Compiler Construction

Lecture 9: Syntax Analysis V (LR(k)) Grammars)

Thomas Noll

Lehrstuhl für Informatik 2 (Software Modeling and Verification)

RWTHAACHEN UNIVERSITY

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

Outline

- Recap: Nondeterministic Bottom-Up Parsing
- 2 Resolving Termination Nondeterminism
- \bigcirc *LR*(k) Grammars
- 4 LR(0) Grammars
- $\boxed{5}$ Examples of LR(0) Conflicts
- 6 LR(0) Parsing

Bottom-Up Parsing

Approach:

- **①** Given $G \in CFG_{\Sigma}$, construct a nondeterministic bottom-up parsing automaton (NBA) which accepts L(G) and which additionally computes corresponding (reversed) rightmost analyses
 - input alphabet: Σ
 - pushdown alphabet: X
 - output alphabet: [p] (where p := |P|)
 - state set: omitted
 - transitions:

shift: shifting input symbols onto the pushdown reduce: replacing the right-hand side of a production by its left-hand side (= inverse expansion steps)

2 Remove nondeterminism by allowing lookahead on the input: $G \in LR(k)$ iff L(G) recognizable by deterministic bottom-up parsing automaton with lookahead of k symbols

Nondeterministic Bottom-Up Automaton I

Definition (Nondeterministic bottom-up parsing automaton)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$. The nondeterministic bottom-up parsing automaton of G, NBA(G), is defined by the following components.

- Input alphabet: Σ
- Pushdown alphabet: X
- Output alphabet: [p]
- Configurations: $\Sigma^* \times X^* \times [p]^*$ (top of pushdown to the right)
- Transitions for $w \in \Sigma^*$, $\alpha \in X^*$, and $z \in [p]^*$: shifting steps: $(aw, \alpha, z) \vdash (w, \alpha a, z)$ if $a \in \Sigma$ reduction steps: $(w, \alpha \beta, z) \vdash (w, \alpha A, zi)$ if $\pi_i = A \rightarrow \beta$
- Initial configuration for $w \in \Sigma^*$: $(w, \varepsilon, \varepsilon)$
- Final configurations: $\{\varepsilon\} \times \{S\} \times [p]^*$

Nondeterminisn in NBA(G)

Observation: NBA(G) is generally nondeterministic

• Shift or reduce? Example:

$$(bw, \alpha a, z) \vdash \begin{cases} (w, \alpha ab, z) \\ (bw, \alpha A, zi) \end{cases}$$
 if $\pi_i = A \rightarrow a$

If reduce: which "handle" β? Example:

$$(w, \alpha ab, z) \vdash \begin{cases} (w, \alpha A, zi) \\ (w, \alpha aB, zj) \end{cases}$$
 if $\pi_i = A \rightarrow ab$ and $\pi_j = B \rightarrow b$

• If reduce β : which left-hand side A? Example:

$$(w, \alpha a, z) \vdash \begin{cases} (w, \alpha A, zi) \\ (w, \alpha B, zj) \end{cases}$$
 if $\pi_i = A \rightarrow a$ and $\pi_j = B \rightarrow a$

• When to terminate parsing? Example:

$$\underbrace{(\varepsilon,S,z)}_{\text{final}} \vdash (\varepsilon,A,zi) \text{ if } \pi_i = A \rightarrow S$$

Outline

- 1 Recap: Nondeterministic Bottom-Up Parsing
- Resolving Termination Nondeterminism
- \bigcirc *LR*(k) Grammars
- 4 LR(0) Grammars
- $\boxed{5}$ Examples of LR(0) Conflicts
- 6 LR(0) Parsing

General assumption to avoid nondeterminism of last type: every grammar is start separated

Definition 9.1 (Start separation)

A grammar $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ is called start separated if S only occurs in productions of the form $S \to A$ where $A \neq S$.

General assumption to avoid nondeterminism of last type: every grammar is start separated

Definition 9.1 (Start separation)

A grammar $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ is called start separated if S only occurs in productions of the form $S \to A$ where $A \neq S$.

- ullet Start separation always possible by adding S' o S with new start symbol S'
- From now on consider only reduced grammars of this form $(\pi_0 := S' \to S)$

Start separation removes last form of nondeterminism ("When to terminate parsing?"):

Lemma 9.2

If $G \in CFG_{\Sigma}$ is start separated, then no successor of a final configuration (ε, S', z) in NBA(G) is again a final configuration. (Thus parsing should be stopped in the first final configuration.)

Start separation removes last form of nondeterminism ("When to terminate parsing?"):

Lemma 9.2

If $G \in CFG_{\Sigma}$ is start separated, then no successor of a final configuration (ε, S', z) in NBA(G) is again a final configuration. (Thus parsing should be stopped in the first final configuration.)

Proof.

• To (ε, S', z) , only reductions by ε -productions can be applied:

$$(\varepsilon, S', z) \vdash (\varepsilon, S'A, zi)$$
 if $\pi_i = A \rightarrow \varepsilon$

Start separation removes last form of nondeterminism ("When to terminate parsing?"):

Lemma 9.2

If $G \in CFG_{\Sigma}$ is start separated, then no successor of a final configuration (ε, S', z) in NBA(G) is again a final configuration. (Thus parsing should be stopped in the first final configuration.)

Proof.

• To (ε, S', z) , only reductions by ε -productions can be applied:

$$(\varepsilon, S', z) \vdash (\varepsilon, S'A, zi)$$
 if $\pi_i = A \rightarrow \varepsilon$

• Thereafter, only reductions by productions of the form $A_0 \rightarrow A_1 \dots A_n \ (n \ge 0)$ can be applied

Start separation removes last form of nondeterminism ("When to terminate parsing?"):

Lemma 9.2

If $G \in CFG_{\Sigma}$ is start separated, then no successor of a final configuration (ε, S', z) in NBA(G) is again a final configuration. (Thus parsing should be stopped in the first final configuration.)

Proof.

