
Probabilistic Programming

Probabilistic Programming
Lecture #4: Markov Chain Monte Carlo

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2022-23

Joost-Pieter Katoen Probabilistic Programming 1/43

Probabilistic Programming

Overview

1 Bayes’ Rule

2 Monte Carlo Sampling

3 Rejection Sampling

4 Markov Chain Monte Carlo

Joost-Pieter Katoen Probabilistic Programming 2/43

Probabilistic Programming Bayes’ Rule

Overview

1 Bayes’ Rule

2 Monte Carlo Sampling

3 Rejection Sampling

4 Markov Chain Monte Carlo

Joost-Pieter Katoen Probabilistic Programming 3/43

Probabilistic Programming Bayes’ Rule

Bayes’ rule

Sum rule: Pr(X) = Pr(X ,Y) + Pr(X ,¬Y)

Product rule: Pr(X ,Y) = Pr(X) · Pr(Y | X)

Corollary of the sum and product rule:

Pr(X | D)︸ ︷︷ ︸
posterior of X

given D

=

likelihood of X
under D︷ ︸︸ ︷

Pr(D | X) ·
prior of X︷ ︸︸ ︷
Pr(X)

Pr(D)︸ ︷︷ ︸
evidence

Joost-Pieter Katoen Probabilistic Programming 4/43

Probabilistic Programming Bayes’ Rule

Bayes’ rule

Pr(X | D) = Pr(D | X) · Pr(X)
Pr(D)

In the discrete setting, this amounts to:

Pr(X | D) = Pr(D | X) · Pr(X)∑
i Pr(D | Xi) · Pr(Xi)

In the continuous setting, this amounts to:

Pr(X | D) = Pr(D | X) · Pr(X)∫
Pr(D | X) · Pr(X) dX

The normalising constant, i.e., the marginal likelihood Pr(D) is important
to get an accurate posterior distribution, yet mostly difficult to get.

Joost-Pieter Katoen Probabilistic Programming 5/43

Probabilistic Programming Bayes’ Rule

Example (1)

Pick a card. What is Pr { back is red | front is red }?

(Credits: Philipp Hennig, Univ. of Tübingen, 2020)

It is the likelihood that matters, not the prior.

Joost-Pieter Katoen Probabilistic Programming 6/43

Probabilistic Programming Bayes’ Rule

Example (2)

(Credits: Philipp Hennig, Univ. of Tübingen, 2020)

Joost-Pieter Katoen Probabilistic Programming 7/43

Probabilistic Programming Bayes’ Rule

Expected values

A probability distribution Pr on a countable set X is a function

Pr : X → [0, 1] such that
∑
x∈X

Pr(x) = 1.

The expected value of random variable f : X → R under distribution Pr is
defined by:

EPr(f) =
∑
x∈X

f (x) · Pr(x) =
∫

X
f dPr

Joost-Pieter Katoen Probabilistic Programming 8/43

Probabilistic Programming Bayes’ Rule

Justification of MCMC

Computing expected values, and posterior distributions can be hard.

Possible remedy: Use Markov chain Monte Carlo sampling

Joost-Pieter Katoen Probabilistic Programming 9/43

Probabilistic Programming Monte Carlo Sampling

Overview

1 Bayes’ Rule

2 Monte Carlo Sampling

3 Rejection Sampling

4 Markov Chain Monte Carlo

Joost-Pieter Katoen Probabilistic Programming 10/43

Probabilistic Programming Monte Carlo Sampling

Monte Carlo Casino

Joost-Pieter Katoen Probabilistic Programming 11/43

Probabilistic Programming Monte Carlo Sampling

Monte Carlo Sampling

EPr(f) =
∑
x∈X

f (x) · Pr(x)

As the dimension of X can be huge, or even uncountably infinite, one
takes i.i.d. samples x1, x2, . . . , xN with xi ∈ X and xi ∼ Pr(X).

Then:

EPr(f) ∼ 1
N

N∑
i=1

f (xi)

Similarly: ∑
i

Pr(D | Ai)︸ ︷︷ ︸
part of marginal likelihood

∼
N∑

i=1
Pr(D | Ai)

Computing using samples xi ∼ Pr(X) are called Monte Carlo Methods 1

1due to works in the 1940’s by Stanislaw Ulam and John von Neumann
Joost-Pieter Katoen Probabilistic Programming 12/43

Probabilistic Programming Monte Carlo Sampling

Approximating π by Monte Carlo sampling

I Take a square enclosing a circle
I Sample N points within the square
I Take the ratio of # samples in circle to N
I This approximates area circle to area square

formally: N�
N�

∼ Area(©)
Area(�) ,

which in turn gives approximation

π ∼ 4N�
N�

.

