
Compiler Construction
Lecture 15: Code Generation I (Intermediate Code)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Summer Semester 2014

noll@cs.rwth-aachen.de
http://moves.rwth-aachen.de/teaching/ss-14/cc14/

Outline

1 Generation of Intermediate Code

2 The Example Programming Language EPL

3 Semantics of EPL

4 Intermediate Code for EPL

5 The Procedure Stack

Compiler Construction Summer Semester 2014 15.2

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

tree translations

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

LOAD y2; LIT 1; ADD; STO x1

Compiler Construction Summer Semester 2014 15.3

Modularization of Code Generation I

Splitting of code generation for programming language PL:

PL
trans
−→ IC

code
−→ MC

Frontend: trans generates machine-independent intermediate code (IC)
for abstract (stack) machine

Backend: code generates actual machine code (MC)

Compiler Construction Summer Semester 2014 15.4

Modularization of Code Generation I

Splitting of code generation for programming language PL:

PL
trans
−→ IC

code
−→ MC

Frontend: trans generates machine-independent intermediate code (IC)
for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: IC machine independent =⇒

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating IC much easier than generating
MC

Code size: IC programs usually smaller than corresponding MC programs

Code optimization: division into machine-independent and
machine-dependent parts

Compiler Construction Summer Semester 2014 15.4

Modularization of Code Generation II

Example 15.1

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n +m translations
(in place of n ·m)

Compiler Construction Summer Semester 2014 15.5

http://en.wikipedia.org/wiki/UNCOL

Modularization of Code Generation II

Example 15.1

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n +m translations
(in place of n ·m)

2 Pascal’s pseudocode (P-code; ≈ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

Compiler Construction Summer Semester 2014 15.5

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine

Modularization of Code Generation II

Example 15.1

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n +m translations
(in place of n ·m)

2 Pascal’s pseudocode (P-code; ≈ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

3 The Amsterdam Compiler Kit (TACK; ≈ 1980;
http://tack.sourceforge.net/)

Compiler Construction Summer Semester 2014 15.5

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/

Modularization of Code Generation II

Example 15.1

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n +m translations
(in place of n ·m)

2 Pascal’s pseudocode (P-code; ≈ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

3 The Amsterdam Compiler Kit (TACK; ≈ 1980;
http://tack.sourceforge.net/)

4 Java Virtual Machine (JVM; Sun; ≈ 1996;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

Compiler Construction Summer Semester 2014 15.5

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine

Modularization of Code Generation II

Example 15.1

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n +m translations
(in place of n ·m)

2 Pascal’s pseudocode (P-code; ≈ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

3 The Amsterdam Compiler Kit (TACK; ≈ 1980;
http://tack.sourceforge.net/)

4 Java Virtual Machine (JVM; Sun; ≈ 1996;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

5 Common Intermediate Language (CIL; Microsoft .NET; ≈ 2002;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)

Compiler Construction Summer Semester 2014 15.5

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Common_Intermediate_Language

Language Structures I

Structures in high-level programming languages:

Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

Modularity: blocks, modules, and classes

Compiler Construction Summer Semester 2014 15.6

Language Structures I

Structures in high-level programming languages:

Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

Modularity: blocks, modules, and classes

Use of procedures and blocks:

FORTRAN: non-recursive and non-nested procedures
=⇒ static memory management (requirements determined at compile time)

C: recursive and non-nested procedures
=⇒ dynamic memory management using runtime stack (requirements only
known at runtime), no static links

Algol-like languages (Pascal, Modula): recursive and nested procedures
=⇒ dynamic memory management using runtime stack with static links

Object-oriented languages (C++, Java): object creation and removal
=⇒ dynamic memory management using heap

Compiler Construction Summer Semester 2014 15.6

Language Structures II

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump instruction,
transfer instruction, I/O instruction, ...

Addressing modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many registers),
CISC (many [complex but slow] instructions, few registers)

Compiler Construction Summer Semester 2014 15.7

Language Structures II

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump instruction,
transfer instruction, I/O instruction, ...

Addressing modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many registers),
CISC (many [complex but slow] instructions, few registers)

Structures in intermediate code:

Data types and operations like PL

Data stack with basic operations

Jumping instructions for control structures

Runtime stack for blocks, procedures, and static data structures

Heap for dynamic data structures

Compiler Construction Summer Semester 2014 15.7

Outline

1 Generation of Intermediate Code

2 The Example Programming Language EPL

3 Semantics of EPL

4 Intermediate Code for EPL

5 The Procedure Stack

Compiler Construction Summer Semester 2014 15.8

The Example Programming Language EPL

Structures of EPL:

Only integer and Boolean values

Arithmetic and Boolean expressions with strict and non-strict
semantics

Control structures: sequence, branching, iteration

Nested blocks and recursive procedures with local and global variables
(=⇒ dynamic memory management using runtime stack with static
links)

(not considered: procedure parameters and [dynamic] data structures)

Compiler Construction Summer Semester 2014 15.9

Syntax of EPL

Definition 15.2 (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;proc In;Kn;

Blk : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.

