Probabilistic Programming Probabilistic Programming

Overview

Probabilistic Programming @ Probabilistic Guarded Command Language

Lecture #6: Syntax and Operational Semantics of pGCL

@ Operational semantics of pGCL

Joost-Pieter Katoen

© Expected Rewards

RWTH Lecture Series on Probabilistic Programming 2022-23
@ Recursion

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Probabilistic Guarded Command Language Probabilistic Programming Probabilistic Guarded Command Language

Overview Dijkstra’s guarded command language: Syntax

@ Probabilistic Guarded Command Language

» skip empty statement
> diverge divergence
> x :=E assignment
» progl ; prog2 sequential composition
» if (G) progl else prog2 choice
» progl [] prog2 non-deterministic choice
> while (G) prog iteration

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Probabilistic Guarded Command Language

Elementary pGCL ingredients

» Program variables x € Vars whose values are fractional numbers
P Arithmetic expressions E over the program variables
» Boolean expressions G (aka: guards) over the program variables

» Distribution expressions p : ¥ — Dist(Q)

v

Probability expressions p: £ — [0,1] N Q

where ¥ is the set of program states; made precise later

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Probabilistic Guarded Command Language

Probabilistic GCL: Syntax

Annabelle

Mclver

> skip empty statement
> diverge divergence
> x :=E assignment
» x :r= mu random assignment (x : &~ u)
» progl ; prog2 sequential composition
> if (G) progl else prog2 choice
» progl [p] prog2 probabilistic choice
» while (G) prog iteration

Conditioning in the form of observe-statements omitted for now.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Probabilistic Guarded Command Language

Let’s start simple

x := 0 [0.5] x :=1;
y := -1 [0.5] y :=0

This program admits four runs and yields the outcome:

Prix=0,y=0] = Prix=0,y=—-1] = Prix=1,y=0] = Prix=1,y=-1] = /4

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Probabilistic Guarded Command Language

A loopy program

For 0 < p < 1 an arbitrary probability:

bool ¢ := true;

int i := 0;

while (c) {
it++;

(c := false [p] c := true)

The loopy program models a geometric distribution with parameter p.

Pli=N] = (1-p)N-1.p for N >0

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Probabilistic Guarded Command Language Probabilistic Programming Probabilistic Guarded Command Language

On termination The good, the bad, and the ugly

EURD IHTEFIHMIAL FILMS

bool ¢ := true;

int i := O;

while (c) {
it++;

(c := false [p] c := true)

This program does not always terminate. It almost surely terminates.

EWMW.MWI‘

A

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Probabilistic Guarded Command Language Probabilistic Programming Probabilistic Guarded Command Language

Duelling cowboys Random assignments
The random assignment x : & u works as follows:

1. evaluate distribution expression p in the current program state s

int cowboyDuel(float a, b) { 2. sample from the resulting probability distribution z(s)
int t := A [O 5] t := B;
bool ¢ := tr this yields the value v with probability p(s)(v)
wh;g.e(éc) A{) { 3. assign the value v to the variable x.
(c := false [a] t := B);
} else { For denoting distribution expressions, we use the bra—ket notation.
(c := false [b] t := A);
} 1 1 1
} 5-[a)+§~[b)+6-[c>
return t;
} denotes the distribution p with p(a) = 1/2, u(b) =1/3, and p(c) = /6. The

support set of p equals { a, b, ¢ }

|
Examples on the black board.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Overview Why formal semantics matters

» Unambiguous meaning to all programs

© Operational semantics of pGCL > Basis for proving correctness
» of programs

of program transformations

of program equivalence

of static analysis

of compilers

vVvVvVvyYVYy

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics of pGCL Probabilistic Programming Operational semantics of pGCL
The inventors of semantics Approaches to semantics
» Operational semantics: (developed by Plotkin)

» The meaning of a program = how it executes on an abstract machine.
P Useful for modelling the execution behaviour of a program.

