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@ Recap: Nondeterministic Bottom-Up Parsing
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Bottom-Up Parsing

Approach:

O Given G € CFGy, construct a nondeterministic bottom-up parsing
automaton (NBA) which accepts L(G) and which additionally
computes corresponding (reversed) rightmost analyses

input alphabet: >

pushdown alphabet: X

output alphabet: [p] (where p := |P|)
state set: omitted

transitions:

©

¢ € ¢ ¢

shift: shifting input symbols onto the pushdown
reduce: replacing the right-hand side of a production by its
left-hand side (= inverse expansion steps)
© Remove nondeterminism by allowing lookahead on the input:
G € LR(k) iff L(G) recognizable by deterministic bottom-up parsing
automaton with lookahead of k symbols
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Nondeterministic Bottom-Up Automaton |

Definition (Nondeterministic bottom-up parsing automaton)

Let G = (N,X,P,S) € CFGyx. The nondeterministic bottom-up parsing
automaton of G, NBA(G), is defined by the following components.

@ Input alphabet: ¥
@ Pushdown alphabet: X
@ Output alphabet: [p]
o Configurations: * x X* x [p]* (top of pushdown to the right)
@ Transitions for w € *, o € X*, and z € [p]*:
shifting steps: (aw,a,z) F (w,aa,z) ifa€ X
reduction steps: (w,af,z) - (w,aA,zi)if i =A—
@ Initial configuration for w € X*: (w,¢,¢)

@ Final configurations: {e} x {S} x [p]*
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Nondeterminisn in NBA(G)

Observation: NBA(G) is generally nondeterministic
@ Shift or reduce? Example:

w,aab, z) .
(bw,aa,z)}—{EbW’aAJ?.) ifri=A—a

@ If reduce: which “handle” 57 Example:

(w,aab,z) - {Exjg?éaz)j) ifmi=A—=aband ;=B — b

@ If reduce 3: which left-hand side A? Example:

w, oA, zi) .
(W,Oéa,Z)f— {EW,CMB,Z_/.)) if 7 =A— aand 7Tj:B—>a

@ When to terminate parsing? Example:
(e,5,z2) F (e,A,zi)if mi=A—S
——
final
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© Resolving Termination Nondeterminism
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Resolving Termination Nondeterminism |

General assumption to avoid nondeterminism of last type:
every grammar is start separated

Definition 9.1 (Start separation)

A grammar G = (N, X, P,S) € CFGy is called start separated if S only
occurs in productions of the form S — A where A # S.
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Resolving Termination Nondeterminism |

General assumption to avoid nondeterminism of last type:
every grammar is start separated

Definition 9.1 (Start separation)

A grammar G = (N, X, P,S) € CFGy is called start separated if S only
occurs in productions of the form S — A where A # S.

Remarks:

@ Start separation always possible by adding S’ — S with new start
symbol S’

@ From now on consider only reduced grammars of this form
(mo:=5"—5)
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Resolving Termination Nondeterminism |l

Start separation removes last form of nondeterminism (“When to
terminate parsing?”):

If G € CFGy is start separated, then no successor of a final configuration
(e,5',z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)
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Resolving Termination Nondeterminism |l

Start separation removes last form of nondeterminism (“When to
terminate parsing?”):

Lemma 9.2

If G € CFGy is start separated, then no successor of a final configuration
(e,5',z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.
@ To (g,5', z), only reductions by e-productions can be applied:
(e,S',2)F (e,5'A,zi) ifmi=A—e¢

| \

N
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Resolving Termination Nondeterminism ||

Start separation removes last form of nondeterminism (“When to
terminate parsing?”):

Lemma 9.2

If G € CFGy is start separated, then no successor of a final configuration
(e,5',z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.
@ To (g,5', z), only reductions by e-productions can be applied:
(e,S',2)F (e,5'A,zi) ifmi=A—e¢

| \

@ Thereafter, only reductions by productions of the form
Ao — A1...A, (n > 0) can be applied

N
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Resolving Termination Nondeterminism ||

Start separation removes last form of nondeterminism (“When to
terminate parsing?”):

Lemma 9.2

If G € CFGy is start separated, then no successor of a final configuration
(e,5',z) in NBA(G) is again a final configuration.
(Thus parsing should be stopped in the first final configuration.)

