Symbolic Model Checking with ROBDDs
Lecture #14 of Advanced Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r w h- aachen. de

June 23, 2014

© JPK

Advanced model checking

Symbolic representation of transition systems

e let TS = (5,—,I,AP, L) be a “large” finite transition system
— the set of actions is irrelevant here and has been omitted, i.e., -=C S x S
e Forn > [log|S|], letinjective functionenc: S — {0,1 }"

— note: enc(S) = {0, 1}" is no restriction, as all elements { 0, 1 }" \ enc(S)
can be treated as the encoding of pseudo states that are unreachable

e Identify the states s € S = enc~'({0,1}") with enc(s) € {0,1}"
e And T C S by its characteristic function xr: {0,1}" — {0,1}
— thatis xr(enc(s)) = lifandonlyifs € T

e And — C S x S by the Boolean function A : {0,1}?" — {0,1}

— such that A (enc(s),enc(s’)) = lifandonlyif s — s’

© JPK 1

Advanced model checking

Switching functions
e LetVar={z,...,z2,} be afinite set of Boolean variables

e An evaluation is a function n : Var — { 0,1}

— let Eval(zy, . . ., z,) denote the set of evaluations for zy, . . ., 2z,
— shorthand [z1 = b1, ..., 2, = by] fOrn(z1) = b1, ..., M(2m) = by

e f:Eval(Var) — {0,1} is a switching function for Var = {z1,..., 2}

e Logical operations and quantification are defined by:

i) A f2() = min{ f1(+), f2(-) }

)V f2(0) = max{ fi(+), f2(+) }
Elzf() — f(')‘z:va(')‘z:la and
VZf() — f(')|z:0/\f('>|z:1

© JPK 2

Advanced model checking

Symbolic model checking

e Take a symbolic representation of a transition system (A and x)
e Backward reachability Pre*(B) = {se€ S| s E 30 B}
e Initially: fo = x g characterizes the set 7y, = B

e Then, successively compute the functions f;1 = xr,,, for:

Tiv1 =T;U{seS|3s"€S.s" € Post(s) A s €T; }

Second set is given by: 37". (A(z,7') AN fi(7
s’ € Post(s) s'€T);

— f;(T") arises from f; by renaming the variables z; into their primed copies z;

© JPK 3

Advanced model checking

Symbolic computation of Sat(3(C'U B))

fo(T) := xB(T);

9 :=0;

repeat
fi+1(T) = f;(T) V (xc(@) A T (A@T) A f;(T));
J:=74+1

until fj(f) = fj—l(f);

return f;(z).

© JPK 4

Advanced model checking

Symbolic computation of Sat(d0 B)

Compute the largest set T' C B withPost(t) N'T" # oforallt € T
Take To = B and Tj_|_1 = Tj M {S e s | s’ e S. s’ € POSt(S) A s S Tj }

Symbolically this amounts to:
fo(T) := xB(T);
9 :=0;
repeat
fi1(T) = f;(T) A T2 (A@,Z) A f3(T));
J:=74+1
until f;(z) = f;-1(T);

return f;(z).

Symbolic model checkers mostly use ROBDDs to represent switching functions

© JPK 5

Advanced model checking

Ordered Binary Decision Diagram

Let o be a variable ordering for Var where z; <, ... <, 2,

An o-OBDD is a tuple %8 = (V,V;, Vi, succy, succy, var, val, vy) with

e a finite set V' of nodes, partitioned into V; (inner) and V- (terminals)

— and a distinguished root vy € V

e successor functions succg, succ; : V; -V

— such that each node v € V' \ {wvo} has at least one predecessor

e labeling functions var : V; — Var and val : V- — {0, 1 } satisfying

veVr N we {succy(v),succi(v) } NV = var(v) <, var(w)

© JPK 6

Advanced model checking

Reduced OBDDs

A ©-OBDD $B is reduced if for every pair (v, w) of nodes in *5:
v # w implies f, # f.

= ©-ROBDDs any gp-consistent cofactor is represented by exactly one node

© JPK 7

Advanced model checking

Universality and canonicity theorem

[Fortune, Hopcroft & Schmidt, 1978]

Let Var be a finite set of Boolean variables and ¢ a variable ordering for Var. Then:

(a) For each switching function f for Var there exists a ©-ROBDD B with fo = f

(b) Any ©-ROBDDs B and ¢ with fis = f¢ are isomorphic

Any ©-OBDD B for f is reduced iff size(*8) < size(¢) for each ©-OBDD ¢ for f

© JPK 8

Advanced model checking

Synthesis of ROBDDs

e Construct a p-ROBDD for f; op f> given @-ROBDDs for f; and f

— where op is a Boolean connective such as disjunction, implication, etc.

e Ildea: use a single ROBDD with (global) variable ordering o to
represent several switching functions

e This yields a shared OBDD, which is:

a combination of several ROBDDs with variable ordering o
by sharing nodes for common g-consistent cofactors

e The size of p-SOBDD B for functions fi, ..., fx isatmost Ny, +...+
Ny, where N; denotes the size of the -ROBDD for f

© JPK 9

Advanced model checking

Shared OBDDs

A shared -OBDD is an OBDD with multiple roots

Shared OBDD representing z1 A —z9, —29, 21 @D 2o and —z1 V 2o
\,/ \v/ &\,_/ _\,_/

f1 fo f3 fa

Main underlying idea: combine several OBDDs with same variable ordering
such that common g-consistent co-factors are shared

© JPK 10

Advanced model checking

Using shared OBDDs for model checking ¢

Use a single SOBDD for:

e A(z,7’) for the transition relation
e f.(T), a € AP, for the satisfaction sets of the atomic propositions

e The satisfaction sets Sat(W¥) for the state subformulae ¥ of ®

In practice, often the interleaved variable order for A is used.

