Probabilistic Programming

Probabilistic Programming

Lecture #11: Reasoning About Loops

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2022-23

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

Overview

@ Motivation

@ Qualitative invariants
© Probabilistic invariants
Q Upper bounds on loops
© Lower bounds on loops

e Program equivalence using loop invariants

Probabilistic Programming Motivation
Overview

© Motivation

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming

Motivation

» Reasoning about loops is the hardest task in program verification

> Why?
» \Weakest preconditions of loops are defined as fixed points
» They can be approximated iteratively

» But: Recognise a pattern to yield a closed-form formula for taking a
loop k times

» Taking the limit yields the required fixed point
These last two steps are the source of undecidability

» “Practical” approach: capture the effect of a loop by a loop invariant

A loop invariant is a property of a program loop
that is true before (and after) each loop iteration.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Qualitative invariants Probabilistic Programming Qualitative invariants

Overview Loop invariants a la Dijkstra

Recall that for while-loops we have for F € P:

wip[[while(@){P}(F) = gfp X. (¢ A wip[P](X) V (=@ A F))
@ Qualitative invariants To determine the effect of a while-loop, one exploits an “invariant” / € P

Predicate / € P is a loop invariant w.r.t. postcondition F € P if it satisfies:
1o =1

2. (-~ A1) = F, and
3. (o A1) = wip[P](]).

Satisfaction of / is invariant under (guarded) iteration of the loop body P.

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Qualitative invariants Probabilistic Programming Qualitative invariants

Characteristic functions for probabilistic loops

Let P be a probabilistic program in pGCL

Recall for expectation f € E:

wp[while (@) { P}1I(f) = lfp X. ([@] - wpl[PI(X) + [-¢] -)

characteristic function ®¢(X) for wp

and

wip[[while () {P}1I(f) = gfp X. ([@] - wip[PI(X) + [-9] - 1)

characteristic function w,(X) for wlp

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming

Loop invariants a la Dijkstra for pGCL Overview

|
For I, F € P and probabilistic loop while(¢){P} it holds:

((_\(P A1) = Fand(eAl) = WIP[[P]](I)) it E W[F]([ID e Probabilistic invariants

where Wg is the wip-characteristic function of the probabilistic loop for
postcondition [F].

On the black board. O

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Probabilistic invariants Probabilistic Programming Probabilistic invariants

Probabilistic invariants Duelling cowboys: when does A win?

int cbDuel(float a, b) {

. . . I _ - -
Let ®+ be the wp-characteristic function of P’ = while(¢){P} with respect int t = A: /) cowboy A starts

to post-expectation f € £ and let / € E. Then: int ¢ = 1.

1. I'is a wp-superinvariant of P’ w.r.t. f iff ®¢(/) C /. W’!ifle(EC :Al)){{

2. |'is a wp-subinvariant of P’ w.r.t. f iff | C ®¢(/). I (c ::_0 [a] t := B);
Sub- and superinvariants for wlp are defined analogously (but are bounded, } eIs&_a { _ _
i.e., then /| € E<q, and ¢ is replaced by W;.)) (c:=0[b] t:=A);

}
return t;
[o] -1 € wp[[P](/) iff |C ®pg.(/) forall /€ and pGCL program P. }
Left as an exercise. O —lt— —0l. _ T DU S _ 4. (1—b)a
I=[t=AAc=0]-1+[t=AAc=1] a—|—b—a-b+[t BAc=1] 34 bh_ab

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Upper bounds on loops Probabilistic Programming Upper bounds on loops

Overview Induction for upper bounds on wp
Recall:

wp[[while () { P}]I(f) = IfpX. ([¢]- wp[[PII(X) + [-¢] -)
1 (X)

Park’s lemma: let (D,C) be a complete lattice and ¢ : D — D continuous.
Then:
VdeD. ®(d)Cd implies Ifp®LCd.