Proof.
@ To (g,5', z), only reductions by e-productions can be applied:
(e,S',2)F (e,5'A,zi) ifmi=A—e¢

| \

@ Thereafter, only reductions by productions of the form
Ao — A1...A, (n > 0) can be applied

@ Every resulting configuration is of the (non-final) form
(6,5'By...Bk,z) where k >1

N
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© LR(k) Grammars

m Compiler Construction Summer Semester 2014 9.9



LR(k) Grammars |

Goal: resolve remaining nondeterminism of NBA(G) by supporting
lookahead of k € N symbols on the input

— LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis
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LR(k) Grammars |

Goal: resolve remaining nondeterminism of NBA(G) by supporting
lookahead of k € N symbols on the input

— LR(k): reading of input from left to right with k-lookahead,
computing a rightmost analysis

Definition 9.3 (LR(k) grammar)
Let G = (N,X,P,S) € CFGyx be start separated and kK € N. Then G has
the LR(k) property (notation: G € LR(k)) if for all rightmost derivations
of the form

r

S =% dAw =, affw
=% vBx =, afy

such that first,(w) = first,(y), it follows that « =, A= B, and x = y.

v
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LR(k) Grammars Il

Remarks:

e If G € LR(k), then the reduction of afw to aAw is already
determined by first,(w).

@ Therefore NBA(G) in configuration (w, a3, z) can decide to reduce
and how to reduce.
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LR(k) Grammars Il

Remarks:
e If G € LR(k), then the reduction of afw to aAw is already
determined by first,(w).
@ Therefore NBA(G) in configuration (w, a3, z) can decide to reduce
and how to reduce.
e Computation of NBA(G) for S =} aAw =, afw:

ed i

r
(Ww,e,e) F* (w,a8,z) F (w,aA, zi) k...
where 1, = A— [
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LR(k) Grammars Il

Remarks:

If G € LR(k), then the reduction of aSw to aAw is already
determined by first,(w).

Therefore NBA(G) in configuration (w, a3, z) can decide to reduce
and how to reduce.

Computation of NBA(G) for S =} aAw =, afw:

red
(Ww,e,e) F* (w,a8,z) F (w,aA, zi) k...
where 1, = A— [
Computation of NBA(G) for S = vBx =, afy:
o with direct reduction (y = x, aff =6, mj = B — 0):

red j .
(V'y,e,e) F* (y,aB,2') = (x,76,2) + (x,vB,Zj) - ...
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LR(k) Grammars Il

Remarks:

If G € LR(k), then the reduction of aSw to aAw is already
determined by first,(w).

Therefore NBA(G) in configuration (w, a3, z) can decide to reduce
and how to reduce.

Computation of NBA(G) for S =} aAw =, afw:

red i
(Ww,e,e) F* (w,a8,z) F (w,aA, zi) k...
where 1, = A— [
Computation of NBA(G) for S = vBx =, afy:
o with direct reduction (y = x, aff =6, mj = B — 0):
red j
(V'y,e,e) F* (y,aB,2') = (x,76,2) + (x,vB,Zj) - ...
o with previous shifts (y = x'x, afx’ =~0, mj = B — 9):

(V'y,e.e) B (y.aB,2') = (X'x,a8,2')
shift™
Foo(x,apx',2") = (x,76,2)
red j

Fo(x,yB,Zj)F ...
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@ LR(0) Grammars
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LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is just
based on the contents of the pushdown, without any lookahead.
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LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is just
based on the contents of the pushdown, without any lookahead.

Corollary 9.4 (LR(0) grammar)

G € CFGyx has the LR(0) property if for all rightmost derivations of the
form

S =% adAw =, afw
=% vBx =, afy

it follows that « = v, A= B, and x = y.
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LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is just
based on the contents of the pushdown, without any lookahead.

Corollary 9.4 (LR(0) grammar)

G € CFGyx has the LR(0) property if for all rightmost derivations of the
form

S =7 adAw =, affw
=¥ vBx =, afy

it follows that « = v, A= B, and x = y.

Goal: derive a finite information from the pushdown which suffices to
resolve the nondeterminism (similar to abstraction of right context in LL
parsing by fo-sets)
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LR(0) Items and Sets |

G: § S (0) s’
S —-B|C (1,2) i
B —aB|b (3,4) B
C »aClc (5,6) !
B
a// \
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LR(0) Items and Sets |

G: S =S (0) (573
S »>B|C (1,2) i

B — aB|b (3,4) [S — .B]
C »aClc (5,6) !

