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Probabilistic Programming Conditioning

Bayes’ rule

Pr(X | D)︸ ︷︷ ︸
posterior of X

given D

=

likelihood of X
under D︷ ︸︸ ︷

Pr(D | X ) ·
prior of X︷ ︸︸ ︷
Pr(X )

Pr(D)︸ ︷︷ ︸
marginal
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Probabilistic Programming Conditioning

Conditioning = learning

Observations change the distribution over data

Joost-Pieter Katoen Probabilistic Programming 5/50

Probabilistic Programming Conditioning

Conditional probabilistic GCL

I skip empty statement
I x := E assignment
I x :r= mu random assignment (x :≈µ)
I observe (G) conditioning
I prog1 ; prog2 sequential composition
I if (G) prog1 else prog2 choice
I prog1 [p] prog2 probabilistic choice
I while (G) prog iteration
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Probabilistic Programming Conditioning

A simple example

x := 0 [0.5] x := 1;
y := -1 [0.5] y := 0;
observe (x+y = 0)

This program blocks two runs as they violate x+y = 0. Outcome:

Pr[x =0,y =0] = Pr[x =1,y =−1] = 1/2

Observations thus normalize the probability of the “feasible” program runs
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Probabilistic Programming Conditioning

A loopy program
For 0< p < 1 an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i++;
(c := false [p] c := true)

}
observe (odd(i))

The feasible program runs have a probability ∑N>0 (1−p)2N ·p = 1
2−p

This program models the distribution:
Pr[i = 2N+1] = (1−p)2N ·p · (2−p) for N > 0

Pr[i = 2N] = 0
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Probabilistic Programming Conditioning

Operational semantics
Aim: Model the behaviour of a program P by the MC [[P]].

This can be defined using structured operational semantics
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Probabilistic Programming Conditioning

Operational semantics

Aim: Model the behaviour of a program P by the MC [[P]].
Approach:
I Take states of the form

I 〈Q,s〉 with program Q or ↓, and variable valuation s : Var→Q
I 〈 〉 models the violation of an observation, and
I 〈sink〉 models program termination (successful or violated observation)

I Take initial state 〈P,s〉 where s fulfils the initial conditions
I Take transition relation → as smallest relation satisfying the

transition rules
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Probabilistic Programming Conditioning

Transition rules (1)

〈skip,s〉 → 〈↓,s〉

s |= G
〈observe(G),s〉 → 〈↓,s〉

s 6|= G
〈observe(G),s〉 → 〈 〉

〈↓,s〉 → 〈sink〉 〈 〉 → 〈sink〉 〈sink〉 → 〈sink〉

〈x := E ,s〉 → 〈↓,s[x := s([[E ]])]〉

µ(s)(v) = a > 0
〈x :≈µ,s〉 a−→〈↓,s[x := v ]〉

〈P[p]Q,s〉 → µ with µ(〈P,s〉) = p and µ(〈Q,s〉) = 1−p
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Probabilistic Programming Conditioning

Transition rules (2)

〈P,s〉 → 〈 〉
〈P;Q,s〉 → 〈 〉

〈P,s〉 → µ

〈P;Q,s〉 → ν
with ν(〈P ′;Q′,s ′〉) = µ(〈P ′,s ′〉) where ↓;Q = Q

s |= G
〈if (G){P} else {Q},s〉 → 〈P,s〉

s 6|= G
〈if (G){P} else {Q},s〉 → 〈Q,s〉

s |= G
〈while(G){P},s〉 → 〈P;while (G){P},s〉

s 6|= G
〈while(G){P},s〉 → 〈↓,s〉
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Probabilistic Programming Conditioning

The piranha problem [Tijms, 2004]
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Probabilistic Programming Conditioning

Example
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Probabilistic Programming Conditioning

The conditional distribution of a program

Consider the operational semantics [[P]]s of cpGCL program P

The conditional distribution [[P]]s |¬ over final states of cpGCL program P
when starting in state s is defined by:

[[P]]s |¬ (τ) =



0 if τ =  and [[P]]s( ) < 1
[[P]]σ (τ)

1− [[P]]s( ) if τ 6=  and [[P]]σ ( ) < 1

undefined if [[P]]s( ) = 1

The normalisation factor 1− [[P]]s( ) includes diverging runs.

Joost-Pieter Katoen Probabilistic Programming 15/50

Probabilistic Programming Conditioning

Divergence matters

diverge [0.5] {
x := 0 [0.5] x := 1;
y := 0 [0.5] y := 1;
observe (x = 0 || y = 0)

}

Q: What is the probability that y = 0 on termination?

