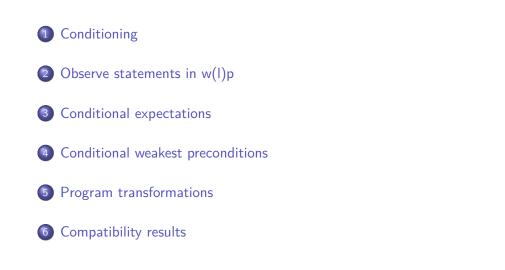
Probabilistic Programming Lecture #12: Conditioning

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2022-23

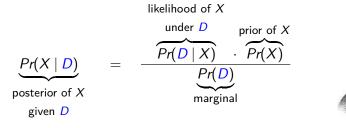
Probabilistic Programming

Overview



Joost-Pieter Katoen	Probabilistic Programming	1/50
Probabilistic Programming Overview	Conditioning	
1 Conditioning		
Observe statements in w(l)p		
3 Conditional expectations		
Conditional weakest preconditions		
5 Program transformations		
6 Compatibility results		

Joost-Pieter Katoen	Probabilistic Programming	2/50
Probabilistic Programming	Conditioning	
Bayes' rule		

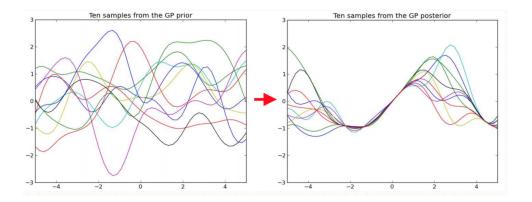


Joost-Pieter Katoen

obabilistic Programming

Conditioning

Conditioning = learning



Observations change the distribution over data

Joost-Pieter Katoen	Probabilistic Programming	5/50
Probabilistic Programming	Conditioning	
A simple example		

This program blocks two runs as they violate x+y = 0. Outcome:

$$Pr[x=0, y=0] = Pr[x=1, y=-1] = 1/2$$

Observations thus normalize the probability of the "feasible" program runs

Conditional probabilistic GCL

skip	empty statement
▶ x := E	assignment
▶ x :r= mu	random assignment (x : $pprox \mu$)
▶ observe (G)	conditioning
▶ prog1 ; prog2	sequential composition
▶ if (G) prog1 else prog2	choice
▶ prog1 [p] prog2	probabilistic choice
▶ while (G) prog	iteration

Joost-Pieter Katoen	Probabilistic Programming	6/50
Probabilistic Programming	Conditioning	
A loopy program		

For 0 an arbitrary probability:

```
bool c := true;
int i : = 0;
while (c) {
   i++;
   (c := false [p] c := true)
}
observe (odd(i))
```

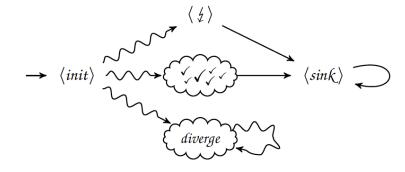
The feasible program runs have a probability $\sum_{N \ge 0} (1-p)^{2N} \cdot p = \frac{1}{2-p}$

This program models the distribution: $Pr[i = 2N+1] = (1-p)^{2N} \cdot p \cdot (2-p)$ for $N \ge 0$ Pr[i = 2N] = 0

Conditioning

Operational semantics

Aim: Model the behaviour of a program P by the MC $\llbracket P \rrbracket$.



This can be defined using structured operational semantics

Joost-Pieter Katoen		Probabilistic Programming	9/50
Probabilistic Programming		Conditioning	
Transition rule	es (1)		
	$\langle \texttt{skip}, s angle$	$ ightarrow \langle \downarrow, s angle$	
(obser	$\frac{s \models G}{\operatorname{ve}(G), s \rangle \to \langle \downarrow, s \rangle}$	$s \not\models G$ $\langle \texttt{observe}(G), s \rangle$	$ angle ightarrow \langle \not \pm angle$
$\langle \downarrow, s \rangle$	$\rightarrow \langle sink \rangle \qquad \langle {}^{\ell}_{\sharp} \rangle \rightarrow$	$\langle sink \rangle \langle sink \rangle \rightarrow$	$\langle sink angle$
	$\langle x := E, s \rangle \to \langle \downarrow$	$s[x := s(\llbracket E \rrbracket)]$	
	$\frac{\mu(s)(v)}{\langle x:\approx \mu,s\rangle \xrightarrow{a}}$	$= a > 0$ $(\downarrow, s[x := v])$	
$\langle P[p]Q,$	$ s angle ightarrow \mu$ with $\mu(\langle P,s angle)$	$\psi(\langle Q,s\rangle)={p\over p}$ and $\mu(\langle Q,s\rangle)$) = 1- <i>p</i>