© JPK 11

Advanced model checking

Synthesizing shared ROBDDs

Relies on the use of two tables

e The unique table

— keeps track of ROBDD nodes that already have been created
— table entry (var(v), succy(v), succy(v)) for each inner node v
— main operation: find_or_add(z, vy, vg) With v # wvq
« return v if there exists anode v = (z, vy, vg) in the ROBDD
« if not, create a new z-node v with succy(v) = vg and succy(v) = vy
— implemented using hash functions (expected access time is O(1))

e The computed table

— keeps track of tuples for which ITE has been executed (memoization)
= realizes a kind of dynamic programming

© JPK 12

Advanced model checking

ITE normal form

The ITE (if-then-else) operator: ITE(g, f1,f2) = (gA fi1) V (—mgA f2)

The ITE operator and the representation of the SOBDD nodes in the unique table:

Then:

v = |TE(27 fsuccl(v)v fsucco(v)>

-f = ITE(f,0,1)
fiVv fo = |ITE(f1,1, f2)
finfa = ITE(f1, f2,0)
fi®fo = ITE(f1,~f2, f2) = ITE(f1,ITE(f2,0,1), f2)

If g, f1, fo are switching functions for Var, z € Varand b € {0, 1}, then
lTE(Q) f17 fQ)‘z:b — lTE(g|z=b7 fl‘Z:lH fQ‘ZZb)

© JPK

13

Advanced model checking =

ITE-operator on shared OBDDs

e A node in a p-SOBDD for representing ITE(g, f1, f2) IS a node w with
Info(z, wy, wg) where:

— z is the minimal (wrt.) essential variable of ITE(g, f1, f2)
— Wy is an SOBDD-node with fwb — lTE(g‘z:ba fl|z:b7 f2|z:b)
e This suggests a recursive algorithm:

— determine z
— recursively compute the nodes for ITE for the cofactors of g, f1 and f>

© JPK 14

Advanced model checking

ITE(u,v1,v2) On shared OBDDs (initial version)
If w is terminal then
if val(u) = 1 then

w = v (* ITE(Lfvlava) — fvl *)
else
W = Vs (*ITE(O, fo) fog) = fuy ¥
fi
else
z := min{var(u), var(vy), var(vs) }; (* minimal essential variable *)
wy = ITE(u|,=1, v1|2=1, v2|2=1);
wo := ITE(u|.=0, v1|.=0, V2|.=0);
| f wo = W1 then
w = wi; (* elimination rule *)
else
w := find_or_add(z, w1, wy); (* isomorphism rule *)
fi
fi
return w

© JPK 15

Advanced model checking

ROBDD size under ITE

The size of the ©-ROBDD for ITE(g, f1, f2) is bounded by N, - Ny, - Ny,
where N denotes the size of the p-ROBDD for f

for some ITE-functions optimisations are possible, e.g., f & g

© JPK

16

Advanced model checking

ROBDD size under ITE

The size of the p-ROBDD for ITE(g, f1, f2) is bounded by N, - Ny, - Ny,
where N denotes the size of the p-ROBDD for f

But how to avoid multiple invocations to ITE?

= Store triples (u, vy, v2) for which ITE already has been computed

© JPK

17

Advanced model checking

Efficiency improvement by memoization

If there is an entry for (u, vy, v, w) in the computed table then
return node w
else
If u is terminal then
if val(u) = 1 then w := v, else w := vs fi

else
z := min{var(u), var(v), var(vs) };
wi = ITE(u|,=1, v1|2=1, V2|2=1);
wo 1= ITE(u|2=0, V1220, Va|.—0);

if wg = w; then w := w; else w := find_or_add(z, w1, wy) fi;
insert (u, vy, va, w) in the computed table;
return node w
fi
fi

The number of recursive calls for the nodes u, v, vy equals the E-ROBDD size
of ITE(fu, fvq, fuy), Which is bounded by Ny, - Ny; - Ny,

© JPK 18

Advanced model checking

Some experimental results

e Traffic alert and collision avoidance system (TCAS) (1998)

— 277 boolean variables, reachable state space is about 9.610°° states
— |B| = 124, 618 vertices (about 7.1 MB), construction time 46.6 sec
— checking VO (p — q) takes 290 sec and 717,000 BDD vertices

e Synchronous pipeline circuit (1992)

— pipeline with 12 bits: reachable state space of 1.510% states
— checking safety property takes about 10* — 10° sec

— |B_| is linear in data path width

— verification of 32 bits (about 10**" states): 1h 25m

— using partitioned transition relations

© JPK 19

Advanced model checking

Some other types of BDDs

e Zero-suppressed BDDs
— like ROBDDs, but non-terminals whose 1-child is leaf O are omitted
e Parity BDDs

— like ROBDDs, but non-terminals may be labeled with &; no canonical form

e Edge-valued BDDs

e Multi-terminal BDDs (or: algebraic BDDSs)

— like ROBDDs, but terminals have values in R, or N, etc.

e Binary moment diagrams (BMD)

— generalization of ROBDD to linear functions over bool, int and real
— uses edge weights

© JPK 20

Advanced model checking

Further reading

R. Bryant: Graph-based algorithms for Boolean function manipulation, 1986

R. Bryant: Symbolic boolean manipulation with OBDDs, Computing Surveys, 1992
M. Huth and M. Ryan: Binary decision diagrams, Ch 6 of book on Logics, 1999
H.R. Andersen: Introduction to BDDs, Tech Rep, 1994

K. McMillan: Symbolic model checking, 1992

Rudell: Dynamic variable reordering for OBDDs, 1993

Advanced reading: Ch. Meinel & Th. Theobald (Springer 1998)

© JPK 21