NBA(G): (B — .aB]

(ab,¢,¢) AR
a [B—.b]
b
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LR(0) Items and Sets |

G: S'=S 0) [ .5]
S »>B|C (1,2) i

B —aB|b (3,4) [S — .B]
C »aClc (5,6) :

NBA(G): [B — a.B]

(ab,¢,¢) FAAN
F (b, a,e)
a [B—.b]
b
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LR(0) Items and Sets |

G: S =S (0) (573l
S »>B|C (1,2) i
B — aB|b (3,4) [S — .B]
C »aClc (5,6) :
NBA(G): [B — a.B]
(ab,¢,¢) FAAN
F (b, a,¢)
F (e, ab,¢) a [B—b]
b
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LR(0) Items and Sets |

/!
G: S =5 0) [ .5]
S =+B|C (1,2) i
B — aB|b (3,4) [S — .B]
C —aC|c (5,6) :
NBA(G): (B — aB.]
(ab,¢,¢) FAAN
F (b, a,e) SN
F (e, ab,¢) a [B—bl]
F (g,aB,4) i
i
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LR(0) Items and Sets |
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LR(0) Items and Sets |

G: =S (0
S »>B|C (1
B aB|b (3
C »aClc (5

NBA(G): [B — aB.]
(ab,¢,¢) FAAN

F (b, a,¢) SN

F (e, ab,¢) a [B—bl]

F (g,aB,4) i

- (e, B, 43) !

F (e, S,431) b
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LR(0) Items and Sets |

G: S'=S 0) [5"— 5]
S =+B|C (1,2) i
B — aB|b (3,4) [S — B]
C — aC | (5,6) :
NBA(G): [B — aB.]
(ab,e,¢) 2N
F (b, a E) N
E (e, ab ,€) [B — b]
= ( aB 4) !
(e, B, 43) !
F (e, S,431) b
(e, ', 4310)
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LR(0) Items and Sets Il

Definition 9.6 (LR(0) items and sets)

Let G = (N,X,P,S) € CFGy be start separated by S’ — S and
S' =% aAw =, af16ow (ie., A— 162 € P).
@ [A— 1 - (2] is called an LR(0) item for af;.
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LR(0) Items and Sets Il

Definition 9.6 (LR(0) items and sets)
Let G = (N,X,P,S) € CFGy be start separated by S’ — S and
S' =% aAw =, af16ow (ie., A— 162 € P).

@ [A— 1 - (2] is called an LR(0) item for af;.

@ Given v € X*, LR(0)(~y) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
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LR(0) Items and Sets Il

Definition 9.6 (LR(0) items and sets)

Let G = (N,X,P,S) € CFGy be start separated by S’ — S and
S' =% aAw =, af16ow (ie., A— 162 € P).
@ [A— (31 (2] is called an LR(0) item for af31.
@ Given v € X*, LR(0)(~y) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) :={LR(0)(7) | v € X*}.
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LR(0) Items and Sets Il

Definition 9.6 (LR(0) items and sets)
Let G = (N,X,P,S) € CFGy be start separated by S’ — S and
S' =% aAw =, af16ow (ie., A— 162 € P).
@ [A— (31 (2] is called an LR(0) item for af31.
@ Given v € X*, LR(0)(~y) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) := {LR(0)(7) | v € X"}

Corollary 9.7

Q For every v € X*, LR(0)(~) is finite.

v
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LR(0) Items and Sets Il

Definition 9.6 (LR(0) items and sets)

Let G = (N,X,P,S) € CFGy be start separated by S’ — S and
S' =% aAw =, af16ow (ie., A— 162 € P).
@ [A— (31 (2] is called an LR(0) item for af31.
@ Given v € X*, LR(0)(~y) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) :={LR(0)(7) | v € X*}.

Corollary 9.7

Q For every v € X*, LR(0)(~) is finite.
Q@ LR(0)(G) is finite.

v
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LR(0) Items and Sets Il
Definition 9.6 (LR(0) items and sets)

Let G = (N,X,P,S) € CFGy be start separated by S’ — S and
S' =% aAw =, af16ow (ie., A— 162 € P).
@ [A— (31 (2] is called an LR(0) item for af31.
@ Given v € X*, LR(0)(~y) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) :={LR(0)(7) | v € X*}.

Corollary 9.7

Q For every v € X*, LR(0)(~) is finite.