Operational semantics

Aim: Model the behaviour of a program P by the MC $\llbracket P \rrbracket$.

Approach:

- Take states of the form
 - $\langle Q, s \rangle$ with program Q or \downarrow , and variable valuation $s : Var \rightarrow \mathbb{Q}$
 - $\langle \frac{4}{2} \rangle$ models the violation of an observation, and
 - *(sink)* models program termination (successful or violated observation)
- ▶ Take initial state $\langle P, s \rangle$ where s fulfils the initial conditions
- \blacktriangleright Take transition relation \rightarrow as smallest relation satisfying the transition rules

	ming 10/50
Probabilistic Programming Conditioning	
Transition rules (2)	
$\frac{\langle P, s \rangle \to \langle \sharp \rangle}{\langle P; Q, s \rangle \to \langle \sharp \rangle} \frac{\langle P, s \rangle \to \mu}{\langle P; Q, s \rangle \to v} \text{ with } v(\langle P'; Q', s' \rangle) = \mu$	$\mu(\langle P', s' angle)$ where $\downarrow; Q = Q$
$\frac{s \models G}{\langle \text{if } (G) \{P\} \text{ else } \{Q\}, s \rangle \rightarrow \langle P, s \rangle} \qquad \overline{\langle \text{if } (G) \{P\} \text{ else } \{Q\}, s \rangle \rightarrow \langle P, s \rangle}$	$\frac{s \not\models \mathbf{G}}{lse \ \{\mathbf{Q}\}, s \rangle \to \langle \mathbf{Q}, s \rangle}$
$\frac{s \models G}{\langle while(G)\{P\}, s \rangle \rightarrow \langle P; while(G)\{P\}, s \rangle} \qquad \langle while(G)\{P\}, s \rangle$	$s \not\models G$
$\langle while(G)\{P\}, s \rangle \rightarrow \langle P; while(G)\{P\}, s \rangle \langle while(G)\{P\}, s \rangle$	$e(G)\{P\},s\rangle\to\langle\downarrow,s\rangle$

The piranha problem

[Tijms, 2004]

One fish is contained within the confines of an opaque fishbowl. The fish is equally likely to be a piranha or a goldfish. A sushi lover throws a piranha into the fish bowl alongside the other fish. Then, immediately, before either fish can devour the other, one of the fish is blindly removed from the fishbowl. The fish that has been removed from the bowl turns out to be a piranha. What is the probability that the fish that was originally in the bowl by itself was a piranha?

Condition

Joost-Pieter Katoen	Probabilistic Programming	13/50
Probabilistic Programming	Conditioning	

The conditional distribution of a program

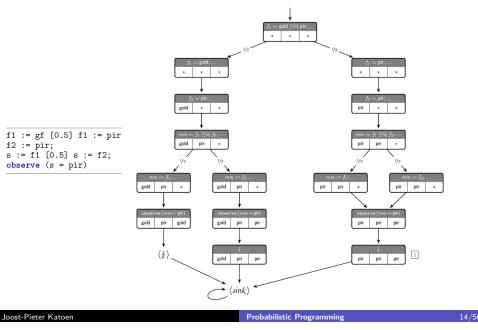
Consider the operational semantics $\llbracket P \rrbracket_s$ of cpGCL program P

