
Probabilistic Programming

Probabilistic Programming
Lecture #6: Syntax and Operational Semantics of pGCL

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2022-23

Joost-Pieter Katoen Probabilistic Programming 1/41

Probabilistic Programming

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics of pGCL

3 Expected Rewards

4 Recursion

Joost-Pieter Katoen Probabilistic Programming 2/41

Probabilistic Programming Probabilistic Guarded Command Language

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics of pGCL

3 Expected Rewards

4 Recursion

Joost-Pieter Katoen Probabilistic Programming 3/41

Probabilistic Programming Probabilistic Guarded Command Language

Dijkstra’s guarded command language: Syntax

I skip empty statement
I diverge divergence
I x := E assignment
I prog1 ; prog2 sequential composition
I if (G) prog1 else prog2 choice
I prog1 [] prog2 non-deterministic choice
I while (G) prog iteration

Joost-Pieter Katoen Probabilistic Programming 4/41

Probabilistic Programming Probabilistic Guarded Command Language

Elementary pGCL ingredients

I Program variables x ∈ Vars whose values are fractional numbers

I Arithmetic expressions E over the program variables

I Boolean expressions G (aka: guards) over the program variables

I Distribution expressions µ : Σ→ Dist(Q)

I Probability expressions p : Σ→ [0, 1] ∩ Q

where Σ is the set of program states; made precise later

Joost-Pieter Katoen Probabilistic Programming 5/41

Probabilistic Programming Probabilistic Guarded Command Language

Probabilistic GCL: Syntax
Dexter Annabelle Carroll
Kozen McIver Morgan

I skip empty statement
I diverge divergence
I x := E assignment
I x :r= mu random assignment (x : ≈µ)
I prog1 ; prog2 sequential composition
I if (G) prog1 else prog2 choice
I prog1 [p] prog2 probabilistic choice
I while (G) prog iteration

Conditioning in the form of observe-statements omitted for now.
Joost-Pieter Katoen Probabilistic Programming 6/41

Probabilistic Programming Probabilistic Guarded Command Language

Let’s start simple

x := 0 [0.5] x := 1;
y := -1 [0.5] y := 0

This program admits four runs and yields the outcome:

Pr[x =0, y =0] = Pr[x =0, y =−1] = Pr[x =1, y =0] = Pr[x =1, y =−1] = 1/4

Joost-Pieter Katoen Probabilistic Programming 7/41

Probabilistic Programming Probabilistic Guarded Command Language

A loopy program

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i := 0;
while (c) {

i++;
(c := false [p] c := true)

}

The loopy program models a geometric distribution with parameter p.

Pr[i = N] = (1−p)N−1 · p for N > 0

Joost-Pieter Katoen Probabilistic Programming 8/41

Probabilistic Programming Probabilistic Guarded Command Language

On termination

bool c := true;
int i := 0;
while (c) {

i++;
(c := false [p] c := true)

}

This program does not always terminate. It almost surely terminates.

Joost-Pieter Katoen Probabilistic Programming 9/41

Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly

Joost-Pieter Katoen Probabilistic Programming 10/41

Probabilistic Programming Probabilistic Guarded Command Language

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

Joost-Pieter Katoen Probabilistic Programming 11/41

Probabilistic Programming Probabilistic Guarded Command Language

Random assignments
The random assignment x : ≈µ works as follows:

1. evaluate distribution expression µ in the current program state s

2. sample from the resulting probability distribution µ(s)

this yields the value v with probability µ(s)(v)

3. assign the value v to the variable x .

For denoting distribution expressions, we use the bra–ket notation.

1
2 · [a〉+ 1

3 · [b〉+ 1
6 · [c〉

denotes the distribution µ with µ(a) = 1/2, µ(b) = 1/3, and µ(c) = 1/6. The
support set of µ equals { a, b, c }

Examples on the black board.

Joost-Pieter Katoen Probabilistic Programming 12/41

Probabilistic Programming Operational semantics of pGCL

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics of pGCL

3 Expected Rewards

4 Recursion

Joost-Pieter Katoen Probabilistic Programming 13/41

Probabilistic Programming Operational semantics of pGCL

Why formal semantics matters

I Unambiguous meaning to all programs

I Basis for proving correctness
I of programs
I of program transformations
I of program equivalence
I of static analysis
I of compilers
I

Joost-Pieter Katoen Probabilistic Programming 14/41

Probabilistic Programming Operational semantics of pGCL

The inventors of semantics

Tony Hoare Robert W. Floyd Gordon Plotkin

Christopher Strachey Dana Scott
Joost-Pieter Katoen Probabilistic Programming 15/41

Probabilistic Programming Operational semantics of pGCL

Approaches to semantics
I Operational semantics: (developed by Plotkin)

I The meaning of a program = how it executes on an abstract machine.
I Useful for modelling the execution behaviour of a program.

I Axiomatic semantics: (developed by Floyd and Hoare)
I Provides correctness assertions for each program construct.
I Useful for verifying that the program’s computed results are correct with

respect to the specification.

I Denotational semantics: (developed by Strachey and Scott)
I Provides a mapping of language constructs onto mathematical objects.
I Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.