Corollary: upper bounds on weakest pre-expectations

For while(¢){P} and expectations f and / we have:

0 Upper bounds on loops

(N implies wp[[while(@){P}](f) C /
g & TV
wp-superinvariant Ifpdy

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Pictorially Example

while(c =0) { x++ [p]c:=1}

p

Claim: | = x—i—[c:O]-l_p

is a super-invariant of P w.r.t. f = x.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Upper bounds on loops Probabilistic Programming Upper bounds on loops

Proof Induction for lower bounds on wlip
Recall:

wip[[while (@) { P}](f) = gfpX. ([¢]- wip[P(X) + [-¢]-f)
w(X)

Park's lemma: let (D,C) be a complete lattice and W : D — D continuous.
Then:
VdeD. dCW(d) implies dLCgfpV.

Corollary: lower bounds on weakest liberal pre-expectations
For while(¢){P} and bounded expectations and | we have:

IS Wi(l) implies I C wip[while(g){P}(F)

————
wlp-subinvariant gfpVr

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Verifying loops Overview

The following procedure for induction (and co-induction):

1. Guess an appropriate loop invariant /

2. Push [through the characteristic function of the loop once, i.e.,
compute ®(/)

3. Check whether this took us down or up in the partial order <:

3.1 ®(/) C |, for induction (upper bound to wp), or
3.2 | C (), for co-induction (lower bound to wlp).

© Lower bounds on loops
The key difficulty is to find an appropriate invariant /. This is undecidable.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Aiming for lower bounds on wp (= Ifp) Counterexample

The following result does not hold:
I C &) implies |C Ifp®y
Pictorially:

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Conclusion A proof rule for lower bounds on wp

Let (D,C) be a complete lattice and ® : D — D continuous. Then
Proof rule for lower bounds
VdeD. dC ®(d) doesnotimply dLClIfpo.
(/ C &f(/) A side conditions) implies | C Ifp®¢

Co-induction for lower bounds on wp of loops is unsound.) o)
where the side conditions for pGCL program while(@){P} are:

Induction on upper bounds on wlp of loops also fails: 1. while(@){P} terminates in finite expected time, and
VdeD. d(d)Cd doesnotimply gfp®LCd.

2. forany sk, wp[[P]l(|/(s)—1])(s) < ¢ for some given c € R>g.

Induction for upper bounds on wlp of loops is unsound. conditional difference boundedness

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Example A simpler proof rule for lower bounds

Guard strengthening for lower bounds

Let Poop = while(@){P} and Pj,,, = while(¢'){P}, and expectations f
and /. Then it holds:

(9" = @ A TE wp[Ploopll([~9]-) implies | T wpl[Proopll()
—_——

J/

~~

7 Ifp®
Ifp ! 1 - pbs

» This rule is more general (e.g., applicable to divergent loops)
» The tightness of the lower bound depends on ¢’ approximating ¢

» Algorithmically in case P,’oop has finitely many states

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Proof Random walks

Let & abbreviate a uniform distribution. 1D-symmetric random walk on Z:
while (x #0) { x :==x+1 & x:=x—1}
2D-symmetric random walk on Z?:
while (x #0 VvV y #0) {
x=x+1 @ x=x-1® y=y+1 @& y:=y-1}
3D-symmetric random walk on Z3:
while (x 20V y #0V z#0) {
x:=x+1 & x:=x-16&
y=y+t1 @ y=y-1&®
z:=z+1 ® z:=2z-1}

The 1D and 2D random walks reach the origin with probability one.
The 3D random walks does not.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Example: 3D symmetric random walk on Z3 Example: 3D symmetric random walk on Z3

3D Random Walk: Run 1

3D Random Walk: Run 2

3D Random Walk: Run 4

George Pélya (1887-1985)

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Lower bounds on loops Probabilistic Programming Lower bounds on loops

Pélya’s analysis result Obtaining a lower bound

while (xZ0Vy #0V z#0){
x=x+1 & x:=x-1@
The termination probability of the 3D symmetric random walk starting yi=ytl @ y=y-1a@

from any neighbour location of the origin (0,0,0) equals
z:=z+1 @® z:=2z-1}

1—(> /”/7r ’ dxdy dz)1 — 0.3405373296.... 5 " - .