The conditional distribution $[\![P]\!]_s|_{\neg_t}$ over final states of cpGCL program P when starting in state s is defined by:

$$\llbracket P \rrbracket_{\mathfrak{s}} \mid_{\neg_{\mathfrak{z}}} (\tau) = \begin{cases} 0 & \text{if } \tau = \mathfrak{z} \text{ and } \llbracket P \rrbracket_{\mathfrak{s}}(\mathfrak{z}) < 1 \\\\ \frac{\llbracket P \rrbracket_{\sigma}(\tau)}{1 - \llbracket P \rrbracket_{\mathfrak{s}}(\mathfrak{z})} & \text{if } \tau \neq \mathfrak{z} \text{ and } \llbracket P \rrbracket_{\sigma}(\mathfrak{z}) < 1 \\\\ \text{undefined} & \text{if } \llbracket P \rrbracket_{\mathfrak{s}}(\mathfrak{z}) = 1 \end{cases}$$

The normalisation factor $1 - \llbracket P \rrbracket_{s}(\sharp)$ includes diverging runs.

Example



Probabilistic Programming

Conditioning

Divergence matters

Q: What is the probability that y = 0 on termination?

A: $\frac{2}{7}$. Why?

Warning: This is a silly example. Typically divergence comes from loops.

15/50

Conditionin

Which program pairs are equivalent?

observe(x = 1)	{ x := 1; observe(x = 1) }
x := 1 [0.5] diverge	<pre>x := 1 [0.5] observe(false</pre>
<pre>int x := 1; while (x = 1) {</pre>	<pre>int x := 1; while (x = 1) {</pre>
$\begin{array}{c} \text{while } (x - 1) \\ \text{x} := 1 \end{array}$	x := 1 [0.5] x := 0;
}	observe $(x = 1)$
	}
ter Katoen	Probabilistic Programming

Extending wp (and similarly wlp) with conditioningSyntax probabilistic program PSemantics wp[[P]](f)

skip	f
<i>x</i> := <i>E</i>	f[x := E]
$ ext{observe}(arphi)$	[φ] · f
$x :\approx \mu$	$\lambda s. \int_{\mathbb{Q}} \left(\lambda v. f(s[x:=v]) ight) d\mu_s$
P ; Q	wp[[P]](wp[[Q]](f))
if $(\phi) \ { extsf{P}}$ else Q	$[\boldsymbol{\varphi}] \cdot wp[\boldsymbol{[P]}](\boldsymbol{f}) + [\neg \boldsymbol{\varphi}] \cdot wp[\boldsymbol{[Q]}](\boldsymbol{f})$
<i>P</i> [<i>p</i>] <i>Q</i>	$p \cdot wp[[P]](f) + (1-p) \cdot wp[[Q]](f)$
while $(oldsymbol{arphi})$ $\{oldsymbol{ extsf{P}}\}$	$lfp X. (([\varphi] \cdot wp[[P]](X)) + [\neg \varphi] \cdot \mathbf{f})$
	loop characteristic function $\Psi_f(X)$

where lfp is the least fixed point wrt. the ordering \sqsubseteq on $\mathbb{E}.$

	onditioning
2 0	bserve statements in w(I)p
3 Co	onditional expectations
4 Co	onditional weakest preconditions
5 Pr	ogram transformations
6 Ca	ompatibility results

Observe statements in w(I)p

Joost-Pieter Katoen	Probabilistic Programming	18/50
Probabilistic Programming	Observe statements in w(l)p	
Normalisation?		

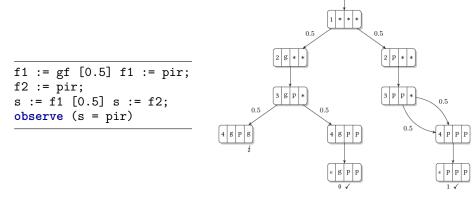
The semantics so far treats observe as an assert statement.

It does not cover normalisation.

robabilistic Programming

Observe statements in w(I)p

Flash back: The piranha puzzle



What is the probability that the original fish in the bowl was a piranha?

