Seminar on "Verification of Probabilistic Programs"

Federico Olmedo

federico.olmedo@cs.rwth-aachen.de

Seminar Details

Speaker:

FEDERICO OLMEDO

Structure & Schedule:

6 Weekly Presentations 16:30-17:45 Room 9U10 E3 Language:

Pre-requisites:

Previous knowledge on program logics and semantics is ONLY advised.

Webpage:

http://moves.rwth-aachen.de/teaching/ss-15/vpp/

Agenda

Introduction to probabilistic programs

The problem of probabilistic program verification

Seminar content

Agenda

Introduction to probabilistic programs

The problem of probabilistic program verification

Seminar content

Summary

Probabilistic Programs — Basics

 $c_1\coloneqq ext{coin_flip}(0.5); \ c_2\coloneqq ext{coin_flip}(0.5); \ ext{return}(c_1, c_2)$

$$\label{eq:n} \begin{split} n &\coloneqq 0; \\ \texttt{repeat} \\ n &\coloneqq n+1; \\ c &\coloneqq \texttt{coin_flip}(0.5) \\ \texttt{until} \ (c = heads); \\ \texttt{return } n \end{split}$$

Probabilistic Programs — Examples

$$\label{eq:n} \begin{split} n &\coloneqq 0; \\ \texttt{repeat} \\ n &\coloneqq n+1; \\ c &\coloneqq \texttt{coin_flip}(0.5) \\ \texttt{until} \ (c = heads); \\ \texttt{return} \ n \end{split}$$

Probabilistic Programs — Examples

return n

6

Probabilistic Programs — Relevance

Probabilistic Programs — Relevance

}//end while loop
return(goats,tigers);
}

case 2: tigers--; break;

}

}

(* thinking section *) trying := true WHILE trying DO{

choose *s* randomly and uniformly from {0, 1} wait until TEST & UPDATE(fork-available [i - s], FALSE, FALSE) IF TEST & UPDATE(fork-available[$i - \overline{s}$], FALSE, FALSE) THEN

trying := FALSE (* \bar{s} = complement of s *) ELSE fork-available[i - s] := TRUE

(* eating section *) fork-available[i - 1], fork-available[i] = TRUE

Quicksort:

Quicksort:

Problem of Quicksort:

In the average case, it performs fairly well:

On a random input of size n, it requires on average $O(n \log(n))$ comparisons (which matches information theory lower bound).

But in the worst case, it does not:

There exist "ill-behaved" inputs of size n which require $O(n^2)$ comparisons.

How to narrow the gap between the worst and average case performance?

Quicksort:

Problem of Quicksort:

In the average case, it performs fairly well:

On a random input of size n, it requires on average $O(n \log(n))$ comparisons (which matches information theory lower bound).

But in the worst case, it does not:

There exist "ill-behaved" inputs of size n which require $O(n^2)$ comparisons.

How to narrow the gap between the worst and average case performance?

Choose the pivot at random!

For **any** input, the expected number of comparisons matches the average case.

No "ill-behaved" input.

Computing the cardinality of the union of sets:

$$|S_1 \cup S_2 \cup \ldots \cup S_n| = \sum_i |S_i| - \sum_{i < j} |S_i \cap S_j| + \sum_{i < j < k} |S_i \cap S_j \cap S_k| - \ldots \qquad \left(\begin{array}{c} \text{Incl-Excl} \\ \text{Principle} \end{array} \right)$$

Problem: Incl-Excl Principle yields an expensive solution, the RHS has 2^{n} -1 terms.

Solution based on randomization:

Random Sampling Technique

We can approximate some properties of a set from a randomly chosen subset.

