Probabilistic Programming Lecture #11: Reasoning About Loops

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2022-23

Overview

Motivation
 Qualitative invariants
 Probabilistic invariants
 Upper bounds on loops
 Lower bounds on loops
 Program equivalence using loop invariants

Joost-Pieter Katoen	Probabilistic Programming	1/41
Probabilistic Programming Overview	Motivation	
 Motivation 		
Qualitative invariantsProbabilistic invariants		
Upper bounds on loops		
5 Lower bounds on loops		
6 Program equivalence using lo	oop invariants	

Probabilistic Programming

Motivation

Joost-Pieter Katoen

- Reasoning about loops is the hardest task in program verification
- ► Why?
 - Weakest preconditions of loops are defined as fixed points
 - They can be approximated iteratively
 - But: Recognise a pattern to yield a closed-form formula for taking a loop k times
 - Taking the limit yields the required fixed point

These last two steps are the source of undecidability

"Practical" approach: capture the effect of a loop by a loop invariant

A loop invariant is a property of a program loop that is true before (and after) each loop iteration.

Probabilistic Programming

Motivation

Probabilistic Programming	Qualitative invariants
Overview	
1 Motivation	
2 Qualitative invariants	
Probabilistic invariants	
Upper bounds on loops	
5 Lower bounds on loops	
6 Program equivalence using loo	p invariants

Loop invariants à la Dijkstra

Recall that for while-loops we have for $F \in \mathbb{P}$:

 $wlp[[while(\phi){P}]](F) = gfp X. (\phi \land wlp[[P]](X) \lor (\neg \phi \land F))$

To determine the effect of a while-loop, one exploits an "invariant" $I \in \mathbb{P}$

Loop invariant

Predicate $l \in \mathbb{P}$ is a loop invariant w.r.t. postcondition $F \in \mathbb{P}$ if it satisfies: 1. $\varphi \Rightarrow l$ 2. $(\neg \varphi \land l) \Rightarrow F$, and 3. $(\varphi \land l) \Rightarrow wlp[[P]](l)$.

Satisfaction of I is invariant under (guarded) iteration of the loop body P.

Joost-Pieter Katoen	Probabilistic Programming	5/41
Probabilistic Programming	Qualitative invariants	
Example		

Probabilistic Programming

Qualitative invariants

Probabilistic Programming

Characteristic functions for probabilistic loops

Let P be a probabilistic program in pGCL

Recall for expectation $f \in \mathbb{E}$:

 $wp[[while (\phi) \{ P \}]](f) = Ifp X. \underbrace{([\phi] \cdot wp[[P]](X) + [\neg \phi] \cdot f)}_{characteristic function \Phi_{f}(X) \text{ for wp}}$

and

Joost-Pieter Katoen

$$wlp[[while (\varphi) \{P\}]](f) = gfp X. \qquad \underbrace{([\varphi] \cdot wlp[[P]](X) + [\neg \varphi] \cdot f)}_{i = i = i = i = j}$$

characteristic function $\Psi_f(X)$ for wlp

Loop invariants à la Dijkstra for pGCL

For $I, F \in \mathbb{P}$ and probabilistic loop while $(\phi)\{P\}$ it holds:

 $((\neg \varphi \land I) \Rightarrow F \text{ and } (\varphi \land I) \Rightarrow wlp[[P]](I)) \text{ iff } [I] \sqsubseteq \Psi_{[F]}([I])$

Qualitative invariants

where $\Psi_{[F]}$ is the wlp-characteristic function of the probabilistic loop for postcondition [F].

Proof.	
On the black board.	

Probabilistic Programming

Probabilistic invariants

Probabilistic Program

Probabilistic invariants

Let Φ_f be the wp-characteristic function of $P' = \text{while}(\varphi)\{P\}$ with respect to post-expectation $f \in \mathbb{E}$ and let $l \in \mathbb{E}$. Then:

- 1. *I* is a wp-superinvariant of P' w.r.t. *f* iff $\Phi_f(I) \sqsubseteq I$.
- 2. *I* is a wp-subinvariant of *P'* w.r.t. *f* iff $I \sqsubseteq \Phi_f(I)$.