(The approximation becomes more precise as one increases N).

Joost-Pieter Katoen Probabilistic Programming 13/43

Probabilistic Programming Monte Carlo Sampling

A WebPPL program to approximate π

var N = 100

var samples_in_circle = function (m) {
if (m == 0) {return 0}
var x = sample(Uniform({a:-1,b:1}))
var y = sample(Uniform({a:-1,b:1}))
var hits = samples_in_circle(m-1)
return (x*x + y*y <= 1) ? 1 + hits : hits

// count a sample within/on the circle
}

var approx_pi = function() {
return (4 * samples_in_circle(N)) / N

}

var roughly_pi =
Infer({method: ’rejection’, samples: 20}, approx_pi)

viz.auto(roughly_pi)

Joost-Pieter Katoen Probabilistic Programming 14/43

Probabilistic Programming Monte Carlo Sampling

Increasing the number of samples

Joost-Pieter Katoen Probabilistic Programming 15/43

Probabilistic Programming Monte Carlo Sampling

Properties of Monte Carlo sampling
1. Yields unbiased estimators for every integrable function

2. The expected square error (variance) drops as O(N−1)

3. Thus: the expected error drops as O
(

(
√

N)−1
)

Joost-Pieter Katoen Probabilistic Programming 16/43

Probabilistic Programming Monte Carlo Sampling

Continuous distributions
The distribution function FX of random variable X is defined by:

FX (d) = PrX ((−∞, d]) = Pr({ a ∈ Ω | X (a) 6 d }︸ ︷︷ ︸
{X 6 d }

) for real d

Properties:
I FX is monotonic and right-continuous
I 0 6 FX (d) 6 1
I limd→−∞ FX (d) = 0 and
I limd→∞ FX (d) = 1.

For continuous random variable X , FX can be written as:

FX (d) =
∫ d

−∞
fX (u) du with f the density function

Joost-Pieter Katoen Probabilistic Programming 17/43

Probabilistic Programming Monte Carlo Sampling

Examples

Joost-Pieter Katoen Probabilistic Programming 18/43

Probabilistic Programming Monte Carlo Sampling

Obtaining samples from distribution F

I Use sampling from a (continuous) uniform distribution, e.g., U(0, 1)
I Uniformly distributed numbers can be transformed into other

distributions
I Only work numerically efficient in a limited number of cases

I Obstacle: need to know the density f (x) for all x , regions of high
density

I Aim of Monte Carlo methods: construct samples from

g(x) = f̃ (x) = f (x)
C

assuming the unnormalised density f̃ can be evaluated at any x

Joost-Pieter Katoen Probabilistic Programming 19/43

Probabilistic Programming Rejection Sampling

Overview

1 Bayes’ Rule

2 Monte Carlo Sampling

3 Rejection Sampling

4 Markov Chain Monte Carlo

Joost-Pieter Katoen Probabilistic Programming 20/43

Probabilistic Programming Rejection Sampling

Rejection sampling

I Aim: take samples from distribution F with density function f

I Key idea: take a proposal distribution2 G with density g(x)

I such that for all x it holds:

f (X) 6 C ·g(x) for some scaling constant 1 < C <∞

I Draw sample y ∼ g(x) and sample u ∼ U(0,C ·g(y))

I Accept if u 6 f (y), reject if u > f (y)

In order to “discover” f , we sample from a different (proposal) function g

2e.g., let g be the density of a uniform or Gaussian distribution as sampling from
them is easy.

Joost-Pieter Katoen Probabilistic Programming 21/43

Probabilistic Programming Rejection Sampling

Example

f (x) = e−x2/2 · (sin2(6+x) + 3 · cos2(x) · sin4(4x) + 1)
proposal g(x) = U(−3, 3), C = 25

see: https://www.youtube.com/watch?v=si76S7QqxTU

Joost-Pieter Katoen Probabilistic Programming 22/43

Probabilistic Programming Rejection Sampling

Properties of rejection sampling
I Rejection sampling yields unbiased samples
I For distributions F over d variables, C ∈ O(2d)

I # samples needed from G to obtain an accepted value follows a
geometric distribution with probability 1

C

I Thus: many samples may be needed to get an accepted value3

I especially, when f is highly concentrated in some region (peeks)
I or if C > 1, or f cannot be nicely “fitted” into a proposal g