A: 2
7 . Why?

Warning: This is a silly example. Typically divergence comes from loops.
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Probabilistic Programming Conditioning

Which program pairs are equivalent?

{ x := 0 [0.5] x := 1 };
observe(x = 1)

{ x := 0; observe(x = 1) }
[0.5]
{ x := 1; observe(x = 1) }

x := 1 [0.5] diverge x := 1 [0.5] observe(false)

int x := 1;
while (x = 1) {

x := 1
}

int x := 1;
while (x = 1) {

x := 1 [0.5] x := 0;
observe (x = 1)

}
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Probabilistic Programming Observe statements in w(l)p
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Probabilistic Programming Observe statements in w(l)p

Extending wp (and similarly wlp) with conditioning
Syntax probabilistic program P Semantics wp[[P]](f )

skip f

x := E f [x := E ]

observe(ϕ) [ϕ] · f

x :≈ µ λ s.
∫
Q

(λv .f (s[x := v ]))dµs

P;Q wp[[P]] (wp[[Q]](f ))

if (ϕ) P else Q [ϕ] ·wp[[P]](f ) + [¬ϕ] ·wp[[Q]](f )

P [p]Q p ·wp[[P]](f ) + (1−p) ·wp[[Q]](f )

while (ϕ) {P} lfpX . (([ϕ] ·wp[[P]](X )) + [¬ϕ] · f )︸ ︷︷ ︸
loop characteristic function Ψf (X)

where lfp is the least fixed point wrt. the ordering v on E.
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Probabilistic Programming Observe statements in w(l)p

Normalisation?

The semantics so far treats observe as an assert statement.
It does not cover normalisation.
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Probabilistic Programming Observe statements in w(l)p

Flash back: The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

Conditional expected reward of termination without violating any observe

ER[[P]](σI ,♦〈sink〉 | ¬♦〈 〉) = 1·1/2 +0·1/4

1− 1/4
=

1/2
3/4

= 2/3.

Joost-Pieter Katoen Probabilistic Programming 21/50

Probabilistic Programming Observe statements in w(l)p

The piranha program – a wp perspective
f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

E(f1 = pir | “feasible” run) = 1·1/2 +0·1/4

1− 1/4
=

1/2
3/4

= 2
3 .

Let cwp[[P]](f ) = wp[[P]](f )
wlp[[P]](1) . We will define: cwp[[P]](f ) = (wp[[P]](f ),wlp[[P]](1)) .

Note: wlp[[P]](1) = 1−Pr[P violates an observation]. This includes diverging runs.
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Probabilistic Programming Conditional expectations
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Probabilistic Programming Conditional expectations

Conditional expectations

Conditional expectations
A conditional expectation is a pair (f ,g) with f ∈ E and g ∈ E61.
Let C = E×E61 denote the set of conditional expectations.

(f ,g) ∈ C represents the fraction f
g .

(f ,g) is interpreted (in the end) as λ s.


f (s)
g(s) if g(s) 6= 0

undefined otherwise.

Beware: (1,1) 6= (1/2,1/2), and (f ,0) is a well-formed conditional expectation.

Joost-Pieter Katoen Probabilistic Programming 24/50



Probabilistic Programming Conditional expectations

A partial order on conditional expectations
Let E ⊆ C×C be defined by:

(f ,g) E (f ′,g ′) if and only if f v f ′ and g w g ′.

The “fractional interpretation”: (f ,g) E (f ′,g ′) implies f (s)
g(s) 6

f ′(s)
g ′(s) .

(C,E) is a complete lattice.

Proof.
Straightforward. The least element is (0,1) and the greatest element is (∞,0).
The supremum of a subset S in C is given point-wise by the pair:

sup
E

S =
(

sup
6
{ f | (f ,g) ∈ S } , inf

6
{g | (f ,g) ∈ S }

)
.
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Probabilistic Programming Conditional weakest preconditions
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Probabilistic Programming Conditional weakest preconditions

Conditional weakest preconditions for cpGCL

cwp[[P]](f ) = (wp[[P]](f ),wlp[[P]](1))︸ ︷︷ ︸
conditional expectation

Note: wlp[[P]](1) = 1−Pr[P violates an observation].
This includes diverging runs.

Finally interpret this as wp[[P]](f )
wlp[[P]](1) provided wlp[[P]](1) 6= 0
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Probabilistic Programming Conditional weakest preconditions

Example: the piranha problem
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Probabilistic Programming Conditional weakest preconditions

A remark on divergence

Consider the two programs:

x := 1 [0.5] diverge x := 1 [0.5] observe(false)

Q: What is the probability that x = 1 on termination?