Sub- and superinvariants for wlp are defined analogously (but are bounded, i.e., then $l \in \mathbb{E}_{\leq 1}$, and Φ_f is replaced by Ψ_f .)

Lemma

 $[\varphi] \cdot I \sqsubseteq wp[\![P]\!](I) \quad \text{iff} \quad I \sqsubseteq \Phi_{[\neg \varphi] \cdot I}(I) \quad \text{for all } I \in \mathbb{E} \text{ and pGCL program } P.$

Proof.

Left as an exercise.

bilistic	Programming	

Overview Motivation Qualitative invariants

Probabilistic invariants

4 Upper bounds on loops

5 Lower bounds on loops

6 Program equivalence using loop invariants

Joost-Pieter Katoen Probabilistic Programming 10 Probabilistic Programming Probabilistic invariants

Duelling cowboys: when does A win?

```
int cbDuel(float a, b) {
    int t := A; // cowboy A starts
    int c := 1;
    while (c = 1) {
        if (t = A) {
            (c := 0 [a] t := B);
        } else {
            (c := 0 [b] t := A);
        }
    }
    return t;
}
```

Probabilistic loop invariant w.r.t. postcondition $[t = A]$
$I = [t = A \land c = 0] \cdot 1 + [t = A \land c = 1] \cdot \frac{a}{a+b-a \cdot b} + [t = B \land c = 1] \cdot \frac{(1-b)a}{a+b-a \cdot b}$

1 Mc	tivation			
2 Qu	alitative invariant			
3 Pro	babilistic invaria	nts		
4 Up	per bounds on lo	ops		
5 Lov	ver bounds on lo			
6 Pro	gram equivalenc		nvariants	

Upper bounds on loops

Pictorially

Probabilistic Programming

Induction for upper bounds on wp

Recall:

$$wp[[while (\varphi) \{ P \}]](f) = lfp X. \underbrace{([\varphi] \cdot wp[[P]](X) + [\neg \varphi] \cdot f)}_{\Phi_f(X)}$$

Upper bounds on loops

Park's lemma: let (D, \sqsubseteq) be a complete lattice and $\Phi: D \rightarrow D$ continuous. Then:

 $\forall d \in D$. $\Phi(d) \sqsubseteq d$ implies Ifp $\Phi \sqsubseteq d$.

Corollary: upper bounds on weakest pre-expectations			
For while(ϕ){P} and expectations f and l we have:			
$\underbrace{\Phi_f(I) \sqsubseteq I}_{\text{wp-superinvariant}} \text{ implies}$	$\underbrace{wp[[while(\phi)\{P\}]](f)}_{lfp\Phi_f} \sqsubseteq I$		
Joost-Pieter Katoen	Probabilistic Programming 14/4:		
Probabilistic Programming	Upper bounds on loops		

Example

while $(c = 0) \{ x + + [p] c := 1 \}$

Claim:
$$I = x + [c = 0] \cdot \frac{p}{1-p}$$
 is a super-invariant of P w.r.t. $f = x$.

Upper bounds on loops

Proof

Probabilistic Programming

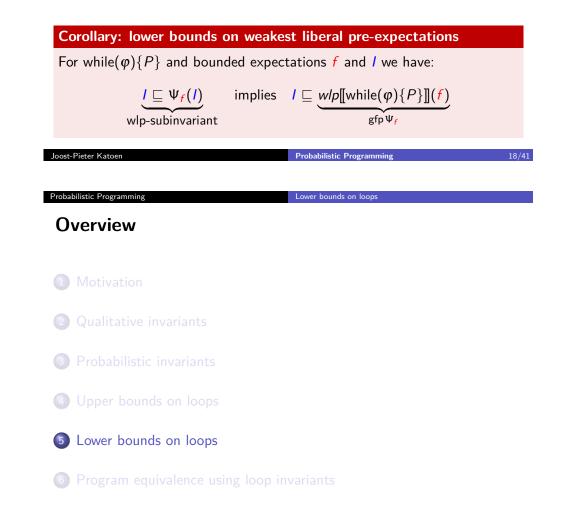
Upper bounds on loops

Induction for lower bounds on wlp Recall:

 $wlp[[while (\phi) \{ P \}]](f) = gfp X. \underbrace{([\phi] \cdot wlp[[P]](X) + [\neg \phi] \cdot f)}_{\Psi_f(X)}$

Park's lemma: let (D, \sqsubseteq) be a complete lattice and $\Psi : D \to D$ continuous. Then:

 $\forall d \in D. \quad d \sqsubseteq \Psi(d) \quad \text{implies} \quad d \sqsubseteq \operatorname{gfp} \Psi.$



Joost-Pieter Katoen	Probabilistic Programming	17/41
Probabilistic Programming	Upper bounds on loops	
Verifying loops		

The following procedure for induction (and co-induction):

- 1. Guess an appropriate loop invariant /
- 2. Push *l* through the characteristic function of the loop once, i.e., compute $\Phi(l)$
- 3. Check whether this took us down or up in the partial order $\leqslant:$
 - 3.1 $\Phi(I) \sqsubseteq I$, for induction (upper bound to wp), or
 - 3.2 $I \subseteq \Psi(I)$, for co-induction (lower bound to wlp).

The key difficulty is to find an appropriate invariant I. This is undecidable.

Lower bounds on loops

Aiming for lower bounds on wp (= Ifp)

The following result does not hold:

$$I \sqsubseteq \Phi_f(I)$$
 implies $I \sqsubseteq Ifp \Phi_f$

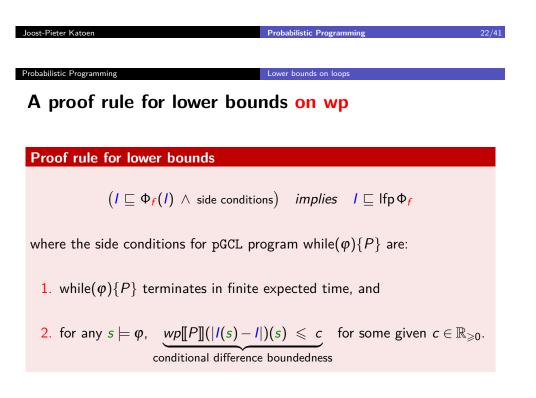
Pictorially:

Counterexample

Joost-Pieter KateenProbabilistic Programming21/41Probabilistic ProgrammingLower bounds on loopsConclusionLet (D, \sqsubseteq) be a complete lattice and $\Phi : D \rightarrow D$ continuous. Then $\forall d \in D.$ $d \sqsubseteq \Phi(d)$ does not imply $d \sqsubseteq Ifp \Phi$.Co-induction for lower bounds on wp of loops is unsound.Induction on upper bounds on wlp of loops also fails:

 $\forall d \in D$. $\Phi(d) \sqsubseteq d$ does not imply gfp $\Phi \sqsubseteq d$.

Induction for upper bounds on wlp of loops is unsound.



