
Semantics and Verification of Software
Summer Semester 2015

Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

http://moves.rwth-aachen.de/teaching/ss-15/sv-sw/

Recap: Partial & Total Correctness Properties

Hoare Logic

Goal: syntactic derivation of valid partial correctness properties.
Here A[x 7→ a] denotes the syntactic replacement of every
occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)

{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)

{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 end {B}

(while)

{A ∧ b} c {A}
{A} while b do c end {A ∧ ¬b}

(cons)

|= (A⇒ A′) {A′} c {B′} |= (B′ ⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is derivable by
the Hoare rules. In (while), A is called a (loop) invariant.

3 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

Recap: Partial & Total Correctness Properties

Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by (where i ∈ LVar)

(skip)

{A} skip {⇓A}
(asgn)

{A[x 7→ a]} x := a {⇓A}

(seq)

{A} c1 {⇓C} {C} c2 {⇓B}
{A} c1;c2 {⇓B}

(if)

{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}
{A} if b then c1 else c2 end {⇓B}

(while)

|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i.i ≥ 0 ∧ A(i)} while b do c end {⇓A(0)}

(cons)

|= (A⇒ A′) {A′} c {⇓B′} |= (B′ ⇒ B)

{A} c {⇓B}
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is derivable by
the Hoare rules. In case of (while), A(i) is called a (loop) invariant.

4 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

Axiomatic Equivalence

Operational and Denotational Equivalence

Definition 4.1: OJ.K : Cmd → (Σ 99K Σ) given by

OJcKσ = σ′ ⇐⇒ 〈c, σ〉 → σ′

Definition 4.2: Two statements c1, c2 ∈ Cmd are operationally equivalent
(notation: c1 ∼ c2) if

OJc1K = OJc2K

Theorem 8.5: For every c ∈ Cmd ,
OJcK = CJcK

6 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

Axiomatic Equivalence

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered equivalent if they
are indistinguishable w.r.t. partial correctness properties:

Definition 12.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation: c1 ≈ c2)
if, for all assertions A,B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

7 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

Axiomatic Equivalence

Axiomatic Equivalence II

Example 12.2

We show that while b do c end ≈ if b then c;while b do c end else skip end
(cf. Lemma 4.3). Let A,B ∈ Assn:

|= {A} while b do c end {B}
⇐⇒ ` {A} while b do c end {B} (Theorem 10.2, 10.5)
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C} while b do c end {C ∧ ¬b} (rule (cons))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c {C} (rule (while))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c;while b do c end {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then c;while b do c end else skip end {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then c;while b do c end else skip end {B} (rule (cons))
⇐⇒ |= {A} if b then c;while b do c end else skip end {B} (Thm. 10.2, 10.5)

8 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

Characteristic Assertions

Characteristic Assertions I

The following results are based of the following encoding of states by assertions:

Definition 12.3

Given a finite subset of program variables X ⊆ Var and a state σ ∈ Σ, the
characteristic assertion of σ w.r.t. X is given by

State(σ,X) :=
∧
x∈X

(x = σ(x)︸︷︷︸
∈Z

) ∈ Assn

Moreover, we let State(σ, ∅) := true and State(⊥,X) := false.

10 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

Characteristic Assertions

Characteristic Assertions II

Programs and characteristic state assertions are obviously related in the following
way:

Corollary 12.4

Let c ∈ Cmd, and let FV (c) ⊆ Var denote the set of all variables occurring in c.
Then, for every finite X ⊇ FV (c) and σ ∈ Σ,

{State(σ,X)} c {State(CJcKσ,X)}

Example 12.5 (Factorial program)

For c := (y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end), X = {x, y},
σ(x) = 3, and σ(y) = 0, we obtain

State(σ,X) = (x=3 ∧ y=0)
State(CJcKσ,X) = (x=1 ∧ y=6)

11 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

Partial vs. Total Equivalence

Partial vs. Total Equivalence

Now we can show that considering total rather than partial correctness properties
yields the same notion of equivalence:

Theorem 12.6

Let c1, c2 ∈ Cmd. The following propositions are equivalent:
1. ∀A,B ∈ Assn : |= {A} c1 {B} ⇐⇒ |= {A} c2 {B}
2. ∀A,B ∈ Assn : |= {A} c1 {⇓B} ⇐⇒ |= {A} c2 {⇓B}

Proof.

on the board

13 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

Axiomatic vs. Operational/Denotational Equivalence

Axiomatic vs. Operational/Denotational Equiv.

Theorem 12.7

Axiomatic and operational/denotational equivalence coincide, i.e., for all
c1, c2 ∈ Cmd,

c1 ≈ c2 ⇐⇒ c1 ∼ c2.

Proof.

on the board

15 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

Summary: Axiomatic Semantics

Summary: Axiomatic Semantics

• Formalized by partial/total correctness properties
• Inductively defined by Hoare Logic proof rules
• Technically involved (especially loop invariants)
⇒ machine support (proof assistants) indispensable for larger programs
• Equivalence of axiomatic and operational/denotational semantics
• Software engineering aspect: integrated development of program and proof (cf. assertions

in Java)
• Systematic approach: mechanised program verification

1. Start with (correctness) requirements for program
2. Manually derive corresponding program annotations (assertions)
3. Automatically derive corresponding verification conditions (using weakest preconditions etc.)
4. Automatically discharge/simplify verification conditions using theorem prover
5. Manually complete proof if required

(cf. Mike Gordon: Background reading on Hoare Logic, Chapter 3,
www.cl.cam.ac.uk/~mjcg/Teaching/2011/Hoare/Notes/Notes.pdf)

17 of 17 Semantics and Verification of Software
Summer Semester 2015
Lecture 12: Axiomatic Semantics of WHILE IV (Axiomatic Equivalence)

www.cl.cam.ac.uk/~mjcg/Teaching/2011/Hoare/Notes/Notes.pdf

	Recap: Partial & Total Correctness Properties
	Axiomatic Equivalence
	Characteristic Assertions
	Partial vs. Total Equivalence
	Axiomatic vs. Operational/Denotational Equivalence
	Summary: Axiomatic Semantics