Computing the cardinality $|S_1 \cup S_2 \cup \ldots \cup S_n|$

Solution based on randomization: sample an element $x^* \in S_1 \cup S_2 \cup ... \cup S_n$ and use $cov(x^*) = |\{i \mid x^* \in S_i\}|$ to estimate $|S_1 \cup S_2 \cup ... \cup S_n|$.

$$\begin{split} m &\coloneqq |S_1| + \ldots + |S_n|; \\ \text{Draw a set } S^* \text{ from } S_1, \ldots, S_n \text{ with probability } \Pr[S_i] = \frac{|S_i|}{m}; \\ \text{Draw an element } x^* \text{ from } S^* \text{ with uniform distribution;} \\ r &\coloneqq \frac{m}{cov(x^*)}; \\ \text{return } (r) \end{split}$$

It can be shown that *r* is an unbiased estimator of $|S_1 \cup S_2 \cup \ldots \cup S_n|$, *ie*

$$\mathbb{E}[r] = |S_1 \cup S_2 \cup \ldots \cup S_n|$$

Expected value of *r*

Another application of the Random Sampling technique

Approximate the area of a circle

Another application of the Random Sampling technique

Approximate the area of a circle

Sample random points in the enclosing square. The fraction of points lying in the circle approximates its area.

$$Area(\bullet) \approx Area(\bullet) \cdot \frac{N_{\bullet}}{N_{\bullet}}$$
Total nr of random points

(The approximation improves as *N* grows larger.)

Another application of the Random Sampling technique

Approximate the area of a circle

Sample random points in the enclosing square. The fraction of points lying in the circle approximates its area.

Nr of points hitting the circle

Total nr of random points

$$Area(\bullet) \approx Area(\bullet) \cdot \frac{N_{\bullet}}{N_{\bullet}}$$

(The approximation improves as N_{\parallel} grows larger.)

Approximate a definite integral

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx \operatorname{Area}(\square) \cdot \frac{N}{N}$$

Testing against the null polynomial

Assume we have oracle access $\mathcal{O}(\cdot, \ldots, \cdot)$ to a multivariate polynomial p in $\mathbb{R}[x_1, \ldots, x_n]$. Determine whether p is identically zero.

Solution based on randomization:

Exploit the fact if $p \neq 0$ and $\bar{a} = (a_1, \ldots, a_n)$ is chosen at random, $\Pr[p(\bar{a}) = 0]$ is small.

Theorem (Schwartz-Zippel): let $S \subseteq \mathbb{R}$ with $|S| = k \cdot deg(p)$. If each component of $\bar{a} = (a_1, \ldots, a_n)$ is chosen independently and uniformly from S, then

 $\Pr[p(\bar{a})=0\mid p
ot\equiv 0]\leq 1/k$.

Let $S \subseteq \mathbb{R}$ with $|S| = k \cdot deg(p)$ Draw a_1, \ldots, a_n independently and uniformly from S; if $\mathcal{O}(a_1, \ldots, a_n) = 0$ then return (" $p \equiv 0$ ") else return (" $p \not\equiv 0$ ") Alg. outputs " $p \neq 0$ " $p \neq 0$ Alg. outputs " $p \equiv 0$ " $p \equiv 0$ $\Pr[p \neq 0 \mid \text{output "} p \equiv 0$ "] $\leq \frac{1}{k}$

Testing against the null polynomial

Assume we have oracle access $\mathcal{O}(\cdot, \ldots, \cdot)$ to a multivariate polynomial p in $\mathbb{R}[x_1, \ldots, x_n]$. Determine whether p is identically zero.

Solution based on randomization:

Exploit the fact if $p \neq 0$ and $\bar{a} = (a_1, \ldots, a_n)$ is chosen at random, $\Pr[p(\bar{a}) = 0]$ is small.

Theorem (Schwartz-Zippel): let $S \subseteq \mathbb{R}$ with $|S| = k \cdot deg(p)$. If each component of $\bar{a} = (a_1, \ldots, a_n)$ is chosen independently and uniformly from S, then

$$\mathsf{Pr}[p(ar{a})=0\mid p
ot\equiv 0]\leq 1/k$$
 .

Let $S \subseteq \mathbb{R}$ with $|S| = k \cdot deg(p)$ For $i = 1 \dots m$ do Draw a_1, \dots, a_n independently and uniformly from S; if $\mathcal{O}(a_1, \dots, a_n) \neq 0$ then return (" $p \neq 0$ ") return (" $p \equiv 0$ ") Alg. outputs " $p \neq 0$ " $p \neq 0$ Alg. outputs " $p \equiv 0$ " $p \equiv 0$ $\Pr[p \neq 0 \mid \text{output "} p \equiv 0$ "] $\leq \left(\frac{1}{k}\right)^m$

Underlying techniques

Abundance of Witnesses

- Decision problem whose output depends on the presence (resp. absence) of a witness to prove (resp. disprove) a property.
- Witnesses abound in a given search space.
- Given a witness, the property is "efficiently" verified.