Lower bounds on loops

Example

Probabilistic Programming

Lower bounds on loops

A simpler proof rule for lower bounds

Guard strengthening for lower bounds

Let $P_{loop} = \text{while}(\phi)\{P\}$ and $P'_{loop} = \text{while}(\phi')\{P\}$, and expectations f and I. Then it holds:

$$(\varphi' \Rightarrow \varphi \land I \sqsubseteq \underbrace{wp[\![P'_{loop}]\!]([\neg \varphi] \cdot f)}_{\mathsf{lfp} \, \Phi'_{[\neg \varphi] \cdot f}}) \quad \mathsf{implies} \quad I \sqsubseteq \underbrace{wp[\![P_{loop}]\!](f)}_{\mathsf{lfp} \, \Phi_{f}}$$

- ▶ This rule is more general (e.g., applicable to divergent loops)
- ▶ The tightness of the lower bound depends on φ' approximating φ
- Algorithmically in case P'_{loop} has finitely many states

Joost-Pieter Katoen	Probabilistic Programming	25/41
Probabilistic Programming	Lower bounds on loops	
Proof		

Joost-Pieter Katoen

Probabilistic Programming

26/41

Probabilistic Programming

Lower bounds on loops

Random walks

Let \oplus abbreviate a uniform distribution. 1D-symmetric random walk on \mathbb{Z} :

while
$$(x \neq 0)$$
 { $x := x+1 \oplus x := x-1$ }

2D-symmetric random walk on \mathbb{Z}^2 :

while
$$(x \neq 0 \lor y \neq 0)$$
 {

$$x := x+1 \oplus x := x-1 \oplus y := y+1 \oplus y := y-1$$

3D-symmetric random walk on \mathbb{Z}^3 :

while
$$(x \neq 0 \lor y \neq 0 \lor z \neq 0)$$
 {
 $x := x+1 \oplus x := x-1 \oplus$
 $y := y+1 \oplus y := y-1 \oplus$
 $z := z+1 \oplus z := z-1$ }

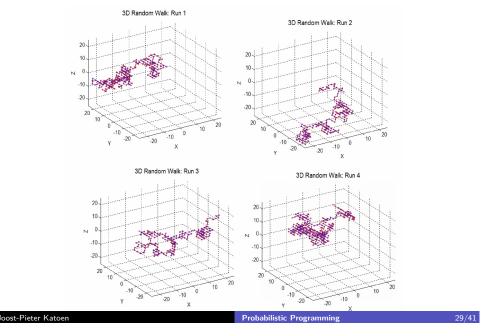
The 1D and 2D random walks reach the origin with probability one. The 3D random walks does not.

27/41

Joost-Pieter Katoen

Lower bounds on loops

Example: 3D symmetric random walk on \mathbb{Z}^3



Probabilistic Programming

Lower bounds on loops

Pólya's analysis result

The termination probability of the 3D symmetric random walk starting from any neighbour location of the origin (0,0,0) equals

$$1 - \left(\frac{3}{(2\pi)^3} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{dx \, dy \, dz}{3 - \cos x - \cos y - \cos z}\right)^{-1} = 0.3405373296\dots$$

Can we obtain a tight lower bound on the termination probability?

Example: 3D symmetric random walk on \mathbb{Z}^3

George Pólya (1887-1985)

Joost-Pieter Katoen Probabilistic Programming 30/41

Probabilistic Programming

Lower bounds on loops

Obtaining a lower bound

while
$$(x \neq 0 \lor y \neq 0 \lor z \neq 0)$$
 {
 $x := x+1 \oplus x := x-1 \oplus$
 $y := y+1 \oplus y := y-1 \oplus$
 $z := z+1 \oplus z := z-1$ }

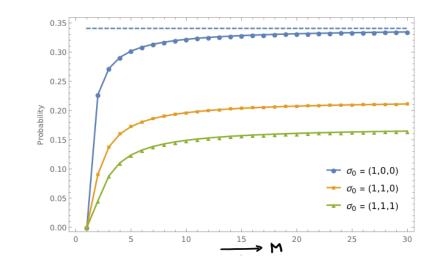
Bound the positions (x, y, z) to a cube of side length $2 \cdot M$ for $M \in \mathbb{N}_{>0}$:

while
$$((x \neq 0 \lor y \neq 0 \lor z \neq 0) \land |x| \leq M \land |y| \leq M \land |z| \leq M)$$
 {
 $x := x+1 \oplus x := x-1 \oplus$
 $y := y+1 \oplus y := y-1 \oplus$
 $z := z+1 \oplus z := z-1$ }

As the resulting program P' is finite state, $wp[\![P']\!](1)$ can be computed algorithmically. By increasing M, we approximate Pólya's result arbitrarily closely.

