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Classification of implementation relations v
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Classification of implementation relations v
e linear vs. branching time
* linear time: trace relations

* branching time: (bi)simulation relations

e (nonsymmetric) preorders vs. equivalences:

* preorders: trace inclusion, simulation

* equivalences: trace equivalence, bisimulation

e strong vs. weak relations

* strong: reasoning about all transitions

* weak: abstraction from stutter steps
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Classification of implementation relations v

e linear vs. branching time

% linear time: trace relations

* branching time: (bi)simulation relations

e (nonsymmetric) preorders vs. equivalences:

* preorders: trace inclusion, simulation

* equivalences: trace equivalence, bisimulation

e strong vs. weak relations

* strong: reasoning about all transitions

* weak: abstraction from stutter steps
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Design by stepwise refinement STUTTERS.4-1

specification

abstract model

TS Th

l

refinement

TS T
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Design by stepwise refinement STUTTERS.4-1

specification

abstract model

TS Th

. a
transition 5 — 1

l

refinement

TS T
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Design by stepwise refinement STUTTERS.4-1

specification

abstract model

TS Th

. a
transition 5 — 1

l

refinement

TS T

execution fragment

a
SH— U —...—U, — b
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Design by stepwise refinement STUTTERS.4-1

internal computation prior to the execution of action «

specification

abstract model

TS Th

. a
transition 5 — 1

l

refinement

TS T

execution fragment

a
SH— U —...—U, — b

e access on auxiliary variables of 7,
no access on variables of 73
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Design by stepwise refinement STUTTERS.4-1

AP
-

AP,
-

AP,

specification

abstract model

TS Th

. a
transition 5 — 1

l

refinement

TS T

execution fragment

a
SH— U —...—U, — b

internal computation prior to the execution of action a

e access on auxiliary variables of 7,
e no access on variables of 73
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Design by stepwise refinement STUTTERS.4-1

AP
-

APy
C

AP,

specification

abstract model

TS T

. a
transition 5 — 1

l

refinement

TS T

execution fragment

Q
SH—Uh—...— U, — b

internal computation prior to the execution of action a

e access on auxiliary variables of 7,

no access on variables of 73

Sy—Uy—. . .—Up: stutter steps w.r.t. AP; (or AP)
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Mututal exclusion (with arbiter) STUTTERS. 4.2

abstract representation

request ' release for process P;
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Mututal exclusion (with arbiter) STUTTERS. 4.2

abstract representation

request ' release for process P;

refined representation
for process P;
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Example: abstraction from stutter steps s

process P

LOOP FOREVER
x:=y MOD 3
y:=(x+y)MOD3
z:=(2y—x)DIV3
END LOQOP
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Example: abstraction from stutter steps s

process P ~~ transition system 7p

¢y LOOP FOREVER

l x:=y MOD 3
12 y:=(x+y)MOD3
3 z:=(2y—x)DIV3

¢4, END LOOP
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Example: abstraction from stutter steps s

process P ~~ transition system 7p

¢y LOOP FOREVER

4 x:=y MOD 3

12 y:=(x+y)MOD3
3 z:=(2y—x)DIV3
¢4, END LOOP

CTL* property: does 7p |= VOO(z = 1) hold ?
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Example: abstraction from stutter steps s

process P ~~ transition system 7p over AP = Eval(z)

¢y LOOP FOREVER

4 x:=y MOD 3

12 y:=(x+y)MOD3
3 z:=(2y—x)DIV3
¢4, END LOOP

CTL* property: does 7p |= VOO(z = 1) hold ?
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Example: abstraction from stutter steps s

process P ~~ transition system 7p over AP = Eval(z)

£
2
2
03
y

LOOP FOREVER
x:=y MOD 3
y:=(x+y)MOD3
z:=(2y—x)DIV3
END LOQOP

«—|stutter step|

«—|stutter step|

——|visible action|

CTL* property: does 7p |= VOO(z = 1) hold ?
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Transition system for process P STUTTERS. 4-4

\
( {1 x=2 y=4 z=3 ]
!

(6 x=1y=4 z=3 )

( l3 x=1 y=2 z=3 ]

( {1 x=1 y=2 z=1

(6 x=2y=2 z=1

( l3 x=2 y=1 z=1

— U U

( l; x=2 y=1 z=0
!




Analysis by abstraction from stutter steps

\

[ {1 x=2 y=4

z=3

[ ly x=1 y=4

z=3

[ l3 x=1 y=2

z=3

[ l; x=1 y=2

z=1

( €y x=2 y=2

z=1

[ l3 x=2 y=1

z=1

[ l; x=2 y=1
I

z=0

— Y O U U

STUTTERD.4-4
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Analysis by abstraction from stutter steps

\

[ {1 x=2 y=4

z=3

[ ly x=1 y=4

z=3

[ l3 x=1 y=2

z=3

[ l; x=1 y=2

z=1

( €y x=2 y=2

z=1

[ l3 x=2 y=1

z=1

z=0

— Y O U U

[ l; x=2 y=1
I

simplified TS
representation

STUTTERD.4-4
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Remind: trace relations W

23 /444



Remind: trace relations W

trace equivalence for paths

my, Ty are trace equivalent iff trace(m;) = trace(m)
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Remind: trace relations STUTTERS.4-5-REMIND
trace equivalence for paths
my, Ty are trace equivalent iff trace(m;) = trace(m)
trace inclusion for TS: Traces(7;) C Traces(T3)

Vmy € Traces(7Tq) Amy € Traces(Tr)
s.t. my, my are trace equivalent
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Remind: trace relations STUTTERS.4-5-REMIND
trace equivalence for paths
my, Ty are trace equivalent iff trace(m;) = trace(m)
trace inclusion for TS: Traces(7;) C Traces(T3)

