Probabilistic Programming

Overview

Probabilistic Programming Lecture #10: Liberal Expectations and Syntax of Expectations Joost-Pieter Katoen RWTH Lecture Series on Probabilistic Programming 2022-23

0	Relation to operational semantics
2	Motivation
3	Weakest liberal expectations
4	A syntax for weakest expectations

Joost-Pieter Katoen	Probabilistic Programming	1/32
Probabilistic Programming	Relation to operational semantics	
Overview		
1 Relation to operational semantics		

 Joost-Pieter Katoen
 Probabilistic Programming
 2/

 Probabilistic Programming
 Relation to operational semantics

Recall: operational semantics of pGCL

2 Motivation

3 Weakest liberal expectations

A syntax for weakest expectations

Probabilistic Programming

Relation to operational semantics

Rewards

To reason about resource usage in MCs: use rewards.

A reward MC is a pair (D, r) with D an MC with state space Σ and $r: \Sigma \to \mathbb{R}$ a function assigning a real reward to each state.

The reward $r(\sigma)$ stands for the reward earned on leaving state σ .

Let $\pi = \sigma_0 \dots \sigma_n$ be a finite path in (D, r) and $G \subseteq \Sigma$ a set of target states with $\pi \in \Diamond G$. The cumulative reward along π until reaching G is:

 $r_G(\pi) = r(\sigma_0) + \ldots + r(\sigma_{k-1})$ where $\sigma_i \notin G$ for all i < k and $\sigma_k \in G$.

If $\pi \notin \Diamond G$, then $r_G(\pi) = \infty$.

Joost-Pieter Katoen	Probabilistic Programming 5/3	32
Probabilistic Programming	Relation to operational semantics	
a		

On computing expected rewards

Probabilistic	Programn

Expected reward for reachability

Let σ be such that $Pr(\sigma \models \Diamond G) = 1$.

Then: the expected reward until reaching ${\sf G}\subseteq \Sigma$ from $\sigma\in \Sigma$ is:

 $\mathsf{ER}(\sigma, \Diamond G) = \sum_{\widehat{\pi}} \Pr(\widehat{\pi}) \cdot r_G(\widehat{\pi})$

where $\widehat{\pi} = \sigma_0 \dots \sigma_k$ is such that $\sigma_k \in G$, $\sigma_0 = \sigma$ and $\sigma_i \notin G$ for all i < k.

If $Pr(\sigma \models \Diamond G) < 1$, then let $ER(\sigma, \Diamond G) = \infty$.

Joost-P	ieter Katoen	Katoen		Probabilistic Programming	6/32
Probabi	listic Programmin	g		Relation to operational semantics	
_			c		

Equation system for expected rewards

Expected rewards in finite Markov chains can be computed in polynomial time by solving a system of linear equations. (details on the black board.)

Relation to operational semantics

Weakest pre-expectations = expected rewards

Compatibility theorem

For every pGCL program P, input s and expectation f:

$$\underbrace{vp[[P]](f)(s)}_{vp-semantics} = \underbrace{ER^{[[P]]}(s, \Diamond sink)}_{operational semantic}$$

In words: the wp[[P]](f) for input *s* equals the expected reward to reach final state *sink* in MC [[P]] where reward function *r* in [[P]] is defined by:

$$r(\langle \downarrow, s' \rangle) = f(s')$$
 and $r(\cdot) = 0$ otherwise.

For finite-state programs, weakest pre-expectations can be computed by solving a system of linear equations, cf. a previous lecture.

Joost-Pieter Katoen	Probabilistic Programming 9/3
Probabilistic Programming	Motivation
Motivation	

The expectation wp[[P]](f) is the expected value of f on termination of probabilistic program P.

Weakest pre-expectations thus consider f on termination

What if we want to also reason about possible divergence, i.e., non-termination?

