
Compiler Construction
Lecture 18: Code Generation V

(Implementation of Dynamic Data Structures)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Outline

1 Pseudo-Dynamic Data Structures

2 Heap Management

3 Memory Deallocation

4 Garbage Collection

5 Reference-Counting Garbage Collection

6 Mark-and-Sweep Garbage Collection

Compiler Construction Summer Semester 2014 18.2

Variant Records

Example 18.1 (Variant records in Pascal)

TYPE Coordinate = RECORD

nr: INTEGER;

CASE type: (cartesian, polar) OF

cartesian: (x, y: REAL);

polar: (r : REAL; phi: INTEGER)

END

END;

VAR pt: Coordinate;

pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;

Compiler Construction Summer Semester 2014 18.3

Variant Records

Example 18.1 (Variant records in Pascal)

TYPE Coordinate = RECORD

nr: INTEGER;

CASE type: (cartesian, polar) OF

cartesian: (x, y: REAL);

polar: (r : REAL; phi: INTEGER)

END

END;

VAR pt: Coordinate;

pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;

Implementation:

Allocate memory for “biggest” variant

Share memory between variant fields

Compiler Construction Summer Semester 2014 18.3

Dynamic Arrays

Example 18.2 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;

VAR

i: INTEGER; s: REAL;

BEGIN

s := 0.0; FOR i := 0 to HIGH(a) do s := s + a[i] END; Sum := s

END

Compiler Construction Summer Semester 2014 18.4

Dynamic Arrays

Example 18.2 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;

VAR

i: INTEGER; s: REAL;

BEGIN

s := 0.0; FOR i := 0 to HIGH(a) do s := s + a[i] END; Sum := s

END

Implementation:

Memory requirements unknown at compile time but determined by actual
function/procedure parameters
=⇒ no heap required

Use array descriptor with following fields as parameter value:

starting memory address of array
size of array
lower index of array (possibly fixed by 0)
upper index of array (actually redundant)

Use data stack or index register to access array elements

Compiler Construction Summer Semester 2014 18.4

Outline

1 Pseudo-Dynamic Data Structures

2 Heap Management

3 Memory Deallocation

4 Garbage Collection

5 Reference-Counting Garbage Collection

6 Mark-and-Sweep Garbage Collection

Compiler Construction Summer Semester 2014 18.5

Dynamic Memory Allocation I

Dynamically manipulated data structures (lists, trees, graphs, ...)

So far: creation of (static) objects by declaration

Now: creation of (dynamic) objects by explicit memory allocation

Access by (implicit or explicit) pointers

Deletion by explicit deallocation or garbage collection
(= automatic deallocation of unreachable objects)

Compiler Construction Summer Semester 2014 18.6

Dynamic Memory Allocation I

Dynamically manipulated data structures (lists, trees, graphs, ...)

So far: creation of (static) objects by declaration

Now: creation of (dynamic) objects by explicit memory allocation

Access by (implicit or explicit) pointers

Deletion by explicit deallocation or garbage collection
(= automatic deallocation of unreachable objects)

Implementation: runtime stack not sufficient
(lifetime of objects generally exceeds lifetime of procedure calls)

=⇒ new data structure: heap

Simplest form of organization:

Runtime stack→ ← Heap

0
↑

SP
↑

HP max
(stack pointer) (heap pointer)

Compiler Construction Summer Semester 2014 18.6

Dynamic Memory Allocation II

New instruction: NEW (“malloc”, ...)
allocates n memory cells where n = topmost value of runtime stack
returns address of first cell
formal semantics
(SP = stack pointer, HP = heap pointer, <.> = dereferencing):

if HP - <SP> > SP
then HP := HP - <SP>; <SP> := HP
else error("memory overflow")

Compiler Construction Summer Semester 2014 18.7

Dynamic Memory Allocation II

New instruction: NEW (“malloc”, ...)
allocates n memory cells where n = topmost value of runtime stack
returns address of first cell
formal semantics
(SP = stack pointer, HP = heap pointer, <.> = dereferencing):

if HP - <SP> > SP
then HP := HP - <SP>; <SP> := HP
else error("memory overflow")

But: collision check required for every operation which increases SP
(e.g., expression evaluations)
Efficient solution: add extreme stack pointer EP

points to topmost SP which will be used in the computation of current
procedure
statically computable at compile time
set by procedure entry code
modified semantics of NEW:

if HP - <SP> > EP
then HP := HP - <SP>; <SP> := HP
else error("memory overflow")

