Probabilistic Programming Probabilistic Programming

Overview

@ Conditioning

Probabilistic Programming

Lecture #12: Conditioning © Observe statements in w(l)p

© Conditional expectations
Joost-Pieter Katoen

@ Conditional weakest preconditions

RWTH Lecture Series on Probabilistic Programming 2022-23 © Program transformations

@ Compatibility results

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

(0) i B " rul
verview ayes’ rule

@ Conditioning

likelihood of X
under D prior of X

—— —~
PD|X) - PrX)

Pr(X | D =
{X| D) Pr(D)
posterior of X marginal

given D

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

Conditioning

Conditioning = learning

Ten samples from the GP prior

Ten samples from the GP posterior

Probabilistic Programming Conditioning

Conditional probabilistic GCL

observe (G)

progl ; prog2

if (G) progl else prog2
progl [p] prog2

vVvyvyvyvVvyyvyyypy

while (G) prog

skip empty statement
x :=E assignment
x :r= mu random assignment (x : ~)

conditioning
sequential composition
choice

probabilistic choice

iteration

Observations change the distribution over data

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

Joost-Pieter Katoen

A loopy program

A simple example

For 0 < p <1 an arbitrary probability:

bool ¢ := true;
x := 0 [0.5] x := 1; int i : = 0;
y := -1 [0.5] y := 0; while (c) {
observe (x+y = 0) it

(c := false [p] c := true)

This program blocks two runs as they violate x+y = 0. Outcome: +
observe (odd(i))

PI’[X:Ovy:O] = PI’[X:].,y:*].] = 1/2

The feasible program runs have a probabilit 1-p)Np = —
Observations thus normalize the probability of the “feasible” program runs Prog P Y Lnzo(1=p)7p 2-p

This program models the distribution:
Pli=2N+1] = (1-p)*N-p-(2—p) for N>0
Prli=2N]=0

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Conditioning
Operational semantics Operational semantics
Aim: Model the behaviour of a program P by the MC [[P].

<é> Aim: Model the behaviour of a program P by the MC [[P].

’\/\r\/\f' \ Approach:
» Take states of the form
— (init) ’\/\N (51'71K>) > (Q,s) with program Q or |, and variable valuation s : Var— Q
> (/) models the violation of an observation, and
> (sink) models program termination (successful or violated observation)
> Take initial state (P,s) where s fulfils the initial conditions
» Take transition relation — as smallest relation satisfying the

transition rules

This can be defined using structured operational semantics

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Transition rules (1) Transition rules (2)

(skip,s) = (], s)

sEG sEG

opserve S S observe S <P’S>_><é> <P’5>_>I'L H o0 I\ — /< . —
(ob (G),s) = (I.s) (ob (G),s) = (4) POSS 0T POy with v((P'; @, s"))=u((P",s')) where |;Q=Q

({,s) = (sink) (4) — (sink) (sink) — (sink)

sEG siEG
(if (G){P} else {Q},s) — (P,s) (if (G){P} else {Q},s) = (Q,s)

(x:=E,s) = (. spx:= s([E])])

w(s)(v)=a>0 : SEC kG
— K — (while(G){P},s) — (P;while (G){P},s) (while(G){P},s) — (].s)
(ximp,s) 2 (Lsx = v])

(PIPlQ.s) = p with p({P,s)) = p and u((Q,s)) =1-p

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

The piranha problem [Tijms, 2004] Example

One fish is contained within the confines of an opaque fishbowl.
The fish is equally likely to be a piranha or a goldfish. A sushi lover
throws a piranha into the fish bowl alongside the other fish. Then,
immediately, before either fish can devour the other, one of the fish is
blindly removed from the fishbowl. The fish that has been removed
from the bowl turns out to be a piranha. What is the probability that

P : : i ? 1 := gf [0.5] f1 := pi e =i i i
the fish that was originally in the bowl by itself was a piranha? L pir CICaEs

s := f1 [0.5] s := £2;
observe (s = pir)

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Conditioning Probabilistic Programming Conditioning

The conditional distribution of a program Divergence matters
Consider the operational semantics [P]]s of cpGCL program P diverge [0.5] {
x := 0 [0.5] x := 1;
The conditional distribution [[P]s |-; over final states of cpGCL program P y :=0 [0.5] y := 1;
when starting in state s is defined by: observe (x =0 || y = 0)
}
0 if t=4 and [P]s(4) <1
[Pls(7) .
[Ps -4 () = 1-[PIs(4) if 774 and [Pllo(f) <1 Q: What is the probability that y = 0 on termination?

undefined if [Pls(4)=1 A % Why?

