
Probabilistic Programming

Probabilistic Programming
Lecture #11: Reasoning About Loops

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2022-23

Joost-Pieter Katoen Probabilistic Programming 1/41

Probabilistic Programming

Overview

1 Motivation

2 Qualitative invariants

3 Probabilistic invariants

4 Upper bounds on loops

5 Lower bounds on loops

6 Program equivalence using loop invariants

Joost-Pieter Katoen Probabilistic Programming 2/41

Probabilistic Programming Motivation

Overview

1 Motivation

2 Qualitative invariants

3 Probabilistic invariants

4 Upper bounds on loops

5 Lower bounds on loops

6 Program equivalence using loop invariants

Joost-Pieter Katoen Probabilistic Programming 3/41

Probabilistic Programming Motivation

Motivation

I Reasoning about loops is the hardest task in program verification

I Why?
I Weakest preconditions of loops are defined as fixed points
I They can be approximated iteratively
I But: Recognise a pattern to yield a closed-form formula for taking a

loop k times
I Taking the limit yields the required fixed point

These last two steps are the source of undecidability

I “Practical” approach: capture the effect of a loop by a loop invariant

A loop invariant is a property of a program loop
that is true before (and after) each loop iteration.

Joost-Pieter Katoen Probabilistic Programming 4/41

Probabilistic Programming Qualitative invariants

Overview

1 Motivation

2 Qualitative invariants

3 Probabilistic invariants

4 Upper bounds on loops

5 Lower bounds on loops

6 Program equivalence using loop invariants

Joost-Pieter Katoen Probabilistic Programming 5/41

Probabilistic Programming Qualitative invariants

Loop invariants à la Dijkstra

Recall that for while-loops we have for F ∈ P:

wlp[[while(ϕ){P}]](F) = gfp X . (ϕ ∧ wlp[[P]](X) ∨ (¬ϕ ∧ F))

To determine the effect of a while-loop, one exploits an “invariant” I ∈ P

Loop invariant
Predicate I ∈ P is a loop invariant w.r.t. postcondition F ∈ P if it satisfies:
1. ϕ ⇒ I
2. (¬ϕ ∧ I) ⇒ F , and
3. (ϕ ∧ I) ⇒ wlp[[P]](I).

Satisfaction of I is invariant under (guarded) iteration of the loop body P.

Joost-Pieter Katoen Probabilistic Programming 6/41

Probabilistic Programming Qualitative invariants

Example

Joost-Pieter Katoen Probabilistic Programming 7/41

Probabilistic Programming Qualitative invariants

Characteristic functions for probabilistic loops

Let P be a probabilistic program in pGCL

Recall for expectation f ∈ E:

wp[[while (ϕ){P }]](f) = lfp X . ([ϕ] ·wp[[P]](X) + [¬ϕ] · f)︸ ︷︷ ︸
characteristic function Φf (X) for wp

and

wlp[[while (ϕ){P }]](f) = gfp X . ([ϕ] ·wlp[[P]](X) + [¬ϕ] · f)︸ ︷︷ ︸
characteristic function Ψf (X) for wlp

Joost-Pieter Katoen Probabilistic Programming 8/41

Probabilistic Programming Qualitative invariants

Loop invariants à la Dijkstra for pGCL

For I,F ∈ P and probabilistic loop while(ϕ){P} it holds:(
(¬ϕ ∧ I) ⇒ F and (ϕ ∧ I) ⇒ wlp[[P]](I)

)
iff [I] v Ψ[F]([I])

where Ψ[F] is the wlp-characteristic function of the probabilistic loop for
postcondition [F].

Proof.
On the black board.

Joost-Pieter Katoen Probabilistic Programming 9/41

Probabilistic Programming Probabilistic invariants

Overview

1 Motivation

2 Qualitative invariants

3 Probabilistic invariants

4 Upper bounds on loops

5 Lower bounds on loops

6 Program equivalence using loop invariants

Joost-Pieter Katoen Probabilistic Programming 10/41

Probabilistic Programming Probabilistic invariants

Probabilistic invariants

Let Φf be the wp-characteristic function of P ′ = while(ϕ){P} with respect
to post-expectation f ∈ E and let I ∈ E. Then:
1. I is a wp-superinvariant of P ′ w.r.t. f iff Φf (I) v I.
2. I is a wp-subinvariant of P ′ w.r.t. f iff I v Φf (I).

Sub- and superinvariants for wlp are defined analogously (but are bounded,
i.e., then I ∈ E61, and Φf is replaced by Ψf .)