> Axiomatic semantics: (developed by Floyd and Hoare)

» Provides correctness assertions for each program construct.

P Useful for verifying that the program’s computed results are correct with
respect to the specification.

Robert W. Floyd

» Denotational semantics: (developed by Strachey and Scott)

» Provides a mapping of language constructs onto mathematical objects.
P Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.

Christopher Strachey Dana Scott Later: denotational semantics of pGCL in terms of weakest preconditions.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics of pGCL Probabilistic Programming Operational semantics of pGCL

Structural operational semantics: ingredients Operational semantics

» Variable valuation s : Vars — Q maps each program variable onto a Aim: Model the behaviour of a program P by the MC [P].
value (here: rational numbers)

» Variable update: for variable x and value v € Q, let

s[x :=v](y) =s(y) ifx#y and s[x:=v](y)= v otherwise.

» Let [E] denote the valuation of expression E

» Program configuration (aka: state) (P, s) denotes that

> program P is next to be executed (aka: program counter), and
» the current variable valuation equals s.

» Transition rules for the execution of commands: (P, s) — (P, s’)
premise L . s This MC is defined using structured operational semantics
denoted as where the premise is omitted if it equals true.

conclusion

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Operational semantics Transition rules (1)

(skip,s) = (I, s)
Aim: Model the behaviour of a program P by the MC [P].
Approach: (., s) — (sink) (sink) — (sink)
» Take states of the form
> (Q,s) with program Q or |, and variable valuation s : Var — Q

» (sink) models program termination (successful) (x = E.s) = (L sbx == s([ED)])
» Take initial state (P, s) where s fulfils the initial conditions
» Take transition relation — as smallest relation satisfying the #s)(v)=a>0

transition rules (x:mp,s) 2, s[x:=v])

(P[p] Q. s) — p with u((P,s)) = p and u((Q,s)) =1-p

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics of pGCL Probabilistic Programming Operational semantics of pGCL

Random assignments Transition rules (2)
The random assignment x : = p works as follows:

1. evaluate distribution expression p in the current program state s
2. sample from the resulting probability distribution p(s)
(P,s) = p

this yields the value v with probability y(s)(v) PQs) v with v((P"; @, s)) = u((P',s')) where |; Q=@

3. assign the value v to the variable x.

sEG sEG

For denoting distribution expressions, we use the bra—ket notation. (if (G){P} else {Q},s) — (P,s) (if (G){P} else {Q},s) = (Q,s)
1 1 1
g lbrgele SEG SKEG

denotes the distribution p with p(a) = 1/2, u(b) =1/3, and p(c) = /6. The (while(G){P}, 5) — (P; while (G){P}, s) (while(G){P},s) = {1, 5)

support set of p equals { a, b, c }

Examples on the black board.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics of pGCL Probabilistic Programming Operational semantics of pGCL
Example Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;

x :=0 [1/3] x := 1; o .
y := unif[1..5] :ﬁziec(é; Erue’
if (¢ = 4) {
(c := false [a] t := B);
} else {
x := unif[1..5]; (c := false [b] t := A);
if (x>=2) {y :=unif[l..x] } else {y :=x } }
}
return t;
}
x +:=1 [1/(abs(x)+1)] x —:= 1

This (parametric) MC is finite. Once we count the number of shots before one of the

cowboys dies, the MC becomes countably infinite.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Duelling cowboys Proof

int cowboyDuel(float a, b) { // 0 <a <1, 0<b <1
int t := A [0.5] t := B; // decide who shoots first

bool c := true;
while (c) {
if (v = A) {
(c := false [al t := B); // A shoots B with prob. a
} else {
(c := false [b] t := A); // B shoots A with prob. b
}
}
return t; // the survivor
}
Claim:
C " . - (1—b)-%a
owboy A wins the duel with probability L——27.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

The outcome of a pGCL program Overview

Unlike a deterministic program, a pGCL program P has not a deterministic output
for a given input. Instead, it yields a unique probability distribution over its final
states.

