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Recap: Partial & Total Correctness Properties

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties.
Here A[x 7→ a] denotes the syntactic replacement of every
occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)

{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 end {B}

(while)

{A ∧ b} c {A}
{A} while b do c end {A ∧ ¬b}

(cons)

|= (A⇒ A′) {A′} c {B′} |= (B′ ⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is derivable by
the Hoare rules. In (while), A is called a (loop) invariant.
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Recap: Partial & Total Correctness Properties

Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by (where i ∈ LVar )

(skip)

{A} skip {⇓A}
(asgn)

{A[x 7→ a]} x := a {⇓A}

(seq)

{A} c1 {⇓C} {C} c2 {⇓B}
{A} c1;c2 {⇓B}

(if)

{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}
{A} if b then c1 else c2 end {⇓B}

(while)

|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i.i ≥ 0 ∧ A(i)} while b do c end {⇓A(0)}

(cons)

|= (A⇒ A′) {A′} c {⇓B′} |= (B′ ⇒ B)

{A} c {⇓B}
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is derivable by
the Hoare rules. In case of (while), A(i) is called a (loop) invariant.
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Axiomatic Equivalence

Operational and Denotational Equivalence

Definition 4.1: OJ.K : Cmd → (Σ 99K Σ) given by

OJcKσ = σ′ ⇐⇒ 〈c, σ〉 → σ′

Definition 4.2: Two statements c1, c2 ∈ Cmd are operationally equivalent
(notation: c1 ∼ c2) if

OJc1K = OJc2K

Theorem 8.5: For every c ∈ Cmd ,
OJcK = CJcK
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Axiomatic Equivalence

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if they
are indistinguishable w.r.t. partial correctness properties:

Definition 12.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation: c1 ≈ c2)
if, for all assertions A,B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.
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Axiomatic Equivalence

Axiomatic Equivalence II

Example 12.2

We show that while b do c end ≈ if b then c;while b do c end else skip end
(cf. Lemma 4.3). Let A,B ∈ Assn:

|= {A} while b do c end {B}
⇐⇒ ` {A} while b do c end {B} (Theorem 10.2, 10.5)
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C} while b do c end {C ∧ ¬b} (rule (cons))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c {C} (rule (while))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c;while b do c end {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then c;while b do c end else skip end {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then c;while b do c end else skip end {B} (rule (cons))
⇐⇒ |= {A} if b then c;while b do c end else skip end {B} (Thm. 10.2, 10.5)
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Characteristic Assertions

Characteristic Assertions I

The following results are based of the following encoding of states by assertions:

Definition 12.3

Given a finite subset of program variables X ⊆ Var and a state σ ∈ Σ, the
characteristic assertion of σ w.r.t. X is given by

State(σ,X) :=
∧
x∈X

(x = σ(x)︸︷︷︸
∈Z

) ∈ Assn

Moreover, we let State(σ, ∅) := true and State(⊥,X) := false.
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Characteristic Assertions

Characteristic Assertions II

Programs and characteristic state assertions are obviously related in the following
way:

Corollary 12.4

Let c ∈ Cmd, and let FV (c) ⊆ Var denote the set of all variables occurring in c.
Then, for every finite X ⊇ FV (c) and σ ∈ Σ,

{State(σ,X)} c {State(CJcKσ,X)}

Example 12.5 (Factorial program)

For c := (y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end), X = {x, y},
σ(x) = 3, and σ(y) = 0, we obtain

State(σ,X) = (x=3 ∧ y=0)
State(CJcKσ,X) = (x=1 ∧ y=6)
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Partial vs. Total Equivalence

Partial vs. Total Equivalence

Now we can show that considering total rather than partial correctness properties
yields the same notion of equivalence:

Theorem 12.6

Let c1, c2 ∈ Cmd. The following propositions are equivalent:
1. ∀A,B ∈ Assn : |= {A} c1 {B} ⇐⇒ |= {A} c2 {B}
2. ∀A,B ∈ Assn : |= {A} c1 {⇓B} ⇐⇒ |= {A} c2 {⇓B}

Proof.

on the board
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Axiomatic vs. Operational/Denotational Equivalence

Axiomatic vs. Operational/Denotational Equiv.

Theorem 12.7

Axiomatic and operational/denotational equivalence coincide, i.e., for all
c1, c2 ∈ Cmd,

c1 ≈ c2 ⇐⇒ c1 ∼ c2.

Proof.

on the board

15 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)



Summary: Axiomatic Semantics

Summary: Axiomatic Semantics

• Formalized by partial/total correctness properties
• Inductively defined by Hoare Logic proof rules
• Technically involved (especially loop invariants)
⇒ machine support (proof assistants) indispensable for larger programs
• Equivalence of axiomatic and operational/denotational semantics
• Software engineering aspect: integrated development of program and proof (cf. assertions

in Java)
• Systematic approach: mechanised program verification

1. Start with (correctness) requirements for program
2. Manually derive corresponding program annotations (assertions)
3. Automatically derive corresponding verification conditions (using weakest preconditions etc.)
4. Automatically discharge/simplify verification conditions using theorem prover
5. Manually complete proof if required

(cf. Mike Gordon: Background reading on Hoare Logic, Chapter 3,
www.cl.cam.ac.uk/~mjcg/Teaching/2011/Hoare/Notes/Notes.pdf)
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