• To (ε, S', z) , only reductions by ε -productions can be applied:

$$(\varepsilon, S', z) \vdash (\varepsilon, S'A, zi)$$
 if $\pi_i = A \rightarrow \varepsilon$

- Thereafter, only reductions by productions of the form $A_0 \rightarrow A_1 \dots A_n \ (n \ge 0)$ can be applied
- Every resulting configuration is of the (non-final) form

$$(\varepsilon, S'B_1 \dots B_k, z)$$
 where $k \ge 1$

Outline

- Recap: Nondeterministic Bottom-Up Parsing
- Resolving Termination Nondeterminism
- \bigcirc LR(k) Grammars
- 4 LR(0) Grammars
- 6 LR(0) Parsing

$\overline{LR(k)}$ Grammars I

Goal: resolve remaining nondeterminism of NBA(G) by supporting lookahead of $k \in \mathbb{N}$ symbols on the input

 \implies *LR*(*k*): reading of input from left to right with *k*-lookahead, computing a rightmost analysis

Goal: resolve remaining nondeterminism of NBA(G) by supporting lookahead of $k \in \mathbb{N}$ symbols on the input

 \implies *LR*(*k*): reading of input from left to right with *k*-lookahead, computing a rightmost analysis

Definition 9.3 (LR(k) grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated and $k \in \mathbb{N}$. Then G has the LR(k) property (notation: $G \in LR(k)$) if for all rightmost derivations of the form

$$S \begin{cases} \Rightarrow_r^* \alpha A w \Rightarrow_r \alpha \beta w \\ \Rightarrow_r^* \gamma B x \Rightarrow_r \alpha \beta y \end{cases}$$

such that $\operatorname{first}_k(w) = \operatorname{first}_k(y)$, it follows that $\alpha = \gamma$, A = B, and x = y.

- If $G \in LR(k)$, then the reduction of $\alpha\beta w$ to αAw is already determined by $\operatorname{first}_k(w)$.
- Therefore NBA(G) in configuration $(w, \alpha\beta, z)$ can decide to reduce and how to reduce.

- If $G \in LR(k)$, then the reduction of $\alpha\beta w$ to αAw is already determined by $\operatorname{first}_k(w)$.
- Therefore NBA(G) in configuration $(w, \alpha\beta, z)$ can decide to reduce and how to reduce.
- Computation of NBA(G) for $S \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta w$: $(w'w, \varepsilon, \varepsilon) \vdash^* (w, \alpha \beta, z) \vdash^* (w, \alpha A, zi) \vdash \dots$ where $\pi_i = A \rightarrow \beta$

- If $G \in LR(k)$, then the reduction of $\alpha\beta w$ to αAw is already determined by $\operatorname{first}_k(w)$.
- Therefore NBA(G) in configuration $(w, \alpha\beta, z)$ can decide to reduce and how to reduce.
- Computation of NBA(G) for $S \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta w$: $(w'w, \varepsilon, \varepsilon) \vdash^* (w, \alpha \beta, z) \vdash^* (w, \alpha A, zi) \vdash \dots$ where $\pi_i = A \rightarrow \beta$
- Computation of NBA(G) for $S \Rightarrow_r^* \gamma Bx \Rightarrow_r \alpha \beta y$:
 - with direct reduction $(y = x, \alpha\beta = \gamma\delta, \pi_j = B \rightarrow \delta)$:

$$(y'y, \varepsilon, \varepsilon) \vdash^* (y, \alpha\beta, z') = (x, \gamma\delta, z') \vdash^{\text{red } j} (x, \gamma B, z'j) \vdash \dots$$

Remarks:

- If $G \in LR(k)$, then the reduction of $\alpha\beta w$ to αAw is already determined by $\operatorname{first}_k(w)$.
- Therefore NBA(G) in configuration $(w, \alpha\beta, z)$ can decide to reduce and how to reduce.
- Computation of NBA(G) for $S \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta w$: $(w'w, \varepsilon, \varepsilon) \vdash^* (w, \alpha \beta, z) \vdash^* (w, \alpha A, zi) \vdash \dots$
 - where $\pi_i = A \rightarrow \beta$
- Computation of NBA(G) for $S \Rightarrow_r^* \gamma Bx \Rightarrow_r \alpha \beta y$:
 - with direct reduction $(y = x, \alpha\beta = \gamma\delta, \pi_j = B \rightarrow \delta)$:

$$(y'y, \varepsilon, \varepsilon) \vdash^* (y, \alpha\beta, z') = (x, \gamma\delta, z') \vdash^{\text{red } j} (x, \gamma B, z'j) \vdash \dots$$

• with previous shifts $(y = x'x, \alpha\beta x' = \gamma\delta, \pi_i = B \rightarrow \delta)$:

Outline

- Recap: Nondeterministic Bottom-Up Parsing
- Resolving Termination Nondeterminism
- \bigcirc *LR*(k) Grammars
- 4 LR(0) Grammars
- $\boxed{5}$ Examples of LR(0) Conflicts
- 6 LR(0) Parsing

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is just based on the contents of the pushdown, without any lookahead.

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is just based on the contents of the pushdown, without any lookahead.

Corollary 9.4 (LR(0) grammar)

 $G \in CFG_{\Sigma}$ has the LR(0) property if for all rightmost derivations of the form

$$S \begin{cases} \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta w \\ \Rightarrow_r^* \gamma Bx \Rightarrow_r \alpha \beta y \end{cases}$$

it follows that $\alpha = \gamma$, A = B, and $x = \gamma$.

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is just based on the contents of the pushdown, without any lookahead.

Corollary 9.4 (LR(0) grammar)

 $G \in CFG_{\Sigma}$ has the LR(0) property if for all rightmost derivations of the form

$$S \begin{cases} \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta w \\ \Rightarrow_r^* \gamma Bx \Rightarrow_r \alpha \beta y \end{cases}$$

it follows that $\alpha = \gamma$, A = B, and x = y.