Vmy € Traces(7Tq) Amy € Traces(Tr)
s.t. my, my are trace equivalent

trace equivalence for TS:
Traces(Tq) C Traces(T;) A Traces(73) C Traces(Th)
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Remind: trace relations STUTTERS.4-5-REMIND
trace equivalence for paths
my, Ty are trace equivalent iff trace(m;) = trace(m)
trace inclusion for TS: Traces(7;) C Traces(T3)

Vmy € Traces(7Tq) Amy € Traces(Tr)
s.t. my, my are trace equivalent

trace equivalence for TS:
Traces(Tq) C Traces(T;) A Traces(73) C Traces(Th)

Traces(Ty) C Traces(T3) iff for each LT property E:
T, = E impliesTy E E
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Remind: trace relations STUTTERS.4-5-REMIND
trace equivalence for paths
my, Ty are trace equivalent iff trace(m;) = trace(m)
trace inclusion for TS: Traces(7;) C Traces(T3)

Vmy € Traces(7Tq) Amy € Traces(Tr)
s.t. my, my are trace equivalent

trace equivalence for TS:
Traces(Tq) C Traces(T;) A Traces(73) C Traces(Th)

Traces(Ty) C Traces(T3) iff for each LT property E:
T, = E impliesTy E E

+
|
trace equivalent TS satisfy the same LTL formulas
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Stutter equivalence for paths
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Stutter equivalence for paths

stutter equivalence for infinite path fragments:
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Stutter equivalence for paths S V———

stutter equivalence for infinite path fragments:

m 2 mo Iff there exists an infinite word
AL Ay ... € (2%P)Y st. the
traces of m; and 7y are of the form
A ... A A.. A...
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Stutter equivalence for paths S V———

stutter equivalence for infinite path fragments:

m 2 mo Iff there exists an infinite word
AL Ay ... € (27P)” st. the
traces of m; and 7y are of the form
AT AR ..

where ng, m, my, . .. are natural numbers > 1
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Stutter equivalence for paths S V———

stutter equivalence for infinite path fragments:

m 2 mo Iff there exists an infinite word
AL Ay ... € (2%P)Y st. the
traces of m; and 7y are of the form
AT AT
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Stutter equivalence for paths S V———

stutter equivalence for infinite path fragments:

m 2 mo Iff there exists an infinite word
AL Ay ... € (2%P)Y st. the
traces of m; and 7y are of the form
AT AT

stutter equivalence for finite path fragments:

A

m 2 7o iff there exists a finite word
AAy.. A, € (2%P)7 st

the traces of ; and 7, are in
TATAT. AT
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Stutter trace relations for TS ST

stutter equivalence for infinite path fragments:

m 2 mo Iff there exists an infinite word
AL Ay ... € (2%P)Y st. the
traces of m; and 7y are of the form
AT AT
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Stutter trace relations for TS ST

stutter equivalence for infinite path fragments:

m 2 mo Iff there exists an infinite word
AL Ay ... € (2%P)Y st. the
traces of m; and 7y are of the form
AT AT

stutter trace inclusion for transition systems:
T, <7, iff for all paths m; of Tq
there exists a path mp of 75

A
s.t. m =m
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Example: stutter trace inclusion < STUTTERS.4-5-EX

T AT, iff Vm € Paths(Ty) Amy € Paths(7T3)

A
s.t. m=m

O =
@ = {a}
@ = {b}
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Example: stutter trace inclusion < STUTTERS.4-5-EX

T AT, iff Vm € Paths(Ty) Amy € Paths(7T3)

A
s.t. m=m

O =
@ = {a}
@ = {b}

A
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Example: stutter trace inclusion < STUTTERS.4-5-EX

T AT, iff Vm € Paths(Ty) Amy € Paths(7T3)

s.t. Wléﬂ'z
g O=2
@ = {3}
@ = {b}

all traces have the form (@+{b}*{a}*)~
or (g*{b}*{a}*)o*
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Stutter trace inclusion and LTL S

T AT, iff Vm € Paths(Ty) Amy € Paths(7T3)

A
s.t. mp = m

Does stutter trace inclusion preserve LTL properties?
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Stutter trace inclusion and LTL S

T AT, iff Vm € Paths(Ty) Amy € Paths(7T3)

A
s.t. mp = m

Does stutter trace inclusion preserve LTL properties?

A

i.e., for all LTL formulas ¢:
<7, N L@ implies Th o
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Stutter trace inclusion and LTL S

T AT, iff Vm € Paths(Ty) Amy € Paths(7T3)

A
s.t. mp = m

Does stutter trace inclusion preserve LTL properties?

A

i.e., for all LTL formulas ¢:
<7, N L@ implies Th o

answer: no
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Stutter trace inclusion and LTL S

T AT, iff Vm € Paths(Ty) Amy € Paths(7T3)

A
s.t. mp = m

Does stutter trace inclusion preserve LTL properties?

A

i.e., for all LTL formulas ¢:
<7, N L@ implies Th o

answer: no

Example: LTL formulas of the form Qa
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Stutter trace inclusion and LTL\O PR

T AT, iff Vm € Paths(Ty) Amy € Paths(7T3)

A
s.t. mp = m

Let 77 and 75 are TS without terminal states
and ¢ an LTL\ formula. Then:

19T, A D=y implies T ¢
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Stutter trace inclusion and LTL\O PR

T AT, iff Vm € Paths(Ty) Amy € Paths(7T3)

A
s.t. mp = m

Let 77 and 75 are TS without terminal states
and ¢ an LTL\ formula. Then:

19T, A D=y implies T ¢

where LTL\ = LTL without the next operator O
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. A
Stutter trace equivalence = for TS STUTTERS. 4-54
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. A
Stutter trace equivalence = for TS STUTTERS. 4-54

stutter trace inclusion 73 <75

Vmy € Paths(Ty) 3m, € Paths(T) st. m = m
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. A
Stutter trace equivalence = for TS STUTTERS. 4-54

stutter trace inclusion 73 <75

Vmy € Paths(Ty) 3m, € Paths(T) st. m = m

stutter trace equivalence

T 2T iff <47 and AT,
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. A
Stutter trace equivalence = for TS STUTTERS. 4-54

stutter trace inclusion 73 <75

Vmy € Paths(T1) 3m, € Paths(T) s.t. m = m,

stutter trace equivalence
T 27 iff 14T and AT,

T

kernel of 4, i.e.,
coarsest equivalence that refines <
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. A
Stutter trace equivalence = for TS STUTTERS. 4-54

stutter trace inclusion 73 <75

Vmy € Paths(T1) 3m, € Paths(T) s.t. m = m,

For all LTL\O formulas :
71T N D¢ implies i

stutter trace equivalence
T 27 iff 14T and AT,

T

kernel of 4, i.e.,
coarsest equivalence that refines <
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. A
Stutter trace equivalence = for TS STUTTERS. 4-54

stutter trace inclusion 73 <75

Vmy € Paths(T1) 3m, € Paths(T) s.t. m = m,

For all LTL\O formulas :
71T N D¢ implies i

stutter trace equivalence

T 2T iff <47 and AT,

If T, = 7> then 7; and 7, are LTL\ equivalent.
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Correct or wrong? STUTTERS 4-13A

|I>
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Correct or wrong? STUTTERS 4-13A

|I>

correct
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Correct or wrong? STUTTERS 4-13A

|I>

correct

The traces of 77 and T have the form @+ @+ or @
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Correct or wrong? STUTTERS 4-13A

A
= correct

The traces of 77 and T have the form @+ @+ or @

& .
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Correct or wrong? STUTTERS 4-13A

A
= correct

The traces of 77 and T have the form @+ @+ or @

? i A wrong
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Correct or wrong? STUTTERS 4-13A

A
= correct

The traces of 77 and T have the form @+ @+ or @

? i A wrong

77 has a finite trace @+t ® while 75 has not
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Correct or wrong? STUTTERS 4-135

If 73 and 75 are TS over AP then:
Ti~T, implies T 2 T
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Correct or wrong? STUTTERS 4-135

If 73 and 75 are TS over AP then:
Ti~T, implies T 2 T

Pl N
/ N\
bisimulation stutter trace

equivalence equivalence
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Correct or wrong? STUTTERS 4-135

If 73 and 75 are TS over AP then:
Ti~T, implies T 2 T

Pa N
/ N\
bisimulation stutter trace
equivalence equivalence

correct
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Correct or wrong? STUTTERS 4-135

If 73 and 75 are TS over AP then:
Ti~T, implies T 2 T

Pa N
/ N\
bisimulation stutter trace
equivalence equivalence
correct, as

e T, ~ T, implies Traces(Ty) = Traces(T3)

e trace equivalent paths are stutter trace equivalent
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Correct or wrong? STUTTERS 4-135

If 73 and 75 are TS over AP then:
Ti~T, implies T 2 T

Pa N
/ N\
bisimulation stutter trace
equivalence equivalence
correct, as

e T, ~ T, implies Traces(Ty) = Traces(T3)

e trace equivalent paths are stutter trace equivalent
obviously: Traces(7;) C Traces(T;) implies Ty < T,
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Stutter-insensitive LT properties STUTTERS.4-ST-INS-PROP
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Stutter-insensitive LT properties STUTTERS.4-ST-INS-PROP

stutter equivalence for infinite words
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Stutter-insensitive LT properties STUTTERS.4-ST-INS-PROP

stutter equivalence for infinite words o1, 09 € (2AP)w:
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Stutter-insensitive LT properties STUTTERS.4-ST-INS-PROP

stutter equivalence for infinite words o1, 09 € (2AP)w:

o1 2 oo Iff there exists an infinite word
AlA... € (2Ap)w s.t. o1 and o5
are in AgtA;TAT. ..
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Stutter-insensitive LT properties STUTTERS.4-ST-INS-PROP

stutter equivalence for infinite words o1, 09 € (2AP)w:

o1 2 oo Iff there exists an infinite word
AlA... € (2Ap)w s.t. o1 and o5
are in AgtA;TAT. ..

Let E C (2AP)w be an LT property. E is called
stutter-insensitive iff for all o1, 09 € (2AP)M:

ifaleEandaléazthenageE
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Stutter-insensitive LT properties STUTTERS.4-ST-INS-PROP

stutter equivalence for infinite words o1, 09 € (2AP)w:

o1 2 oo Iff there exists an infinite word
AlA... € (2Ap)w s.t. o1 and o5
are in AgtA;TAT. ..

Let E C (2AP)w be an LT property. E is called
stutter-insensitive iff for all o1, 09 € (2AP)M:

ifaleEandaléazthenageE

Example: if ¢ is an LTL\ formula then
E = Words(yp) is stutter-insensitive
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Stutter-insensitive LT properties STUTTERS.4-ST-INS-PROP

Let 77, 7> be two TS and E a stutter-insensitive
LT-property. Then:

71T and h = E implies Ty EE
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Stutter-insensitive LT properties STUTTERS.4-ST-INS-PROP

Let 77, 7> be two TS and E a stutter-insensitive
LT-property. Then:

71T and h = E implies Ty EE

Let 71, T> be two TS and ¢ an LTL, formula.
T1<T and T = ¢ implies Th =
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Stutter-insensitive LT properties STUTTERS.4-ST-INS-PROP

Let 77, 7> be two TS and E a stutter-insensitive
LT-property. Then:

71T and h = E implies Ty EE

Let 71, T> be two TS and ¢ an LTL, formula.
T1<T and T = ¢ implies Th =

remind: if ¢ is an LTL\ formula then
E = Words(yp) is stutter-insensitive
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OverView OVERVIEWT7.4A

Introduction

Modelling parallel systems
Linear Time Properties

Regular Properties

Linear Temporal Logic (LTL)
Computation-Tree Logic (CTL)
Equivalences and Abstraction

bisimulation, CTL/CTL*-equivalence
computing the bisimulation quotient
abstraction stutter steps

stutter LT relations

stutter bisimulation —
simulation relations
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St utter biSi mu I ation STUTTERS.4-DEF-STUTTER-BIS
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Stutte r biSi mu I ation STUTTERS.4-DEF-STUTTER-BIS

Let T = (S, Act, —, Sp, AP, L) be a TS,
possibly with terminal states.
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Stutte r biSi mu I ation STUTTERS.4-DEF-STUTTER-BIS

Let T = (S, Act, —, Sp, AP, L) be a TS,
possibly with terminal states.

