Probabilistic Programming Probabilistic Programming

Overview

Probabilistic Programming @ Bayes' Rule

Lecture #4: Markov Chain Monte Carlo

© Monte Carlo Sampling
Joost-Pieter Katoen

© Rejection Sampling

RWTH Lecture Series on Probabilistic Programming 2022-23
@ Markov Chain Monte Carlo

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

(0) i B " rul
verview ayes’ rule

Sum rule: Pr(X) = Pr(X,Y)+ Pr(X,—Y)
@ Bayes’ Rule Product rule: PHX,Y) = PHX)-Pr(Y | X)

Corollary of the sum and product rule:

likelihood of X
under D prior of X
PD|X) - Pr(X)
PX|D) =
N Pr(D)

. N
posterior of X evidence

given D

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

’
Bayes’ rule Example (1)

PrD | X) - PAX)
Pr(D)

Pr(X | D) = Pick a card. What is Pr{back is red | front is red }?

In the discrete setting, this amounts to: :

2

something else

~ PAD|X)-PrX)
- X PAD | X)) - Pr(Xi)

In the continuous setting, this amounts to:

Pr(X | D)

I don't know yet

PHX | D) = PHD | X) - Pr(X) P(card|color) = P(Cafd)PfC(glzlsr | card) _ = ﬁizzlrjh CPércilorjl)g?Cr:)rd -
[Pr(D| X)-Pr(X)dX : = B -
_ !/3-P(color [card) 2 (v 0
1/2 3
The normalising constant, i.e., the marginal likelihood Pr(D) is important (Credits: Philipp Hennig, Univ. of Tibingen, 2020)
to get an accurate posterior distribution, yet mostly difficult to get. It is the likelihood that matters, not the prior.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Bayes' Rule Probabilistic Programming Bayes' Rule
Example (2) Expected values
il SRet posterter - A probability distribution Pron a countable set X is a function
W W W @ Pr: X —[0,1] suchthat > Pr(x)=1.
xeX
z X 3 x2= 23
g /2 /2 /2 I likelihood
s /3 /3 /3
D D D D) The expected value of random variable f : X — R under distribution Pr is
re .
0 0 — 0 — defined by:
- — Elf) = X100 Prx) = [raPr
& & SRS S xeX X
@ @b V\\{@ & @6 (\{@ @ @t) ‘\v\@’
S N §

(Credits: Philipp Hennig, Univ. of Tiibingen, 2020)

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

Justification of MCMC Overview

Computing expected values, and posterior distributions can be hard.
© Monte Carlo Sampling

Possible remedy: Use Markov chain Monte Carlo sampling

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Monte Carlo Casino Monte Carlo Sampling

Epf) = Y f(x)- Pr(x)

xeX
As the dimension of X can be huge, or even uncountably infinite, one
takes i.i.d. samples x1, x2, ..., xy with x; € X and x; ~ Pr(X).
Then:

: . e s Y
ol e[= Ep(f) ~ NZ f(xi)
sl 0] B) i=1

L —

=

1 il po
W VEL BRI

Similarly:
N
Y PD[A) ~ > PH(D|A)
i i=1
R ———
part of marginal likelihood

Computing using samples x; ~ Pr(X) are called Monte Carlo Methods *

ldue to works in the 1940's by Stanislaw Ulam and John von Neumann

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Monte Carlo Sampling Probabilistic Programming Monte Carlo Sampling

Approximating 7 by Monte Carlo sampling A WebPPL program to approximate 7

var N = 100

» Take a square enclosing a circle var samples_in_circle = function (m) {

if (m == 0) {return 0}

var x sample (Uniform({a:-1,b:1}))

var y = sample(Uniform({a:-1,b:13}))

var hits = samples_in_circle(m-1)

return (x*x + y*y <= 1) 7 1 + hits : hits
// count a sample within/on the circle

» Sample N points within the square

» Take the ratio of # samples in circle to N

» This approximates area circle to area square

N Area | | ¥
formally: SO &
N& Areaﬂ]) var approx_pi = function() {
which in turn gives approximation } return (4 * samples_in_circle(N)) / N
4N,
T~ © var roughly_pi =
N&

Infer ({method: ’rejection’, samples: 20}, approx_pi)

. . . . viz.auto(roughly_pi)
(The approximation becomes more precise as one increases V).

