C} probabilistic choice

| while G do C while loop

| C; C sequence

wp
⇥
{c1} [p] {c2}

⇤
(Q)

=
p · wp[c1](f ) + (1�p) · wp[c2](f )

probability of terminating 
and establishing P.

probability of diverging or 
establishing P.

wp
⇥
c
⇤
([P])

wlp
⇥
c
⇤
([P])
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I ^ G ^ e>k =) wp[c](I ^ e=k) I ^ ¬G =) Q I ^ e0 =) ¬G
I =) wp[while G do c](Q)

I ^ G =) wlp[c](I ^ e=k) I ^ ¬G =) Q

I =) wlp[while G do c](Q)

 Proof rules for loops (deterministic case)

 Alternative characterisation of expectation transformer

8s 2 S • wp[c](f )(s) = EJcKs(f ) ⌘ 8µ 2 D(S) • Eµ(wp[c](f )) = EJcKµ(f )