Goal: derive a finite information from the pushdown which suffices to resolve the nondeterminism (similar to abstraction of right context in LL parsing by fo-sets)

$$G: S' \rightarrow S \qquad (0)$$

$$S \rightarrow B \mid C \qquad (1,2)$$

$$B \rightarrow aB \mid b \qquad (3,4)$$

$$C \rightarrow aC \mid c \qquad (5,6)$$

NBA(
$$G$$
): (ab, ε , ε)

NBA(
$$G$$
): $(ab, \varepsilon, \varepsilon)$ $\vdash (b, a, \varepsilon)$

$$G: S' \rightarrow S \qquad (0)$$

$$S \rightarrow B \mid C \qquad (1,2)$$

$$B \rightarrow aB \mid b \qquad (3,4)$$

$$C \rightarrow aC \mid c \qquad (5,6)$$

NBA(
$$G$$
):
($ab, \varepsilon, \varepsilon$)
 \vdash (b, a, ε)
 \vdash ($\varepsilon, ab, \varepsilon$)

$$G: S' \rightarrow S \qquad (0)$$

$$S \rightarrow B \mid C \qquad (1,2)$$

$$B \rightarrow aB \mid b \qquad (3,4)$$

$$C \rightarrow aC \mid c \qquad (5,6)$$

NBA(
$$G$$
):
($ab, \varepsilon, \varepsilon$)
 \vdash (b, a, ε)
 \vdash ($\varepsilon, ab, \varepsilon$)
 \vdash ($\varepsilon, aB, 4$)

$$G: S' \rightarrow S \qquad (0)$$

$$S \rightarrow B \mid C \qquad (1,2)$$

$$B \rightarrow aB \mid b \qquad (3,4)$$

$$C \rightarrow aC \mid c \qquad (5,6)$$

NBA(
$$G$$
):
(ab , ε , ε)
 \vdash (b , a , ε)
 \vdash (ε , ab , ε)
 \vdash (ε , aB , 4)
 \vdash (ε , B , 43)

Example 9.5

$$G: S' \rightarrow S \qquad (0)$$

$$S \rightarrow B \mid C \qquad (1,2)$$

$$B \rightarrow aB \mid b \qquad (3,4)$$

$$C \rightarrow aC \mid c \qquad (5,6)$$

NBA(G): $(ab, \varepsilon, \varepsilon)$ $\vdash (b, a, \varepsilon)$ $\vdash (\varepsilon, ab, \varepsilon)$ $\vdash (\varepsilon, aB, 4)$ $\vdash (\varepsilon, B, 43)$ $\vdash (\varepsilon, S, 431)$

Example 9.5

$$G: S' \rightarrow S \qquad (0)$$

$$S \rightarrow B \mid C \qquad (1,2)$$

$$B \rightarrow aB \mid b \qquad (3,4)$$

$$C \rightarrow aC \mid c \qquad (5,6)$$

NBA(G): (ab, ε , ε) \vdash (b, a, ε) \vdash (ε , ab, ε) \vdash (ε , aB, 4) \vdash (ε , B, 43) \vdash (ε , S, 431) \vdash (ε , S', 4310)

Definition 9.6 (LR(0)) items and sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and $S' \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta_1 \beta_2 w$ (i.e., $A \to \beta_1 \beta_2 \in P$).

• $[A \rightarrow \beta_1 \cdot \beta_2]$ is called an LR(0) item for $\alpha\beta_1$.

Definition 9.6 (LR(0)) items and sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and $S' \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta_1 \beta_2 w$ (i.e., $A \to \beta_1 \beta_2 \in P$).

- $[A \rightarrow \beta_1 \cdot \beta_2]$ is called an LR(0) item for $\alpha\beta_1$.
- Given $\gamma \in X^*$, $LR(0)(\gamma)$ denotes the set of all LR(0) items for γ , called the LR(0) set (or: LR(0) information) of γ .

Definition 9.6 (LR(0)) items and sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and $S' \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta_1 \beta_2 w$ (i.e., $A \to \beta_1 \beta_2 \in P$).

- $[A \rightarrow \beta_1 \cdot \beta_2]$ is called an LR(0) item for $\alpha\beta_1$.
- Given $\gamma \in X^*$, $LR(0)(\gamma)$ denotes the set of all LR(0) items for γ , called the LR(0) set (or: LR(0) information) of γ .
- $LR(0)(G) := \{LR(0)(\gamma) \mid \gamma \in X^*\}.$

Definition 9.6 (LR(0)) items and sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and $S' \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta_1 \beta_2 w$ (i.e., $A \to \beta_1 \beta_2 \in P$).

- $[A \rightarrow \beta_1 \cdot \beta_2]$ is called an LR(0) item for $\alpha\beta_1$.
- Given $\gamma \in X^*$, $LR(0)(\gamma)$ denotes the set of all LR(0) items for γ , called the LR(0) set (or: LR(0) information) of γ .
- $LR(0)(G) := \{LR(0)(\gamma) \mid \gamma \in X^*\}.$

Corollary 9.7

• For every $\gamma \in X^*$, $LR(0)(\gamma)$ is finite.

Definition 9.6 (LR(0)) items and sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and $S' \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta_1 \beta_2 w$ (i.e., $A \to \beta_1 \beta_2 \in P$).

- $[A \rightarrow \beta_1 \cdot \beta_2]$ is called an LR(0) item for $\alpha\beta_1$.
- Given $\gamma \in X^*$, $LR(0)(\gamma)$ denotes the set of all LR(0) items for γ , called the LR(0) set (or: LR(0) information) of γ .
- $LR(0)(G) := \{LR(0)(\gamma) \mid \gamma \in X^*\}.$

Corollary 9.7

- **1** For every $\gamma \in X^*$, $LR(0)(\gamma)$ is finite.

LR(0) Items and Sets II

Definition 9.6 (LR(0)) items and sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and $S' \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta_1 \beta_2 w$ (i.e., $A \to \beta_1 \beta_2 \in P$).