A stutter bisimulation for T is ....
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Stutte r biSi mu I ation STUTTERS.4-DEF-STUTTER-BIS

Let T = (S, Act, —, Sp, AP, L) be a TS,
possibly with terminal states.

A stutter bisimulation for T is a binary relation R
on S s.t.
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Stutte r biSi mu I ation STUTTERS.4-DEF-STUTTER-BIS

Let T = (S, Act, —, Sp, AP, L) be a TS,
possibly with terminal states.

A stutter bisimulation for T is a binary relation R
on S s.t. for all (51, %) € R:

(1) labeling condition

(2) simulation condition up to stuttering
“sp can mimick all transitions of of 5"

(3) simulation condition up to stuttering
“s1 can mimick all transitions of of s"
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St utter biSi mu I ation STUTTERS.4-DEF-STUTTER-BIS

Let T = (S, Act, —, Sp, AP, L) be a TS,
possibly with terminal states.

A stutter bisimulation for T is a binary relation R
on S s.t. for all (51, %) € R:

(1) labeling condition: L(s) = L(sp)

(2) simulation condition up to stuttering
“sp can mimick all transitions of of 5"

(3) simulation condition up to stuttering
“s1 can mimick all transitions of of s"

78 /444



St utter biSi mu I ation STUTTERS.4-DEF-STUTTER-BIS

Let T = (S, Act, —, Sp, AP, L) be a TS,
possibly with terminal states.

A stutter bisimulation for T is a binary relation R
on S s.t. for all (51, %) € R:

(1) labeling condition: L(s) = L(sp)

(2) simulation condition up to stuttering
“sp can mimick all transitions of of 5"

(3) simulation condition up to stuttering
“s1 can mimick all transitions of of s"
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S i mu |ati0n Condition STUTTERS.4-DEF-STUTTER-BIS

A stutter bisimulation for T is a binary relation R
on S s.t. for all (51, %) € R:

(2) simulation condition up to stuttering
s1-R-s

s
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S i mu |ati0n con ditio n STUTTERS.4-DEF-STUTTER-BIS

A stutter bisimulation for T is a binary relation R
on S s.t. for all (51, %) € R:

(2) simulation condition up to stuttering
s1-R-s

s

with (s1,%) ¢ R
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Simulation condition

A stutter bisimulation for T is a binary relation R

on S s.t. for all (51, %) € R:

(2) simulation condition up to stuttering

s1-R- s
can be
completed to

s

with (s1,%) ¢ R

STUTTERS.4-DEF-STUTTER-BIS

s1-R- s

|

th

!
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S i mu |ati0n con ditio n STUTTERS.4-DEF-STUTTER-BIS

A stutter bisimulation for T is a binary relation R
on S s.t. for all (51, %) € R:

(2) simulation condition up to stuttering

s1-R-s s1-R-s
can be l
completed to .

M ?

S1 -R- u;

with (s}, %) € R uy
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Stutter bisimulation for a TS LA ErE

Let 7 be a transition system wih state space S.

A stutter bisimulation for T is a binary relation R
on S such that for all (s1, %) € R:

(1) L(s1) = L(s2)

(2) for each transition s; — s; with (s{,%) ¢ R
there exists a path fragment sty s ... U, S)
s.t. ...

(3)
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Stutter bisimulation for a TS LA ErE

Let 7 be a transition system wih state space S.

A stutter bisimulation for T is a binary relation R
on S such that for all (s1, %) € R:

(1) L(s1) = L(s2)

(2) for each transition s; — s; with (s{,%) ¢ R
there exists a path fragment sty s ... U, S)
st.n>0and (s, ;) ER for1<i<n

(3)
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Stutter bisimulation for a TS LA ErE

Let 7 be a transition system wih state space S.

A stutter bisimulation for T is a binary relation R
on S such that for all (s1, %) € R:

(1) Lis1) = L(s2)
(2) for each transition s; — s; with (s],5) ¢ R

there exists a path fragment sty s ... U, S)
st. n>0and (s, ;) ER for1<i<n

(3) symmetric condition
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Stutter bisimulation for a TS LA ErE

Let 7 be a transition system wih state space S.

A stutter bisimulation for T is a binary relation R
on S such that for all (s1, %) € R:

(1) L(s1) = L(s2)

(2) for each transition s; — s; with (s{,%) ¢ R
there exists a path fragment sty s ... U, S)
st.n>0and (s, ;) ER for1<i<n

(3) for each transition s, — s} with (s1,5) ¢ R
there exists a path fragment s vy va ... v, 5]
st.n>0and (v,) R forl<i<n

87 /444



Stutter biSimu|ati0I’l eqUivalence z']’ STUTTERS.4-DEF-APPROX
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Stutter bisimulation equivalence =7  stvriers 4oerarerox

Let 7 be a transition system wih state space S.

A stutter bisimulation for T is a binary relation R
on S such that for all (s1, ) € R:

(1) labeling condition

(2) and (3) mutual simulation condition
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Stutter biSimUIation eqUivalence z']’ STUTTERS.4-DEF-APPROX

Let 7 be a transition system wih state space S.

