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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

context-free grammars/pushdown automata

(id, x1)(gets, )(id, y2)(plus, )(int, 1)

Assgn

Var Exp

Sum

Var Const
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Syntactic Structures

From Merriam-Webster’s Online Dictionary

Syntax: the way in which linguistic elements (as words) are put together
to form constituents (as phrases or clauses)
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Syntactic Structures

From Merriam-Webster’s Online Dictionary

Syntax: the way in which linguistic elements (as words) are put together
to form constituents (as phrases or clauses)

Starting point: sequence of symbols as produced by the scanner
Here: ignore attribute information

Σ (finite) set of tokens (= syntactic atoms; terminals)
(e.g., {id, if, int, . . .})
w ∈ Σ∗ token sequence
(of course, not every w ∈ Σ∗ forms a valid program)
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Syntactic Structures

From Merriam-Webster’s Online Dictionary

Syntax: the way in which linguistic elements (as words) are put together
to form constituents (as phrases or clauses)

Starting point: sequence of symbols as produced by the scanner
Here: ignore attribute information

Σ (finite) set of tokens (= syntactic atoms; terminals)
(e.g., {id, if, int, . . .})
w ∈ Σ∗ token sequence
(of course, not every w ∈ Σ∗ forms a valid program)

Syntactic units:

atomic: keywords, variable/type/procedure/... identifiers,
numerals, arithmetic/Boolean operators, ...

complex: declarations, arithmetic/Boolean expressions,
statements, ...
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Syntactic Structures

From Merriam-Webster’s Online Dictionary

Syntax: the way in which linguistic elements (as words) are put together
to form constituents (as phrases or clauses)

Starting point: sequence of symbols as produced by the scanner
Here: ignore attribute information

Σ (finite) set of tokens (= syntactic atoms; terminals)
(e.g., {id, if, int, . . .})
w ∈ Σ∗ token sequence
(of course, not every w ∈ Σ∗ forms a valid program)

Syntactic units:

atomic: keywords, variable/type/procedure/... identifiers,
numerals, arithmetic/Boolean operators, ...

complex: declarations, arithmetic/Boolean expressions,
statements, ...

Observation: the hierarchical structure of syntactic units can be
described by context-free grammars

Compiler Construction Summer Semester 2014 5.4



Syntax Analysis

Definition 5.1

The goal of syntax analysis is to determine the syntactic structure of a
program, given by a token sequence, according to a context-free grammar.
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Syntax Analysis

Definition 5.1

The goal of syntax analysis is to determine the syntactic structure of a
program, given by a token sequence, according to a context-free grammar.

The corresponding program is called a parser:

Scanner Parser Semantic analyzer

Symbol table

(token[,attribute])

get next token

syntax tree
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Syntax Analysis

Definition 5.1

The goal of syntax analysis is to determine the syntactic structure of a
program, given by a token sequence, according to a context-free grammar.

The corresponding program is called a parser:

Scanner Parser Semantic analyzer

Symbol table

(token[,attribute])

get next token

syntax tree

Example: . . . x1 :=y2+ 1 ; . . .

↓ Scanner

. . . (id, p1)(gets, )(id, p2)(plus, )(int, 1)(sem, ) . . .
Parser
−→

Assgn

Var Exp

Sum

Var Const
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Context-Free Grammars I

Definition 5.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over Σ) is a quadruple

G = 〈N,Σ,P ,S〉

where

N is a finite set of nonterminal symbols,
Σ is a (finite) alphabet of terminal symbols (disjoint from N),
P is a finite set of production rules of the form A → α where A ∈ N
and α ∈ X ∗ for X := N ∪ Σ, and
S ∈ N is a start symbol.

The set of all context-free grammars over Σ is denoted by CFGΣ.
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Context-Free Grammars I

Definition 5.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over Σ) is a quadruple

G = 〈N,Σ,P ,S〉

where

N is a finite set of nonterminal symbols,
Σ is a (finite) alphabet of terminal symbols (disjoint from N),
P is a finite set of production rules of the form A → α where A ∈ N
and α ∈ X ∗ for X := N ∪ Σ, and
S ∈ N is a start symbol.