- $[A \rightarrow \beta_1 \cdot \beta_2]$ is called an LR(0) item for $\alpha\beta_1$.
- Given $\gamma \in X^*$, $LR(0)(\gamma)$ denotes the set of all LR(0) items for γ , called the LR(0) set (or: LR(0) information) of γ .
- $LR(0)(G) := \{LR(0)(\gamma) \mid \gamma \in X^*\}.$

Corollary 9.7

- **1** For every $\gamma \in X^*$, $LR(0)(\gamma)$ is finite.
- The item $[A \to \beta \cdot] \in LR(0)(\gamma)$ indicates the possible reduction $(w, \alpha\beta, z) \vdash (w, \alpha A, zi)$ where $\pi_i = A \to \beta$ and $\gamma = \alpha\beta$.

LR(0) Items and Sets II

Definition 9.6 (LR(0)) items and sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and $S' \Rightarrow_r^* \alpha Aw \Rightarrow_r \alpha \beta_1 \beta_2 w$ (i.e., $A \to \beta_1 \beta_2 \in P$).

- $[A \rightarrow \beta_1 \cdot \beta_2]$ is called an LR(0) item for $\alpha\beta_1$.
- Given $\gamma \in X^*$, $LR(0)(\gamma)$ denotes the set of all LR(0) items for γ , called the LR(0) set (or: LR(0) information) of γ .
- $LR(0)(G) := \{LR(0)(\gamma) \mid \gamma \in X^*\}.$

Corollary 9.7

- **1** For every $\gamma \in X^*$, $LR(0)(\gamma)$ is finite.
- **3** The item $[A \to \beta \cdot] \in LR(0)(\gamma)$ indicates the possible reduction $(w, \alpha\beta, z) \vdash (w, \alpha A, zi)$ where $\pi_i = A \to \beta$ and $\gamma = \alpha\beta$.
- The item $[A \to \beta_1 \cdot Y \beta_2] \in LR(0)(\gamma)$ indicates an incomplete handle β_1 (to be completed by shift operations or ε -reductions).

LR(0) Conflicts

Definition 9.8 (LR(0) conflicts)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ and $I \in LR(0)(G)$.

• I has a shift/reduce conflict if there exist $A \to \alpha_1 a \alpha_2$, $B \to \beta \in P$ such that

$$[A \to \alpha_1 \cdot a\alpha_2], [B \to \beta \cdot] \in I.$$

LR(0) Conflicts

Definition 9.8 (LR(0)) conflicts

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ and $I \in LR(0)(G)$.

• I has a shift/reduce conflict if there exist $A \to \alpha_1 a \alpha_2$, $B \to \beta \in P$ such that

$$[A \to \alpha_1 \cdot a\alpha_2], [B \to \beta \cdot] \in I.$$

• I has a reduce/reduce conflict if there exist $A \to \alpha, B \to \beta \in P$ with $A \neq B$ or $\alpha \neq \beta$ such that

$$[A \to \alpha \cdot], [B \to \beta \cdot] \in I.$$

LR(0) Conflicts

Definition 9.8 (LR(0) conflicts)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ and $I \in LR(0)(G)$.

• I has a shift/reduce conflict if there exist $A \to \alpha_1 a \alpha_2$, $B \to \beta \in P$ such that

$$[A \to \alpha_1 \cdot a\alpha_2], [B \to \beta \cdot] \in I.$$

• I has a reduce/reduce conflict if there exist $A \to \alpha, B \to \beta \in P$ with $A \neq B$ or $\alpha \neq \beta$ such that

$$[A \to \alpha \cdot], [B \to \beta \cdot] \in I.$$

Lemma 9.9

 $G \in LR(0)$ iff no $I \in LR(0)(G)$ contains conflicting items.

Proof.

omitted

Computing $\overline{LR}(0)$ **Sets I**

Theorem 9.10 (Computing LR(0) sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and reduced.

- **1** $LR(0)(\varepsilon)$ is the least set such that
 - $[S' \rightarrow \cdot S] \in LR(0)(\varepsilon)$ and
 - if $[A \to \cdot B\gamma] \in LR(0)(\varepsilon)$ and $B \to \beta \in P$, then $[B \to \cdot \beta] \in LR(0)(\varepsilon)$.

Computing $\overline{LR}(0)$ **Sets I**

Theorem 9.10 (Computing LR(0) sets)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ be start separated by $S' \to S$ and reduced.

- **1** $LR(0)(\varepsilon)$ is the least set such that
 - $[S' \rightarrow \cdot S] \in LR(0)(\varepsilon)$ and
 - if $[A \rightarrow \cdot B\gamma] \in LR(0)(\varepsilon)$ and $B \rightarrow \beta \in P$, then $[B \rightarrow \cdot \beta] \in LR(0)(\varepsilon)$.
- **2** $LR(0)(\alpha Y)$ $(\alpha \in X^*, Y \in X)$ is the least set such that
 - if $[A \to \gamma_1 \cdot Y \gamma_2] \in LR(0)(\alpha)$, then $[A \to \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y)$ and
 - if $[A \to \gamma_1 \cdot B\gamma_2] \in LR(0)(\alpha Y)$ and $B \to \beta \in P$, then $[B \to \cdot \beta] \in LR(0)(\alpha Y)$.