A stutter bisimulation for T is a binary relation R
on S such that for all (s1, ) € R:

(1) labeling condition

(2) and (3) mutual simulation condition

stutter bisimulation equivalence =7
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Stutter biSimUIation eqUivalence z']’ STUTTERS.4-DEF-APPROX

Let 7 be a transition system wih state space S.

A stutter bisimulation for T is a binary relation R
on S such that for all (s1, ) € R:

(1) labeling condition

(2) and (3) mutual simulation condition

stutter bisimulation equivalence =7

s1 =1 S |Iff there exists a stutter bisimulation R
for T st. (s1,%) ER
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~7 Is an equivalence STUTTERS.4-10
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~7 Is an equivalence STUTTERS.4-10

symmetry: if s &7 s then s, =1 5
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~7 Is an equivalence STUTTERS.4-10

symmetry: if s &7 s then s, =7 5

proof:
if R is a stutter bisimulation with (s1,5,) € R then
R1={(t,t1) : (1, 1) € R}

is a stutter bisimulation that contains (s, 51).
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~7 Is an equivalence STUTTERS.4-10

symmetry: if s &7 s then s, =1 5

reflexivity: s =7 s for all states s
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~7 Is an equivalence STUTTERS.4-10

symmetry: if s &7 s then s, =1 5

reflexivity: s =7 s for all states s

proof:
R = {(s,s) : s € S} is a stutter bisimulation
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~7 Is an equivalence STUTTERS.4-10

symmetry: if s &7 s then s, =1 5
reflexivity: s =7 s for all states s

transitivity: 51 &1 s and s, &7 s3 implies 51 =71 S3
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~7 Is an equivalence STUTTERS.4-10

symmetry: if s &7 s then s, =1 5
reflexivity: s =7 s for all states s

transitivity: 51 &1 s and s, &7 s3 implies 51 =71 S3

Proof: Let R12 and R 3 be stutter bisimulations s.t.

(51,%) € Ri2, (52,53) € Ra3
Show that R = Rj20Ry3 is a stutter bisimulation.
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$1—Rio2—

»

$25—Ro3—S3
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$1—Ri12—
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$1—Ri12—

-52-—R23—S3
{ {
Ul PP

{ {
Vi1

Uj—1

f i
Ui—Ro3—Ve
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S1—R12—

s

-2 —Ro3—S3
¥ '
Ul PP
¥ \

“ e Ve_l
¥
Uj—1

:
Ui—Ry3—Ve
V '

¥ \

Uk—1. Vr—1

Y v
Uk'—,R'2,3— Vr
¥
'
Um

—Ria 2—53

»
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S1—R12—

-2 —Ro3—S3
¥ '
Ul PP
¥ \
ce V-1
¥
Uj—1

:
‘:j —Ro3— 'ie

' '
Uk—1. Vr—1
Y Y
Uk'—,Rr2,3— Vr
' '

V '
Um Vn
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Stutter bisimulation equivalence STUTTERS.4-9

/7 Is an equivalence on state space S of T
such that for all states s;, s with s =1 s:

(1) L(s1) = L(s2)

(2) simulation condition up to stuttering

51 RT 9 s1 RT S .
' *
un *
can be ' up &1 S
completed to S/

s ty

with s] %7 s s N7 8
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Stutter bisimulation equivalence STUTTERS.4-9

=7 is the coarsest equivalence on state space S of 7
such that for all states s1, s with s =7 s:

(1) L(s1) = L(s2)

(2) simulation condition up to stuttering

51 RT 9 s1 RT S .
' *
un *
can be ' up &1 S
completed to S/

s ty

with s] %7 s s N7 8
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Example: mutual exclusion with semaphore swrrers.a

AP = {crity, crity }

cl waity
y=1 y=1
=
y=1

nc crity
y=0

crity waitzwaitl crity
y=0 y=0
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Example: mutual exclusion with semaphore swrrers.a

AP = {crity, crity }

y=1

=1 y=1
y=1

] wait; crity
y=0

crit; wait,
y=0
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Example: mutual exclusion with semaphore swrrers.a

AP = {crity, crity }

1
-waitl ncy
y=0 wait; waity
y=1

stutter bisimulation with three equivalence classes
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Peterson algorithm STUTTERS A7

protocol for Py

LOOP FOREVER
noncritical section
b, := true; x :=2
AWAIT (x=1) V b,
critical section
b, := false

END LOOP
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Peterson algorithm STUTTERS A7

protocol for Py

LOOP FOREVER
noncritical section
b, := true; x :=2
AWAIT (x=1) V b,
critical section
b, := false

END LOOP

b, := true b, := false

(x=1) vV —b,
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Peterson algorithm STUTTERS A7

protocol for Py protocol for P»

LOOP FOREVER LOOP FOREVER
noncritical section noncritical section
b, := true; x :=2 by := true; x :=1
AWAIT (x=1) V b, AWAIT (x=2) V -b,
critical section critical section
b, := false b, := false

END LOOP END LOOP

b, := true b, := false

(x=1) vV —b,
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TS for the Peterson algorithm STUTTERS 4-8

N N\
(mmx=1) (nmx=2)

(wimpx=2) (mwx=1)

-~ ~

(e mx=2) (m o x=1)

\[wl wo x=1) X (w1 wy x=2]j
| l

(Cl wWh X=1) (Wl (&) X=2)

AP = {crity, crity }
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TS for the Peterson algorithm STUTTERS 4-8

N N\
(mmx=1) (nmx=2)

(wimpx=2) (mwx=1)

(wi wo x=1) X (wy wp x=2)

AP = {crity, crity }
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TS for the Peterson algorithm STUTTERS 4-8

N N\
(mmx=1) (nmx=2)

(wimpx=2) (mwx=1)