Q@ LR(0)(G) is finite.

© The item [A — (-] € LR(0)(7y) indicates the possible reduction
(w,af,z) F (w,aA, zi) where mj = A — (3 and v = af.

v
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LR(0) Items and Sets Il
Definition 9.6 (LR(0) items and sets)

Let G = (N,X,P,S) € CFGy be start separated by S’ — S and
S' =% aAw =, af16ow (ie., A— 162 € P).
@ [A— (31 (2] is called an LR(0) item for af31.
@ Given v € X*, LR(0)(~y) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) :={LR(0)(7) | v € X*}.

Q For every v € X*, LR(0)(~) is finite.

Q@ LR(0)(G) is finite.

© The item [A — (-] € LR(0)(7y) indicates the possible reduction
(w,af,z) F (w,aA, zi) where mj = A — (3 and v = af.

Q The item [A — 1 - Y 32] € LR(0)(v) indicates an incomplete handle
p1 (to be completed by shift operations or e-reductions).

v
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LR(0) Conflicts

Definition 9.8 (LR(0) conflicts)
Let G = (N,%,P,S) € CFGx and I € LR(0)(G).

@ [ has a shift/reduce conflict if there exist A — ajaaz, B — € P
such that

[A— ay-aas],[B— 3] €I
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LR(0) Conflicts

Definition 9.8 (LR(0) conflicts)
Let G = (N,%,P,S) € CFGx and I € LR(0)(G).

@ [ has a shift/reduce conflict if there exist A — ajaaz, B — € P
such that

[A— ay-aas],[B— 3] €I

@ [ has a reduce/reduce conflict if there exist A — a, B — § € P with
A # B or o # (3 such that

[A— ], [B— B3] €l
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LR(0) Conflicts

Definition 9.8 (LR(0) conflicts)
Let G = (N,%,P,S) € CFGx and I € LR(0)(G).

@ [ has a shift/reduce conflict if there exist A — ajaaz, B — € P
such that

[A—>Oz1 -aaz],[B —>,B] el

@ [ has a reduce/reduce conflict if there exist A — a, B — § € P with
A # B or o # (3 such that

[A— ], [B— B3] €l

N

Lemma 9.9
G € LR(0) iff no | € LR(0)(G) contains conflicting items.

omitted U
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Computing LR(0) Sets |

Theorem 9.10 (Computing LR(0) sets)

Let G = (N,X,P,S) € CFGyx be start separated by S’ — S and reduced.
©Q LR(0)(e) is the least set such that
o [S" — -S] € LR(0)(¢) and
o if[A— -Bry] € LR(0)(¢) and B — B € P,
then [B — 3] € LR(0)(g).
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Computing LR(0) Sets |

Theorem 9.10 (Computing LR(0) sets)

Let G = (N,X,P,S) € CFGyx be start separated by S’ — S and reduced.
©Q LR(0)(e) is the least set such that
o [S" — -S] € LR(0)(¢) and
o if[A— By] € LR(0)(c) and B — B € P,
then [B — 3] € LR(0)(g).
Q LR(0)(aY) (o € X*,Y € X) is the least set such that
o if[A— v Y] e LR(0)(a),
then [A — 1Y - y] € LR(0)(aY) and
o if[A— 11 Bvy] € LR(0)(aY)and B— 3 €P,
then [B — -B] € LR(0)(aY).
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Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S »-B|C
B —aB|b
C —aClc
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Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S »-B|C
B —aB|b
C —aClc

I = LR(O)(): [S' — -S]

[S" — -S] € LR(0)(e)
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Computing LR(0) Sets II
Example 9.11 (cf. Example 9.5)

G: =S
S - B|C [A— -By] € LR(0)(e),B = p € P
B —aB|b = [B — -f] € LR(0)(¢)
C —aClc

b:=LRO)e): [S'—-S] [S— B
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Summer Semester 2014 9.18



Computing LR(0) Sets II
Example 9.11 (cf. Example 9.5)

G: =S
S - B|C [A— -By] € LR(0)(e),B = p € P
B —aB|b = [B — -f] € LR(0)(¢)
C —aClc

b:=LRO)e): [S'—=S] [S—-B] [S—-C]
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Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S - B|C [A— -By] € LR(0)(e),B = p € P
B —aB|b = [B — -f] € LR(0)(¢)
C —aClc
I :=LR(0)(e): [S'—-S] [S — -B] [S—-C] [B— -aB]
[B — -b]
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Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S - B|C [A— -By] € LR(0)(e),B = p € P
B —aB|b = [B — -f] € LR(0)(¢)
C —aClc