This is exactly what weakest liberal pre-expectations do

obabilistic Programming	Motivation
Overview	
Relation to operational semantics	
2 Motivation	
Weakest liberal expectations	

A syntax for weakest expectations

 Joost-Pieter Katoen
 Probabilistic Programming
 10/32

 Probabilistic Programming
 Weakest liberal expectations

 Overview
 Image: state state

Weakest liberal expectation

Bounded expectations

Bounded expectations

The set of (one-)bounded expectations, denoted $\mathbb{E}_{\leq 1}$ is defined as:

 $\mathbb{E}_{\leq 1} = \{ \mathbf{f} \in \mathbb{E} \mid \mathbf{f} \sqsubseteq \mathbf{1} \}$

$(\mathbb{E}_{\leq 1}, \sqsubseteq)$ is a complete lattice.

Proof.

Left as an exercise. The least element is $\lambda s.0$; the greatest element is $\lambda s.1$ and suprema are defined as for \mathbb{E} .

Joost-Pieter Katoen	Probabilistic Programming 13/32
Probabilistic Programming	Weakest liberal expectations
Bounded expectation trans	nsformer semantics
Syntax probabilistic program P	Semantics wlp[[P]](f)
skip	f
<i>x</i> := <i>E</i>	f[x := E]
$x :\approx \mu$	$\lambda s. \int_{\mathbb{Q}} (\lambda v. \mathbf{f}(s[x := v])) d\mu_s$
<i>P</i> ; <i>Q</i>	wlp[[P]](wlp[[Q]](f))
if (ϕ) P else Q	$[\varphi] \cdot wlp[[P]](f) + [\neg \varphi] \cdot wlp[[Q]](f)$
<i>P</i> [<i>p</i>] <i>Q</i>	$p \cdot wlp[[P]](f) + (1-p) \cdot wlp[[Q]](f)$
while (ϕ) $\{P\}$	$gfp X. \left((\llbracket \varphi \rrbracket \cdot wlp\llbracket P \rrbracket (X)) + \llbracket \neg \varphi \rrbracket \cdot \mathbf{f} \right)$
where gfp is the greatest fixed	point wrt. the ordering \sqsubseteq on $\mathbb{E}_{\leqslant 1}.$

Weakest liberal pre-expectations

Weakest liberal pre-expectation

For pGCL program *P* and $e, f \in \mathbb{E}_{\leq 1}$, the function $wlp[\![P]\!](\cdot) : \mathbb{E}_{\leq 1} \to \mathbb{E}_{\leq 1}$ is defined by wlp[[P]](f) = e such that e equals the expected value of f after executing P on s plus the probability that P may diverge on s.

Weakest liberal expectation

The characterising equation—à la Kozen's duality theorem—is:

$$wlp[[P]](f) = \lambda s. \int_{\mathbb{S}} f d\mu_P^s + \left(1 - \int_{\mathbb{S}} 1 d\mu_P^s\right)$$

where μ_P^s is the distribution over the final states when executing P (reached on termination) on the initial state *s*.

Colloquially stated:
$$wlp[[P]](f) = wp[[P]](f) + \underbrace{Pr[P \text{ diverges}]}_{1 - wp[[P]](1)}$$

Loops

Joost-Piete

$$wlp[[while (G) \{P\}]](f) = gfp X. \underbrace{([G] \cdot wlp[[P]](X) + [\neg G] \cdot f)}_{\Psi(X)}$$

- ▶ Function $\Psi : \mathbb{E}_{\leq 1} \to \mathbb{E}_{\leq 1}$ (defined above) is continuous on $(\mathbb{E}_{\leq 1}, \sqsubseteq)$
- ▶ By Kleene's fixed point theorem, it follows: gfp $\Psi = \inf_{n \in \mathbb{N}} \Psi^n(\mathbf{1})$
- $\blacktriangleright \Psi^{n}(1)$ denotes the expected value over the final states of running the loop n times for the constant expectation 1

Joost-Pieter Katoen

Weakest liberal expectations

Properties of weakest liberal pre-expectations

For all pGCL programs P and bounded expectations f, g it holds:

- ▶ Continuity: $wlp[[P]](\cdot)$ is continuous on $(\mathbb{E}_{\leq 1}, \sqsubseteq)$
- Monotonicity: $f \sqsubseteq g$ implies $wlp[[P]](f) \sqsubseteq wlp[[P]](g)$
- Superlinearity: for any $r \in \mathbb{R}_{\geq 0}$:

 $wlp\llbracket P \rrbracket(r \cdot f + g) \sqsupseteq r \cdot wlp\llbracket P \rrbracket(f) + wlp\llbracket P \rrbracket(g)$

• Co-strictness: wlp[[P]](1) = 1

Probabilis	tic Progra	mming
------------	------------	-------

Duality of wp and wlp:

For all pGCL programs P and bounded expectation f it holds:

$$wlp[[P]](f) = wp[[P]](f) + (1 - wp[[P]](1))$$

probability to diverge

Weakest liberal expectations

Thus if wp[[P]](1) = 1, then wlp[[P]](f) = wp[[P]](f)

Sandwiching wlp:

For all pGCL programs P, bounded expectation f, and predicate G such that $[G] \sqsubseteq wp[[P]](1)$ it holds:

$$[G] \cdot wlp[[P]](f) \sqsubseteq wp[[P]](f) \sqsubseteq wlp[[P]](f)$$

19/32

A syntax for weakest expectation

Two verification perspectives

- Extensional: use mathematical formulas as assertions
- Intensional: provide a syntax for assertions
- Why bother about providing a syntax?
 - ▶ Enable automation (e.g., Dafny, Boogie, Viper, ...)
 - Often used (e.g., invariant templates, super martingales)
 - Enables guided search for specialised fragments
 - ▶

Joost-Pieter Katoen	Probabilistic Programming	21/32
Probabilistic Programming	A syntax for weakest expectations	

50 years of Hoare logic

"Completeness is a subtle manner and requires a careful analysis"

Krzysztof R. Apt

Ernst-Rüdiger Olderog

Relative complete verification

Ordinary Programs

 $F \in FO$ -Arithmetic implies $wp[[P]](F) \in FO$ -Arithmetic

 $G \Longrightarrow wp[\![P]\!](F)$ is effectively decidable modulo an oracle for deciding \Rightarrow

Probabilistic Programs

$f \in SomeSyntax$

implies $wp[[P]](f) \in SomeSyntax$

g ⊑ wp[[P]](f) is effectively decidable modulo an oracle for deciding ⊑ between two syntactic expectations.

Q: How does the SomeSyntax look like?

Joost-Pieter Katoen	Probabilistic Programming 22/32
Probabilistic Programming Requirements on a syntax	A syntax for weakest expectations
<pre> √5-1 (reciprocal of Golden ratio) x := 1; while (x > 0) { x +:= 2 [1/2] x -:= 1 } 1 </pre>	<pre> 1 x := geometric(1/4); y := geometric(1/4); t := x+y; t := t+1 [5/9] skip; r := 1; for i in 13 { s := iid(bernouilli(1/2),2t); if (s != t) { r := 0 } } [r = 1] </pre>

rational numbers, algebraic numbers, transcedental numbers, etc.

```
23/32
```

A syntax for weakest expectations

Syntax: expressions

Arithmetic expressions

non-negative rational	$r \in \mathbb{Q}_{\geqslant 0}$	\longrightarrow	а
$\mathbb{Q}_{\geqslant 0}$ -valued variable	$ x \in Vars$		
addition	a+a		
multiplication	а∙а		
subtraction truncated at zero	a – a		

Boolean expressions

${oldsymbol{arphi}}$	\longrightarrow a < a	comparing arithmetic expressions
	$\mid \ oldsymbol{arphi} \wedge oldsymbol{arphi}$	conjunction
	$ \neg \varphi$	negation

Probabilistic Programming

Joost-Pieter Katoen

A syntax for weakest expectations

Probabilistic Programmin

Semantics of syntactic expressions

Recall that state $s: Vars \rightarrow \mathbb{Q}_{\geq 0}$.