Lemma
[ϕ] · I v wp[[P]](I) iff I v Φ[¬ϕ]·I(I) for all I ∈ E and pGCL program P.

Proof.
Left as an exercise.

Joost-Pieter Katoen Probabilistic Programming 11/41

Probabilistic Programming Probabilistic invariants

Duelling cowboys: when does A win?

int cbDuel(float a, b) {
int t := A; // cowboy A starts
int c := 1;
while (c = 1) {
if (t = A) {
(c := 0 [a] t := B);

} else {
(c := 0 [b] t := A);

}
}
return t ;

}

Probabilistic loop invariant w.r.t. postcondition [t = A]

I = [t = A∧ c = 0] ·1+ [t = A∧ c = 1] · a
a + b−a·b + [t = B∧ c = 1] · (1−b)a

a + b−a·b

Joost-Pieter Katoen Probabilistic Programming 12/41

Probabilistic Programming Upper bounds on loops

Overview

1 Motivation

2 Qualitative invariants

3 Probabilistic invariants

4 Upper bounds on loops

5 Lower bounds on loops

6 Program equivalence using loop invariants

Joost-Pieter Katoen Probabilistic Programming 13/41

Probabilistic Programming Upper bounds on loops

Induction for upper bounds on wp
Recall:

wp[[while (ϕ){P }]](f) = lfpX . ([ϕ] ·wp[[P]](X) + [¬ϕ] · f)︸ ︷︷ ︸
Φf (X)

Park’s lemma: let (D,v) be a complete lattice and Φ : D→ D continuous.
Then:

∀d ∈ D. Φ(d)v d implies lfp Φv d .

Corollary: upper bounds on weakest pre-expectations
For while(ϕ){P} and expectations f and I we have:

Φf (I) v I︸ ︷︷ ︸
wp-superinvariant

implies wp[[while(ϕ){P}]](f)︸ ︷︷ ︸
lfpΦf

v I

Joost-Pieter Katoen Probabilistic Programming 14/41

Probabilistic Programming Upper bounds on loops

Pictorially

Joost-Pieter Katoen Probabilistic Programming 15/41

Probabilistic Programming Upper bounds on loops

Example

while(c = 0) { x++ [p] c := 1 }

Claim: I = x + [c = 0] · p
1−p is a super-invariant of P w.r.t. f = x .

Joost-Pieter Katoen Probabilistic Programming 16/41

Probabilistic Programming Upper bounds on loops

Proof

Joost-Pieter Katoen Probabilistic Programming 17/41

Probabilistic Programming Upper bounds on loops

Induction for lower bounds on wlp
Recall:

wlp[[while (ϕ){P }]](f) = gfpX . ([ϕ] ·wlp[[P]](X) + [¬ϕ] · f)︸ ︷︷ ︸
Ψf (X)

Park’s lemma: let (D,v) be a complete lattice and Ψ : D→ D continuous.
Then:

∀d ∈ D. d vΨ(d) implies d v gfp Ψ.

Corollary: lower bounds on weakest liberal pre-expectations
For while(ϕ){P} and bounded expectations f and I we have:

I v Ψf (I)︸ ︷︷ ︸
wlp-subinvariant

implies I v wlp[[while(ϕ){P}]](f)︸ ︷︷ ︸
gfpΨf

Joost-Pieter Katoen Probabilistic Programming 18/41

Probabilistic Programming Upper bounds on loops

Verifying loops

The following procedure for induction (and co-induction):

1. Guess an appropriate loop invariant I
2. Push I through the characteristic function of the loop once, i.e.,

compute Φ(I)
3. Check whether this took us down or up in the partial order 6:

3.1 Φ(I) v I, for induction (upper bound to wp), or
3.2 I v Ψ(I), for co-induction (lower bound to wlp).

The key difficulty is to find an appropriate invariant I. This is undecidable.

Joost-Pieter Katoen Probabilistic Programming 19/41

Probabilistic Programming Lower bounds on loops

Overview

1 Motivation

2 Qualitative invariants

3 Probabilistic invariants

4 Upper bounds on loops

5 Lower bounds on loops

6 Program equivalence using loop invariants

Joost-Pieter Katoen Probabilistic Programming 20/41

Probabilistic Programming Lower bounds on loops

Aiming for lower bounds on wp (= lfp)
The following result does not hold:

I v Φf (I) implies I v lfpΦf

Pictorially:

Joost-Pieter Katoen Probabilistic Programming 21/41

Probabilistic Programming Lower bounds on loops

Counterexample

Joost-Pieter Katoen Probabilistic Programming 22/41

Probabilistic Programming Lower bounds on loops

Conclusion

Let (D,v) be a complete lattice and Φ : D→ D continuous. Then

∀d ∈ D. d v Φ(d) does not imply d v lfp Φ.