The normalisation factor 1 — [P includes divergi S.
normatisation ' [PIs(4) inclu verging run Warning: This is a silly example. Typically divergence comes from loops.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Conditioning

Which program pairs are equivalent?

{x:=0[0.5] x :=1}; EOX5j= 0; observe(x = 1) }
observe(x = 1) {x :=1; observe(x = 1) }
x := 1 [0.5] diverge x := 1 [0.5] observe(false)

int x := 1; int x := 1;
while (x = 1) { while (x = 1) {

x :=1 x := 1 [0.5] x := 0
} observe (x = 1)

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Observe statements in w(l)p

Extending wp (and similarly wlp) with conditioning

Syntax probabilistic program P Semantics wp[[P](f)

skip f
x:=E flx:=E]
observe(y) [o] -
XU ls./@(lv.f(s[x:— v])) dus
PiQ wp[[P (wp[[Q]I(7))
if (@) P else Q [@]- wpl[PI(7) + [-o] - wpl QII(f)
Plpl Q p-wp[[PI(f) + (1=p) - wp[QI(f)
while (@) {P} Ifp X. (([¢] - wpl PI(X)) + [~0] -)

loop characteristic function W¢(X)

where Ifp is the least fixed point wrt. the ordering C on E.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Observe statements in w(l)p

Overview

© Observe statements in w(l)p

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Observe statements in w(l)p

Normalisation?

The semantics so far treats observe as an assert statement.

It does not cover normalisation.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Observe statements in w(l)p Probabilistic Programming Observe statements in w(l)p

Flash back: The piranha puzzle The piranha program — a wp perspective

f1 := gf [0.5] f1 := pir;
£f2 := pir;

s := f1 [0.5] s := f2;
observe (s = pir)

f1 := gf [0.5] f1 := pir;
£2 := pir;

s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

1124014 12 2

1-Ya 34 3

E(f1 = pir | “feasible” run) =

What is the probability that the original fish in the bowl was a piranha?

Conditional expected reward of termination without violating any observe Let cwp[[P](F) = VVVVII;[[[[/;]]]]((?) We will define: ‘ cwp[[PI(F) = (wp[[PI(F), wip[P (1)) ‘

ERIPY (o, O (sink) | <0(4)) = 11{2:(/)41/4 = ;ﬁ =2/3.

Probabilistic Programming

Note: wip[[P]|(1) = 1— Pr|{P violates an observation]. This includes diverging runs.

Joost-Pieter Katoen

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Conditional expectations Probabilistic Programming Conditional expectations

Conditional expectations

Conditional expectations
A conditional expectation is a pair (f,g) with f € E and g € E<;.

Let C =E x E<; denote the set of conditional expectations.

© Conditional expectations (f,g) € C represents the fraction é.

f(s)

if g(s) #0
(f,g) is interpreted (in the end) as As. &()

undefined otherwise.

Beware: (1,1) # (1/2,1/2), and (f,0) is a well-formed conditional expectation.

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Conditional expectations Probabilistic Programming Conditional weakest preconditions

A partial order on conditional expectations Overview
Let < C C x C be defined by:

(f,g) Q(f',g') ifand only if f C ' and g 3 g’

The “fractional interpretation”: (f,g) <(f’,g’) implies % < ;((3

(€,) is a complete lattice. @ Conditional weakest preconditions

Straightforward. The least element is (0,1) and the greatest element is (e, 0).
The supremum of a subset S in C is given point-wise by the pair:

supS = (sup {7 (f.6) € 5}, nf (e (.6 €5}).