The set of all context-free grammars over Σ is denoted by CFGΣ.

Remarks: as denotations we generally use

A,B ,C , . . . ∈ N for nonterminal symbols
a, b, c , . . . ∈ Σ for terminal symbols
u, v ,w , x , y , . . . ∈ Σ∗ for terminal words
α, β, γ, . . . ∈ X ∗ for sentences
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Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = 〈N,Σ,P ,S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X+ × X ∗ of G is defined by

α ⇒ β iff there exist α1, α2 ∈ X ∗,A → γ ∈ P
such that α = α1Aα2 and β = α1γα2.
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Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = 〈N,Σ,P ,S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X+ × X ∗ of G is defined by

α ⇒ β iff there exist α1, α2 ∈ X ∗,A → γ ∈ P
such that α = α1Aα2 and β = α1γα2.

If in addition α1 ∈ Σ∗ or α2 ∈ Σ∗, then we write α ⇒l β or α ⇒r β,
respectively (leftmost/rightmost derivation).
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Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = 〈N,Σ,P ,S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X+ × X ∗ of G is defined by

α ⇒ β iff there exist α1, α2 ∈ X ∗,A → γ ∈ P
such that α = α1Aα2 and β = α1γα2.

If in addition α1 ∈ Σ∗ or α2 ∈ Σ∗, then we write α ⇒l β or α ⇒r β,
respectively (leftmost/rightmost derivation).
The language generated by G is given by

L(G ) := {w ∈ Σ∗ | S ⇒∗ w}.
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Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = 〈N,Σ,P ,S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X+ × X ∗ of G is defined by

α ⇒ β iff there exist α1, α2 ∈ X ∗,A → γ ∈ P
such that α = α1Aα2 and β = α1γα2.

If in addition α1 ∈ Σ∗ or α2 ∈ Σ∗, then we write α ⇒l β or α ⇒r β,
respectively (leftmost/rightmost derivation).
The language generated by G is given by

L(G ) := {w ∈ Σ∗ | S ⇒∗ w}.

If a language L ⊆ Σ∗ is generated by some G ∈ CFGΣ, then L is
called context free. The set of all context-free languages over Σ is
denoted by CFLΣ.
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Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 5.3 (Semantics of context-free grammars)

Let G = 〈N,Σ,P ,S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X+ × X ∗ of G is defined by

α ⇒ β iff there exist α1, α2 ∈ X ∗,A → γ ∈ P
such that α = α1Aα2 and β = α1γα2.

If in addition α1 ∈ Σ∗ or α2 ∈ Σ∗, then we write α ⇒l β or α ⇒r β,
respectively (leftmost/rightmost derivation).
The language generated by G is given by

L(G ) := {w ∈ Σ∗ | S ⇒∗ w}.

If a language L ⊆ Σ∗ is generated by some G ∈ CFGΣ, then L is
called context free. The set of all context-free languages over Σ is
denoted by CFLΣ.

Remark: obviously, L(G ) = {w ∈ Σ∗ | S ⇒∗

l w} = {w ∈ Σ∗ | S ⇒∗

r w}
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Context-Free Languages

Example 5.4

The grammar G = 〈N,Σ,P ,S〉 ∈ CFGΣ over Σ := {a, b}, given by the
productions

S → aSb | ε,

generates the context-free (and non-regular) language

L = {anbn | n ∈ N}.
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Context-Free Languages

Example 5.4

The grammar G = 〈N,Σ,P ,S〉 ∈ CFGΣ over Σ := {a, b}, given by the
productions

S → aSb | ε,

generates the context-free (and non-regular) language

L = {anbn | n ∈ N}.