(27)3) _x) 2 2 3—cosx—cosy—cosz ound the positions (x,y,z) to a cube of side length 2-M for M € N.:
while (x£0Vy#0Vz#£0) A x| <M A y[<M A |z < M) {

x=x+1 @ x:=x-1&

y=y+tl1 @ y:=y-1®

z:=z4+1 @ z:=2z-1}

Can we obtain a tight lower bound on the termination probability?

As the resulting program P’ is finite state, wp[[P']](1) can be computed
algorithmically. By increasing M, we aproximate Pélya's result arbitrarily closely.

Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming Lower bounds on loops Probabilistic Programming Program equivalence using loop invariants

Verification results Overview

0.35]

0.30]

Probability

0.10| - o0y =(1,0,0)
0y = (1,1,0)
0y = (1.1,1)

o.o0f, & . . . — — — — — Q Program equivalence using loop invariants

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Playing with geometric distributions An alternative program

|
int XminY2(float p, q){
» X is a random variable, geometrically distributed with parameter p int x := 0;
bool flip := false;

» Y is a random variable, geometrically distributed with parameter g (flip := false [0.5] flip := true); // flip a fair coin

Q: generate a sample x, say, according to the random variable X—Y if (not flip) {
while (not flip) { // sample X to increase z
int XminY1(float p, @){ // 0 <= p, g <= 1 } (x +:=1 [p] flip := true);
int x := 0; 1
bool flip := false; ¥ o * talse: // -
while (not flip) { // take a sample of X to increase x 1p = faise; reset flip
(x +:= 1 [p] flip := true); while (not flip) { // sample Y to decrease z
) -:=1;
¥ F rie To1 14
flip := false; (skip [q] flip := true);
while (not flip) { // take a sample of Y to decrease x } ¥
-:=1 flip = ¢t ;
) (x [q] flip rue) return x; // a sample of X-Y
return x; // a sample of X-Y ¥

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Program equivalence: X —Y

int XminY2(float p, q){

int x := 0;
int XminY1(float p, g){ i; :(:)o{[o.s] c = 1);
IEFIX’(C) " 9, 1; wvhile (c) {
i (x +:=1 [p] c := 0);
(x +:=1 [p] ¢ := 0);)
y - } else {
c :=1; haniy
while (c) { : H
ot e o e
} : ; o
return x; N (skip [q] c := 0);
d }
return x;
}

For which p and g are the expected outcomes for f = x equal?

Probabilistic Programming

Joost-Pieter Katoen

Program equivalence

Using wp, one can prove that the expectations of f = x coincide if and only if g = ﬁ.

Probabilistic Programming Program equivalence using loop invariants

Program equivalence: X —Y
int XminY2(float p, q){

int x, f :=0, 0;
int XminY1(float p, q){ (|ff (? 0 85{] fi=1);
wlfilexiff:::o)o'{ o while (f = 0) {
(x++ [p] f = 1); }(X++[Mf =1);
— 0 } else {
f:=0
ile (f:=0;
while (f =0) { =0
(x=—[a] f :=1); W':("_e—(;f =0){
return x;) (skip [q] f :=1);
} }

return Xx;

}

|
Using template / = x+[f = 0] - & we find:

1
o1 =125, 2= —7%;, oy = oy and a2 = — 1.

Probabilistic Programming

Joost-Pieter Katoen

p 1

Expected value of x is — and —

A P
Program equivalence using loop invariants

Probabilistic Programming

Take-home messages

» Loop invariants allow to reason about (unbounded) loops

» Probabilistic invariants are expectations

» That either are lower or upper bounds of loops

» Upper bounds can be obtained by Park's lemma

» Lower bounds can be obtained by strengthening the loop guard

» Or by difference bounded loop bodies and finite termination

Next lecture: conditioning

Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Program equivalence using loop invariants

Next lecture

Thursday Nov 24, 16:30

Joost-Pieter Katoen Probabilistic Programming

	Motivation
	Qualitative invariants
	Probabilistic invariants
	Upper bounds on loops
	Lower bounds on loops
	Program equivalence using loop invariants