I :==LR(0)(e): [S"—=-S] [S—-B] [S—-C] [B—-aB]
[B — -b] [C—-aC] [C— ]
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Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S - B | C [A—>W1'YW2] S LR(O)(C\/)
B —aB|b = [A—= 7Y 7] € LR(0)(aY)
C —aClc

lo :=LR(0)(e): [S"—-S] [S—-B] [S—-C] [B—-aB]
[B — -b] [C —-aC] [C— ]
h:=LR0O)S): [S'—S]
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Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S - B | C [A—>W1'YW2] S LR(O)(C\/)
B —aB|b = [A—= 7Y 7] € LR(0)(aY)
C —aClc

I :==LR(0)(e): [S"—-S] [S—-B] [S—-C] [B— -aB]
[B — -b] [C—-aC] [C— -]

L :=LR(0)(S): [S'—= S]]

b= LR(0)(B): [S— B
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Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S - B | C [A—>W1'YW2] S LR(O)(C\/)
B —aB|b = [A—= 7Y 7] € LR(0)(aY)
C —aClc

I :==LR(0)(e): [S"—=-S] [S—-B] [S—-C] [B— -aB]
[B — -b] [C—-aC] [C— ]

(
L :=LR0O)S): [S'—S]
L:=LR(0)(B): [S— B]
I3 :=LR(0)(C): [S— C]




Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S - B | C [A—>W1'YW2] S LR(O)(C\/)
B —aB|b = [A—= 7Y 7] € LR(0)(aY)
C —aClc

I :==LR(0)(e): [S"—=-S] [S—-B] [S—-C] [B— -aB]
[B — -b] [C—-aC] [C— ]

L :=LR(0)(S): [S'—= S]]
L:=LR(0)(B): [S— B]
I :=LR(0)(C): [S— C]
ly ;= LR(0)(a): [B—a-B] [C—a-(C]




Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S - B|C [A— 7 - By] € LR(0)(aY),B— B € P
B —aB|b = [B— -f] € LR(0)(Y)
C —aClc

lo :=LR(0)(e): [S"—-S] [S—-B] [S—-C] [B—-aB]
[B — -b] [C—-aC] [C— -]

L :=LR(0)(S): [S'—= S]]
L:=LR(0)(B): [S— B]
I :=LR(0)(C): [S— C]
ly ;= LR(0)(a): [B—a-B] [C—a-C] [B—-aB] [B—-b]




Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S - B|C [A— 7 - By] € LR(0)(aY),B— B € P
B —aB|b = [B— -f] € LR(0)(Y)
C —aClc

lo ;== LR(0)(¢) : S'—-.S5] [S—:B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C— ]

L :=LR(0)(S): [S'—= S]]
h=LR(0)(B): [S— B]
I3 :=LR(0)(C): [S— C]
ly := LR(0)(a) : B—a-B] [C—a-C] [B—-aB] [B— ‘b

C—-aC] [C— ]




Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S - B | C [A — M- YWQ] S LR(O)(C\/)
B —aB|b = [A—= 7Y 7] € LR(0)(aY)
C —aClc
I := LR(0)(e) : S’ — 5] [S — -B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C— ]
L :=LR(0)(S): [S'— S]]
L:=LR(0)(B): [S— B]
I3 :=LR(0)(C): [S— C]
ls :== LR(0)(a) : B—a-B] [C—a-C] [B—-aB] [B—-b]
C—-aC] [C— ]
Is := LR(0)(b) : B — b']




Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S »-B|C
B —aB|b
C —aClc

[A — M1 - YWQ] S LR(O)(C\/)
= [A—= 7Y 7] € LR(0)(aY)

S'—-.S5] [S—:B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C— ]

S =S

S — B

S — C]

B—a-B] [C—a-C] [B—-aB] [B—-b]
[C — ]

C — -a(C]
B — b]
C— c




Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S »-B|C
B —aB|b
C —aClc

[A — M1 - YWQ] S LR(O)(C\/)
= [A—= 7Y 7] € LR(0)(aY)

S'—-.S5] [S—:B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C— ]

S =S

S — B

S — C]

B—a-Bl [C—a-C] [B—-aB] [B—-b]
[C — ]