The example derivation

S ⇒ aSb ⇒ aaSbb ⇒ aabb

can be represented by the following syntax tree for aabb:

S

S

S

a

a

b

b

ε

Compiler Construction Summer Semester 2014 5.9



Syntax Trees, Derivations, and Words

Observations:

1 Every syntax tree yields exactly one word
(= concatenation of leaves).

2 Every syntax tree corresponds to exactly one leftmost derivation,
and vice versa.

3 Every syntax tree corresponds to exactly one rightmost derivation,
and vice versa.

Thus: syntax trees are uniquely representable by leftmost/rightmost
derivations
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Syntax Trees, Derivations, and Words

Observations:

1 Every syntax tree yields exactly one word
(= concatenation of leaves).

2 Every syntax tree corresponds to exactly one leftmost derivation,
and vice versa.

3 Every syntax tree corresponds to exactly one rightmost derivation,
and vice versa.

Thus: syntax trees are uniquely representable by leftmost/rightmost
derivations

But: a word can have several syntax trees (see next slide)
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Ambiguity of CFGs and CFLs

Definition 5.5 (Ambiguity)

A context-free grammar G ∈ CFGΣ is called unambiguous if every
word w ∈ L(G ) has exactly one syntax tree. Otherwise it is called
ambiguous.
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Ambiguity of CFGs and CFLs

Definition 5.5 (Ambiguity)

A context-free grammar G ∈ CFGΣ is called unambiguous if every
word w ∈ L(G ) has exactly one syntax tree. Otherwise it is called
ambiguous.

A context-free language L ∈ CFLΣ is called inherently ambiguous if
every grammar G ∈ CFGΣ with L(G ) = L is ambiguous.
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Ambiguity of CFGs and CFLs

Definition 5.5 (Ambiguity)

A context-free grammar G ∈ CFGΣ is called unambiguous if every
word w ∈ L(G ) has exactly one syntax tree. Otherwise it is called
ambiguous.

A context-free language L ∈ CFLΣ is called inherently ambiguous if
every grammar G ∈ CFGΣ with L(G ) = L is ambiguous.

Example 5.6

on the board
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Ambiguity of CFGs and CFLs

Definition 5.5 (Ambiguity)

A context-free grammar G ∈ CFGΣ is called unambiguous if every
word w ∈ L(G ) has exactly one syntax tree. Otherwise it is called
ambiguous.

A context-free language L ∈ CFLΣ is called inherently ambiguous if
every grammar G ∈ CFGΣ with L(G ) = L is ambiguous.

Example 5.6

on the board

Corollary 5.7

A grammar G ∈ CFGΣ is unambiguous
iff every word w ∈ L(G ) has exactly one leftmost derivation
iff every word w ∈ L(G ) has exactly one rightmost derivation.
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1 Problem Statement

2 Context-Free Grammars and Languages

3 Parsing Context-Free Languages

4 Nondeterministic Top-Down Parsing
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The Word Problem for Context-Free Languages

Problem 5.8 (Word problem for context-free languages)

Given G ∈ CFGΣ and w ∈ Σ∗, decide whether w ∈ L(G )
(and determine a corresponding syntax tree).
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The Word Problem for Context-Free Languages

Problem 5.8 (Word problem for context-free languages)

Given G ∈ CFGΣ and w ∈ Σ∗, decide whether w ∈ L(G )
(and determine a corresponding syntax tree).

This problem is decidable for arbitrary CFGs:

(for CFGs in Chomsky Normal Form)
Using the tabular method by Cocke, Younger, and Kasami
(“CYK Algorithm”; time/space complexity O(|w |3)/O(|w |2))
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The Word Problem for Context-Free Languages

Problem 5.8 (Word problem for context-free languages)

Given G ∈ CFGΣ and w ∈ Σ∗, decide whether w ∈ L(G )
(and determine a corresponding syntax tree).