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Monte Carlo Sampling
Increasing the number of samples Properties of Monte Carlo sampling
e watue we i Lan o Of pointar 00 e rag corel umber of points: 1000 1. Yields unbiased estimators for every integrable function
3.08 3.112
10 -5 v < 10
o 2%, * . . —
o eet A S S o8 2. The expected square error (variance) drops as O(N 1)
06{ ® :. .. . :c. '.' .° % 06
* ’ o ...o o -
o Lt etees o, "t o 3. Thus: the expected error drops as O ((\/ N) 1)
02 . ° ‘o. . ** 02
00 * * .; o of 00
00 02 04 06 08 10 00 02 08 10 7.00% -
6.00% -
Enter the total number of points: 10000 Enter the total number of points: 100000
The value of pi is: The value of pi is: 5.00% -
3.1212 3.14264

10 4.00%

08 3.00% -

Margin of Error (M.E.)

06
2.00%
04

1.00%

T T T T T
02 0 1000 2000 3000 4000 5000

Sample size (n)
00

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

Continuous distributions Examples

The distribution function Fx of random variable X is defined by:

Fx(d) = Prx((—oo,d])=Pr({ac Q| X(a)<d}) forreald
{Xx<d}

Properties:
» Fx is monotonic and right-continuous
> 0< Fx(d) <1
» limg_,_o Fx(d) =0 and
» limg_oo Fx(d) = 1.
For continuous random variable X, Fx can be written as:

d
Fx(d) = / fi(u) du with f the density function

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Obtaining samples from distribution F Overview

» Use sampling from a (continuous) uniform distribution, e.g., U(0, 1)

> Uniformly distributed numbers can be transformed into other
distributions
» Only work numerically efficient in a limited number of cases

» Obstacle: need to know the density f(x) for all x, regions of high
density

© Rejection Sampling

» Aim of Monte Carlo methods: construct samples from

g0) = F(x) = "

assuming the unnormalised density f can be evaluated at any x

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Rejection sampling Example

» Aim: take samples from distribution F with density function f

> Key idea: take a proposal distribution? G with density g(x)

» such that for all x it holds:

f(X) < C-g(x) for some scaling constant 1< C < 0

» Draw sample y ~ g(x) and sample u ~ U(0, C-g(y))

» Accept if u < f(y), reject if u > f(y)

In order to “discover” f, we sample from a different (proposal) function g f(x)= e x/2 . (sin2(6+x) +3. cos2(x) . sin4(4x) +1)
proposal g(x) = U(-3,3), C =25

2e.g., let g be the density of a uniform or Gaussian distribution as sampling from see: https://www.youtube.com/watch?v=si76S7QqxTU

them is easy.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Rejection Sampling Probabilistic Programming Markov Chain Monte Carlo

Properties of rejection sampling Overview

» Rejection sampling yields unbiased samples
» For distributions F over d variables, C € O(29)

» # samples needed from G to obtain an accepted value follows a
geometric distribution with probability %

» Thus: many samples may be needed to get an accepted value3

> especially, when f is highly concentrated in some region (peeks)
» orif C > 1, or f cannot be nicely “fitted” into a proposal g

» Other deficiency: for posterior distributions, we have: @ Markov Chain Monte Carlo

f(x) = Dg() with C = ZD(X) and C is not known

3We get back to this issue in the lecture on Bayesian networks

Joost-Pieter Katoen Probabilistic Programming 23/43 Joost-Pieter Katoen Probabilistic Programming

https://www.youtube.com/watch?v=si76S7QqxTU

Recall: stationary distributions A sufficient condition

Stationary distribution - —
Detailed balance condition

s preleelailiy vester o epiieiving p = @IP i el & siEdiona Let MC D with state space ¥. If for all states o, 7 € ¥ it holds

distribution of MC D.

p(a) - P(o,d’) = p(o’)-P(d',0),
| i belhnas csnefifen
An irreducible, positive recurrent MC has a unique stationary distribution
satisfying p, = m%, for every state o.

then p is a stationary distribution of MC D.

The reverse does not hold: not every stationary distribution p satisfies the

m, is the mean recurrence time of state o detailed balance condition.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Markov chains for Bayes’ rule MCMC methods

» Idea: Let a Markov chain generate the Monte Carlo samples

MCMC techniques basically differ in how to define the Markov chain.
» The MC is supposed to be a representative of the posterior

posterior o< likelihood - prior They differ in how to obtain the MCs, and may yield MCs with distinct
convergence rates to the stationary distribution

» The MC may start at a distribution # actual posterior
Examples: Metropolis, Metropolis-Hastings, Gibbs, Hamiltonian MC . ..

» But it asymptotically approaches a stationary distribution
As opposed to rejection sampling, MCMC scales well with the
» The MC's stationary distribution = our posterior distribution dimensionality of the sample space

How to determine the MC and its transition probabilities?