C — -aC]
B — b]
C—c]
B — aB]




Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

G: =S
S »-B|C
B —aB|b
C —aClc

S
|
~
)
—
o
—
L}
o

~~r~r~

VXD IV

~r~r~r~

[A — M1 - YWQ] S LR(O)(C\/)
= [A—= 7Y 7] € LR(0)(aY)

S'—-.S5] [S—:B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C— ]

S =S

S — B

S— C]

B—a-B] [C—a-C] [B—-aB] [B—-b]
[C— ]

C — -aC]
B — b]
C—c]
B — aB]
C — aC]




Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

hi=LRO)e): [ —=-S] [S—=-B [S—-C] [B— B
B — -b] [C—-aC] [C— ]
L :=LR(0)(S): [S'—= S]]
b= LR(O)(B): [S— B]
I3 :=LR(0)(C): [S— C]
ls ;== LR(0)(a) : B—a-B] [C—a-C] [B—-aB] [B—-b]
C—-aC] [C— ]
Is := LR(0)(b) : B — b']
I ;== LR(0)(c) : C—c]
I := LR(0)(aB) : [B — aB/]
Is ;== LR(0)(aC): [C — aC']
(LR(0)(aa) = LR(0)(a) = &, LR(0)(ab) = LR(0)(b) =
LR(0)(ac) = LR(0)(c) = I, ..., lo := LR(0)(y) =0 in aII remaining cases)




Computing LR(0) Sets II

Example 9.11 (cf. Example 9.5)

lo ;== LR(0)(¢) : S"—.S5] [S—B] [S—-C] [B— -aB]
B — -b] [C—-aC] [C— ]
L :=LR(0)(S): [S'—= S]]
b= LR(0)(B): [S— B]
I3 :=LR(0)(C): [S— C]
ls ;== LR(0)(a) : B—a-B] [C—a-C] [B—-aB] [B—-b]
C—-aC] [C— ]
Is := LR(0)(b) : B — b']
I ;== LR(0)(c) : C—c]
I = LR(0)(aB) : [B — aB]
Is ;== LR(0)(aC): [C — aC']
(LR(0)(aa) = LR(0)(a) = &, LR(0)(ab) = LR(0)(b) =
LR(0)(ac) = LR(0)(c) = Is, ..., Iy := LR(0)(~y) = 0 in aII remaining cases)

no conflicts = G € LR(0) (but G ¢ LL(1))




© Examples of LR(0) Conflicts
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Reduce/Reduce Conflicts
Example 9.12

G: =S
S — Aa|Bb
A —a
B — a
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Reduce/Reduce Conflicts
Example 9.12

G: §—S
S — Aa|Bb
A —a
B —a
LR(O)(e): [S"—-S] [S—-Aa] [S— -Bb] [A—-a] [B— -4

LR(0)(S): [S'— S
LR(O)(A): [S—A-4]
B): [S— B-3
LR(0)(a) : [A— a] [B — a]

Aa): [S — Aa]
Ba): [S — Ba]




Reduce/Reduce Conflicts
Example 9.12

G: =S
S — Aa|Bb
A —a
B — a

e): [S"—-S] [S—-Aa [S— Bb] [A—-a] [B— -3
): [S"— S]]

) [S—A-q]

): [S— B-4

a): [A—a] [B — a]

Aa): [S — Aa]

Ba): [S — Ba]

Note: G is unambiguous




Shift/Reduce Conflicts

Example 9.13

G: =S
S —aS|a
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Shift/Reduce Conflicts

Example 9.13

G: =S
S —aS|a
LR(O)(e): [S"—-S] [S—-aS] [S— -9

[S—a-S] [S—:aS] [S—-a] [S— a]

(0)(

LR(O)(S): [S'— S]]
(0)(a) :
(0)(aS) : [S — aS']




Shift/Reduce Conflicts

Example 9.13

G: =S
S —aS|a

0)e): [S"—-S] [S—-aS] [S— -a

0)(S): [5"— 5]

LR(0)(a): [S—a-S] [S—:aS] [S—-a [S— a]
(0)(aS) : [S — aS]

Note: G is unambiguous
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© LR(0) Parsing

m Compiler Construction Summer Semester 2014 9.22



The goto Function |

Observation: if G € LR(0), then LR(0)(+y) yields deterministic
shift /reduce decision for NBA(G) in a configuration with pushdown ~
= new pushdown alphabet: LR(0)(G) in place of X
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The goto Function |