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Conditional weakest preconditions

Probabilistic Programming Conditional weakest preconditions

Conditional weakest preconditions for cpGCL Example: the piranha problem

ewp[[PI(F) = (wpllPI(f), wlp[[P]|(1))

conditional expectation

Note: wip[[P]|(1) = 1— Pr|P violates an observation].
This includes diverging runs.
wp[[PII(f)

Finally interpret this as wiplPI(D) provided wip[[P]|(1) #0

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Conditional weakest preconditions Probabilistic Programming Conditional weakest preconditions

A remark on divergence Observations inside loops

int x := 1; int x := 1;
Consider the two programs: while (x = 1) { while (x = 1) {
x :=1 x :=1 [0.5] x := 0;
} observe (x = 1)
x := 1 [0.5] diverge x := 1 [0.5] observe(false) }

» Certain divergence
> (wollPLI(F), wip[P1](1)) = (0.1) » Divergence with probability zero
0 > (wpl[P2])(f), wip[P2]](1)) = (0,0)

Q: What is the probability that x = 1 on termination? > Conditional wp = % -
» Conditional wp = g = undefined

A: For the left program this is 1/2; for the right one this is 1.

The cwp-semantics does distinguish these programs.
Note that: wp[[P1]](1) = wp[[P:]](1) =0

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Conditional weakest preconditions

Conditional weakest preconditions

Probabilistic Programming

Feasibility Compositionality?

Recall feasibility for probabilistic wp w/o conditioning.
P: {x =0} [1/2] {x :=1}; observe(x = 1)

Feasibility of conditional wp Q: {x = 0; observe(x = 1)} [1/2] {x = 1; observe(x = 1)}

For cpGCL program P, f € E and g € E«y, it holds:

VseS.g(5)>0 = L <k and cwplPI((F.0))=(1'.&) l e o
1/2/0\1/2 e = D = !

implies (Vs €S.g'(s) >0 = f/(s) <k).

By structural induction on P. The non-trivial case is probabilistic

choice.

~(—C
O—0

Ol

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Conditional weakest preconditions
Compositionality? Overview
P: {x =0} [1/2] {x = 1}; observe(x = 1)
Q: {x = 0; observe(x = 1)} [1/2] {x :=1; observe(x = 1)}
Q1 Q2
l Of course
1 wp(P.x = 1)) _ wp(Q.[x=1]) _ 12 _
/2 wip(P, 1) wip(@,1) 12
? but we cannot decompose
wp(Q, [x = 1]) 20 swP(Qn [x =1]) o o wp(Q2, [x = 1])
(0 @ wip(Q, 1) ST QLD. T (@, 1) @ Program transformations
i

This all motivates that we deal with pairs rather than fractions.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

Program transformation: removal of conditioning Resulting program

» Idea: restart an infeasible run until all observe-statements are passed

» For program variable x use auxiliary variable sx

sxl,...,sxn := x1,...,xn; flag := true;
> store initial value of x into sx while(flag) {
> on each new loop-iteration restore x to sx flag := false;
x1l,...,xn := sx1,...,sxXn;
mprog

» Use auxiliary variable flag to signal observation violation:

flag := true; while(flag) { flag := false; mprog }

This is known as rejection sampling.
» Change prog into mprog by:

> observe(G) — flag := !G || flag
> while(G) prog ~— while(G && !'flag) prog

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming

Removal of conditioning Removal of conditioning

the transformation in action:

sx, sy := x, y; flag := true; .
while(flag) { Correctness of transformation

x :=0 [p] x := 1; x, y := sx, sy; flag := false; For conditional pGCL program P that has at least one feasible run and
y :=0 [p]l y := 1; x =0 [p] x :=1; ion f-
observe(x != y) y :=0 [p]l y :=1; expectation 7 A
flag := (x = y) cwp[[PII(F,1) = wp[[P](f).
}

where P is the result of replacing conditioning in P by a loop.

a simple data-flow analysis yields:
Proof: straightforward by structural induction on P.

repeat {
x :=0 [p] x := 1;
y:=0([ply:=1

} until(x !=y)

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Program transformations Probabilistic Programming Program transformations

Remark A dual program transformation
TepsR 0.5 a0 iz 1. a0 := 0 [0.5] a0 := 1;
Due to this result, observe-statements are equivalent to loops. a1 = o [0'5] al = L al := 0 [0.5] al := 1;
al := .5] al :=1; o o
They are thus syntactic sugar. a2 := 0 [0.5] a2 := 1: a2 := 0 [0.5] a2 := 1;
. ’ i 1= 4%a2 + 2%al + a0 + 1
i := 4%a2 + 2%al + a0 + 1

But: they are practically very handy and observe (1 <= i <= 6)

until (1 <= i <= 6)

do not require loop invariants or fixed points.