Conditional expected reward of termination without violating any observe

$$\mathsf{ER}^{\llbracket P \rrbracket}(\sigma_I, \Diamond \langle sink \rangle \mid \neg \Diamond \langle \frac{4}{2} \rangle) = \frac{1 \cdot 1/2 + 0 \cdot 1/4}{1 - 1/4} = \frac{1/2}{3/4} = \frac{2}{3/4} = \frac{2}{3}.$$

Probabilistic Program

Conditional expectations

Joost-Pieter Katoen

ing

Probabilistic Programming

Overview

Conditioning

Observe statements in w(I)p

3 Conditional expectations

- 4 Conditional weakest preconditions
- **5** Program transformations
- 6 Compatibility results

Probabilistic Programming

Observe statements in w(I)p

The piranha program – a wp perspective

f1 := gf [0.5] f1 := pir; f2 := pir; s := f1 [0.5] s := f2; observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

$$\mathbb{E}(\texttt{f1} = \texttt{pir} \mid \texttt{``feasible'' run}) = \frac{1 \cdot 1/2 + 0 \cdot 1/4}{1 - 1/4} = \frac{1/2}{3/4} = \frac{2}{3}$$

Let $cwp[[P]](f) = \frac{wp[[P]](f)}{wlp[[P]](1)}$. We will define: cwp[[P]](f) = (wp[[P]](f), wlp[[P]](1)).

Note: wlp[[P]](1) = 1 - Pr[P violates an observation]. This includes diverging runs.

Joost-Pieter Katoen Probabilistic Programming 22/50

Conditional expectations

Probabilistic Programming

Conditional expectations

Conditional expectations

A conditional expectation is a pair (f, g) with $f \in \mathbb{E}$ and $g \in \mathbb{E}_{\leq 1}$.

Let $\mathbb{C} = \mathbb{E} \times \mathbb{E}_{\leq 1}$ denote the set of conditional expectations.

$$(f,g) \in \mathbb{C}$$
 represents the fraction $\frac{f}{\sigma}$.

$$(f,g)$$
 is interpreted (in the end) as λs .
$$\begin{cases} \frac{f(s)}{g(s)} & \text{if } g(s) \neq 0 \end{cases}$$

undefined otherwise.

Beware: $(1,1) \neq (1/2,1/2)$, and (f,0) is a well-formed conditional expectation.

23/50

A partial order on conditional expectations

Let $\trianglelefteq \subseteq \mathbb{C} \times \mathbb{C}$ be defined by:

```
(f,g) \trianglelefteq (f',g') if and only if f \sqsubseteq f' and g \sqsupseteq g'.
```

Conditional expectations

The "fractional interpretation": $(f, g) \trianglelefteq (f', g')$ implies $\frac{f(s)}{g(s)} \leqslant \frac{f'(s)}{g'(s)}$.

$(\mathbb{C}, \trianglelefteq)$ is a complete lattice.

Proof.

Straightforward. The least element is (0, 1) and the greatest element is $(\infty, 0)$. The supremum of a subset S in \mathbb{C} is given point-wise by the pair:

$$\sup_{\trianglelefteq} S = \left(\sup_{\leqslant} \{ f \mid (f,g) \in S \}, \inf_{\leqslant} \{ g \mid (f,g) \in S \} \right).$$

Probabilistic Programming

Conditional weakest preconditions

Joost-Pieter Katoen

Probabilistic Programming

Conditional weakest preconditions for cpGCL

$$cwp[[P]](f) = \underbrace{(wp[[P]](f), wlp[[P]](1))}_{\text{conditional expectation}}$$

Note: wlp[[P]](1) = 1 - Pr[P violates an observation].This includes diverging runs.

Finally interpret this as $\frac{wp[[P]](f)}{wlp[[P]](1)}$ provided $wlp[[P]](1) \neq 0$

Ocerview Conditioning Observe statements in w(l)p Conditional expectations Conditional weakest preconditions Program transformations Compatibility results

Probabilistic Programming

robabilistic Programming

Conditional weakest preconditions

Example: the piranha problem

A remark on divergence

x := 1 [0.5] diverge

Observations inside loops

<pre>int x := 1; while (x = 1) {</pre>	
x := 1 }	
 Certain divergence 	

- $(wp[P_1]](f), wlp[P_1]](1)) = (0, 1)$
- Conditional wp = $\frac{0}{1} = 0$

int x := 1; while (x = 1) { x := 1 [0.5] x := 0; observe (x = 1) }

- Divergence with probability zero
- $(wp[[P_2]](f), wlp[[P_2]](1)) = (0, 0)$
- Conditional wp = $\frac{0}{0}$ = undefined

The cwp-semantics does distinguish these programs. Note that: $wp[[P_1]](1) = wp[[P_2]](1) = 0$

Joost-Pieter Katoen	Probabilistic Programming	29/50
Probabilistic Programming	Conditional weakest preconditions	

Consider the two programs:

Q: What is the probability that x = 1 on termination?