Compiler Construction Summer Semester 2014 15.10

EPL Example: Factorial Function

Example 15.3 (Factorial function)

in/out x;
var y;
proc F;
if x > 1 then
y := y * x;
x := x - 1;
F()

y := 1;
F();
x := y.

Compiler Construction Summer Semester 2014 15.11

Outline

1 Generation of Intermediate Code

2 The Example Programming Language EPL

3 Semantics of EPL

4 Intermediate Code for EPL

5 The Procedure Stack

Compiler Construction Summer Semester 2014 15.12

Static Semantics of EPL I

All identifiers in a declaration D have to be different.

Compiler Construction Summer Semester 2014 15.13

Static Semantics of EPL I

All identifiers in a declaration D have to be different.

Every identifier occurring in the command C of a block D C must be
declared

in D or
in the declaration list of a surrounding block.

Compiler Construction Summer Semester 2014 15.13

Static Semantics of EPL I

All identifiers in a declaration D have to be different.

Every identifier occurring in the command C of a block D C must be
declared

in D or
in the declaration list of a surrounding block.

Multiple declarations of an identifier in different blocks are possible.
Each usage in a command C refers to the “innermost” declaration.

Compiler Construction Summer Semester 2014 15.13

Static Semantics of EPL I

All identifiers in a declaration D have to be different.

Every identifier occurring in the command C of a block D C must be
declared

in D or
in the declaration list of a surrounding block.

Multiple declarations of an identifier in different blocks are possible.
Each usage in a command C refers to the “innermost” declaration.

Static scoping: the usage of an identifier in the body of a called
procedure refers to its declaration environment (and not to its calling
environment).

Compiler Construction Summer Semester 2014 15.13

Static Semantics of EPL II

Example 15.4

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

Compiler Construction Summer Semester 2014 15.14

Static Semantics of EPL II

Example 15.4

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

“Innermost” principle

Compiler Construction Summer Semester 2014 15.14

Static Semantics of EPL II

Example 15.4

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

“Innermost” principle

Compiler Construction Summer Semester 2014 15.14

Static Semantics of EPL II

Example 15.4

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

“Innermost” principle

Static scoping: body of P can
refer to x, y, z

Compiler Construction Summer Semester 2014 15.14

Static Semantics of EPL II

Example 15.4

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

“Innermost” principle

Static scoping: body of P can
refer to x, y, z

Later declaration: call of R in P

followed by declaration (in
Pascal: forward declarations
for one-pass compilation)

Compiler Construction Summer Semester 2014 15.14

Dynamic Semantics of EPL

(omitting the details)

To “run” a program, execute the main block in the state which is
given by the input values

Compiler Construction Summer Semester 2014 15.15

Dynamic Semantics of EPL

(omitting the details)

To “run” a program, execute the main block in the state which is
given by the input values
Effect of statement = modification of state

assignment I := A: update of I by current value of A
composition C1;C2: sequential execution
branching if B then C1 else C2: test of B, followed by jump to
respective branch
iteration while B do C : execution of C as long as B is true
call I(): transfer control to body of I and return to subsequent
statement afterwards

Compiler Construction Summer Semester 2014 15.15

Dynamic Semantics of EPL

(omitting the details)

To “run” a program, execute the main block in the state which is
given by the input values
Effect of statement = modification of state

assignment I := A: update of I by current value of A
composition C1;C2: sequential execution
branching if B then C1 else C2: test of B, followed by jump to
respective branch
iteration while B do C : execution of C as long as B is true
call I(): transfer control to body of I and return to subsequent
statement afterwards

Consequently, an EPL program P = in/out I1, . . . ,In;K. ∈ Pgm

has as semantics a function

JPK : Zn
99K Z

n

Compiler Construction Summer Semester 2014 15.15

Dynamic Semantics of EPL

(omitting the details)

To “run” a program, execute the main block in the state which is
given by the input values
Effect of statement = modification of state

assignment I := A: update of I by current value of A
composition C1;C2: sequential execution
branching if B then C1 else C2: test of B, followed by jump to
respective branch
iteration while B do C : execution of C as long as B is true
call I(): transfer control to body of I and return to subsequent
statement afterwards

Consequently, an EPL program P = in/out I1, . . . ,In;K. ∈ Pgm

has as semantics a function

JPK : Zn
99K Z

n

Example 15.5 (Factorial function; cf. Example 15.3)

here n = 1 and JPK(x) = x! (where x! := 1 for x ≤ 1)

Compiler Construction Summer Semester 2014 15.15

Outline

1 Generation of Intermediate Code

2 The Example Programming Language EPL

3 Semantics of EPL

4 Intermediate Code for EPL

5 The Procedure Stack

Compiler Construction Summer Semester 2014 15.16

The Abstract Machine AM

Definition 15.6 (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Compiler Construction Summer Semester 2014 15.17

The Abstract Machine AM

Definition 15.6 (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Thus a state s = (l , d , p) ∈ S is given by

a program label l ∈ PC ,

a data stack d = d .r : . . . : d .1 ∈ DS , and

a procedure stack p = p.1 : . . . : p.t ∈ PS .