Later: denotational semantics of pGCL in terms of weakest preconditions.

Joost-Pieter Katoen Probabilistic Programming 16/41

Probabilistic Programming Operational semantics of pGCL

Structural operational semantics: ingredients
I Variable valuation s : Vars→ Q maps each program variable onto a

value (here: rational numbers)

I Variable update: for variable x and value v ∈ Q, let

s[x := v](y) = s(y) if x 6= y and s[x := v](y) = v otherwise.

I Let [[E]] denote the valuation of expression E

I Program configuration (aka: state) 〈P, s〉 denotes that
I program P is next to be executed (aka: program counter), and
I the current variable valuation equals s.

I Transition rules for the execution of commands: 〈P, s〉 −→ 〈P ′, s ′〉
denoted as premise

conclusion where the premise is omitted if it equals true.

Joost-Pieter Katoen Probabilistic Programming 17/41

Probabilistic Programming Operational semantics of pGCL

Operational semantics
Aim: Model the behaviour of a program P by the MC [[P]].

This MC is defined using structured operational semantics

Joost-Pieter Katoen Probabilistic Programming 18/41

Probabilistic Programming Operational semantics of pGCL

Operational semantics

Aim: Model the behaviour of a program P by the MC [[P]].
Approach:
I Take states of the form

I 〈Q, s〉 with program Q or ↓, and variable valuation s : Var→ Q
I 〈sink〉 models program termination (successful)

I Take initial state 〈P, s〉 where s fulfils the initial conditions
I Take transition relation → as smallest relation satisfying the

transition rules

Joost-Pieter Katoen Probabilistic Programming 19/41

Probabilistic Programming Operational semantics of pGCL

Transition rules (1)

〈skip, s〉 → 〈↓, s〉

〈↓, s〉 → 〈sink〉 〈sink〉 → 〈sink〉

〈x := E , s〉 → 〈↓, s[x := s([[E]])]〉

µ(s)(v) = a > 0
〈x : ≈µ, s〉 a−→〈↓, s[x := v]〉

〈P[p] Q, s〉 → µ with µ(〈P, s〉) = p and µ(〈Q, s〉) = 1−p

Joost-Pieter Katoen Probabilistic Programming 20/41

Probabilistic Programming Operational semantics of pGCL

Random assignments
The random assignment x : ≈µ works as follows:

1. evaluate distribution expression µ in the current program state s

2. sample from the resulting probability distribution µ(s)

this yields the value v with probability µ(s)(v)

3. assign the value v to the variable x .

For denoting distribution expressions, we use the bra–ket notation.

1
2 · [a〉+ 1

3 · [b〉+ 1
6 · [c〉

denotes the distribution µ with µ(a) = 1/2, µ(b) = 1/3, and µ(c) = 1/6. The
support set of µ equals { a, b, c }

Examples on the black board.

Joost-Pieter Katoen Probabilistic Programming 21/41

Probabilistic Programming Operational semantics of pGCL

Transition rules (2)

〈P, s〉 → µ

〈P; Q, s〉 → ν
with ν(〈P ′; Q′, s ′〉) = µ(〈P ′, s ′〉) where ↓; Q = Q

s |= G
〈if (G){P} else {Q}, s〉 → 〈P, s〉

s 6|= G
〈if (G){P} else {Q}, s〉 → 〈Q, s〉

s |= G
〈while(G){P}, s〉 → 〈P;while (G){P}, s〉

s 6|= G
〈while(G){P}, s〉 → 〈↓, s〉

Joost-Pieter Katoen Probabilistic Programming 22/41

Probabilistic Programming Operational semantics of pGCL

Example

x := 0 [1/3] x := 1;
y := unif[1..5]

x := unif[1..5];
if (x >= 2) { y := unif[1..x] } else { y := x }

x +:= 1 [1/(abs(x)+1)] x -:= 1

Joost-Pieter Katoen Probabilistic Programming 23/41

Probabilistic Programming Operational semantics of pGCL

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

11 A 0

4 A 0

6 A 1

a

!
2 • •H--+13 B •

3 A * I 8

V
.>--'-r-L....I

B I

1- b
.,.......,~./
4 A 1 8 B I

5A l \ 581

\
6 A l 4 B I

1 - a

6 /\ I ~

b

8 B 1

4 B 0

I I B 0

This (parametric) MC is finite. Once we count the number of shots before one of the
cowboys dies, the MC becomes countably infinite.

Joost-Pieter Katoen Probabilistic Programming 24/41

Probabilistic Programming Operational semantics of pGCL

Duelling cowboys

int cowboyDuel(float a, b) { // 0 < a < 1, 0 < b < 1
int t := A [0.5] t := B; // decide who shoots first
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B); // A shoots B with prob. a

} else {
(c := false [b] t := A); // B shoots A with prob. b

}
}

return t; // the survivor
}

Claim:
Cowboy A wins the duel with probability (1−b)· 12 a

a+b−a·b .