This problem is decidable for arbitrary CFGs:

(for CFGs in Chomsky Normal Form)
Using the tabular method by Cocke, Younger, and Kasami
(“CYK Algorithm”; time/space complexity O(|w |3)/O(|w |2))

Using the predecessor method:

w ∈ L(G ) ⇐⇒ S ∈ pre∗({w})

where pre∗(M) := {α ∈ X ∗ | α ⇒∗ β for some β ∈ M}
(polynomial [non-linear] time complexity)
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Parsing Context-Free Languages

Goal: exploit the special syntactic structures as present in programming
languages (usually: no ambiguities) to devise parsing methods which are
based on deterministic pushdown automata with linear space and time
complexity
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Parsing Context-Free Languages

Goal: exploit the special syntactic structures as present in programming
languages (usually: no ambiguities) to devise parsing methods which are
based on deterministic pushdown automata with linear space and time
complexity

Two approaches:

Top-down parsing: construction of syntax tree from the root towards the
leaves, representation as leftmost derivation

Bottom-up parsing: construction of syntax tree from the leaves towards
the root, representation as (reversed) rightmost derivation
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Leftmost/Rightmost Analysis I

Goal: compact representation of left-/rightmost derivations by index
sequences

Definition 5.9 (Leftmost/rightmost analysis)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ where P = {π1, . . . , πp}.

If i ∈ [p], πi = A → γ, w ∈ Σ∗, and α ∈ X ∗, then we write

wAα
i
⇒l wγα and αAw

i
⇒r αγw .
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Leftmost/Rightmost Analysis I

Goal: compact representation of left-/rightmost derivations by index
sequences

Definition 5.9 (Leftmost/rightmost analysis)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ where P = {π1, . . . , πp}.

If i ∈ [p], πi = A → γ, w ∈ Σ∗, and α ∈ X ∗, then we write

wAα
i
⇒l wγα and αAw

i
⇒r αγw .

If z = i1 . . . in ∈ [p]∗, we write α
z
⇒l β if there exist α0, . . . , αn ∈ X ∗

such that α0 = α, αn = β, and αj−1
ij
⇒l αj for every j ∈ [n]

(analogously for
z
⇒r ).
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Leftmost/Rightmost Analysis I

Goal: compact representation of left-/rightmost derivations by index
sequences

Definition 5.9 (Leftmost/rightmost analysis)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ where P = {π1, . . . , πp}.

If i ∈ [p], πi = A → γ, w ∈ Σ∗, and α ∈ X ∗, then we write

wAα
i
⇒l wγα and αAw

i
⇒r αγw .

If z = i1 . . . in ∈ [p]∗, we write α
z
⇒l β if there exist α0, . . . , αn ∈ X ∗

such that α0 = α, αn = β, and αj−1
ij
⇒l αj for every j ∈ [n]

(analogously for
z
⇒r ).

An index sequence z ∈ [p]∗ is called a leftmost analysis (rightmost
analysis) of α if S

z
⇒l α (S

z
⇒r α), respectively.
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Leftmost/Rightmost Analysis

Example 5.10

Grammar for arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)
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Leftmost/Rightmost Analysis

Example 5.10

Grammar for arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost derivation of (a)*b:

E
2
⇒l T

3
⇒l T*F

4
⇒l F*F

5
⇒l (E)*F

2
⇒l (T)*F

4
⇒l (F)*F

6
⇒l (a)*F

7
⇒l (a)*b

=⇒ leftmost analysis: 23452467
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Leftmost/Rightmost Analysis

Example 5.10

Grammar for arithmetic expressions:

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost derivation of (a)*b:

E
2
⇒l T

3
⇒l T*F

4
⇒l F*F

5
⇒l (E)*F

2
⇒l (T)*F

4
⇒l (F)*F

6
⇒l (a)*F

7
⇒l (a)*b

=⇒ leftmost analysis: 23452467

Rightmost derivation of (a)*b:

E
2
⇒r T

3
⇒r T*F

7
⇒r T*b

4
⇒r F*b

5
⇒r (E)*b

2
⇒r (T)*b

4
⇒r (F)*b

6
⇒r (a)*b

=⇒ rightmost analysis: 23745246
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Reducedness of Context-Free Grammars

General assumption in the following: every grammar is reduced

Definition 5.11 (Reduced CFG)