Observation: if G € LR(0), then LR(0)(+y) yields deterministic
shift /reduce decision for NBA(G) in a configuration with pushdown ~
= new pushdown alphabet: LR(0)(G) in place of X

Moreover LR(0)(vY) is determined by LR(0)(y) and Y but independent
from v in the following sense:

LR(0)(7) = LR(0)(v") == LR(0)(vY) = LR(0)(v'Y)
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The goto Function |

Observation: if G € LR(0), then LR(0)(+y) yields deterministic
shift /reduce decision for NBA(G) in a configuration with pushdown ~
= new pushdown alphabet: LR(0)(G) in place of X

Moreover LR(0)(vY) is determined by LR(0)(y) and Y but independent
from v in the following sense:

LR(0)(7) = LR(0)(v") == LR(0)(vY) = LR(0)(v'Y)

Definition 9.14 (LR(0) goto function)

The function goto : LR(0)(G) x X — LR(0)(G) is determined by

goto(/,Y)=1" iff there exists v € X* such that
I = LR(0)(~) and I’ = LR(0)(7Y).
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The goto Function |l

Example 9.15 (cf. Example 9.11)

Il ;== LR(0)(e) : [S" — 5]
[S—-B] [S— (]
[B — -aB] [B — -b]
[C — -aC] [C — ]

L :=LR(O)S): [S'— S]]

h:=LR(0)(B): [S— B]

I :=LR(0)(C): [S— C]

ly ;== LR(0)(a): [B—a-B][C—a-C(]
[B — -aB] [B — -b]
[C — -aC] [C — ]

I .= LR(0)(b) : [B — b]

lo == LR(0)(c): [C — c]

l .= LR(0)(aB) : [B — aB]

Is := LR(0)(aC) : [C — aC}]

Ig = @




The goto Function |l

Example 9.15 (cf. Example 9.11)

Il ;== LR(0)(e) : [S" — 5]
[S—-B] [S—-C] goto|S B C a b ¢
[B—) aB] [B—) b] Ih |h b L lyls I
[C — -aC] [C — ] h
L= LR(O)(S) : [5, — 5] I3
h:=LR(0)(B): [S— B] I3
I = LR(O)(C) : [5 — C] Iy Iz Ig Iy Is I
Iy :LR(O)(a) [B—>aB] [C—>aC] Is
[B — -aB] [B — -b] ls
[C — -aC] [C — (] Iz
I .= LR(0)(b) : [B — b] I
lo == LR(0)(c): [C — c] Iy
lz .= LR(0)(aB) : [B — aB]
;3 = 6R(O)(3C) 1 [C — aC] (empty = )
9 1=
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The goto Function Il

Example 9.15 (continued)

Representation of goto funtion as finite automaton:

EIIN
(5~ 5]

A

N 5] b

[S" — -S]
k5= Bllsiz 1 th [a 2 5 SHB=
[C — -aC] [C — -]

—r ~
EE |

P ES e BCSa
[B — -aB] [B — -b]
[C — -aC] [C — ] C

vE=E]E U [C= 1]

a
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The LR(0) Action Function

The parsing automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: 79 =S — S)
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The LR(0) Action Function

The parsing automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: 79 =S — S)

Definition 9.16 (LR(0) action function)

The LR(0) action function
act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by

redi  ifi#0,mi=A—aand [A—a]el
shift  if [A— a1 -aan] €/

accept if [S'— S ]el

error  if =1

act(l) :=
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The LR(0) Action Function

The parsing automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: 79 =S — S)

Definition 9.16 (LR(0) action function)

The LR(0) action function
act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by

redi  ifi#0,mi=A—aand [A—a]el
shift  if [A— a1 -aan] €/

accept if [S'— S ]el

error  if =1

act(l) :=

Corollary 9.17
For every G € CFGyx, G € LR(0) iff act is well defined.
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The LR(0) Action Function

The parsing automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: 79 =S — S)

Definition 9.16 (LR(0) action function)

The LR(0) action function
act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by

redi  ifi#0,mi=A—aand [A—a]el
shift  if [A— a1 -aan] €/

accept if [S'— S ]el

error  if =1

act(l) :=

Corollary 9.17
For every G € CFGyx, G € LR(0) iff act is well defined.
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