Co-induction for lower bounds on wp of loops is unsound.

Induction on upper bounds on wlp of loops also fails:

∀d ∈ D. Φ(d)v d does not imply gfp Φv d .

Induction for upper bounds on wlp of loops is unsound.

Joost-Pieter Katoen Probabilistic Programming 23/41

Probabilistic Programming Lower bounds on loops

A proof rule for lower bounds on wp

Proof rule for lower bounds

(
I v Φf (I) ∧ side conditions

)
implies I v lfpΦf

where the side conditions for pGCL program while(ϕ){P} are:

1. while(ϕ){P} terminates in finite expected time, and

2. for any s |= ϕ, wp[[P]](|I(s)− I|)(s) 6 c︸ ︷︷ ︸
conditional difference boundedness

for some given c ∈ R>0.

Joost-Pieter Katoen Probabilistic Programming 24/41

Probabilistic Programming Lower bounds on loops

Example

Joost-Pieter Katoen Probabilistic Programming 25/41

Probabilistic Programming Lower bounds on loops

A simpler proof rule for lower bounds

Guard strengthening for lower bounds
Let Ploop = while(ϕ){P} and P ′loop = while(ϕ ′){P}, and expectations f
and I. Then it holds:(

ϕ
′ ⇒ ϕ ∧ I v wp[[P ′loop]]([¬ϕ] · f)︸ ︷︷ ︸

lfpΦ′[¬ϕ]·f

)
implies I v wp[[Ploop]](f)︸ ︷︷ ︸

lfpΦf

I This rule is more general (e.g., applicable to divergent loops)
I The tightness of the lower bound depends on ϕ ′ approximating ϕ

I Algorithmically in case P ′loop has finitely many states

Joost-Pieter Katoen Probabilistic Programming 26/41

Probabilistic Programming Lower bounds on loops

Proof

Joost-Pieter Katoen Probabilistic Programming 27/41

Probabilistic Programming Lower bounds on loops

Random walks
Let ⊕ abbreviate a uniform distribution. 1D-symmetric random walk on Z:

while (x 6= 0) { x := x+1 ⊕ x := x−1}

2D-symmetric random walk on Z2:
while (x 6= 0 ∨ y 6= 0) {

x := x+1 ⊕ x := x−1 ⊕ y := y+1 ⊕ y := y−1 }

3D-symmetric random walk on Z3:
while (x 6= 0 ∨ y 6= 0 ∨ z 6= 0) {

x := x+1 ⊕ x := x−1 ⊕
y := y+1 ⊕ y := y−1 ⊕
z := z+1 ⊕ z := z−1 }

The 1D and 2D random walks reach the origin with probability one.
The 3D random walks does not.

Joost-Pieter Katoen Probabilistic Programming 28/41

Probabilistic Programming Lower bounds on loops

Example: 3D symmetric random walk on Z3

Joost-Pieter Katoen Probabilistic Programming 29/41

Probabilistic Programming Lower bounds on loops

Example: 3D symmetric random walk on Z3

George Pólya (1887-1985)

Joost-Pieter Katoen Probabilistic Programming 30/41

Probabilistic Programming Lower bounds on loops

Pólya’s analysis result

The termination probability of the 3D symmetric random walk starting
from any neighbour location of the origin (0,0,0) equals

1−
(

3
(2π)3

∫
π

−π

∫
π

−π

∫
π

−π

dx dy dz
3−cosx−cosy−cosz

)−1
= 0.3405373296 . . .

Can we obtain a tight lower bound on the termination probability?

Joost-Pieter Katoen Probabilistic Programming 31/41

Probabilistic Programming Lower bounds on loops

Obtaining a lower bound

while (x 6= 0 ∨ y 6= 0 ∨ z 6= 0) {
x := x+1 ⊕ x := x−1 ⊕
y := y+1 ⊕ y := y−1 ⊕
z := z+1 ⊕ z := z−1 }

Bound the positions (x ,y ,z) to a cube of side length 2·M for M ∈ N>0:
while

(
(x 6= 0 ∨ y 6= 0 ∨ z 6= 0) ∧ |x |6 M ∧ |y |6 M ∧ |z |6 M

)
{

x := x+1 ⊕ x := x−1 ⊕
y := y+1 ⊕ y := y−1 ⊕
z := z+1 ⊕ z := z−1 }

As the resulting program P ′ is finite state, wp[[P ′]](1) can be computed
algorithmically. By increasing M, we aproximate Pólya’s result arbitrarily closely.