A: For the left program this is 1/2; for the right one this is 1.

Conditional weakest precondition

x := 1 [0.5] observe(false)

Feasibility

Recall feasibility for probabilistic wp w/o conditioning.

Feasibility of conditional wp

For cpGCL program P, $f \in \mathbb{E}$ and $g \in \mathbb{E}_{\leq 1}$, it holds:

$$\forall s \in \mathbb{S}. g(s) > 0 \Rightarrow \frac{f(s)}{g(s)} \leq k \quad \text{and} \quad cwp[\![P]\!]((f,g)) = (f',g')$$

implies $(\forall s \in \mathbb{S}. g'(s) > 0 \Rightarrow f'(s) \leq k).$

Proof.

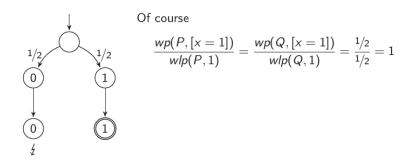
By structural induction on P. The non-trivial case is probabilistic choice.

 Joost-Pieter Katoen
 Probabilistic Programming
 30/50

 Probabilistic Programming
 Conditional weakest preconditions

Compositionality?

$$\begin{array}{ll} P: & \{x := 0\} \ [1/2] \ \{x := 1\}; \ observe(x = 1) \\ Q: & \{x := 0; \ observe(x = 1)\} \ [1/2] \ \{x := 1; \ observe(x = 1)\} \end{array}$$



Probabilistic Programming

Conditional weakest preconditions

Compositionality?

$$P: \{x := 0\} [1/2] \{x := 1\}; observe(x = 1) Q: \{x := 0; observe(x = 1) \\Q_1 \} [1/2] \{x := 1; observe(x = 1) \\Q_2 \}$$

Of course

$$\frac{1/2}{1/2}$$

$$\frac{wp(P, [x = 1])}{wlp(P, 1)} = \frac{wp(Q, [x = 1])}{wlp(Q, 1)} = \frac{1/2}{1/2} = 1$$
but we cannot decompose

$$\frac{wp(Q, [x = 1])}{wlp(Q, 1)} \neq 0.5 \frac{wp(Q_1, [x = 1])}{wlp(Q_1, 1)} + 0.5 \frac{wp(Q_2, [x = 1])}{wlp(Q_2, 1)}$$

This all motivates that we deal with pairs rather than fractions.

Joost-Pieter Katoen	Probabilistic Programming	33/50
Probabilistic Programming	Program transformations	
Program transformation	on: removal of condition	oning
Idea: restart an infeasible r	run until all observe-statements	s are passed

- \blacktriangleright For program variable x use auxiliary variable sx
 - \blacktriangleright store initial value of x into sx
 - \blacktriangleright on each new loop-iteration restore x to sx
- Use auxiliary variable flag to signal observation violation:

flag := true; while(flag) { flag := false; mprog }

Change prog into mprog by:

```
▶ observe(G) → flag := !G || flag
▶ while(G) prog → while(G && !flag) prog
```

```
robabilistic Programming
```

Overview

Conditioning
 Observe statements in w(!)p
 Conditional expectations
 Conditional weakest preconditions
 Program transformations
 Compatibility results

Joost-Pieter Katoen		Probabilistic Programming	34/50
Probabilistic Program	ning	Program transformations	
Resulting	g program		
	<pre>sx1,,sxn := x1, while(flag) {</pre>	.,xn; ilag := true;	
	<pre>flag := false; x1,,xn := sx1,</pre>	,sxn;	
	mprog }		

This is known as rejection sampling.