Lower bounds on loops

Verification results



Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming

Program equivalence using loop invariants

Playing with geometric distributions

- \blacktriangleright X is a random variable, geometrically distributed with parameter p
- \triangleright Y is a random variable, geometrically distributed with parameter q
- Q: generate a sample x, say, according to the random variable X Y

```
int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x
    (x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x
    (x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y
}</pre>
```

robabilistic Programming

Overview

Motivation
 Qualitative invariants
 Probabilistic invariants
 Upper bounds on loops
 Lower bounds on loops
 Program equivalence using loop invariants

Probabilistic Programming

Joost-Pieter Katoen

Program equivalence using loop invariants

Probabilistic Programmin

An alternative program

```
int XminY2(float p, q){
  int x := 0;
  bool flip := false;
  (flip := false [0.5] flip := true); // flip a fair coin
  if (not flip) {
   while (not flip) { // sample X to increase x
     (x +:= 1 [p] flip := true);
   }
 } else {
   flip := false; // reset flip
   while (not flip) { // sample Y to decrease x
     x -:= 1;
     (skip [q] flip := true);
   7
 }
return x; // a sample of X-Y
}
```

Program equivalence using loop invariants

. .

--- - - -

Program equivalence: X - Y

<pre>int XminY1(float p, q){ int x, c := 0, 1; while (c) { (x +:= 1 [p] c := 0); } c := 1; while (c) { (x -:= 1 [q] c := 0); } return x; }</pre>	<pre>int XminY2(float p, q){ int x := 0; (c := 0 [0.5] c := 1); if (c) { while (c) { (x +:= 1 [p] c := 0); } } else { c := 1; while (c) { x -:= 1; (skip [q] c := 0); } } return x; }</pre>
which p and q are the expected outc	somes for $f = x$ equal?

Joost-Pieter Katoen

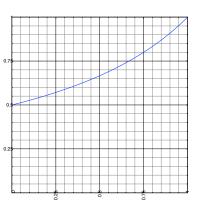
Probabilistic Programmin

Program equivalence using loop invariant

Probabilistic Program

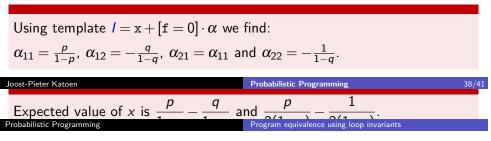
Program equivalence

Using wp, one can prove that the expectations of f = x coincide if and only if $q = \frac{1}{2-p}$.



Program equivalence: X - Y

	<pre>int XminY2(float p, q){ int x, f := 0, 0; (f := 0 [0.5] f := 1);</pre>
<pre>int XminY1(float p, q){ int x, f := 0, 0;</pre>	(f = 0 [0.5] + 1), if $(f = 0)$ {
while $(f = 0)$ {	while $(f = 0) \{$
(x++[p] f := 1);	(x++[p] f := 1);
} f := 0;	} else {
while $(f = 0)$ {	f := 0; while (f = 0) {
(x[q] f := 1);	x——;
return x;	(skip [q] f := 1);
}	}
	return x;
	}



Take-home messages

- Loop invariants allow to reason about (unbounded) loops
- Probabilistic invariants are expectations
- ► That either are lower or upper bounds of loops
- Upper bounds can be obtained by Park's lemma
- Lower bounds can be obtained by strengthening the loop guard
- Or by difference bounded loop bodies and finite termination

Next lecture: conditioning

Program equivalence using loop invariants

Next lecture

Thursday Nov 24, 16:30

Joost-Pieter Katoen

Probabilistic Programming