$$G: S' \to S$$

$$S \to B \mid C$$

$$B \to aB \mid b$$

$$C \to aC \mid c$$

```
G: S' \to S \\ S \to B \mid C \\ B \to aB \mid b \\ C \to aC \mid c 
[S' \to \cdot S] \in LR(0)(\varepsilon)
I_0 := LR(0)(\varepsilon) : [S' \to \cdot S]
```

```
\begin{array}{lll} G: & S' \to S \\ & S \to B \mid C \\ & B \to aB \mid b \\ & C \to aC \mid c \end{array} \qquad \begin{array}{ll} [A \to \cdot B\gamma] \in LR(0)(\varepsilon), B \to \beta \in P \\ \Longrightarrow & [B \to \cdot \beta] \in LR(0)(\varepsilon) \end{array}\longrightarrow [S' \to \cdot S] \qquad [S \to \cdot B]
```

```
G: S' \to S \\ S \to B \mid C \\ B \to aB \mid b \\ C \to aC \mid c 
[A \to \cdot B\gamma] \in LR(0)(\varepsilon), B \to \beta \in P \\ \Longrightarrow [B \to \cdot \beta] \in LR(0)(\varepsilon)
I_0 := LR(0)(\varepsilon): [S' \to \cdot S] [S \to \cdot B] [S \to \cdot C]
```

```
\begin{array}{lll} G: & S' \to S \\ & S \to B \mid C \\ & B \to aB \mid b \\ & C \to aC \mid c \end{array} \qquad \begin{array}{ll} [A \to \cdot B\gamma] \in LR(0)(\varepsilon), B \to \beta \in P \\ \Longrightarrow & [B \to \cdot \beta] \in LR(0)(\varepsilon) \end{array} I_0 := LR(0)(\varepsilon): \qquad \begin{array}{ll} [S' \to \cdot S] \\ [B \to \cdot b] \end{array} \qquad \begin{array}{ll} [S \to \cdot B] \end{array} \qquad \begin{array}{ll} [S \to \cdot C] \end{array} \qquad \begin{array}{ll} [B \to \cdot aB] \end{array}
```

```
G: S' \to S \\ S \to B \mid C \\ B \to aB \mid b \\ C \to aC \mid c 
[A \to \cdot B\gamma] \in LR(0)(\varepsilon), B \to \beta \in P \\ \Longrightarrow [B \to \cdot \beta] \in LR(0)(\varepsilon)
I_0 := LR(0)(\varepsilon): [S' \to \cdot S] \quad [S \to \cdot B] \quad [S \to \cdot C] \quad [B \to \cdot aB]
[B \to \cdot b] \quad [C \to \cdot aC] \quad [C \to \cdot c]
```

```
G: S' \to S \\ S \to B \mid C \\ B \to aB \mid b \\ C \to aC \mid c 
[A \to \gamma_1 \cdot Y \gamma_2] \in LR(0)(\alpha) \\ \Longrightarrow [A \to \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y) 
I_0 := LR(0)(\varepsilon): [S' \to S] \\ [B \to b] [C \to aC] [C \to c]
I_1 := LR(0)(S): [S' \to S\cdot]
```

```
G: S' \to S \\ S \to B \mid C \\ B \to aB \mid b \\ C \to aC \mid c 
[A \to \gamma_1 \cdot Y \gamma_2] \in LR(0)(\alpha) \\ \Longrightarrow [A \to \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y) 
I_0 := LR(0)(\varepsilon): [S' \to S] \\ [B \to b] [C \to aC] [C \to c] 
I_1 := LR(0)(S): [S' \to S \cdot] \\ I_2 := LR(0)(B): [S \to B \cdot]
```

```
G: S' \to S
S \to B \mid C
B \to aB \mid b
C \to aC \mid c
I_0 := LR(0)(\varepsilon): [S' \to \cdot S] [S \to \cdot B] [S \to \cdot C]
I_0 := LR(0)(S): [S' \to S \cdot B] [C \to \cdot aC]
I_1 := LR(0)(S): [S' \to S \cdot B]
I_2 := LR(0)(B): [S \to B \cdot B]
I_3 := LR(0)(C): [S \to C \cdot B]
```

```
G: S' \to S
S \to B \mid C
B \to aB \mid b
C \to aC \mid c
I_0 := LR(0)(\varepsilon): [S' \to \cdot S] \quad [S \to \cdot B] \quad [S \to \cdot C] \quad [B \to \cdot aB]
I_1 := LR(0)(S): [S' \to S \cdot]
I_2 := LR(0)(B): [S \to B \cdot]
I_3 := LR(0)(C): [S \to C \cdot]
I_4 := LR(0)(A): [B \to A \cdot B] \quad [C \to A \cdot C]
```

```
G: S' \to S
S \to B \mid C
B \to aB \mid b
C \to aC \mid c
I_0 := LR(0)(\varepsilon): [S' \to \cdot S] \quad [S \to \cdot B] \quad [S \to \cdot C] \quad [B \to \cdot aB]
I_2 := LR(0)(S): [S' \to S \cdot ]
I_3 := LR(0)(B): [S \to B \cdot ]
I_4 := LR(0)(C): [S \to C \cdot ]
I_5 := LR(0)(C): [S \to C \cdot ]
I_6 := LR(0)(C): [S \to C \cdot ]
I_8 := LR(0)(C): [S \to C \cdot ]
I_9 :=
```

```
G: S' \to S
S \to B \mid C
B \to aB \mid b
C \to aC \mid c
I_0 := LR(0)(\varepsilon): [S' \to S] [S \to B] [S \to c] [B \to aB]
I_1 := LR(0)(S): [S' \to S] [C \to aC] [C \to c]
I_2 := LR(0)(S): [S' \to S]
I_3 := LR(0)(C): [S \to C]
I_4 := LR(0)(a): [S \to a] [C \to a \cdot C] [B \to aB] [B \to b]
I_5 := LR(0)(a): [S \to C]
I_6 := LR(0)(C): [S \to C]
I_7 := LR(0)(C): [S \to C]
I_8 := LR(0)(C): [S \to C]
I_9 := LR(0)(C): [S \to c]
```

```
G: S' \to S
          S \rightarrow B \mid C
                                               [A \rightarrow \gamma_1 \cdot Y \gamma_2] \in LR(0)(\alpha)
          B \rightarrow aB \mid b
                                                \implies [A \rightarrow \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y)
          C \rightarrow aC \mid c
                                    [S' \to \cdot S] \qquad [S \to \cdot B] \qquad [S \to \cdot C] \qquad [B \to \cdot aB] 
 [B \to \cdot b] \qquad [C \to \cdot aC] \qquad [C \to \cdot c] 
I_0 := LR(0)(\varepsilon):
I_1 := LR(0)(S): S' \rightarrow S'
I_2 := LR(0)(B) : [S \to B \cdot]
                                  [S \to C \cdot]
I_3 := LR(0)(C):
I_4 := LR(0)(a):
                                [B 
ightarrow a \cdot B] \quad [C 
ightarrow a \cdot C] \quad [B 
ightarrow \cdot aB] \quad [B 
ightarrow \cdot b]
                                     [C \rightarrow \cdot aC] [C \rightarrow \cdot c]
I_5 := LR(0)(b):
                                     [B \rightarrow b \cdot]
```

```
G: S' \to S
           S \rightarrow B \mid C
                                                   [A \rightarrow \gamma_1 \cdot Y \gamma_2] \in LR(0)(\alpha)
           B \rightarrow aB \mid b
                                                    \implies [A \rightarrow \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y)
           C \rightarrow aC \mid c
                                        \begin{array}{ccc} [S' \to \cdot S] & [S \to \cdot B] & [S \to \cdot C] & [B \to \cdot aB] \\ [B \to \cdot b] & [C \to \cdot aC] & [C \to \cdot c] \end{array} 
I_0 := LR(0)(\varepsilon):
                                  \dot{S}' \rightarrow \dot{S}
I_1 := LR(0)(S):
I_2 := LR(0)(B) : [S \to B \cdot]
                                     [S \rightarrow C \cdot ]
I_3 := LR(0)(C):
                                     [B 
ightarrow a \cdot B] \quad [C 
ightarrow a \cdot C] \quad [B 
ightarrow \cdot aB] \quad [B 
ightarrow \cdot b]
I_4 := LR(0)(a):
                                        [C \rightarrow \cdot aC] [C \rightarrow \cdot c]
                                        \begin{bmatrix} B \to b \cdot \\ C \to c \cdot \end{bmatrix}
I_5 := LR(0)(b):
I_6 := LR(0)(c):
```

```
G: S' \to S
           S \rightarrow B \mid C
                                                    [A \rightarrow \gamma_1 \cdot Y \gamma_2] \in LR(0)(\alpha)
           B \rightarrow aB \mid b
                                                     \implies [A \rightarrow \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y)
           C \rightarrow aC \mid c
                                         \begin{array}{ccc} [S' \to \cdot S] & [S \to \cdot B] & [S \to \cdot C] & [B \to \cdot aB] \\ [B \to \cdot b] & [C \to \cdot aC] & [C \to \cdot c] \end{array} 
I_0 := LR(0)(\varepsilon):
                                  [S' \rightarrow S]
I_1 := LR(0)(S):
I_2 := LR(0)(B): [S \rightarrow B \cdot]

I_3 := LR(0)(C): [S \rightarrow C \cdot]
                                    [B \rightarrow a \cdot B] \quad [C \rightarrow a \cdot C] \quad [B \rightarrow \cdot aB] \quad [B \rightarrow \cdot b]
I_4 := LR(0)(a):
                                         [C \rightarrow \cdot aC] [C \rightarrow \cdot c]
I_5 := LR(0)(b):
                                 [B 	o b \cdot]
I_6 := LR(0)(c):
                                         \dot{} \dot{} \dot{} C \rightarrow c \cdot \dot{}
I_7 := LR(0)(aB) : [B \rightarrow aB \cdot]
```

```
G: S' \to S
          S \rightarrow B \mid C
                                               [A \rightarrow \gamma_1 \cdot Y \gamma_2] \in LR(0)(\alpha)
          B \rightarrow aB \mid b
                                                \implies [A \rightarrow \gamma_1 Y \cdot \gamma_2] \in LR(0)(\alpha Y)
          C \rightarrow aC \mid c
                                   \begin{array}{ccc} [S' \to \cdot S] & [S \to \cdot B] & [S \to \cdot C] & [B \to \cdot aB] \\ [B \to \cdot b] & [C \to \cdot aC] & [C \to \cdot c] \end{array} 
I_0 := LR(0)(\varepsilon):
                               [S' 	o S]
I_1 := LR(0)(S):
I_2 := LR(0)(B): [S \rightarrow B \cdot]

I_3 := LR(0)(C): [S \rightarrow C \cdot]
I_3 := LR(0)(C):
                                 [B \rightarrow a \cdot B] [C \rightarrow a \cdot C] [B \rightarrow \cdot aB] [B \rightarrow \cdot b]
I_4 := LR(0)(a):
                                     [C \rightarrow \cdot aC] [C \rightarrow \cdot c]
I_5 := LR(0)(b):
                               [B \rightarrow b \cdot]
I_6 := LR(0)(c): \quad C \to c\cdot 1
I_7 := LR(0)(aB) : [B \rightarrow aB \cdot]
I_8 := LR(0)(aC) : [C \rightarrow aC \cdot]
```

```
G: S' \to S
               S \rightarrow B \mid C
                B \rightarrow aB \mid b
                C \rightarrow aC \mid c
 \begin{array}{llll} I_0 := LR(0)(\varepsilon): & [S' \to \cdot S] & [S \to \cdot B] & [S \to \cdot C] & [B \to \cdot aB] \\ [B \to \cdot b] & [C \to \cdot aC] & [C \to \cdot c] \\ I_1 := LR(0)(S): & [S' \to S \cdot] \\ I_2 := LR(0)(B): & [S \to B \cdot] \\ I_3 := LR(0)(C): & [S \to C \cdot] \\ I_4 := LR(0)(a): & [B \to a \cdot B] & [C \to a \cdot C] & [B \to \cdot aB] & [B \to \cdot b] \end{array}
                                                 [C \rightarrow \cdot aC] [C \rightarrow \cdot c]
  I_5 := LR(0)(b): \quad \begin{bmatrix} B \to b \cdot \end{bmatrix}

I_6 := LR(0)(c): \quad \begin{bmatrix} C \to c \cdot \end{bmatrix}
  I_7 := LR(0)(aB) : [B \rightarrow aB]
  I_8 := LR(0)(aC): [C \rightarrow aC]
(LR(0)(aa) = LR(0)(a) = I_4, LR(0)(ab) = LR(0)(b) = I_5,
LR(0)(ac) = LR(0)(c) = I_6, ..., I_9 := LR(0)(\gamma) = \emptyset in all remaining cases)
```