AP = {crity, crity }
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TS for the Peterson algorithm STUTTERS 4-8

N N\
(mmx=1) (nmx=2)

(wimpx=2) (m wx=1)

AP = {crity, crity }
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TS for the Peterson algorithm STUTTERS 4-8

N N\
(mmx=1) (nmx=2)

(wimpx=2) (m wx=1)

AP = {crity, crity }
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TS for the Peterson algorithm STUTTERS 4-8

N N\
(mmx=1) (nmx=2)

(wimpx=2) (m wx=1)

AP = {crity, crity}
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TS for the Peterson algorithm STUTTERS 4-8

N N\
(mmx=1) (nmx=2)

(wimpx=2) (m wx=1)

AP = {crity, crity }

9 stutter bisimulation equivalence classes
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Stutter bisimulation equivalence for two TS ....c.u
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Stutter bisimulation equivalence for two TS ....c.u

transition system 7;  transition system 75

state space $; state space S,
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Stutter bisimulation equivalence for two TS ....c.u

transition system 7;  transition system 75

[ DI

state space $; state space S,

T, = 7, iff there exists a stutter bisimulation R
for T = T; W75 such that

123 /444



Stutter bisimulation equivalence for two TS ....c.u

transition system 7;  transition system 75

[ DI

state space $; state space S,

T, = 7, iff there exists a stutter bisimulation R
for T = T; W75 such that
Y initial states s; of 77 3 initial state s, of 75
s.t. 51 =7
Y initial states s, of 75 3 initial state s; of Tq
s.t. 51 =7
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Stutter bisimulation equivalence for two TS ....c.u

transition system 7;  transition system 75

state space $; state space S,

T, = 7, iff there exists a stutter bisimulation R
for (T, T2)
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Stutter bisimulation equivalence for two TS ....c.u

transition system 7;  transition system 75

[ DI

state space $; state space S,

T, = 7, iff there exists a stutter bisimulation R
for (11, 72),ie., R C $ X S, s.t.
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Stutter bisimulation equivalence for two TS ....c.u

transition system 7;  transition system 75

[ DI

state space $; state space S,

T, = 7, iff there exists a stutter bisimulation R
for (11, 72),ie., R C $ X S, s.t.

(1) if (51,52) € R then L1(51) = L2($2)
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Stutter bisimulation equivalence for two TS ....c.u

transition system 7;  transition system 75

[ DI

state space $; state space S,

T, = 7, iff there exists a stutter bisimulation R
for (11, 72),ie., R C $ X S, s.t.

(1) if (51,52) € R then L1(51) = L2($2)
(2) and (3)
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Stutter bisimulation equivalence for two TS ....c.u

transition system 7;  transition system 75

[ DI

state space $; state space S,

T, = 7, iff there exists a stutter bisimulation R
for (11, 72),ie., R C $ X S, s.t.
(1) if (51,52) € R then L1(51) = L2($2)
(2) and (3)
(I) V initial state s; of 77 3 initial state s, of 75
with (s1,5) € R, and vice versa
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Example: door opener STUTTERS.4-12

abstract model 7;

code
closed]  Topen)
wrong
code
alarm

AP = {closed, open, alarm}
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Example: door opener with code no. 181 vrisane

abstract model 7;

code
closed]  Topen)
wrong
code

laIarm?
//\

refinement

TS T

‘ AP = {closed, open, alarm}
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Example: door opener with code no. 181 vrisane

abstract model 7;

T # T
code
closed[  Topen)
wrong
code

lalarm?
/\

refinement

TS T

‘ AP = {closed, open, alarm}
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Example: door opener with code no. 181 vrisane

abstract model 7;

Th*T
code
closed|  [open) abstraction from
wrong stutter steps:

code

=1
lalarm?
/\

refinement

TS T

‘ AP = {closed, open, alarm}
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Correct or wrong? STUTTERS 4-13
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Correct or wrong? STUTTERS 4-13

wrong
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Correct or wrong? STUTTERS 4-13

wrong

s’

T, does not contain an equivalent state to s and s’
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Correct or wrong? STUTTERS 4-13

m TQ wrong
v L
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Correct or wrong? STUTTERS 4-13

m TQ wrong
v L

correct
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Correct or wrong? STUTTERS 4-13

Th =71
wrong
S1 Th =1 L)
correct
t i

stutter bisimulation for (73, 73):
{(517 52)7 (t17 52)7 (ll]_, 52), (W17 52)7 (VI) V2)}
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Correct or wrong? STUTTERS 4-14

If sy ~7 s then 51 =1 5

remind: ~7 bisimulation equivalence for 7

~ stutter bisimulation equivalence for 7°
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Correct or wrong? STUTTERS 4-14

If sy ~7 s then 51 =1 5

correct

remind: ~7 bisimulation equivalence for 7

~ stutter bisimulation equivalence for 7°
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Correct or wrong? STUTTERS 4-14

If sy ~7 s then 51 =1 5

correct
as ~ is a stutter bisimulation for 7

remind: ~7 bisimulation equivalence for 7

~ stutter bisimulation equivalence for 7°
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Correct or wrong? STUTTERS 4-14

If sy ~7 s then 51 =1 5

correct
as ~ is a stutter bisimulation for 7

If s =1 s, then 51 ~1 5
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Correct or wrong? STUTTERS 4-14

If sy ~7 s then 51 =1 5

correct
as ~ is a stutter bisimulation for 7

If s =1 s, then 51 ~1 5

wrong

144 / 444



Correct or wrong? STUTTERS 4-14

If sy ~7 s then 51 =1 5

correct
as ~ is a stutter bisimulation for 7

If s =1 s, then 51 ~1 5

wrong, e.g.:

\b—-.—-O\b—-O

S1 S
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Correct or wrong? STUTTERS 4-14

If sy ~7 s then 51 =1 5

correct
as ~ is a stutter bisimulation for 7

If s =1 s, then 51 ~1 5

wrong, e.g.:

\ \ 51 |1 R

S
s 5 1 7"752
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Correct or wrong? STUTTERS.4-15

Let 7 be a transition system without stutter steps.
Then s =7 s implies s ~7 s
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Correct or wrong? STUTTERS.4-15

Let 7 be a transition system without stutter steps.
Then s =7 s implies s ~7 s

correct
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Correct or wrong? STUTTERS.4-15

Let 7 be a transition system without stutter steps.
Then s =7 s implies s ~7 s

correct, as =7 is a bisimulation for T

149 /444



Correct or wrong? STUTTERS.4-15

Let 7 be a transition system without stutter steps.
Then s =7 s implies s ~7 s

correct, as =7 is a bisimulation for T

(1) labeling condition: 4/
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Correct or wrong? STUTTERS.4-15

Let 7 be a transition system without stutter steps.
Then s =7 s implies s ~7 s

correct, as =7 is a bisimulation for T
(1) labeling condition: 4/
(2) Suppose s; — 5.
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Correct or wrong? STUTTERS.4-15

Let 7 be a transition system without stutter steps.
Then s =7 s implies s ~7 s

correct, as =7 is a bisimulation for T

(1) labeling condition: 4/
(2) Suppose 51 — s;. Then: L(s;) # L(s;)
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Correct or wrong? STUTTERS.4-15

Then s =17 s implies S1 ~T S

Let 7 be a transition system without stutter steps.

correct, as =7 is a bisimulation for T

(1) labeling condition: 4/

(2) Suppose 51 — s;. Then: L(s;) # L(s;)
= 5 %715
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Correct or wrong? STUTTERS.4-15

Let 7 be a transition system without stutter steps.
Then s =7 s implies s ~7 s

correct, as =7 is a bisimulation for T

(1) labeling condition: 4/

(2) Suppose 51 — s;. Then: L(s;) # L(s;)
= 5 %715

= there is a path fragment su; ... ups)
withm>0and sy =7 u; A 5| =1 5

154 / 444



Correct or wrong? STUTTERS.4-15

Let 7 be a transition system without stutter steps.
Then s =7 s implies s ~7 s

correct, as =7 is a bisimulation for T

(1) labeling condition: 4/

(2) Suppose 51 — s;. Then: L(s;) # L(s;)
= 5 %715

= there is a path fragment su; ... ups)
withm>0and sy =7 u; A 5| =1 5

= m=0.
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Correct or wrong? STUTTERS.4-15

Let 7 be a transition system without stutter steps.
Then s =7 s implies s ~7 s

correct, as =7 is a bisimulation for T

(1) labeling condition: 4/
(2) Suppose 51 — s;. Then: L(s;) # L(s;)
= 5 %715

= there is a path fragment su; ... ups)
withm>0and sy =7 u; A 5| =1 5

=> m=0. Hence: s, — s, and 5| =7 s}
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Stutter bisimulation quotient STUTTERS.4-16
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Stutter bisimulation quotient STUTTERS.4-16

Let 7 = (S, Act,—, So, AP, L) be a TS.
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Stutter bisimulation quotient STUTTERS.4-16

Let 7 = (S, Act,—, So, AP, L) be a TS.

stutter bisimulation quotient of 7":

T/% = (S/%T’Adl,—)z, (l))AP’L,)

159 /444



Stutter bisimulation quotient STUTTERS.4-16

Let 7 = (S, Act,—, So, AP, L) be a TS.

stutter bisimulation quotient of 7":

T/% = (S/zT,ACtI,_)z7 (l)1AP1L,)

set of stutter bisimulation

e state space: S/~ «— .
equivalence classes
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Stutter bisimulation quotient STUTTERS.4-16

Let 7 = (S, Act,—, So, AP, L) be a TS.

stutter bisimulation quotient of 7":
T/~ = (S/=r,Act',—x, S}, AP, L)

e state space: S/~
e initial states: 5§ = {[s]: s € So}

[s] = [s]~r = {s’ES s X1 s}

equivalence class of state s
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Stutter bisimulation quotient STUTTERS.4-16

Let 7 = (S, Act,—, So, AP, L) be a TS.

stutter bisimulation quotient of 7":
T/~ = (S/=r,Act',—x, S}, AP, L)

e state space: S/~
e initial states: 5§ = {[s]: s € So}
e labeling: L'([s]) = L(s)

[s]=I[sla; = {s'€S:5s =7 &'}

equivalence class of state s
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Stutter bisimulation quotient STUTTERS.4-16

Let 7 = (S, Act,—, So, AP, L) be a TS.

stutter bisimulation quotient of 7":

T/% = (S/%T’Adl,—)z, (l))AP’L,)

e state space: S/~

e initial states: 5§ = {[s]: s € So}
e labeling: L'([s]) = L(s)

e transition relation:

s—s ANsgrs

[s] —= [s]
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Stutter bisimulation quotient STUTTERS.4-16

Let 7 = (S, Act,—, So, AP, L) be a TS.

stutter bisimulation quotient of 7":

T/~ = (S/=r1,Act',—x, Sy, AP, L)
e state space: S/~
e initial states: 5§ = {[s]: s € So}
e labeling: L'([s]) = L(s)

e transition relation: —|actions irrelevant]

s—s ANsgrs
[s] =~ [5]
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Equivalence of 7 and its quotient STUTTERS.4-16A

Let T = (S, Act, —, Sp, AP, L) be a TS.

stutter bisimulation quotient of 7:
T/~ = (S/=r,Act',—x, S), AP, L)
where S§ = {[s] : s € So} and L'([s]) = L(s)

transition relation:

s—s ANszrs
[s] =~ [5]
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Equivalence of 7 and its quotient STUTTERS.4-16A

Let T = (S, Act, —, Sp, AP, L) be a TS.