A: For the left program this is 1/2; for the right one this is 1.
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Probabilistic Programming Conditional weakest preconditions

Observations inside loops

int x := 1;
while (x = 1) {

x := 1
}

I Certain divergence
I (wp[[P1]](f ),wlp[[P1]](1)) = (0,1)
I Conditional wp = 0

1 = 0

int x := 1;
while (x = 1) {

x := 1 [0.5] x := 0;
observe (x = 1)

}

I Divergence with probability zero
I (wp[[P2]](f ),wlp[[P2]](1)) = (0,0)
I Conditional wp = 0

0 = undefined

The cwp-semantics does distinguish these programs.
Note that: wp[[P1]](1) = wp[[P2]](1) = 0
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Probabilistic Programming Conditional weakest preconditions

Feasibility

Recall feasibility for probabilistic wp w/o conditioning.

Feasibility of conditional wp
For cpGCL program P, f ∈ E and g ∈ E61, it holds:

∀s ∈ S.g(s) > 0 ⇒ f (s)
g(s) 6 k and cwp[[P]] ((f ,g)) = (f ′,g ′)

implies
(
∀s ∈ S.g ′(s) > 0 ⇒ f ′(s)6 k

)
.

Proof.
By structural induction on P. The non-trivial case is probabilistic
choice.
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Probabilistic Programming Conditional weakest preconditions

Compositionality?
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Probabilistic Programming Conditional weakest preconditions

Compositionality?

This all motivates that we deal with pairs rather than fractions.
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Probabilistic Programming Program transformations
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Probabilistic Programming Program transformations

Program transformation: removal of conditioning
I Idea: restart an infeasible run until all observe-statements are passed

I For program variable x use auxiliary variable sx
I store initial value of x into sx
I on each new loop-iteration restore x to sx

I Use auxiliary variable flag to signal observation violation:

flag := true; while(flag) { flag := false; mprog }

I Change prog into mprog by:

I observe(G) 7→ flag := !G || flag
I while(G) prog 7→ while(G && !flag) prog
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Probabilistic Programming Program transformations

Resulting program

sx1,...,sxn := x1,...,xn; flag := true;
while(flag) {

flag := false;
x1,...,xn := sx1,...,sxn;
mprog

}

This is known as rejection sampling.
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Probabilistic Programming Program transformations

Removal of conditioning
the transformation in action:

x := 0 [p] x := 1;
y := 0 [p] y := 1;
observe(x != y)

sx, sy := x, y; flag := true;
while(flag) {

x, y := sx, sy; flag := false;
x := 0 [p] x := 1;
y := 0 [p] y := 1;
flag := (x = y)

}

a simple data-flow analysis yields:

repeat {
x := 0 [p] x := 1;
y := 0 [p] y := 1

} until(x != y)
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Probabilistic Programming Program transformations

Removal of conditioning

Correctness of transformation
For conditional pGCL program P that has at least one feasible run and
expectation f :

cwp[[P]](f ,1) = wp[[P̂]](f ).

where P̂ is the result of replacing conditioning in P by a loop.

Proof: straightforward by structural induction on P.
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Probabilistic Programming Program transformations

Remark

Due to this result, observe-statements are equivalent to loops.
They are thus syntactic sugar.

But: they are practically very handy and

do not require loop invariants or fixed points.
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Probabilistic Programming Program transformations

A dual program transformation

repeat
a0 := 0 [0.5] a0 := 1;
a1 := 0 [0.5] a1 := 1;
a2 := 0 [0.5] a2 := 1;
i := 4*a2 + 2*a1 + a0 + 1

until (1 <= i <= 6)

a0 := 0 [0.5] a0 := 1;
a1 := 0 [0.5] a1 := 1;
a2 := 0 [0.5] a2 := 1;
i := 4*a2 + 2*a1 + a0 + 1
observe (1 <= i <= 6)

Loop-by-observe replacement if there is “no data flow” between loop iterations
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Probabilistic Programming Program transformations

Independent and identically distributed loops
iid-Loop
Loop while (ϕ){P } is iid if and only if for any expectation f :

wp[[P]]
(
[ϕ] ·wp[[P]](f )

)
= wp[[P]]([ϕ]) ·wp[[P]](f )

Event that ϕ holds after P is independent of the expected value of f after P.