A grammar G = 〈N,Σ,P ,S〉 ∈ CFGΣ is called reduced if for every A ∈ N
there exist α, β ∈ X ∗ and w ∈ Σ∗ such that

S ⇒∗αAβ (A reachable) and

A ⇒∗w (A productive).
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Top-Down Parsing

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic pushdown automaton

(PDA) which accepts L(G ) and which additionally computes
corresponding leftmost derivations (similar to the proof of
“L(CFGΣ) ⊆ L(PDAΣ)”)

input alphabet: Σ
pushdown alphabet: X
output alphabet: [p]
state set: not required
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Top-Down Parsing

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic pushdown automaton

(PDA) which accepts L(G ) and which additionally computes
corresponding leftmost derivations (similar to the proof of
“L(CFGΣ) ⊆ L(PDAΣ)”)

input alphabet: Σ
pushdown alphabet: X
output alphabet: [p]
state set: not required

2 Remove nondeterminism by allowing lookahead on the input:
G ∈ LL(k) iff L(G ) recognizable by deterministic PDA with lookahead
of k symbols
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The Nondeterministic Top-Down Automaton I

Definition 5.12 (Nondeterministic top-down parsing automaton)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ. The nondeterministic top-down parsing
automaton of G , NTA(G ), is defined by the following components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ × X ∗ × [p]∗ (top of pushdown to the left)

Transitions for w ∈ Σ∗, α ∈ X ∗, and z ∈ [p]∗:

expansion steps: if πi = A → β, then (w ,Aα, z) ⊢ (w , βα, zi)
matching steps: for every a ∈ Σ, (aw , aα, z) ⊢ (w , α, z)

Initial configuration for w ∈ Σ∗: (w ,S , ε)

Final configurations: {ε} × {ε} × [p]∗
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The Nondeterministic Top-Down Automaton I

Definition 5.12 (Nondeterministic top-down parsing automaton)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ. The nondeterministic top-down parsing
automaton of G , NTA(G ), is defined by the following components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ × X ∗ × [p]∗ (top of pushdown to the left)

Transitions for w ∈ Σ∗, α ∈ X ∗, and z ∈ [p]∗:

expansion steps: if πi = A → β, then (w ,Aα, z) ⊢ (w , βα, zi)
matching steps: for every a ∈ Σ, (aw , aα, z) ⊢ (w , α, z)

Initial configuration for w ∈ Σ∗: (w ,S , ε)

Final configurations: {ε} × {ε} × [p]∗

Remark: NTA(G ) is nondeterministic iff G contains A → β | γ
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F , 2345 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F , 2345 )
⊢ ( a)*b, E)*F , 2345 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F , 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F , 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F , 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F , 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
⊢ ( )*b, )*F , 2345246 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F , 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
⊢ ( )*b, )*F , 2345246 )
⊢ ( *b, *F , 2345246 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F , 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
⊢ ( )*b, )*F , 2345246 )
⊢ ( *b, *F , 2345246 )
⊢ ( b, F , 2345246 )
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F , 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
⊢ ( )*b, )*F , 2345246 )
⊢ ( *b, *F , 2345246 )
⊢ ( b, F , 2345246 )
⊢ ( b, b , 23452467)
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The Nondeterministic Top-Down Automaton II

Example 5.13

Grammar for
arithmetic expressions
(cf. Example 5.10):

GAE : E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

Leftmost analysis of (a)*b:

((a)*b, E , ε )
⊢ ((a)*b, T , 2 )
⊢ ((a)*b, T*F , 23 )
⊢ ((a)*b, F*F , 234 )
⊢ ((a)*b, (E)*F , 2345 )
⊢ ( a)*b, E)*F , 2345 )
⊢ ( a)*b, T)*F , 23452 )
⊢ ( a)*b, F)*F , 234524 )
⊢ ( a)*b, a)*F , 2345246 )
⊢ ( )*b, )*F , 2345246 )
⊢ ( *b, *F , 2345246 )
⊢ ( b, F , 2345246 )
⊢ ( b, b , 23452467)
⊢ ( ε, ε , 23452467)
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