Example 9.11 (cf. Example 9.5)

```
G: S' \to S
            S \rightarrow B \mid C
             B \rightarrow aB \mid b
             C \rightarrow aC \mid c
                                   \begin{array}{ccc} [S' \to \cdot S] & [S \to \cdot B] & [S \to \cdot C] & [B \to \cdot aB] \\ [B \to \cdot b] & [C \to \cdot aC] & [C \to \cdot c] \end{array} 
  I_0 := LR(0)(\varepsilon):
 I_1 := LR(0)(S): [S' \rightarrow S] [C \rightarrow aC] [C \rightarrow cC]

I_2 := LR(0)(B): [S \rightarrow B]

I_3 := LR(0)(C): [S \rightarrow C]

I_4 := LR(0)(a): [B \rightarrow a \cdot B] [C \rightarrow a \cdot C] [B \rightarrow aB] [B \rightarrow b]
                                       [C \rightarrow \cdot aC] [C \rightarrow \cdot c]
 I_5 := LR(0)(b): [B \rightarrow b \cdot]

I_6 := LR(0)(c): [C \rightarrow c \cdot]
  I_7 := LR(0)(aB) : [B \rightarrow aB]
  I_8 := LR(0)(aC): [C \rightarrow aC]
(LR(0)(aa) = LR(0)(a) = I_4, LR(0)(ab) = LR(0)(b) = I_5,
LR(0)(ac) = LR(0)(c) = I_6, ..., I_9 := LR(0)(\gamma) = \emptyset in all remaining cases)
```