In fact, this is a sub-distribution (probability mass at most one), as with a
(possibly positive) probability, P may diverge.

Let P be a pGCL program and s an input state. Then the distribution over final 9 Expected Rewards
states obtained by running P starting in s is given by Pr(s = 0 ({,).

If P is a program whose MC is finite-state, then Pr(s = ¢ ({,-)) can be
determined by solving a linear equation system.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Rewards Expected reward for reachability

To reason about resource usage in MCs: use rewards.

A reward MC is a pair (D, r) with D an MC with state space ¥ and Let o be such that Pr(o |= 0G) = 1.
r: X — R a function assigning a real reward to each state. Then: the expected reward until reaching G C ¥ from o € ¥ is:

ER(c, 0G) = ZPr(?r)-rG(?r)

The reward r(o) stands for the reward earned on leaving state o.

Let m =09 ...0, be a finite path in (D, r) and G C ¥ a set of target

) _ _ _) where T = 0q ... 0 is such that o € G, 0g =0 and o; € G for all i < k.
states with m € ¢ G. The cumulative reward along 7 until reaching G is:

If P G) < 1, then let ER(0, 0 G) = oc.
re(m) = r(oo) + ...+ r(ok—1) where o; & G for all i < k and o € G. o [=00) en e (0,06) =0

If 7 & OG, then rg(m) = oc.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

On computing expected rewards Equation system for expected rewards

Expected rewards in finite Markov chains can be computed in polynomial time
by solving a system of linear equations.
(details on the black board.)

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Recursion Probabilistic Programming Recursion

Overview Probabilistic GCL with recursion: Syntax
» skip empty statement
> x :=E assignment
> x :r= mu random assignment (x : & 1)
» progl ; prog2 sequential composition
> if (G) progl else prog2 choice
> progl [p]l prog2 probabilistic choice
> while (G) prog iteration
» proc P = prog process definition

@ Recursion > call P process invocation

Recursion does not increase the expressive power, but is often convenient.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Pushdown Markov chains Pushdown MC = Markov chain 4+ stack

A pushdown Markov chain consists of:

» 3 = (Xpushs Lpop: Lint), a finite set of states

push state pop state
» [is a finite stack alphabet l 148%Z
/_\
» (04, 2Zp) € £ x T, the initial configuration 2/3,Z C Qo a1 :) Z,1/3
Z,213

» probabilistic transition functions:

> Poush @ Zpush — Dist(X x T') push transitions

» Ppop : Lpop X I —= Dist(X) pop transitions

» Pip i Zine — Dist(T) internal transitions

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Recursion Probabilistic Programming Recursion
Configuration graph Runs of a pushdown MC
B l 1/3. 7 B)
o Clal__ LDz o
2,"/3 Z L

213
B L W 2/3,ZC Jo a0 32,1/3
2/3
Z \1/\, Z,2/3

O O
o 0O s m mEE e E
mE m e mE T E EE m mEm mEaE |

Jo J1 °F3 ds Q4 Qs Qe d7; Qs Js Q1o
A A} {AB} o Aw A B B {B {AB} ¢

Assuming states are labeled with sets of atomic propositions

2/3

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Recursion Probabilistic Programming Recursion
From programs to pushdown MCs Take-home messages
push(5) @
A)H) » pGCL is a "base” imperative probabilistic programming language
1/2 empty
@ 2 ’\u | 4 Term » Key ingredients: probabilistic choice and random assignments

0p(5)
\ : » A pGCL program corresponds to a (countably infinite) Markov chain

push({) » Computing expected rewards in finite MCs = solving linear equations

{skip'} [1/2]? {call P?; call P*; call P® }
» Recursion can be added to pGCL and yields pushdown MCs

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Next lecture

Tuesday Nov 8, 16:30

No lecture on Nov 3:

next exercise class Nov 4

Joost-Pieter Katoen Probabilistic Programming

	Probabilistic Guarded Command Language
	Operational semantics of pGCL
	Expected Rewards
	Recursion