$$\llbracket a \rrbracket^{s} = \llbracket a \rrbracket^{s}$$

$$\llbracket \llbracket \phi \rrbracket \cdot f \rrbracket^{s} = \begin{cases} \llbracket f \rrbracket^{s} & \text{if } \llbracket \phi \rrbracket^{s} = true \\ 0 & \text{otherwise} \end{cases}$$

$$\llbracket f + g \rrbracket^{s} = \llbracket f \rrbracket^{s} + \llbracket g \rrbracket^{s}$$

$$\llbracket a \cdot f \rrbracket^{s} = \llbracket a \rrbracket^{s} \cdot \llbracket f \rrbracket^{s}$$

$$\llbracket a \cdot f \rrbracket^{s} = \llbracket a \rrbracket^{s} \cdot \llbracket f \rrbracket^{s}$$

$$\llbracket \mathcal{C} x : f \rrbracket^{s} = \sup \left\{ \llbracket f \rrbracket^{s[x \mapsto r]} \mid r \in \mathbb{Q}_{\geq 0} \right\}$$

$$\llbracket \mathcal{C} x : f \rrbracket^{s} = \inf \left\{ \llbracket f \rrbracket^{s[x \mapsto r]} \mid r \in \mathbb{Q}_{\geq 0} \right\}$$

Syntax: expectations

Expectations

arithmetic expressions	а	\longrightarrow	f
guarding	$\mid [\phi] \cdot f$		
addition	f+f		
scaling by arithmetic expressions	∣a∙f		
supremum over variable x	2 x: f		
infimum over variable x	$ \boldsymbol{l} x: f$		

Examples:

$$\Im x : [x \cdot x < y] \cdot x \equiv \sqrt{y}$$
 $\Im z : [z \cdot (x+1) = 1] \cdot z \equiv \frac{1}{x+1}$

▶ $f \in \mathbb{E}$ is syntactic, if f is expressible in this syntax, i.e., if $f \in Exp$

Probabilistic Programming

Joost-Pieter Katoen

A syntax for weakest expectations

Examples of expressible expectations

Starting from only rational-valued variable one can express:

▶ polynomials $y + x^3 + 2x^2 + x - 7$

widely used as templates

- ► rational functions $\frac{x^2 3x + 4}{y^2 \cdot x 3y + 1}$
- square roots \sqrt{x}
- \blacktriangleright irrational, algebraic and transcendental numbers *e*, π , Ω
- Harmonic numbers $H_k = \sum_{k=1}^{x} \frac{1}{k}$ used in run-time/termination analysis

$$H_x = \operatorname{Sum}\left[v_{sum}, \frac{1}{v_{sum}}, x\right] \text{ with } \left[\left[\operatorname{Sum}\left[v_{sum}, f, x\right]\right]\right]^s = \sum_{j=0}^{s(x)} \left[\left[f\left[v_{sum}/j\right]\right]\right]^s$$

Joost-Pieter Katoen

Probabilistic Programming

ning

28/32

A syntax for weakest expectations

Expressiveness

The set Exp of syntactic expectations is expressive.

That is, for all pGCL programs P and $f \in Exp$ it holds:

wp[[P]]([[f]]) = [[g]]

for some syntactic expectation $g \in Exp$.

Probabilistic Programming

Relevance

► Relative completeness à la Cook:

bounds like $[[g]] \sqsubseteq wp[[P]](f)$ are effectively decidable

- ▶ Termination probabilities wp[[P]](1) on any input are expressible
- ▶ Probability to terminate in postcondition φ as $wp[[P]]([\varphi])$
- Distribution over final states where $t(x_i) = v_i$:

$$\mu_P^s(t) = wp[[P]]([x_1 = v_1 \land \cdots \land x_k = v_k])$$

Probabilistic Programmin

A syntax for weakest expectations

Thus Kozen's measure transformers can be syntactically expressed

Joost-Pieter Katoen	Probabilistic Programming	29/32			
Probabilistic Programming	A syntax for weakest expectations				
Take-home messages					
Expectations are the quantitative analogue of predicates					
Probabilistic weakest preconditions relate to expected rewards					

- Liberal preconditions take possible divergence into account
- Computing expectations for straight-line programs is simple
- Calculating expectations for loopy programs requires fixed points As fixed points are incomputable, loop invariants are used
- ► A syntax to express all weakest preconditions for pGCL programs

Next lecture: how to treat loops?

Next lecture

Joost-Pieter Katoen

Probabilistic Programming

Tuesday Nov 22, 16:30