no conflicts \implies $G \in LR(0)$ (but $G \notin LL(1)$)

Outline

- Recap: Nondeterministic Bottom-Up Parsing
- Resolving Termination Nondeterminism
- \bigcirc *LR*(k) Grammars
- 4 LR(0) Grammars
- 5 Examples of LR(0) Conflicts
- 6 LR(0) Parsing

Reduce/Reduce Conflicts

Example 9.12

$$G: S' \to S$$

$$S \to Aa \mid Bb$$

$$A \to a$$

$$B \to a$$

Reduce/Reduce Conflicts

Example 9.12

```
G: S' \to S
     S \rightarrow Aa \mid Bb
     A \rightarrow a
     B \rightarrow a
LR(0)(B): [S \rightarrow B \cdot a]
LR(0)(a)': [A \rightarrow a\cdot] [B \rightarrow a\cdot]
LR(0)(Aa): [S \rightarrow Aa\cdot]
LR(0)(Ba): [S \rightarrow Ba\cdot]
```

Reduce/Reduce Conflicts

Example 9.12 $G: S' \to S$

```
S \rightarrow Aa \mid Bb
     A \rightarrow a
     B \rightarrow a
LR(0)(B): [S \rightarrow B \cdot a]
LR(0)(a): [A \rightarrow a \cdot] [B \rightarrow a \cdot]
LR(0)(Aa): [S \rightarrow Aa\cdot]
LR(0)(Ba): S \rightarrow Ba
```

Note: G is unambiguous

Shift/Reduce Conflicts

Example 9.13

$$G: S' \to S S \to aS \mid a$$

Shift/Reduce Conflicts

Example 9.13 $G: S' \rightarrow S$

```
S \rightarrow aS \mid a LR(0)(\varepsilon): [S' \rightarrow \cdot S] \quad [S \rightarrow \cdot aS] \quad [S \rightarrow \cdot a] LR(0)(S): [S' \rightarrow S \cdot] LR(0)(a): [S \rightarrow a \cdot S] \quad [S \rightarrow \cdot aS] \quad [S \rightarrow \cdot a] \quad [S \rightarrow a \cdot] LR(0)(aS): [S \rightarrow aS \cdot]
```

Shift/Reduce Conflicts

Example 9.13 $G: S' \to S$

```
S \rightarrow aS \mid a
LR(0)(\varepsilon): [S' \rightarrow \cdot S] \quad [S \rightarrow \cdot aS] \quad [S \rightarrow \cdot a]
LR(0)(S): [S' \rightarrow S \cdot]
LR(0)(a): [S \rightarrow a \cdot S] \quad [S \rightarrow \cdot aS] \quad [S \rightarrow \cdot a] \quad [S \rightarrow a \cdot]
LR(0)(aS): [S \rightarrow aS \cdot]
```

Note: G is unambiguous

Outline

- Recap: Nondeterministic Bottom-Up Parsing
- Resolving Termination Nondeterminism
- \bigcirc *LR*(k) Grammars
- 4 LR(0) Grammars
- $\boxed{5}$ Examples of LR(0) Conflicts
- 6 LR(0) Parsing

The goto Function I

```
Observation: if G \in LR(0), then LR(0)(\gamma) yields deterministic shift/reduce decision for NBA(G) in a configuration with pushdown \gamma \implies new pushdown alphabet: LR(0)(G) in place of X
```

The goto Function I

Observation: if $G \in LR(0)$, then $LR(0)(\gamma)$ yields deterministic shift/reduce decision for NBA(G) in a configuration with pushdown γ \Longrightarrow new pushdown alphabet: LR(0)(G) in place of X

Moreover $LR(0)(\gamma Y)$ is determined by $LR(0)(\gamma)$ and Y but independent from γ in the following sense:

$$LR(0)(\gamma) = LR(0)(\gamma') \implies LR(0)(\gamma Y) = LR(0)(\gamma' Y)$$

The goto Function I

Observation: if $G \in LR(0)$, then $LR(0)(\gamma)$ yields deterministic shift/reduce decision for NBA(G) in a configuration with pushdown $\gamma \implies$ new pushdown alphabet: LR(0)(G) in place of X

Moreover $LR(0)(\gamma Y)$ is determined by $LR(0)(\gamma)$ and Y but independent from γ in the following sense:

$$LR(0)(\gamma) = LR(0)(\gamma') \implies LR(0)(\gamma Y) = LR(0)(\gamma' Y)$$

Definition 9.14 (LR(0) goto function)

The function goto : $LR(0)(G) \times X \to LR(0)(G)$ is determined by goto(I,Y) = I' iff there exists $\gamma \in X^*$ such that $I = LR(0)(\gamma)$ and $I' = LR(0)(\gamma Y)$.