Correctness of transformation
For iid-loop repeat P until (ϕ) and expectations f , g we have:

cwp[[repeat P until (ϕ)]] ((f ,g)) = cwp[[P ; observe (ϕ)]] ((f ,g))

Loop-free programs are easier to reason about — no loop invariants.
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Probabilistic Programming Program transformations

An alternative program transformation: Hoisting

This transformation “pushes” observe-statements “to the top”.
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Probabilistic Programming Program transformations

Hoisting [Nori et al., AAAI 2014]

T (skip, f ) = (skip, f )
T (x := E , f ) = (x := E , f [x := E ])

T (observe(ϕ), f ) = (skip, [ϕ] · f )
T (P1;P2, f ) = (Q1;Q2,h) where (Q2,g) = T (P2, f )

and (Q1,h) = T (P1,g)
T (if(ϕ)P1 else P2, f ) = (if(ϕ)Q1 else Q2, [ϕ]·g + [¬ϕ]·h) where

(Q1,g) = T (P1, f ) and (Q2,h) = T (P2, f )

T (P1[p]P2, f ) = (Q1[q]Q2,p·g + (1−p)·h) where (Q1,g) = T (P1, f )
and (Q2,h) = T (P2, f ) and q = p·g

p·g+(1−p)·h

T (while(ϕ)P, f ) = (while(ϕ)Q,g) where g = gfpH with
H(h) = [ϕ]·(π2�T )(P,h) + [¬ϕ]·f
and (Q,−) = T (P,g)
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Probabilistic Programming Program transformations

Correctness of hoisting

Correctness of hoisting
For any conditional pGCL program P with at least one feasible run and
f ∈ E:

cwp[[P]] ((f ,1)) = wp[[Q]](f ) with T (P,1) = (Q,h).

The component h represents the probability that P satisfies all its
observe-statements.
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Probabilistic Programming Compatibility results
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Probabilistic Programming Compatibility results

Backward compatibility

We have seen earlier:
McIver’s wp-semantics is a conservative extension of Dijkstra’s wp-semantics.
For any ordinary (aka: GCL) program P and predicate F :

wp[[P]]([F ])︸ ︷︷ ︸
McIver

= [wp[[P]](F ) ]︸ ︷︷ ︸
Dijkstra

The cwp-semantics is a conservative extension of McIver’s wp-semantics.
For any observe-free pGCL program P and expectation f :

cwp[[P]] ((f ,1)) =
(
f ′,g ′

)
implies f ′

g ′ = wp[[P]](f ).
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Probabilistic Programming Compatibility results

Conditional expected reward

ER(σ ,♦G | ¬♦F ) is the expectation of random variable1 rv(♦G ∩ ¬♦F )
with respect to the conditional probability measure:

Pr(♦G | ¬♦F ) = Pr(♦G ∩ ¬♦F )
Pr(¬♦F )

The conditional expected reward until reaching G while avoiding F ⊆ Σ is:

CER(σ ,♦G | ¬♦F ) = ER(σ ,♦G ∩ ¬♦F )
Pr(σ |= ¬♦F )

1This r.v. assigns to each path π of MC D the reward r(π̂) where π̂ is the shortest
prefix of π such that the last state is in G and no previous state is in F .
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Probabilistic Programming Compatibility results

Conditional wp = conditional expected rewards

Compatibility theorem for conditional wp
For cpGCL program P, input s and expectation f :

wp[[P]](f )(s)
wlp[[P]](1)(s)︸ ︷︷ ︸

conditional wp of P

= CER[[P]](s, (♦〈sink〉 | ¬♦〈 〉)
)︸ ︷︷ ︸

conditional expected reward in MC [[P]]

.

The ratio of wp[[P]](f ) over wlp[[P]](1) for input s equals2 the conditional
expected reward to reach the terminal state 〈sink〉 while satisfying all observations
in P’s MC when starting with s. (The rewards in MC [[P]] are defined as before.)

2Either both sides are equal or both sides are undefined.
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Probabilistic Programming Compatibility results

Take-home messages
I Conditioning changes the probability distribution

I Conditioning is semantically treated in two steps:
1. A simple extension of weakest preconditions with observe
2. Conditional expectations: pairs of weakest (liberal) preconditions

I cwp[[P]] ((f ,1)) = wp[[P]](f )
wlp[[P]](1) provided wlp[[P]](1) 6= 0

I Conditioning can be removed at the expense of a loop

I Or, can be pushed backwards through the program

Next lecture: recursion theory
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Probabilistic Programming Compatibility results

Next lecture

Thursday Dec 1, 16:30
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