Amplification by Independent Trials

- Used in conjunction with the "abundance of witnesses" technique to reduce the error probability.
- Given an algorithm with error probability ε , run it *n* independent times to reduce the error probability to ε^n .

Underlying techniques

Amplification by Independent Trials

- Used in conjunction with the "abundance of witnesses" technique to reduce the error probability.
- Given an algorithm with error probability ε , run it *n* independent times to reduce the error probability to ε^n .

Randomization circumvents the Limitations of Determinism

The Dinning Philosopher Problem

Theorem (Lehmann & Rabin '81) there exists no fully distributed and symmetric deterministic algorithm for the dining philosopher problem.

Randomized Algorithm

```
while (true) do
  (* Thinking Time *)
  trying := true
  while (trying) do
    s := rand{left, right}
    Wait until fork[s] is available and take it
    If fork[¬s] is available
        then take it and set trying to false
        else drop fork[s]
  (* Eating Time *)
    Drop both forks
```

Idea:

- Do not pick always the same fork first. Flip a coin to choose.
- If the second fork is not available, release the first and flip again the coin.

Algorithm is deadlock-free:

At any time, if there is a hungry philosopher, with probability one some philosopher will eventually eat. Algorithm can also be adapted to prevent starvation (ie the hungry philosopher will eventually eat).

Randomization circumvents the Limitations of Determinism

Leader Election

- Aim: to choose a leader node in a network.
- Network consists of n identical nodes P₁,...,P_n connected in a ring fashion.
- Transmission of messages is allowed between consecutive nodes in the ring.
- At the end of the process all nodes must agree on the election of the leader.

Theorem (Angluin '80) there exists **no deterministic algorithm** for carrying out the election in a ring of **identical** processes.

Randomized Algorithm

repeat

```
\begin{split} s &\coloneqq empty \ list;\\ name &\coloneqq rand\{1, \dots, K\};\\ \text{For } i &= 1 \dots n \text{ do}\\ s &\coloneqq s ++ [name];\\ \text{ send}(name) \text{ to next node };\\ \text{ receive}(name) \text{ from previous node}\\ \text{until (at least one name in } s \text{ is unique})\\ \text{return } \max\{n \in s \mid n \text{ occus only once in } s\} \end{split}
```

Idea:

- Each nodes chooses a random name from {1, ...,K} and propagates it around the ring.
- At the end of the propagation each process has a list of the names of all the nodes.
- If there is a name that belongs to only one node, then this is the leader (in case of several, choose eg the largest)
- If there is no unique name, repeat the process.

Underlying technique

Symmetry Breaking in Distributed Systems

- For many problems on distributed systems, deterministic solutions do not exists when objects are to be treaded identically.
- Using randomization to choose among identical objects may help solving the symmetry problem.

Probabilistic Programs — Tradeoffs

Advantages

- Reduction of time/space complexity
- Reduction of communication complexity in the distributed setting
- Allows tackling problems that have no deterministic solution
- Probabilistic programs are simple and easy to understand
- Wide range of application domains

Probabilistic Programs — Tradeoffs

Advantages

- Reduction of time/space complexity
- Reduction of communication complexity in the distributed setting
- Allows tackling problems that have no deterministic solution
- Probabilistic programs are simple and easy to understand
- Wide range of application domains

Disadvantages

- B Absolute correctness is sometimes sacrificed: probabilistic programs are "correct with probability $1-\epsilon$ "
 - Quicksort, dining philosopher, leader election $\longrightarrow \epsilon = 0$
 - Definite integral, testing against null polynomial $\longrightarrow \epsilon > 0$

Probabilistic Programs — Tradeoffs

Advantages

- Reduction of time/space complexity
- Reduction of communication complexity in the distributed setting
- Allows tackling problems that have no deterministic solution
- Probabilistic programs are simple and easy to understand
- Wide range of application domains