Compiler Construction Summer Semester 2014 18.7

Outline

1 Pseudo-Dynamic Data Structures

2 Heap Management

3 Memory Deallocation

4 Garbage Collection

5 Reference-Counting Garbage Collection

6 Mark-and-Sweep Garbage Collection

Compiler Construction Summer Semester 2014 18.8

Memory Deallocation

Releasing memory areas that have become unused

explicitly by programmer

automatically by runtime system (garbage collection)

Compiler Construction Summer Semester 2014 18.9

Memory Deallocation

Releasing memory areas that have become unused

explicitly by programmer

automatically by runtime system (garbage collection)

Management of deallocated memory areas by free list
(usually doubly-linked list)

goal: reduction of fragmentation (= heap memory splitted in large
number of non-contiguous free areas)

coalescing of contiguous areas

allocation strategies: first-fit vs. best-fit

Compiler Construction Summer Semester 2014 18.9

Explicit Deallocation

Manually releasing memory areas that have become unused

Pascal: dispose
C: free

Compiler Construction Summer Semester 2014 18.10

Explicit Deallocation

Manually releasing memory areas that have become unused

Pascal: dispose
C: free

Problems with manual deallocation:
memory leaks:

failing to eventually delete data that cannot be referenced anymore
critical for long-running/reactive programs
(operating systems, server code, ...)

dangling pointer dereference:

referencing of deleted data
may lead to runtime error (if deallocated pointer reset to nil) or produce
side effects (if deallocated pointer keeps value and storage reallocated)

Compiler Construction Summer Semester 2014 18.10

Explicit Deallocation

Manually releasing memory areas that have become unused

Pascal: dispose
C: free

Problems with manual deallocation:
memory leaks:

failing to eventually delete data that cannot be referenced anymore
critical for long-running/reactive programs
(operating systems, server code, ...)

dangling pointer dereference:

referencing of deleted data
may lead to runtime error (if deallocated pointer reset to nil) or produce
side effects (if deallocated pointer keeps value and storage reallocated)

=⇒ Adopt programming conventions (object ownership) or use automatic
deallocation

Compiler Construction Summer Semester 2014 18.10

Outline

1 Pseudo-Dynamic Data Structures

2 Heap Management

3 Memory Deallocation

4 Garbage Collection

5 Reference-Counting Garbage Collection

6 Mark-and-Sweep Garbage Collection

Compiler Construction Summer Semester 2014 18.11

Garbage Collection

Garbage = data that cannot be referenced (anymore)

Garbage collection = automatic deallocation of unreachable data

Compiler Construction Summer Semester 2014 18.12

Garbage Collection

Garbage = data that cannot be referenced (anymore)

Garbage collection = automatic deallocation of unreachable data

Supported by many programming languages:

object-oriented: Java, Smalltalk
functional: Lisp (first GC), ML, Haskell
logic: Prolog
scripting: Perl

Compiler Construction Summer Semester 2014 18.12

Garbage Collection

Garbage = data that cannot be referenced (anymore)

Garbage collection = automatic deallocation of unreachable data

Supported by many programming languages:

object-oriented: Java, Smalltalk
functional: Lisp (first GC), ML, Haskell
logic: Prolog
scripting: Perl

Design goals for garbage collectors:

execution time: no significant increase of application run time
space usage: avoid memory fragmentation
pause time: minimize maximal pause time of application program
caused by garbage collection (especially in real-time applications)

Compiler Construction Summer Semester 2014 18.12

Preliminaries

Object = allocated entity

Object has type known at runtime, defining

size of object
references to other objects

=⇒ excludes type-unsafe languages that allow manipulation
of pointers (C, C++)

Compiler Construction Summer Semester 2014 18.13

Preliminaries

Object = allocated entity

Object has type known at runtime, defining

size of object
references to other objects

=⇒ excludes type-unsafe languages that allow manipulation
of pointers (C, C++)

Reference always to address at beginning of object
(=⇒ all references to an object have same value)

Compiler Construction Summer Semester 2014 18.13

Preliminaries

Object = allocated entity

Object has type known at runtime, defining

size of object
references to other objects

=⇒ excludes type-unsafe languages that allow manipulation
of pointers (C, C++)

Reference always to address at beginning of object
(=⇒ all references to an object have same value)

Mutator = application program modifying objects in heap

creation of objects by acquiring storage
introduce/drop references to existing objects

Objects become garbage when not (indirectly) reachable by mutator

Compiler Construction Summer Semester 2014 18.13

Reachability of Objects

Root set = heap data that is directly accessible by mutator
for Java: static field members and variables on stack
yields directly reachable objects

Every object with a reference that is stored in a reachable object is
indirectly reachable

Compiler Construction Summer Semester 2014 18.14

Reachability of Objects

Root set = heap data that is directly accessible by mutator
for Java: static field members and variables on stack
yields directly reachable objects