The goto Function II

```
I_0 := LR(0)(\varepsilon) : [S' \rightarrow \cdot S]
                                     [S \rightarrow \cdot B] [S \rightarrow \cdot C]

\begin{bmatrix}
B \to \cdot aB \\
C \to \cdot aC
\end{bmatrix} \quad
\begin{bmatrix}
B \to \cdot b \\
C \to \cdot c
\end{bmatrix}

I_1 := LR(0)(S) : [S' \rightarrow S \cdot]
I_2 := LR(0)(B) : [S \rightarrow B \cdot ]
I_3 := LR(0)(C) : [S \rightarrow C \cdot]
I_4 := LR(0)(a): [B \rightarrow a \cdot B][C \rightarrow a \cdot C]
                                     [B \rightarrow \cdot aB] \quad [B \rightarrow \cdot b]
                                     [C \rightarrow \cdot aC] \quad [C \rightarrow \cdot c]
I_5 := LR(0)(b) : [B \to b \cdot]
I_6 := LR(0)(c): [C \rightarrow c \cdot]
I_7 := LR(0)(aB) : [B \rightarrow aB \cdot]
I_8 := LR(0)(aC) : [C \rightarrow aC \cdot]
I_0 := \emptyset
```

The goto Function II

Example 9.15 (cf. Example 9.11)

```
I_0 := LR(0)(\varepsilon) : [S' \rightarrow \cdot S]
                                     [S \rightarrow \cdot B] [S \rightarrow \cdot C]

\begin{bmatrix}
B \to \cdot aB \\
C \to \cdot aC
\end{bmatrix} \quad
\begin{bmatrix}
B \to \cdot b \\
C \to \cdot c
\end{bmatrix}

I_1 := LR(0)(S) : [S' \rightarrow S \cdot]
I_2 := LR(0)(B) : [S \rightarrow B \cdot]
I_3 := LR(0)(C) : [S \rightarrow C \cdot]
I_4 := LR(0)(a) : [B \rightarrow a \cdot B][C \rightarrow a \cdot C]
                                     [B \rightarrow \cdot aB] \quad [B \rightarrow \cdot b]
                                     [C \rightarrow \cdot aC] \ [C \rightarrow \cdot c]
I_5 := LR(0)(b) : [B \to b \cdot]
I_6 := LR(0)(c) : [C \rightarrow c \cdot]
I_7 := LR(0)(aB) : [B \rightarrow aB \cdot]
I_8 := LR(0)(aC) : [C \rightarrow aC \cdot]
I_0 := \emptyset
```

goto	S	В	С	a	b	С
I_0	I_1	<i>I</i> ₂	<i>I</i> ₃	<i>I</i> ₄	<i>I</i> ₅	<i>I</i> ₆
I_1						
<i>l</i> ₂						
<i>l</i> ₃						
I_4		I_7	<i>l</i> ₈	I_4	I_5	<i>I</i> ₆
<i>l</i> ₅						
<i>I</i> ₆						
<i>I</i> ₇						
<i>l</i> ₈						
<i>l</i> 9						

 $(empty = I_9)$

The goto Function III

Example 9.15 (continued)

Representation of goto funtion as finite automaton:

The parsing automaton will be defined using another table, the action function, which determines the shift/reduce decision. (Reminder: $\pi_0 = S' \rightarrow S$)

The parsing automaton will be defined using another table, the action function, which determines the shift/reduce decision.

(Reminder: $\pi_0 = S' \rightarrow S$)

Definition 9.16 (LR(0)) action function

The LR(0) action function

$$\operatorname{act}: LR(0)(G) \to \{\operatorname{red} i \mid i \in [p]\} \cup \{\operatorname{shift}, \operatorname{accept}, \operatorname{error}\}$$

is defined by

$$\operatorname{act}(I) := \begin{cases} \operatorname{red} i & \text{if } i \neq 0, \pi_i = A \to \alpha \text{ and } [A \to \alpha \cdot] \in I \\ \operatorname{shift} & \text{if } [A \to \alpha_1 \cdot a\alpha_2] \in I \\ \operatorname{accept} & \text{if } [S' \to S \cdot] \in I \\ \operatorname{error} & \text{if } I = \emptyset \end{cases}$$

The parsing automaton will be defined using another table, the action function, which determines the shift/reduce decision.

(Reminder: $\pi_0 = S' \rightarrow S$)

Definition 9.16 (LR(0) action function)

The LR(0) action function

$$\operatorname{act}: LR(0)(G) \to \{\operatorname{red} i \mid i \in [p]\} \cup \{\operatorname{shift}, \operatorname{accept}, \operatorname{error}\}$$

is defined by

$$\operatorname{act}(I) := \begin{cases} \operatorname{red} i & \text{if } i \neq 0, \pi_i = A \to \alpha \text{ and } [A \to \alpha \cdot] \in I \\ \operatorname{shift} & \text{if } [A \to \alpha_1 \cdot a\alpha_2] \in I \\ \operatorname{accept} & \text{if } [S' \to S \cdot] \in I \\ \operatorname{error} & \text{if } I = \emptyset \end{cases}$$

Corollary 9.17

For every $G \in CFG_{\Sigma}$, $G \in LR(0)$ iff act is well defined.

The parsing automaton will be defined using another table, the action function, which determines the shift/reduce decision.

(Reminder: $\pi_0 = S' \rightarrow S$)

Definition 9.16 (LR(0) action function)

The LR(0) action function

$$\operatorname{act}: LR(0)(G) \to \{\operatorname{red} i \mid i \in [p]\} \cup \{\operatorname{shift}, \operatorname{accept}, \operatorname{error}\}$$

is defined by

$$\operatorname{act}(I) := \begin{cases} \operatorname{red} i & \text{if } i \neq 0, \pi_i = A \to \alpha \text{ and } [A \to \alpha \cdot] \in I \\ \operatorname{shift} & \text{if } [A \to \alpha_1 \cdot a\alpha_2] \in I \\ \operatorname{accept} & \text{if } [S' \to S \cdot] \in I \\ \operatorname{error} & \text{if } I = \emptyset \end{cases}$$

Corollary 9.17

For every $G \in CFG_{\Sigma}$, $G \in LR(0)$ iff act is well defined.