Disadvantages

- Bolute correctness is sometimes sacrificed: probabilistic programs are "correct with probability $1-\epsilon$ " Running time is a random variable
 - Quicksort, dining philosopher, leader election $\longrightarrow \epsilon = 0$ Las Vegas Algorithm
 - Definite integral, testing against null polynomial $\longrightarrow \epsilon > 0$

Probabilistic Programs — Reliability

Probabilistic Algorithm

Probabilistic Programs — Reliability

Probabilistic Algorithm

Probabilistic Programs remain Reliable

Verifying Data Consistency

- Goal: R_I and R_{II} must communicate to verify whether x=y ($x, y \in \{0,1\}^n$).
- Requirement: minimize the # of bits exchanged.

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

Idea: use random fingerprints of *x* and *y*.

```
Routine of R_{I} \triangleq

p := rand\{i \in [2, n^{2}] \mid prime(i)\};

s := x \mod p;

send(p, s) \text{ to } R_{II};

Routine of R_{II} \triangleq

receive(p, s) \text{ from } R_{I};

t := y \mod p;

if (s=t) \text{ then return } ("x=y")

else return ("x \neq y")
```

 $\leq n^{2} \leq p \leq n^{2}$ #bits exchanged = #bits(p) + #bits(s) $\leq 2\log_{2}(n^{2})$ Prot. outputs " $x \neq y$ " $\longrightarrow x \neq y$ $\Pr[x \neq y \mid \text{output "}x=y"] \leq \frac{\ln(n^{2})}{n}$

Probabilistic Programs remain Reliable

Verifying Data Consistency

- Goal: R_I and R_{II} must communicate to verify whether x=y ($x, y \in \{0,1\}^n$).
- Requirement: minimize the # of bits exchanged.

Theorem: any deterministic protocol requires the exchange of (at least) n bits.

Randomized Algorithm

Idea: use random fingerprints of x and y.

```
Routine of R_{I} \triangleq

p := rand\{i \in [2, n^{2}] \mid prime(i)\};

s := x \mod p;

send(p, s) \text{ to } R_{II};

Routine of R_{II} \triangleq

receive(p, s) \text{ from } R_{I};

t := y \mod p;

if (s=t) \text{ then return } ("x=y")
```

else return (" $x \neq y$ ")

 $\leq n^{2} \leq p \leq n^{2}$ #bits
exchanged = #bits(p) + #bits(s) \leq 2\log_{2}(n^{2})
Prot. outputs " $x \neq y$ " $\longrightarrow x \neq y$

$$\Pr[x \neq y \mid \text{output "}x=y"] \le \frac{\ln(n^2)}{n}$$

	# bits exch.	prob. error
n=10 ¹⁰	133	4.60 x 10 ⁻⁰⁹
n=10 ²⁰	266	9.21 x 10 ⁻¹⁹
n=10 ³⁰	398	1.38 x 10 ⁻²⁸
n=10 ⁴⁰	532	1.84 x 10 ⁻³⁸
n=10 ⁵⁰	664	2.30 x 10 ⁻⁴⁸

Agenda

Introduction to probabilistic programs

The problem of probabilistic program verification

Seminar content

Summary

Input/Output behaviour of probabilistic programs:

Verification of probabilistic programs:

Examples of Probabilistic Assertions

Cardinality of sets union

```
m \coloneqq |S_1| + \ldots + |S_n|;
Draw a set S^* from S_1, \ldots, S_n with probability \Pr[S_i] = \frac{|S_i|}{m};
Draw an element x^* from S^* with uniform distribution;
r \coloneqq \frac{m}{cov(x)};
return (r)
```

$$\mathbb{E}[r] = |S_1 \cup S_2 \cup \ldots \cup S_n|$$

Leader Election

repeat

 $s := empty \ list;$ $name := rand\{1, \dots, K\};$ For $i = 1 \dots n$ do s := s ++ [name]; send(name) to next node; receive(name) from previous nodeuntil (at least one name in s is unique) $return \max\{n \in s \mid n \text{ occus only once in } s\}$

Let *p* be probability that after the random choices of the node names, at least one name is unique. We know that 0 .

$$Pr[term] = 1 - Pr[non-term]$$
$$= 1 - Pr\left[in all rounds, there \\ is no unique name \right]$$
$$= 1 - \lim_{n \to \infty} (1 - p)^n$$
$$= 1$$

Let *p* be probability that after the random choices of the node names, at least one name is unique. We know that 0 .

$$Pr[term] = 1 - Pr[non-term]$$
$$= 1 - Pr\left[in all rounds, there \\ is no unique name \right]$$
$$= 1 - \lim_{n \to \infty} (1 - p)^n$$
$$= 1$$

Intricacy

Probabilistic programs may terminate with probability 1, and still admit diverging executions.