stutter bisimulation quotient of 7:
T/~ = (S/=r,Act',—x, S), AP, L)
where S§ = {[s] : s € So} and L'([s]) = L(s)

transition relation:

T = T/~

s—s ANszrs
[s] =~ [5]
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Equivalence of 7 and its quotient STUTTERS.4-16A

Let T = (S, Act, —, Sp, AP, L) be a TS.

stutter bisimulation quotient of 7:
T/~ = (S/=r,Act',—x, S), AP, L)
where S§ = {[s] : s € So} and L'([s]) = L(s)

transition relation:

T = T/~

s—s ANszrs
[s] =~ [5]

proof. R = {(s,[s]) : s€ S}
is a stutter bisimulation for (7,7 /=)
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Example: mutual exclusion with semaphore s:vrrers.ai6:

AP = {crity, crity }

wait; nco nc; waity
y=1 y=1

y=0 wait; waity y=0
y=1
y=0

crit; waity
y=0
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Example: mutual exclusion with semaphore s:vrrers.ai6:

AP = {crity, crity }

1
-waitl ncy
y=0 wait; waity
y=1

stutter bisimulation with three equivalence classes
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Example: mutual exclusion with semaphore s:vrrers.ai6:

AP = {crity, crity }
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Example: mutual exclusion with semaphore s:vrrers.ai6:

AP = {crity, crity }
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Alternating bit protocol

acknowledgement (bit)

STUTTERS.4-21

/_\

—_—

Timer

//&ender

Receiver

message + bit
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Alternating bit protocol

acknowledgement (bit)

STUTTERS.4-21

/_\

—_—

Timer

//&ender

Receiver

message + bit

[Sender |

e formalization by a closed channel system

Timer | Receiver]
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Alternating bit protocol

acknowledgement (bit)

STUTTERS.4-21

/_\

—_—

Timer

//&ender

Receiver

message + bit

[Sender |

e formalization by a closed channel system

Timer | Receiver]

e TS with about 230 states

for channels of capacity 10
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Alternating bit protocol STUTTER.4-21

acknowledgement (bit)
/_\

/ Sender Receiver
-

/ message + bit

program graph for sender

Timer

( generate message(0) ) ( generate message(1) )

timeout! timeout!
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Alternating bit protocol STUTTERS. 422

SMode=0 SMode=1 RMode=0 RMode=1
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Alternating bit protocol STUTTERS. 422

SMode=0 SMode=1 RMode=0 RMode=1

AP = {SMode=0, SMode=1, RMode=0, RMode=1}
¢ = VOOSMode=0 A VO)SMode=1
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Alternating bit protocol STUTTERS. 422

SMode=0 SMode=1 RMode=0 RMode=1

AP = {SMode=0, SMode=1, RMode=0, RMode=1}
¢ = VOOSMode=0 A VO)SMode=1

ABP [£ ®
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Alternating bit protocol STUTTERS. 422

SMode=0 SMode=1 RMode=0 RMode=1

AP = {SMode=0, SMode=1, RMode=0, RMode=1}
¢ = VOOSMode=0 A VO)SMode=1

ABP £ ®, but ABP/~ = ®
/F

stutter bisimulation quotient
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Alternating bit protocol

STUTTERD.4-22

SMode=0 SMode=1 RMode=0 RMode=1

stutter bisimulation quotient:

AN
([ SMode=0 )
| RMode=0 |

( SMode=0 )
| RMode=1 |

[ SMode=1

| RMode=1 |

( SMode=1

| RMode=0 |
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Correct or wrong? STUTTERS 4-27

If Ty = 7, then 7y and 75 are LTL\-equivalent.
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Correct or wrong? STUTTERS 4-27

If Ty = 7, then 7y and 75 are LTL\-equivalent.

wrong.
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Correct or wrong? STUTTERS 4-27

If Ty = 7, then 7y and 7> are LTL\-equivalent.

wrong.
T T

%] %]
AP = {a}

{a} {a}
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Correct or wrong? STUTTERS 4-27

If Ty = 7, then 7y and 7> are LTL\-equivalent.

wrong.
T = D

%] %]
AP = {a}

{a} {a}
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Correct or wrong? STUTTERS 4-27

If Ty = 7, then 7y and 7> are LTL\-equivalent.

wrong.
L = D
%] %]
AP = {a}
{2} {3} @“ € Traces(Th)

@ ¢ Traces(Tr)
T £ Qa Tk Qa
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Abstraction from stuttering: LT vs. BT  covrmmsaos
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Stutter bisimulation/stutter trace equivalence ...

stutter trace equivalence: Ty 2 1> iff
Vmy € Paths(Ty) 3wy € Paths(T3) s.t. m 2 o
Vry € Paths(T;) 3my € Paths(Th) s.t. m 2 o

stutter bisimulation equivalence ~7

BeS/=r CeS/=r
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Stutter bisimulation/stutter trace equivalence ...

A .
= stutter trace equivalence

~ stutter bisimulation equivalence
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Stutter bisimulation/stutter trace equivalence ...

A

A .
= stutter trace equivalence

~ stutter bisimulation equivalence
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Stutter bisimulation/stutter trace equivalence ...

1>

A .
= stutter trace equivalence

~ stutter bisimulation equivalence
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Stutter bisimulation/stutter trace equivalence ...

1>

A .
= stutter trace equivalence

~ stutter bisimulation equivalence
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Stutter bisimulation/stutter trace equivalence ...

1>

Q

A .
= stutter trace equivalence

~ stutter bisimulation equivalence
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Stutter bisimulation/stutter trace equivalence ...

1>

R
e &

A .
= stutter trace equivalence

~ stutter bisimulation equivalence
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Stutter bisimulation/stutter trace equivalence ...

1>

R
e &

A .
= stutter trace equivalence

~ stutter bisimulation equivalence

A :
~ and = are incomparable
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