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Markov Chain Monte Carlo Probabilistic Programming Markov Chain Monte Carlo

An analogy: optimisation The Metropolis-Hastings method
Assume our aim is to find the maximum of f Assume our aim is to draw sample from distribution with density f
1. Given current estimate x; 1. Given current estimate x;
2. Draw a candidate sample from a proposal distribution: x* ~ g(x* | x;) 2. Draw a candidate sample from a proposal distribution: x* ~ g(x* | x;)
f(x*) f(x*) - g(xi | x*)
. Evaluat = 3. Evaluate r = -
3. Evaluate r f0q) f(xi) - g(x* | xi)
4. 1f r > 1, accept and let xj4+1 := x* “go uphill” 4. 1f r 21, accept and let xj41 := x* “go uphill”
5. Else (i.e., r < 1) stay: xjy1:=X; “stay” 5. Else (i.e., r < 1) - _
> accept with probability r: xj41 1= x* “go downhill"
> stay with probability 1—r: xj11 1= Xx; “stay”
The samples xg, x1, x2, ... form a Markov chain
And contain some information about the shape of f In the original Metropolis algorithm: g(x; | x*) = g(x* | x;) (symmetry)

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Acceptance condition in MH sampling Metropolis-Hastings (2)

» Start derivation with the condition of detailed balance*:

p(x) - P(x,x7) = p(x*) - P(x",x)

» Thus . .
» This is equivalent to P(x* | x) _ p(x*)
P(x[x) p(x)
POx) _ p(x) o POCIX) p(x)
" = is o =
P(x*, x) p(x) P(x [x*) p(x) » becomes
. . Alx, x*) _ p(x7) - g(x | x¥)
» Break down moving from x to x* into two steps: Alx*x) p(x)-g(x* | x)

P(x" | x) = g(x™ | x)- Alx, x7)

T cetance » The state x* is the candidate for transiting to
proposa

1. pick a random value x* based on a proposal pdf g
2. then, move from x to x* based on an acceptance distribution A

*Recall this is a sufficient condition for the existence of a stationary distribution.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Metropolis-Hastings (3) Convergence of MH sampling

» Consider the acceptance ratio r When the MC is converged to its stationary distribution, we effectively sample the

A(x,x*) B ,o(x*)) g(X ’ X*) posterior distribution, as desired.

Alx*,x) — p(x)-g(x* | x) The MC induced by MH sampling is ergodic (aperiodic and positive

» If r > 1: the move from x to x* is a transition to a more likely state. recurrent)

Thus accept this move: xj41 := x*. : . : o
. Pt thi Ve Xitl = X Recall: ergodic MCs have a unique stationary distribution p

> If r<1: . g
. . . . Convergence theorem (simplified)
> with probability r move to state x*, i.e., x;y1 := x*.
> otherwise, ignore the transition and re-sample at state x, i.e., xj11 1= X. If g(x* | x;) > 0 for all pairs (x*, x;), then for any initial sample xg, the
Rationale: the MC does not get stuck in a local fragment as it always is possible density of { x; },-, approaches the stationary distribution f(x) as i — co.

to move to a less likely state.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

5 H 6 .
Example i=1 Example /=2

®courtesy: Philipp Hennig, 2020. bcourtesy: Philipp Hennig, 2020.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

7 _ 8 .
Example /=3 Example i=4

—F)
0.4 , — 31)()
i
o> I
=
0.2
0
8 —1 0 1 2 3 4 5 6 7 8
X X
"courtesy: Philipp Hennig, 2020. 8courtesy: Philipp Hennig, 2020.
Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming 38/43

9 : 10 .
Example /=5 Example /=300

p,q

®courtesy: Philipp Hennig, 2020. Ocourtesy: Philipp Hennig, 2020.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Markov Chain Monte Carlo Probabilistic Programming Markov Chain Monte Carlo
Example Summary

» Bayes rule: posterior o likelihood - prior

» Monte Carlo sampling is an effective technique for approximating
expected values, marginal likelihoods, etc.

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH » Expected error with N Monte Carlo samples drops with O ((m)*l)
» Rejection sampling samples from a proposal distribution
» Yields unbiased samples but requires many samples!?

» Metropolis-Hastings: use a random walk converging to a stationary
distribution of a MC

10 particular for high-dimensional multivariate distributions.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Next lecture

Thursday Oct 27, 16:30

There is no lecture on Tue Oct 25.
Instead, there will be a lecture on Fri Oct 28

No exercise class on Oct 28; next on Nov 4.

Joost-Pieter Katoen Probabilistic Programming

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH

	Bayes' Rule
	Monte Carlo Sampling
	Rejection Sampling
	Markov Chain Monte Carlo