Joost-Pieter Katoen Probabilistic Programming 25/41

Probabilistic Programming Operational semantics of pGCL

Proof

Joost-Pieter Katoen Probabilistic Programming 26/41

Probabilistic Programming Operational semantics of pGCL

The outcome of a pGCL program

Unlike a deterministic program, a pGCL program P has not a deterministic output
for a given input. Instead, it yields a unique probability distribution over its final
states.

In fact, this is a sub-distribution (probability mass at most one), as with a
(possibly positive) probability, P may diverge.

Let P be a pGCL program and s an input state. Then the distribution over final
states obtained by running P starting in s is given by Pr(s |= ♦ 〈↓, ·〉).

If P is a program whose MC is finite-state, then Pr(s |= ♦ 〈↓, ·〉) can be
determined by solving a linear equation system.

Joost-Pieter Katoen Probabilistic Programming 27/41

Probabilistic Programming Expected Rewards

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics of pGCL

3 Expected Rewards

4 Recursion

Joost-Pieter Katoen Probabilistic Programming 28/41

Probabilistic Programming Expected Rewards

Rewards

To reason about resource usage in MCs: use rewards.

A reward MC is a pair (D, r) with D an MC with state space Σ and
r : Σ→ R a function assigning a real reward to each state.
The reward r(σ) stands for the reward earned on leaving state σ.

Let π = σ0 . . . σn be a finite path in (D, r) and G ⊆ Σ a set of target
states with π ∈ ♦G . The cumulative reward along π until reaching G is:

rG(π) = r(σ0) + . . .+ r(σk−1) where σi 6∈ G for all i < k and σk ∈ G .

If π 6∈ ♦G , then rG(π) =∞.

Joost-Pieter Katoen Probabilistic Programming 29/41

Probabilistic Programming Expected Rewards

Expected reward for reachability

Let σ be such that Pr(σ |= ♦G) = 1.
Then: the expected reward until reaching G ⊆ Σ from σ ∈ Σ is:

ER(σ,♦G) =
∑

π̂

Pr(π̂) · rG(π̂)

where π̂ = σ0 . . . σk is such that σk ∈ G , σ0 = σ and σi 6∈ G for all i < k.

If Pr(σ |= ♦G) < 1, then let ER(σ,♦G) =∞.

Joost-Pieter Katoen Probabilistic Programming 30/41

Probabilistic Programming Expected Rewards

On computing expected rewards

Expected rewards in finite Markov chains can be computed in polynomial time
by solving a system of linear equations.

(details on the black board.)

Joost-Pieter Katoen Probabilistic Programming 31/41

Probabilistic Programming Expected Rewards

Equation system for expected rewards

Joost-Pieter Katoen Probabilistic Programming 32/41

Probabilistic Programming Recursion

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics of pGCL

3 Expected Rewards

4 Recursion

Joost-Pieter Katoen Probabilistic Programming 33/41

Probabilistic Programming Recursion

Probabilistic GCL with recursion: Syntax

I skip empty statement
I x := E assignment
I x :r= mu random assignment (x : ≈µ)
I prog1 ; prog2 sequential composition
I if (G) prog1 else prog2 choice
I prog1 [p] prog2 probabilistic choice
I while (G) prog iteration
I proc P = prog process definition
I call P process invocation

Recursion does not increase the expressive power, but is often convenient.

Joost-Pieter Katoen Probabilistic Programming 34/41

Probabilistic Programming Recursion

Pushdown Markov chains

A pushdown Markov chain consists of:

I Σ = (Σpush,Σpop,Σint), a finite set of states

I Γ is a finite stack alphabet

I (σI ,Z0) ∈ Σ× Γ, the initial configuration

I probabilistic transition functions:
I Ppush : Σpush → Dist(Σ× Γ) push transitions
I Ppop : Σpop × Γ→ Dist(Σ) pop transitions
I Pint : Σint → Dist(Σ) internal transitions

Joost-Pieter Katoen Probabilistic Programming 35/41

Probabilistic Programming Recursion

Pushdown MC = Markov chain + stack

Joost-Pieter Katoen Probabilistic Programming 36/41

Probabilistic Programming Recursion

Configuration graph

Joost-Pieter Katoen Probabilistic Programming 37/41

Probabilistic Programming Recursion

Runs of a pushdown MC

Assuming states are labeled with sets of atomic propositions

Joost-Pieter Katoen Probabilistic Programming 38/41

Probabilistic Programming Recursion

From programs to pushdown MCs

Joost-Pieter Katoen Probabilistic Programming 39/41

Probabilistic Programming Recursion

Take-home messages

I pGCL is a “base” imperative probabilistic programming language

I Key ingredients: probabilistic choice and random assignments

I A pGCL program corresponds to a (countably infinite) Markov chain

I Computing expected rewards in finite MCs = solving linear equations

I Recursion can be added to pGCL and yields pushdown MCs

Joost-Pieter Katoen Probabilistic Programming 40/41

Probabilistic Programming Recursion

Next lecture

Tuesday Nov 8, 16:30
No lecture on Nov 3;

next exercise class Nov 4

Joost-Pieter Katoen Probabilistic Programming 41/41

	Probabilistic Guarded Command Language
	Operational semantics of pGCL
	Expected Rewards
	Recursion

