Exercise 1 \hspace{1cm} (1 Points)
Consider the GNBA \(G = (Q, \Sigma, \delta, Q_0, \mathcal{F}) \):
\[Q = q_0, q_2, \Sigma = \{ A, B \}, \delta = \{(q_0, A, q_1), (q_1, B, q_1), (q_1, B, q_2), (q_2, B, q_0), (q_1, B, q_0)\}, \quad Q_0 = \{q_0\} \text{ and } \mathcal{F} = \{\{q_1\}, \{q_2\}\} \]. Construct an equivalent NBA.

Exercise 2 \hspace{1cm} (2+2+1 points)
Recall the topological closure defined in the Exercise sheet 3.
\[cl: \mathcal{P}(\Sigma^\omega) \to \mathcal{P}(\Sigma^\omega), \text{ where } cl(A) = \{t \mid \forall x \prec t. \exists t' : x.t' \in A\}. \]
Show the following:

1. If \(L \) is \(\omega \)-regular then show that \(cl(L) \) is also \(\omega \)-regular.
 Hint: Consider the Büchi automaton for \(L \) and construct the Büchi automaton for \(cl(L) \).
2. For a \(\omega \)-regular language \(L \), construct the \(\omega \)-regular language \(cl(A) \) (complement of \(cl(L) \)).
 Remark: You can argue that Büchi automata can be complemented, but complementation of Büchi automata is highly non-trivial. Fortunately, there is a very simple way to construct \(cl(L) \). Can you find it?
3. Prove the decomposition theorem for \(\omega \)-regular languages. That is, every \(\omega \)-regular set can be decomposed into two \(\omega \)-regular sets one of which is Safe and the other is Live.

Exercise 3 \hspace{1cm} (2 points)
Let \(e \) be a boolean function (acyclic) with \(n \) input bits and \(m \) output bits, and \(f \) be a boolean formula with \(n + m \) variables. For any number \(i \), let \(i \) be the binary encoding of \(i \). This defines a transition system \(T_{e,f} = (S, \to, AP, L) \), where the set of states \(S = \{v_0, v_1, \ldots, v_{2^n-1}\} \) and \(AP = \{a_0, \ldots, a_{2^m-1}\} \), \((v_i, v_j) \in \to \iff e(v_i) = j_i, \text{ and } a_i \in L(v_j) \iff f(j_i, i) \) is true. Graph represented thus, are called succinct graphs.
Consider the following succinct graph \(T_{e,f} = (S, \to, AP, L) \), (where \(S, \to, AP, L \) are as defined before) for which \(e \) and \(f \) has the following properties:
\[e(i_0) = i_0 + 1 \text{ the ‘+’ is a boolean addition on } n \text{ bits, particularly } (1 \ldots 1) + 1 = (0 \ldots 0). \]
\[\forall v_j \in S, \forall a_i \in AP: \quad f(j_i, i) \implies f(j_i', i') \quad \text{for } i' \geq i. \]
Assume \(e \) and \(f \) are defined by polynomial number of gates. i.e., the number of gates in \(e \) and \(f \) is \((n + m)^k\) for some constant \(k \).

1. Given \(T_{e,f} \) (\(e, f \) with properties 1 and 2) and \(a \in AP \), find an algorithm to check whether \(T_{e,f} \) satisfies “infinitely often a ”.
2. The algorithm runs in \(O(n.(n + m)^k) \) time.
Hint: Checking weather a boolean formula is satisfiable for a given input can be done in polynomial (linear) time. Observe that the transition system has \(2^n \) states, so the usual DFS will not yield the desired complexity bounds.

Exercise 4 \hspace{1cm} (2 points)
Which of the following statements are correct? Prove the statement or give a counter example.

1. \(\square a \to \square \Diamond b \equiv \square(a \land \Diamond b) \)
2. \(\Box \Diamond a \to \Box \Diamond b \equiv \Box(a \rightarrow \Diamond b) \)
3. \((a \land b)Uc \equiv a(U(b \land c)) \)
4. \((\Box a \to a) \land (\Box a \to \Box \Box a) \).

Exercise 5 \hspace{1cm} (Bonus 10 points)
Show that for any succinctly represented TS, \(T_{e,f} \) (not restricted to properties 1,2), finding whether \(T_{e,f} \) satisfies the property “infinitely often a ” can be done in PSPACE.