Insight: (set of) diverging executions have probability 0

Let *p* be probability that after the random choices of the node names, at least one name is unique. We know that 0 .

$$Pr[term] = 1 - Pr[non-term]$$

= 1 - Pr [in all rounds, there
is no unique name]
= 1 - lim (1 - p)ⁿ
= 1

Intricacy

ALMOST-SURE TERMINATION (AST) Probabilistic programs may terminate with probability 1, and still admit diverging executions.

Insight: (set of) diverging executions have probability 0

Let *p* be probability that after the random choices of the node names, at least one name is unique. We know that 0 .

$$Pr[term] = 1 - Pr[non-term]$$

= 1 - Pr [in all rounds, there
is no unique name]
= 1 - lim (1 - p)ⁿ
= 1

Intricacy

ALMOST-SURE TERMINATION (AST) Probabilistic programs may terminate with probability 1, and still admit diverging executions.

Another example of AST:

repeat
 b := flip_coin();
until (b = heads)

Insight: (set of) diverging executions have probability 0

How to verify probabilistic assertions?

It is possible to extend standard verification techniques of sequential programs:

Hoare logic

Assertions of the form $\{P\} \in \{Q\}$, where P and Q are predicates over program states

initial state s - c - s' final state

 $\{P\} \in \{Q\}$ is valid iff $P(s) \implies Q(s')$

Example: $\{x \ge 0\} \ x := x+2 \ \{x \ge 0\}$

Deductive system (ie proof rules) to derive valid assertions (one rule per language construction)

> $\overline{\{P\}}$ skip $\{P\}$ $\overline{\{P[x \leftarrow e]\}x := e\{P\}}$ $\{P\}s_1\{Q\} = \{Q\}s_2\{R\}$ $\{P\}s_1; s_2\{R\}$

Proof objects are derivations (trees)

Weakest precondition calculus

Given in terms of predicate transformer $wp[c] \colon \mathcal{P}(\Sigma) \to \mathcal{P}(\Sigma)$

 $wp[c](Q) = \begin{cases} \text{set of initial states that lead} \\ \text{to a final state satisfying } Q \end{cases}$

Example: wp[x := x+2]($x \ge 0$) = $x \ge -2$

- Connection to Hoare logic $\{P\} c \{Q\}$ iff $P \Longrightarrow wp[c](Q)$
- Transformerwp[c] is defined by induction on the structure of c:

```
wp[skip](Q) = Q
wp[x := e](Q) = Q[x/E]
 wp[c_1; c_2](Q) = (wp[c_1] \circ wp[c_2])(Q)
```

Agenda

Introduction to probabilistic programs

The problem of probabilistic program verification

Seminar content

Summary

Different extension of Hoare logic and weakest precondition calculus for probabilistic programs.

Probabilistic predicate transformers [McIver & Morgan '96]

Reward function $f: \Sigma \to \mathbb{R}$ over the set of final states.

wp[c](f) = Expected reward of c wrt f

expected value of *f* wrt distribution of final states

Relational Hoare logics [Barthe '09,'12]

Relates the executions of a program from two different initial states.

Pre- and post-conditions are relations (rather than predicates) over program states.

$$\{=_L\} c \{=_L\} < c$$
 in non-interferent

Hartog's Hoare logic [Hartog '02]

{true} c { $\forall i \cdot (i \le 0) \lor \Pr[x=i] = (1/2)^i$ }

variable x is geometrically distributed

Agenda

Introduction to probabilistic programs

The problem of probabilistic program verification

Seminar content

Summary

We can extend traditional program verification techniques to probabilistic programs.