Program transformations

Removal of conditioning

the transformation in action:

				lag :	= true;
whi	<mark>Le</mark> (f	lag)	{		
х,	у	:= sx	, sy;	flag	:= false;
x	:=	0 [p]	x :=	• 1;	
У	:=	0 [p]	у:=	• 1;	
f]	ag	:= (x	= y)		
}					

a simple data-flow analysis yields:

re	epe	eat	{					
	х	:=	0	[p]	х	:=	1;	
				[p]			1	
}	ur	n ti	1(3	c !=	y))		

oost-Pieter Katoen	Probabilistic Programming

Remark

Probabilistic Programmin

1

flag := (x = y)
}

Program transformations

Probabilistic Programming

Removal of conditioning

Correctness of transformation

For conditional pGCL program P that has at least one feasible run and expectation f:

$$cwp[[P]](f,1) = wp[[P]](f)$$

where \widehat{P} is the result of replacing conditioning in P by a loop.

Proof: straightforward by structural induction on *P*.

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming
Program transformations

Program transformation

38/50

A dual program transformation

<pre>repeat a0 := 0 [0.5] a0 := 1; a1 := 0 [0.5] a1 := 1; a2 := 0 [0.5] a2 := 1; i := 4*a2 + 2*a1 + a0 + 1 until (1 <= i <= 6)</pre>	a0 := 0 [0.5] a0 := 1; a1 := 0 [0.5] a1 := 1; a2 := 0 [0.5] a2 := 1; i := 4*a2 + 2*a1 + a0 + 1 observe (1 <= i <= 6)
--	--

Loop-by-observe replacement if there is "no data flow" between loop iterations

Due to this result	, observe-statements a	re equivalent to	loops.
--------------------	------------------------	------------------	--------

They are thus syntactic sugar.

But: they are practically very handy and

do not require loop invariants or fixed points.

Program transformations

Independent and identically distributed loops

iid-Loop

Loop while (ϕ) { *P* } is iid if and only if for any expectation *f*:

 $wp\llbracket P\rrbracket([\varphi] \cdot wp\llbracket P\rrbracket(f)) = wp\llbracket P\rrbracket([\varphi]) \cdot wp\llbracket P\rrbracket(f)$

Event that φ holds after P is independent of the expected value of **f** after P.

Correctness of transformation

For iid-loop repeat P until (φ) and expectations f, g we have:

 $cwp[[repeat P until (\phi)]]((f,g)) = cwp[[P ; observe (\phi)]]((f,g))$

Loop-free programs are easier to reason about — no loop invariants.

Joost-Pieter Katoen	Probabilistic Programming	41/50
Probabilistic Programming	Program transformations	
Hoisting	[Nori et al., AAAI 2014]	

$$T(\text{skip}, f) = (\text{skip}, f)$$

$$T(x := E, f) = (x := E, f[x := E])$$

$$T(\text{observe}(\varphi), f) = (\text{skip}, [\varphi] \cdot f)$$

$$T(P_1; P_2, f) = (Q_1; Q_2, h) \text{ where } (Q_2, g) = T(P_2, f)$$

$$and (Q_1, h) = T(P_1, g)$$

$$T(\text{if}(\varphi) P_1 \text{ else } P_2, f) = (\text{if}(\varphi) Q_1 \text{ else } Q_2, [\varphi] \cdot g + [\neg \varphi] \cdot h) \text{ where}$$

$$(Q_1, g) = T(P_1, f) \text{ and } (Q_2, h) = T(P_2, f)$$

$$T(P_1[p]P_2, f) = (Q_1[q]Q_2, p \cdot g + (1-p) \cdot h) \text{ where } (Q_1, g) = T(P_1, f)$$

$$and (Q_2, h) = T(P_2, f) \text{ and } q = \frac{p \cdot g}{p \cdot g + (1-p) \cdot h}$$

$$T(\text{while}(\varphi)P, f) = (\text{while}(\varphi)Q, g) \text{ where } g = \text{gfp } H \text{ with}$$

$$H(h) = [\varphi] \cdot (\pi_2 \odot T)(P, h) + [\neg \varphi] \cdot f$$

$$and (Q, -) = T(P, g)$$

Probabilistic Programming

An alternative program transformation: Hoisting

Program transformatio

This transformation "pushes" observe-statements "to the top".