Joost-Pieter Katoen Probabilistic Programming 32/41

Probabilistic Programming Lower bounds on loops

Verification results

Joost-Pieter Katoen Probabilistic Programming 33/41

Probabilistic Programming Program equivalence using loop invariants

Overview

1 Motivation

2 Qualitative invariants

3 Probabilistic invariants

4 Upper bounds on loops

5 Lower bounds on loops

6 Program equivalence using loop invariants

Joost-Pieter Katoen Probabilistic Programming 34/41

Probabilistic Programming Program equivalence using loop invariants

Playing with geometric distributions

I X is a random variable, geometrically distributed with parameter p
I Y is a random variable, geometrically distributed with parameter q
Q: generate a sample x , say, according to the random variable X−Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 35/41

Probabilistic Programming Program equivalence using loop invariants

An alternative program

int XminY2(float p, q){
int x := 0;
bool flip := false;
(flip := false [0.5] flip := true); // flip a fair coin
if (not flip) {

while (not flip) { // sample X to increase x
(x +:= 1 [p] flip := true);

}
} else {

flip := false; // reset flip
while (not flip) { // sample Y to decrease x

x -:= 1;
(skip [q] flip := true);

}
}

return x; // a sample of X-Y
}

Joost-Pieter Katoen Probabilistic Programming 36/41

Probabilistic Programming Program equivalence using loop invariants

Program equivalence: X −Y

int XminY1(float p, q){
int x, c := 0, 1;
while (c) {

(x +:= 1 [p] c := 0);
}
c := 1;
while (c) {

(x -:= 1 [q] c := 0);
}
return x;

}

int XminY2(float p, q){
int x := 0;
(c := 0 [0.5] c := 1);
if (c) {

while (c) {
(x +:= 1 [p] c := 0);

}
} else {

c := 1;
while (c) {

x -:= 1;
(skip [q] c := 0);

}
}

return x;
}

For which p and q are the expected outcomes for f = x equal?

Joost-Pieter Katoen Probabilistic Programming 37/41

Probabilistic Programming Program equivalence using loop invariants

Program equivalence: X −Y

int XminY1(float p, q){
int x, f := 0, 0;
while (f = 0) {
(x++ [p] f := 1);

}
f := 0;
while (f = 0) {
(x−− [q] f := 1);

}
return x;

}

int XminY2(float p, q){
int x, f := 0, 0;
(f := 0 [0.5] f := 1);
if (f = 0) {
while (f = 0) {
(x++ [p] f := 1);

}
} else {
f := 0;
while (f = 0) {
x−−;
(skip [q] f := 1);

}
}
return x;

}

Using template I = x + [f = 0] ·α we find:
α11 = p

1−p , α12 =− q
1−q , α21 = α11 and α22 =− 1

1−q .

Expected value of x is p
1−p −

q
1−q and p

2(1−p) −
1

2(1−q) .

Joost-Pieter Katoen Probabilistic Programming 38/41

Probabilistic Programming Program equivalence using loop invariants

Program equivalence

Using wp, one can prove that the expectations of f = x coincide if and only if q = 1
2−p .

0

0.
25 0.
5

0.
75 1

0.25

0.5

0.75

1

Joost-Pieter Katoen Probabilistic Programming 39/41

Probabilistic Programming Program equivalence using loop invariants

Take-home messages
I Loop invariants allow to reason about (unbounded) loops

I Probabilistic invariants are expectations

I That either are lower or upper bounds of loops

I Upper bounds can be obtained by Park’s lemma

I Lower bounds can be obtained by strengthening the loop guard

I Or by difference bounded loop bodies and finite termination

Next lecture: conditioning

Joost-Pieter Katoen Probabilistic Programming 40/41

Probabilistic Programming Program equivalence using loop invariants

Next lecture

Thursday Nov 24, 16:30

Joost-Pieter Katoen Probabilistic Programming 41/41

	Motivation
	Qualitative invariants
	Probabilistic invariants
	Upper bounds on loops
	Lower bounds on loops
	Program equivalence using loop invariants