I Other deficiency: for posterior distributions, we have:

f (x) = D(x)
C with C =

∑
x

D(x) and C is not known

3We get back to this issue in the lecture on Bayesian networks
Joost-Pieter Katoen Probabilistic Programming 23/43

Probabilistic Programming Markov Chain Monte Carlo

Overview

1 Bayes’ Rule

2 Monte Carlo Sampling

3 Rejection Sampling

4 Markov Chain Monte Carlo

Joost-Pieter Katoen Probabilistic Programming 24/43

https://www.youtube.com/watch?v=si76S7QqxTU

Probabilistic Programming Markov Chain Monte Carlo

Recall: stationary distributions

Stationary distribution
A probability vector ρ satisfying ρ = ρ·P is called a stationary
distribution of MC D.

An irreducible, positive recurrent MC has a unique stationary distribution
satisfying ρσ = 1

mσ
for every state σ.

mσ is the mean recurrence time of state σ

Joost-Pieter Katoen Probabilistic Programming 25/43

Probabilistic Programming Markov Chain Monte Carlo

A sufficient condition

Detailed balance condition
Let MC D with state space Σ. If for all states σ, τ ∈ Σ it holds

ρ(σ) · P(σ,σ′) = ρ(σ′) · P(σ′,σ)︸ ︷︷ ︸
detailed balance condition

,

then ρ is a stationary distribution of MC D.

The reverse does not hold: not every stationary distribution ρ satisfies the
detailed balance condition.

Joost-Pieter Katoen Probabilistic Programming 26/43

Probabilistic Programming Markov Chain Monte Carlo

Markov chains for Bayes’ rule
I Idea: Let a Markov chain generate the Monte Carlo samples

I The MC is supposed to be a representative of the posterior

posterior ∝ likelihood · prior

I The MC may start at a distribution 6= actual posterior

I But it asymptotically approaches a stationary distribution

I The MC’s stationary distribution = our posterior distribution

How to determine the MC and its transition probabilities?

Joost-Pieter Katoen Probabilistic Programming 27/43

Probabilistic Programming Markov Chain Monte Carlo

MCMC methods

MCMC techniques basically differ in how to define the Markov chain.

They differ in how to obtain the MCs, and may yield MCs with distinct
convergence rates to the stationary distribution

Examples: Metropolis, Metropolis-Hastings, Gibbs, Hamiltonian MC . . .

As opposed to rejection sampling, MCMC scales well with the
dimensionality of the sample space

Joost-Pieter Katoen Probabilistic Programming 28/43

Probabilistic Programming Markov Chain Monte Carlo

An analogy: optimisation
Assume our aim is to find the maximum of f

1. Given current estimate xi

2. Draw a candidate sample from a proposal distribution: x∗ ∼ g(x∗ | xi)

3. Evaluate r = f (x∗)
f (xi)

4. If r > 1, accept and let xi+1 := x∗ “go uphill”

5. Else (i.e., r < 1) stay: xi+1 := xi “stay”

The samples x0, x1, x2, . . . form a Markov chain
And contain some information about the shape of f

Joost-Pieter Katoen Probabilistic Programming 29/43

Probabilistic Programming Markov Chain Monte Carlo

The Metropolis-Hastings method
Assume our aim is to draw sample from distribution with density f

1. Given current estimate xi

2. Draw a candidate sample from a proposal distribution: x∗ ∼ g(x∗ | xi)

3. Evaluate r = f (x∗) · g(xi | x∗)
f (xi) · g(x∗ | xi)

4. If r > 1, accept and let xi+1 := x∗ “go uphill”

5. Else (i.e., r < 1)
I accept with probability r : xi+1 := x∗ “go downhill”
I stay with probability 1−r : xi+1 := xi “stay”

In the original Metropolis algorithm: g(xi | x∗) = g(x∗ | xi) (symmetry)

Joost-Pieter Katoen Probabilistic Programming 30/43

Probabilistic Programming Markov Chain Monte Carlo

Acceptance condition in MH sampling
I Start derivation with the condition of detailed balance4:

ρ(x) · P(x , x∗) = ρ(x∗) · P(x∗, x)

I This is equivalent to

P(x , x∗)
P(x∗, x) = ρ(x∗)

ρ(x) that is P(x∗ | x)
P(x | x∗) = ρ(x∗)

ρ(x)

I Break down moving from x to x∗ into two steps:

P(x∗ | x) = g(x∗ | x)︸ ︷︷ ︸
proposal

· A(x , x∗)︸ ︷︷ ︸
acceptance

1. pick a random value x∗ based on a proposal pdf g
2. then, move from x to x∗ based on an acceptance distribution A

4Recall this is a sufficient condition for the existence of a stationary distribution.
Joost-Pieter Katoen Probabilistic Programming 31/43

Probabilistic Programming Markov Chain Monte Carlo

Metropolis-Hastings (2)

I Thus
P(x∗ | x)
P(x | x∗) = ρ(x∗)

ρ(x)

I becomes
A(x , x∗)
A(x∗, x) = ρ(x∗) · g(x | x∗)

ρ(x) · g(x∗ | x)

I The state x∗ is the candidate for transiting to

Joost-Pieter Katoen Probabilistic Programming 32/43

Probabilistic Programming Markov Chain Monte Carlo

Metropolis-Hastings (3)

I Consider the acceptance ratio r

r = A(x , x∗)
A(x∗, x) = ρ(x∗) · g(x | x∗)

ρ(x) · g(x∗ | x)

I If r > 1: the move from x to x∗ is a transition to a more likely state.
Thus accept this move: xi+1 := x∗.

I If r < 1:
I with probability r move to state x∗, i.e., xi+1 := x∗.
I otherwise, ignore the transition and re-sample at state x , i.e., xi+1 := x .

Rationale: the MC does not get stuck in a local fragment as it always is possible
to move to a less likely state.

Joost-Pieter Katoen Probabilistic Programming 33/43

Probabilistic Programming Markov Chain Monte Carlo

Convergence of MH sampling

When the MC is converged to its stationary distribution, we effectively sample the
posterior distribution, as desired.

The MC induced by MH sampling is ergodic (aperiodic and positive
recurrent)

Recall: ergodic MCs have a unique stationary distribution ρ

Convergence theorem (simplified)

If g(x∗ | xi) > 0 for all pairs (x∗, xi), then for any initial sample x0, the
density of { xi }i>0 approaches the stationary distribution f (x) as i →∞.

Joost-Pieter Katoen Probabilistic Programming 34/43

Probabilistic Programming Markov Chain Monte Carlo

5 Example i=1

5courtesy: Philipp Hennig, 2020.
Joost-Pieter Katoen Probabilistic Programming 35/43

Probabilistic Programming Markov Chain Monte Carlo

6 Example i=2

6courtesy: Philipp Hennig, 2020.
Joost-Pieter Katoen Probabilistic Programming 36/43

Probabilistic Programming Markov Chain Monte Carlo

7 Example i=3

7courtesy: Philipp Hennig, 2020.
Joost-Pieter Katoen Probabilistic Programming 37/43

Probabilistic Programming Markov Chain Monte Carlo

8 Example i=4

8courtesy: Philipp Hennig, 2020.
Joost-Pieter Katoen Probabilistic Programming 38/43

Probabilistic Programming Markov Chain Monte Carlo

9 Example i=5

9courtesy: Philipp Hennig, 2020.
Joost-Pieter Katoen Probabilistic Programming 39/43

Probabilistic Programming Markov Chain Monte Carlo

10 Example i=300

10courtesy: Philipp Hennig, 2020.
Joost-Pieter Katoen Probabilistic Programming 40/43

Probabilistic Programming Markov Chain Monte Carlo

Example

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH

Joost-Pieter Katoen Probabilistic Programming 41/43

Probabilistic Programming Markov Chain Monte Carlo

Summary
I Bayes rule: posterior ∝ likelihood · prior

I Monte Carlo sampling is an effective technique for approximating
expected values, marginal likelihoods, etc.

I Expected error with N Monte Carlo samples drops with O
(

(
√

N)−1
)

I Rejection sampling samples from a proposal distribution

I Yields unbiased samples but requires many samples11

I Metropolis-Hastings: use a random walk converging to a stationary
distribution of a MC

11In particular for high-dimensional multivariate distributions.
Joost-Pieter Katoen Probabilistic Programming 42/43

Probabilistic Programming Markov Chain Monte Carlo

Next lecture

Thursday Oct 27, 16:30
There is no lecture on Tue Oct 25.

Instead, there will be a lecture on Fri Oct 28

No exercise class on Oct 28; next on Nov 4.

Joost-Pieter Katoen Probabilistic Programming 43/43

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH

	Bayes' Rule
	Monte Carlo Sampling
	Rejection Sampling
	Markov Chain Monte Carlo