Joost-Pieter Katoen	Probabilistic Programming	42/50
Probabilistic Programming	Program transformations	
Correctness of hoisting		

Correctness of hoisting

For any conditional pGCL program P with at least one feasible run and ${\it f} \in \mathbb{E}$:

$$cwp[[P]]((f,1)) = wp[[Q]](f)$$
 with $T(P,1) = (Q,h)$.

The component h represents the probability that P satisfies all its observe-statements.

Conditioning	
Observe statements in w(l)p	
3 Conditional expectations	
Conditional weakest preconditions	
5 Program transformations	
6 Compatibility results	

Compatibility results

Conditional expected reward

 $\mathsf{ER}(\sigma, \Diamond G \mid \neg \Diamond F)$ is the expectation of random variable¹ $rv(\Diamond G \cap \neg \Diamond F)$ with respect to the conditional probability measure:

$$Pr(\Diamond G \mid \neg \Diamond F) = \frac{Pr(\Diamond G \cap \neg \Diamond F)}{Pr(\neg \Diamond F)}$$

The conditional expected reward until reaching G while avoiding $F \subseteq \Sigma$ is:

$$\mathsf{CER}(\sigma, \Diamond G \mid \neg \Diamond F) = \frac{\mathsf{ER}(\sigma, \Diamond G \cap \neg \Diamond F)}{\mathsf{Pr}(\sigma \models \neg \Diamond F)}$$

¹This r.v. assigns to each path π of MC D the reward $r(\hat{\pi})$ where $\hat{\pi}$ is the shortest prefix of π such that the last state is in G and no previous state is in F.

Joost-Pieter	Katoen

robabilistic Programming

Probabilistic Programming

Backward compatibility

We have seen earlier:

Mclver's wp-semantics is a conservative extension of Dijkstra's wp-semantics.

For any ordinary (aka: GCL) program P and predicate F:

$$\underbrace{wp[\![P]\!]([F]\!]}_{Mclver} = \underbrace{[wp[\![P]\!](F)\!]}_{Dijkstra}$$

The cwp-semantics is a conservative extension of McIver's wp-semantics. For any observe-free pGCL program P and expectation f:

$$cwp[[P]]((f,1)) = (f',g') \text{ implies } \frac{f'}{g'} = wp[[P]](f).$$

Joost-Pieter Katoen

Joost-Pieter Katoen

Probabilistic Program

Probabilistic Programming

wp||P wlp[[F Compatibility results

Conditional wp = conditional expected rewards

Compatibility theorem for conditional wp

For cpGCL program P, input s and expectation f:

$$\underbrace{\frac{wp[[P]](f)(s)}{wlp[[P]](1)(s)}}_{\text{conditional wp of }P} = \underbrace{\text{CER}^{[P]}(s, (\Diamond\langle sink\rangle \mid \neg \Diamond\langle \psi\rangle))}_{\text{conditional expected reward in MC }[[P]]}$$

The ratio of wp[[P]](f) over wlp[[P]](1) for input s equals² the conditional expected reward to reach the terminal state $\langle sink \rangle$ while satisfying all observations in P's MC when starting with s. (The rewards in MC [P] are defined as before.)

²Either both sides are equal or both sides are undefined

Probabilistic Programming

Compatibility results

Take-home messages

- Conditioning changes the probability distribution
- Conditioning is semantically treated in two steps:
 - 1. A simple extension of weakest preconditions with observe
 - 2. Conditional expectations: pairs of weakest (liberal) preconditions

$$\blacktriangleright cwp[[P]]((f,1)) = \frac{wp[[P]](f)}{wlp[[P]](1)} \text{ provided } wlp[[P]](1) \neq 0$$

- Conditioning can be removed at the expense of a loop
- Or, can be pushed backwards through the program

Next lecture: recursion theory

Joost-Pieter	Katoon
JOOSL-FIELER	Natuen

Probabilistic Programming

Probabilistic Programming

Next lecture

Thursday Dec 1, 16:30

	Joost-Pieter Katoen	Probabilistic Programming	50/50
--	---------------------	---------------------------	-------