Compiler Construction Summer Semester 2014 15.17

AM Instructions

Definition 15.7 (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca ∈ PC)

procedure instructions: CALL(ca,dif ,loc) (ca ∈ PC , dif , loc ∈ N), RET

transfer instructions: LOAD(dif ,off), STORE(dif ,off) (dif , off ∈ N),
LIT(z) (z ∈ Z)

Compiler Construction Summer Semester 2014 15.18

Semantics of Instructions

Definition 15.8 (Semantics of AM instructions (1st part))

The semantics of an AM instruction O

JOK : S 99K S

is defined as follows:
JADDK(l , d : z1 : z2, p) := (l + 1, d : z1 + z2, p)

JNOTK(l , d : b, p) := (l + 1, d : ¬b, p) if b ∈ {0, 1}
JANDK(l , d : b1 : b2, p) := (l + 1, d : b1 ∧ b2, p) if b1, b2 ∈ {0, 1}
JORK(l , d : b1 : b2, p) := (l + 1, d : b1 ∨ b2, p) if b1, b2 ∈ {0, 1}

JLTK(l , d : z1 : z2, p) :=

{

(l + 1, d : 1, p) if z1 < z2
(l + 1, d : 0, p) if z1 ≥ z2

JJMP(ca)K(l , d , p) := (ca, d , p)

JJFALSE(ca)K(l , d : b, p) :=

{

(ca, d , p) if b = 0
(l + 1, d , p) if b = 1

Compiler Construction Summer Semester 2014 15.19

Outline

1 Generation of Intermediate Code

2 The Example Programming Language EPL

3 Semantics of EPL

4 Intermediate Code for EPL

5 The Procedure Stack

Compiler Construction Summer Semester 2014 15.20

Structure of Procedure Stack I

The semantics of procedure and transfer instructions requires a particular
structure of the procedure stack p ∈ PS : it must be composed of frames
(or: activation records) of the form

sl : dl : ra : v1 : . . . : vk

where

static link sl : points to frame of surrounding declaration environment
=⇒ used to access non-local variables

dynamic link dl : points to previous frame (i.e., of calling procedure)
=⇒ used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
=⇒ used to continue program execution after termination
of procedure call

local variables vi : values of locally declared variables

Compiler Construction Summer Semester 2014 15.21

Structure of Procedure Stack II

Frames are created whenever a procedure call is performed

Two special frames:

I/O frame: for keeping values of in/out variables
(sl = dl = ra = 0)

MAIN frame: for keeping values of top-level block
(sl = dl = I/O frame)

Compiler Construction Summer Semester 2014 15.22

Structure of Procedure Stack III

Example 15.9 (cf. Example 15.4)

in/out x;
const c = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... P() ...]

[... Q() ...]
proc R;

[... P() ...]
[... P() ...].

Compiler Construction Summer Semester 2014 15.23

Structure of Procedure Stack III

Example 15.9 (cf. Example 15.4)

in/out x;
const c = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... P() ...]

[... Q() ...]
proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0

rasl dl xyzyzxzy

Compiler Construction Summer Semester 2014 15.23

Structure of Procedure Stack IV

Observation:

The usage of a variable in a procedure body refers to its innermost declaration.

If the level difference between the usage and the declaration is dif , then a chain of
dif static links has to be followed to access the corresponding frame.

Compiler Construction Summer Semester 2014 15.24

Structure of Procedure Stack IV

Observation:

The usage of a variable in a procedure body refers to its innermost declaration.

If the level difference between the usage and the declaration is dif , then a chain of
dif static links has to be followed to access the corresponding frame.

Example 15.10 (cf. Example 15.9)

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... P() ...]
[... x ... y ... Q() ...]

proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0
rasl dl xyzyzxzy

Compiler Construction Summer Semester 2014 15.24

Structure of Procedure Stack IV

Observation:

The usage of a variable in a procedure body refers to its innermost declaration.

If the level difference between the usage and the declaration is dif , then a chain of
dif static links has to be followed to access the corresponding frame.

Example 15.10 (cf. Example 15.9)

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... P() ...]
[... x ... y ... Q() ...]

proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0
rasl dl xyzyzxzy

P uses x =⇒ dif = 2

Compiler Construction Summer Semester 2014 15.24

Structure of Procedure Stack IV

Observation:

The usage of a variable in a procedure body refers to its innermost declaration.

If the level difference between the usage and the declaration is dif , then a chain of
dif static links has to be followed to access the corresponding frame.

Example 15.10 (cf. Example 15.9)

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... P() ...]
[... x ... y ... Q() ...]

proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0
rasl dl xyzyzxzy

P uses y =⇒ dif = 0

Compiler Construction Summer Semester 2014 15.24

	Generation of Intermediate Code
	The Example Programming Language EPL
	Semantics of EPL
	Intermediate Code for EPL
	The Procedure Stack

