Probabilistic Programming Probabilistic Programming

Overview

Probabilistic Programming

@ Relation to operational semantics
Lecture #10: Liberal Expectations and Syntax of Expectations

© Motivation
Joost-Pieter Katoen

© Weakest liberal expectations

RWTH Lecture Series on Probabilistic Programming 2022-23
@ A syntax for weakest expectations

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Relation to operational semantics Probabilistic Programming

Relation to operational semantics

Overview Recall: operational semantics of pGCL

@ Relation to operational semantics

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Relation to operational semantics Probabilistic Programming Relation to operational semantics

Rewards Expected reward for reachability

To reason about resource usage in MCs: use rewards.

A reward MC is a pair (D, r) with D an MC with state space ¥ and Let 6 be such that Pr(c =0G) =1.
r:X — R a function assigning a real reward to each state. Then: the expected reward until reaching G C ¥ from 6 € ¥ is:

The reward r(o) stands for the reward earned on leaving state o.

ER(c,0G) = ZPr(ﬁ) -rg(m)

Let m = 0p...0, be a finite path in (D,r) and G C ¥ a set of target states

where T = 0y... 0 is such that 6, € G, 6g = 0 and 0; € G for all i < k.
with T € 0 G. The cumulative reward along 7 until reaching G is:

If Prlc G) <1, then let ER(0,0G) = co.
re(m) =r(oo)+...+r(ok_1) where 6; ¢ G for all i < k and oy € G. o f=06) (0.0¢)

If 1 & OG, then rg(m) = oo.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

On computing expected rewards Equation system for expected rewards

Expected rewards in finite Markov chains can be computed in polynomial time
by solving a system of linear equations.
(details on the black board.)

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

Weakest pre-expectations = expected rewards Overview

Compatibility theorem

For every pGCL program P, input s and expectation f:

wolPI(F)(s) = ERTPY(s,0sink)
— —_—
wp-semantics operational semantics 9 Motivation

In words: the wp[[P]|(f) for input s equals the expected reward to reach final
state sink in MC [[P]] where reward function r in [P] is defined by:

r((4,s")) =f(s') and r(-) =0 otherwise.

For finite-state programs, weakest pre-expectations can be

computed by solving a system of linear equations, cf. a previous lecture.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Motivation Probabilistic Programming Weakest liberal expectations
Motivation Overview

The expectation wp[[P]|(f) is the expected value of f on termination of
probabilistic program P.

Weakest pre-expectations thus consider f on termination

What if we want to also reason about possible divergence, i.e., © Weakest liberal expectations
non-termination?

This is exactly what weakest liberal pre-expectations do

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Weakest liberal expectations Probabilistic Programming Weakest liberal expectations

Bounded expectations Weakest liberal pre-expectations

Weakest liberal pre-expectation

Bounded expectations For pGCL program P and e, f € E<;, the function wip[[P]|(-) : E<1 — E<;

The set of (one-)bounded expectations, denoted E<; is defined as: is defined by wip[[P]|(f) = e such that e equals the expected value of f

after executing P on s plus the probability that P may diverge on s.
= C
Ea (7 El| FEL) The characterising equation—a la Kozen's duality theorem—is:

wip[P(F) = ;Ls./sfdu; + (1—/Sldu,§>

E<1,C) is a complete lattice. . C . . .
(E<1,C) > where up is the distribution over the final states when executing P

(reached on termination) on the initial state s.

Left as an exercise. The least element is A5.0; the greatest element is As.1
and suprema are defined as for E. O Colloquially stated: wip[P]|(f) = wp[[P]|(f)+ Pr{P diverges].
| ——

1-wp[[P](1)

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

Bounded expectation transformer semantics Loops

Syntax probabilistic program P Semantics wip[[P]|(f)

skip f

wip[while (G){ P}](f) = gfpX. ([C]- wip[P](X) + [-C]-f)
x:=E flx = E]
w(X)
XL xs./ (Av.F(sx = v])) diss
Q » Function W :E<; — E«; (defined above) is continuous on (E<1,C)
P.Q wip[[P (wip[Q1 (f))
» By Kleene's fixed point theorem, it follows: gfp W = inf,cyW"(1)

if (@) P else Q [@] - wip[[PI(F) + [-¢@] - wip[Q]I (F)

P[p] @ p-wip[P](f) + (1—p) - wip[Q]| () » W"(1) denotes the expected value over the final states of running the

loop n times for the constant expectation 1
while (@) {P} gfp X. (([¢]- wip[P]I(X)) + [-¢] - f)

where gfp is the greatest fixed point wrt. the ordering C on E¢;.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Weakest liberal expectations

Properties of weakest liberal pre-expectations
For all pGCL programs P and bounded expectations f, g it holds:
» Continuity: wip[[P]J(+) is continuous on (E<1,E)
» Monotonicity: f C g implies wip[P](f) C wip[[P]|(g)
» Superlinearity: for any r € R>o:

wip[P|(r-f+g) 3 r-wip[P](f)+ wip[P](g)

» Co-strictness: wip[[P]|(1)=1

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming A syntax for weakest expectations
Overview

@ A syntax for weakest expectations

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Weakest liberal expectations

Relating wp and wip

Duality of wp and wlp:
For all pGCL programs P and bounded expectation f it holds:

wip[PII(f) = wp[[PI(f)+ (1—wp[P](1))
—

probability to diverge
Thus if wp[[P]|(1) =1, then wip[P](f) = wp[[P](f)

Sandwiching wlp:

For all pGCL programs P, bounded expectation f, and predicate G such
that [G] C wp[[P]|(1) it holds:

[G]- wip[PTI(f) © wp[[PI(f) E wip[P](f)

Joost-Pieter Katoen Probabilistic Programming 18/32

Probabilistic Programming A syntax for weakest expectations

RELATIVE COMPLETENESS

SIAM 1. coneur.