Every object with a reference that is stored in a reachable object is
indirectly reachable
Mutator operations that affect reachability:

object allocation: memory manager returns reference to new object
creates new reachable object

parameter passing and return values: passing of object references from
calling site to called procedure or vice versa

propagates reachability of objects

reference assignment: assignments p := q with references p and q

creates second reference to object referred to by q, propagating
reachability
destroys orginal reference in p, potentially causing unreachability

procedure return: removes local variables
potentially causes unreachability of objects

Compiler Construction Summer Semester 2014 18.14

Reachability of Objects

Root set = heap data that is directly accessible by mutator
for Java: static field members and variables on stack
yields directly reachable objects

Every object with a reference that is stored in a reachable object is
indirectly reachable
Mutator operations that affect reachability:

object allocation: memory manager returns reference to new object
creates new reachable object

parameter passing and return values: passing of object references from
calling site to called procedure or vice versa

propagates reachability of objects

reference assignment: assignments p := q with references p and q

creates second reference to object referred to by q, propagating
reachability
destroys orginal reference in p, potentially causing unreachability

procedure return: removes local variables
potentially causes unreachability of objects

Objects becoming unreachable can cause more objects to become
unreachable

Compiler Construction Summer Semester 2014 18.14

Identifying Unreachable Objects

Principal approaches:

Catch program steps that turn reachable into unreachable objects
=⇒ reference counting

Periodically locate all reachable objects; others then unreachable
=⇒ mark-and-sweep

Compiler Construction Summer Semester 2014 18.15

Outline

1 Pseudo-Dynamic Data Structures

2 Heap Management

3 Memory Deallocation

4 Garbage Collection

5 Reference-Counting Garbage Collection

6 Mark-and-Sweep Garbage Collection

Compiler Construction Summer Semester 2014 18.16

Reference-Counting Garbage Collectors I

Working principle:

Add reference count field to each heap object
(= number of references to that object)

Compiler Construction Summer Semester 2014 18.17

Reference-Counting Garbage Collectors I

Working principle:

Add reference count field to each heap object
(= number of references to that object)
Mutator operations maintain reference count:

object allocation: set reference count of new object to 1
parameter passing: increment reference count of each object passed to
procedure
reference assignment p := q: decrement/increment reference count of
object referred to by p/q, respectively
procedure return: decrement reference count of each object that a
local variable refers to (multiple decrement if sharing)

Compiler Construction Summer Semester 2014 18.17

Reference-Counting Garbage Collectors I

Working principle:

Add reference count field to each heap object
(= number of references to that object)
Mutator operations maintain reference count:

object allocation: set reference count of new object to 1
parameter passing: increment reference count of each object passed to
procedure
reference assignment p := q: decrement/increment reference count of
object referred to by p/q, respectively
procedure return: decrement reference count of each object that a
local variable refers to (multiple decrement if sharing)

Moreover: transitive loss of reachability
when reference count of object becomes zero
=⇒ decrement reference count of each object pointed to (and add
object storage to free list)

Compiler Construction Summer Semester 2014 18.17

Reference-Counting Garbage Collectors I

Working principle:

Add reference count field to each heap object
(= number of references to that object)
Mutator operations maintain reference count:

object allocation: set reference count of new object to 1
parameter passing: increment reference count of each object passed to
procedure
reference assignment p := q: decrement/increment reference count of
object referred to by p/q, respectively
procedure return: decrement reference count of each object that a
local variable refers to (multiple decrement if sharing)

Moreover: transitive loss of reachability
when reference count of object becomes zero
=⇒ decrement reference count of each object pointed to (and add
object storage to free list)

Example 18.3

(on the board)

Compiler Construction Summer Semester 2014 18.17

Reference Counting Garbage Collectors II

Advantage: Incrementality

collector operations spread over mutator’s computation
short pause times (good for real-time/interactive applications)
immediate collection of garbage (low space usage)

exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

but: recursive modification can be deferred

Compiler Construction Summer Semester 2014 18.18

Reference Counting Garbage Collectors II

Advantage: Incrementality

collector operations spread over mutator’s computation
short pause times (good for real-time/interactive applications)
immediate collection of garbage (low space usage)

exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

but: recursive modification can be deferred

Disadvantages:

Incompleteness:
cannot collect unreachable, cyclic data structures (cf. Example 18.3)

Compiler Construction Summer Semester 2014 18.18

Reference Counting Garbage Collectors II

Advantage: Incrementality

collector operations spread over mutator’s computation
short pause times (good for real-time/interactive applications)
immediate collection of garbage (low space usage)

exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

but: recursive modification can be deferred

Disadvantages:

Incompleteness:
cannot collect unreachable, cyclic data structures (cf. Example 18.3)

High overhead:
additional operations for assignments and procedure calls/exits
proportional to number of mutator steps
(and not to number of heap objects)

Compiler Construction Summer Semester 2014 18.18

Reference Counting Garbage Collectors II

Advantage: Incrementality

collector operations spread over mutator’s computation
short pause times (good for real-time/interactive applications)
immediate collection of garbage (low space usage)

exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

but: recursive modification can be deferred

Disadvantages:

Incompleteness:
cannot collect unreachable, cyclic data structures (cf. Example 18.3)

High overhead:
additional operations for assignments and procedure calls/exits
proportional to number of mutator steps
(and not to number of heap objects)

Conclusion: use for real-time/interactive applications
Compiler Construction Summer Semester 2014 18.18

Outline

1 Pseudo-Dynamic Data Structures

2 Heap Management

3 Memory Deallocation

4 Garbage Collection

5 Reference-Counting Garbage Collection

6 Mark-and-Sweep Garbage Collection

Compiler Construction Summer Semester 2014 18.19

Mark-and-Sweep Garbage Collectors I

Working principle:

Mutator runs and makes allocation requests

Collector runs periodically
(typically when space exhausted/below critical threshold)

computes set of reachable objects
reclaims storage for objects in complement set

Compiler Construction Summer Semester 2014 18.20

Mark-and-Sweep Garbage Collectors II

Algorithm 18.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free

Compiler Construction Summer Semester 2014 18.21

Mark-and-Sweep Garbage Collectors II

Algorithm 18.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free

Procedure: 1 (* Marking phase *)
for each o in Heap, (* initialize reachability bit *)
let ro := true iff o referenced by Root

2 let W := {o | ro = true} (* working set *)
3 while o ∈W 6= ∅ do

1 let W := W \ {o}
2 for each o′ referenced by o with ro′ = false,

let ro′ = true;W := W ∪ {o′}

4 (* Sweeping phase *)
for each o in Heap with ro = false, add o to Free

Compiler Construction Summer Semester 2014 18.21

Mark-and-Sweep Garbage Collectors II

Algorithm 18.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free

Procedure: 1 (* Marking phase *)
for each o in Heap, (* initialize reachability bit *)
let ro := true iff o referenced by Root

2 let W := {o | ro = true} (* working set *)
3 while o ∈W 6= ∅ do

1 let W := W \ {o}
2 for each o′ referenced by o with ro′ = false,

let ro′ = true;W := W ∪ {o′}

4 (* Sweeping phase *)
for each o in Heap with ro = false, add o to Free

Output: modified free list

Compiler Construction Summer Semester 2014 18.21

Mark-and-Sweep Garbage Collectors II

Algorithm 18.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free

Procedure: 1 (* Marking phase *)
for each o in Heap, (* initialize reachability bit *)
let ro := true iff o referenced by Root

2 let W := {o | ro = true} (* working set *)
3 while o ∈W 6= ∅ do

1 let W := W \ {o}
2 for each o′ referenced by o with ro′ = false,

let ro′ = true;W := W ∪ {o′}

4 (* Sweeping phase *)
for each o in Heap with ro = false, add o to Free

Output: modified free list

Example 18.5

(on the board)
Compiler Construction Summer Semester 2014 18.21

Mark-and-Sweep Garbage Collectors III

Advantages:

Completeness: identifies all unreachable objects

Time complexity proportional to number of objects in heap

Compiler Construction Summer Semester 2014 18.22

Mark-and-Sweep Garbage Collectors III

Advantages:

Completeness: identifies all unreachable objects

Time complexity proportional to number of objects in heap

Disadvantage: “stop-the-world” style
=⇒ may introduce long pauses into mutator execution
(sweeping phase inspects complete heap)

Compiler Construction Summer Semester 2014 18.22

Mark-and-Sweep Garbage Collectors III

Advantages:

Completeness: identifies all unreachable objects

Time complexity proportional to number of objects in heap

Disadvantage: “stop-the-world” style
=⇒ may introduce long pauses into mutator execution
(sweeping phase inspects complete heap)

Conclusion: refine to short-pause garbage collection

Incremental collection: divide work in time by interleaving mutation
and collection

Partial collection: divide work in space by collecting subset of garbage
at a time

(see Chapter 7 of A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers
– Principles, Techniques, and Tools; 2nd ed., Addison-Wesley, 2007)

Compiler Construction Summer Semester 2014 18.22

	Pseudo-Dynamic Data Structures
	Heap Management
	Memory Deallocation
	Garbage Collection
	Reference-Counting Garbage Collection
	Mark-and-Sweep Garbage Collection