Loop-by-observe replacement if there is “no data flow" between loop iterations

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Independent and identically distributed loops An alternative program transformation: Hoisting

Loop while (@){ P} is iid if and only if for any expectation f:

wp P ([o]- wp[PI(F)) = wplPI([¢])- wplPI()

Event that ¢ holds after P is independent of the expected value of f after P.

Correctness of transformation

For iid-loop repeat P until (¢) and expectations f, g we have:

This transformation “pushes” observe-statements “to the top”.

cwp[[repeat P until (@)]|((f,g)) = cwp[P ; observe (@)]((f,2))

Loop-free programs are easier to reason about — no loop invariants.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Hoisting [Nori et al., AAAI 2014] Correctness of hoisting
T(skip,f) = (skip,f)
T(x:=E,f) = (x:=E,f[x:=E])
T(observe(9),f) — (skip.[¢]-f) Correctness of hoisting
T(P1:Psf) = (Qu:Qah) where (Q.g) = T(P2,f) For any conditional pGCL program P with at least one feasible run and
and (Ql,h):T(Pl,g) f € E:
T(if(@)P1 else P, f) = (if 1 |ol-g+[—¢]-h) wh .
CGEPIF etee Pof) = FHO) % cide elohg vl olD) unere cwplPI((£.1) = wolQU(F) with T(P.1)=(Q.h).

(Qu.g)=T(P1f) and (Q2,h) = T(P2,)

T(PipP2f) = (Qi[q]Qz p-g+(1—p)-h) where (Q1,g) = T(Py,f) Tl?e component h represents the probability that P satisfies all its
and (@, h) = T(P2,f) and g = p-g+?i€p)<h observe-statements.
T(while(@)P,f) = (while(@)Q,g) where g =gfpH with

H(h) = [p]-(m© T)(P, h) +[~¢] -f

and (Q,—)=T(P,g)

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Compatibility results
Overview

Q Compatibility results

Probabilistic Programming Compatibility results

Backward compatibility

We have seen earlier:

Mclver's wp-semantics is a conservative extension of Dijkstra's wp-semantics.

For any ordinary (aka: GCL) program P and predicate F:

wp[[PI([F]) = [wpllPI(F)]
——— —_———
Mclver Dijkstra

The cwp-semantics is a conservative extension of Mclver's wp-semantics.
For any observe-free pGCL program P and expectation f:

/

awlPI((F,1)) = (7€) impnesé’;7 = wollPI(F).

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Compatibility results

Conditional expected reward

ER(0,0G | OF) is the expectation of random variable! n(O G N —OF)
with respect to the conditional probability measure:

PHOG N —OF)

PrOG|~0F) = Pr—OF)

The conditional expected reward until reaching G while avoiding F C ¥ is:

ER(G,0G N —OF)
Pr(c = —OF)

CER(0,0G | OF) =

1This r.v. assigns to each path m of MC D the reward r(#) where 7 is the shortest
prefix of & such that the last state is in G and no previous state is in F.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Compatibility results

Conditional wp = conditional expected rewards

Compatibility theorem for conditional wp

For cpGCL program P, input s and expectation f:

wp[[PII(f)(s) _ P (< (O(sin
—_——

conditional wp of P

conditional expected reward in MC [[P]]

The ratio of wp[[P]|(f) over wip[P])(1) for input s equals® the conditional
expected reward to reach the terminal state (sink) while satisfying all observations
in P's MC when starting with s. (The rewards in MC [[P]] are defined as before.)

2Either both sides are equal or both sides are undefined.

Joost-Pieter Katoen Probabilistic Programming

Take-home messages Next lecture

» Conditioning changes the probability distribution

» Conditioning is semantically treated in two steps:

1. A simple extension of weakest preconditions with observe
2. Conditional expectations: pairs of weakest (liberal) preconditions

Thursday Dec 1, 16:30
wp[[P]I(f

wip[P](1

» Conditioning can be removed at the expense of a loop

v

awp[[P]((f,1)) =)) provided wip[[P]](1) #0

» Or, can be pushed backwards through the program

Next lecture: recursion theory

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

	Conditioning
	Observe statements in w(l)p
	Conditional expectations
	Conditional weakest preconditions
	Program transformations
	Compatibility results