SOUNDNESS AND COMPLETENESS OF AN AXIOM SYSTEM FOR
PROGRAM VERIFICATION*

SIAM J. on Computing, 1978 Stephen Cook

Joost-Pieter Katoen Probabilistic Programming

Two verification perspectives Relative complete verification

Ordinary Programs Probabilistic Programs

» Extensional: use mathematical formulas as assertions F € FO-Arithmetic f € SomeSyntax
, : i implies implies
» Intensional: provide a syntax for assertions wp[[P[(f) € SomeSyntax

wp[[P]|(F) € FO-Arithmetic

» Why bother about providing a syntax?
> Enable automation (e.g., Dafny, Boogie, Viper, ...) G = wp[[P]|(F)
> Often used (e.g., invariant templates, super martingales)
> Enables guided search for specialised fragments
> modulo an oracle for deciding =

g C wp[[P]I(f)

is effectively decidable is effectively decidable

modulo an oracle for deciding C

between two syntactic expectations.

Q: How does the SomeSyntax look like?

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

50 years of Hoare logic Requirements on a syntax
1
T

“Completeness is a subtle manner and requires a careful analysis”

x := geometric(1/4);
Mg?l (reciprocal of Golden ratio) y i= geometric(1/4);
t = xty;
xh:; 12 o 1 t := t+1 [5/9] skip;
while (x > r :=1;
X +:= 2 [1/2] x -:= 1 for i in 1..3 {
} s := iid(bernouilli(1/2),2t);
1 if s!'=t) {r:=013
}
[r=1]

rational numbers, algebraic numbers, transcedental numbers, etc.

Krzysztof R. Apt Ernst-Ridiger Olderog

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming A syntax for weakest expectations Probabilistic Programming A syntax for weakest expectations

Syntax: expressions Syntax: expectations
» Arithmetic expressions » Expectations
a — re Q>O non-negative rational f — a arithmetic expressions
‘ x € Vars Qx0-valued variable | [(D] f guarding
| a+a addition | f+f addition
‘ a-a multiplication | a-f scaling by arithmetic expressions
| a—a subtraction truncated at zero ‘ 2x: f supremum over variable x
| (x: f infimum over variable x
» Boolean expressions > Examples:
(0] —r a<a comparing arithmetic expressions 1
ex: [x-x<y]-x = ez [z-(x+1)=1]-z = —
| oA @ conjunction [q vy £)] x+1
| -Q negation

» f € E is syntactic, if f is expressible in this syntax, i.e., if f € Exp

Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Probabilistic Programming A syntax for weakest expectations Probabilistic Programming A syntax for weakest expectations

Semantics of syntactic expressions Examples of expressible expectations

Starting from only rational-valued variable one can express:
Recall that state s: Vars — Q.

[a* = [al° » polynomials y+x3+2x24+x—7 widely used as templates
s H s _ 2_ 4
Me]-f]° = [7] el frue » rational functions);i
0 otherwise yex—3y+1
» square roots
[Frel = [+l q” VX
[a-f]° = [a]°[f]° » irrational, algebraic and transcendental numbers e, 7, 2
S S|X—=r X 1
[ex: f] = SUP{ (] ber] | reQxo } » Harmonic numbers H, = Z X used in run-time/termination analysis
k=1
[¢x:flF = inf{ [fI*PT | re Qo }

s(x)
H, = Sum [Vsum,vsﬁyx} with [[Sum[vsym,f, x]]|* = Z [f[vsum/Al°
=0

Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen

Expressiveness Relevance

» Relative completeness a la Cook:

bounds like [[g]] © wp[[P](f) are effectively decidable

The set Exp of syntactic expectations is expressive.

That is, for all pGCL programs P and f € Exp it holds: Termination probabilities wp[[P]|(1) on any input are expressible

wp[PI(IFT) = [el » Probability to terminate in postcondition ¢ as wp[[P]([¢])

for some syntactic expectation g € Exp.
» Distribution over final states where t(x;) = v;:

up(t) = wp[PI(Pxa=vi A Axk=wl])

Thus Kozen's measure transformers can be syntactically expressed

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Take-home messages Next lecture

» Expectations are the quantitative analogue of predicates
» Probabilistic weakest preconditions relate to expected rewards
» Liberal preconditions take possible divergence into account

Tuesday Nov 22, 16:30

» Computing expectations for straight-line programs is simple

v

Calculating expectations for loopy programs requires fixed points
As fixed points are incomputable, loop invariants are used

» A syntax to express all weakest preconditions for pGCL programs

Next lecture: how to treat loops?

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

	Relation to operational semantics
	Motivation
	Weakest liberal expectations
	A syntax for weakest expectations

