
Probabilistic Programming

Probabilistic Programming
Lecture #10: Liberal Expectations and Syntax of Expectations

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2022-23

Joost-Pieter Katoen Probabilistic Programming 1/32

Probabilistic Programming

Overview

1 Relation to operational semantics

2 Motivation

3 Weakest liberal expectations

4 A syntax for weakest expectations

Joost-Pieter Katoen Probabilistic Programming 2/32

Probabilistic Programming Relation to operational semantics

Overview

1 Relation to operational semantics

2 Motivation

3 Weakest liberal expectations

4 A syntax for weakest expectations

Joost-Pieter Katoen Probabilistic Programming 3/32

Probabilistic Programming Relation to operational semantics

Recall: operational semantics of pGCL

Joost-Pieter Katoen Probabilistic Programming 4/32

Probabilistic Programming Relation to operational semantics

Rewards

To reason about resource usage in MCs: use rewards.

A reward MC is a pair (D, r) with D an MC with state space Σ and
r : Σ→ R a function assigning a real reward to each state.
The reward r(σ) stands for the reward earned on leaving state σ .

Let π = σ0 . . .σn be a finite path in (D, r) and G ⊆ Σ a set of target states
with π ∈ ♦G . The cumulative reward along π until reaching G is:

rG(π) = r(σ0) + . . .+ r(σk−1) where σi 6∈ G for all i < k and σk ∈ G .

If π 6∈ ♦G , then rG(π) = ∞.

Joost-Pieter Katoen Probabilistic Programming 5/32

Probabilistic Programming Relation to operational semantics

Expected reward for reachability

Let σ be such that Pr(σ |= ♦G) = 1.
Then: the expected reward until reaching G ⊆ Σ from σ ∈ Σ is:

ER(σ ,♦G) = ∑
π̂

Pr(π̂) · rG(π̂)

where π̂ = σ0 . . .σk is such that σk ∈ G , σ0 = σ and σi 6∈ G for all i < k.

If Pr(σ |= ♦G) < 1, then let ER(σ ,♦G) = ∞.

Joost-Pieter Katoen Probabilistic Programming 6/32

Probabilistic Programming Relation to operational semantics

On computing expected rewards

Expected rewards in finite Markov chains can be computed in polynomial time
by solving a system of linear equations.

(details on the black board.)

Joost-Pieter Katoen Probabilistic Programming 7/32

Probabilistic Programming Relation to operational semantics

Equation system for expected rewards

Joost-Pieter Katoen Probabilistic Programming 8/32

Probabilistic Programming Relation to operational semantics

Weakest pre-expectations = expected rewards

Compatibility theorem
For every pGCL program P, input s and expectation f :

wp[[P]](f)(s)︸ ︷︷ ︸
wp-semantics

= ER [[P]](s,♦sink
)︸ ︷︷ ︸

operational semantics

In words: the wp[[P]](f) for input s equals the expected reward to reach final
state sink in MC [[P]] where reward function r in [[P]] is defined by:

r(〈↓,s ′〉) = f (s ′) and r(·) = 0 otherwise.

For finite-state programs, weakest pre-expectations can be
computed by solving a system of linear equations, cf. a previous lecture.

Joost-Pieter Katoen Probabilistic Programming 9/32

Probabilistic Programming Motivation

Overview

1 Relation to operational semantics

2 Motivation

3 Weakest liberal expectations

4 A syntax for weakest expectations

Joost-Pieter Katoen Probabilistic Programming 10/32

Probabilistic Programming Motivation

Motivation

The expectation wp[[P]](f) is the expected value of f on termination of
probabilistic program P.

Weakest pre-expectations thus consider f on termination

What if we want to also reason about possible divergence, i.e.,
non-termination?

This is exactly what weakest liberal pre-expectations do

Joost-Pieter Katoen Probabilistic Programming 11/32

Probabilistic Programming Weakest liberal expectations

Overview

1 Relation to operational semantics

2 Motivation

3 Weakest liberal expectations

4 A syntax for weakest expectations

Joost-Pieter Katoen Probabilistic Programming 12/32

Probabilistic Programming Weakest liberal expectations

Bounded expectations

Bounded expectations
The set of (one-)bounded expectations, denoted E61 is defined as:

E61 = { f ∈ E | f v 1}

(E61,v) is a complete lattice.

Proof.
Left as an exercise. The least element is λ s.0; the greatest element is λ s.1
and suprema are defined as for E.

Joost-Pieter Katoen Probabilistic Programming 13/32

Probabilistic Programming Weakest liberal expectations

Weakest liberal pre-expectations
Weakest liberal pre-expectation
For pGCL program P and e, f ∈ E61, the function wlp[[P]](·) : E61→ E61
is defined by wlp[[P]](f) = e such that e equals the expected value of f
after executing P on s plus the probability that P may diverge on s.
The characterising equation—à la Kozen’s duality theorem—is:

wlp[[P]](f) = λ s.
∫
S

f dµ
s
P +

(
1−

∫
S
1dµ

s
P

)
where µs

P is the distribution over the final states when executing P
(reached on termination) on the initial state s.

Colloquially stated: wlp[[P]](f) = wp[[P]](f) + Pr[P diverges]︸ ︷︷ ︸
1−wp[[P]](1)

.

Joost-Pieter Katoen Probabilistic Programming 14/32

Probabilistic Programming Weakest liberal expectations

Bounded expectation transformer semantics
Syntax probabilistic program P Semantics wlp[[P]](f)

skip f

x := E f [x := E]

x :≈ µ λ s.
∫
Q

(λv .f (s[x := v]))dµs

P;Q wlp[[P]] (wlp[[Q]](f))

if (ϕ) P else Q [ϕ] ·wlp[[P]](f) + [¬ϕ] ·wlp[[Q]](f)

P [p]Q p ·wlp[[P]](f) + (1−p) ·wlp[[Q]](f)

while (ϕ) {P} gfpX . (([ϕ] ·wlp[[P]](X)) + [¬ϕ] · f)

where gfp is the greatest fixed point wrt. the ordering v on E61.

Joost-Pieter Katoen Probabilistic Programming 15/32

Probabilistic Programming Weakest liberal expectations

Loops

wlp[[while (G){P }]](f) = gfpX . ([G] ·wlp[[P]](X) + [¬G] · f)︸ ︷︷ ︸
Ψ(X)

I Function Ψ : E61→ E61 (defined above) is continuous on (E61,v)

I By Kleene’s fixed point theorem, it follows: gfp Ψ = infn∈N Ψn(1)

I Ψn(1) denotes the expected value over the final states of running the
loop n times for the constant expectation 1

Joost-Pieter Katoen Probabilistic Programming 16/32

Probabilistic Programming Weakest liberal expectations

Properties of weakest liberal pre-expectations

For all pGCL programs P and bounded expectations f ,g it holds:

I Continuity: wlp[[P]](·) is continuous on (E61,v)

I Monotonicity: f v g implies wlp[[P]](f)v wlp[[P]](g)

I Superlinearity: for any r ∈ R>0:

wlp[[P]](r ·f +g) w r ·wlp[[P]](f) + wlp[[P]](g)

I Co-strictness: wlp[[P]](1) = 1

Joost-Pieter Katoen Probabilistic Programming 17/32

Probabilistic Programming Weakest liberal expectations

Relating wp and wlp

Duality of wp and wlp:
For all pGCL programs P and bounded expectation f it holds:

wlp[[P]](f) = wp[[P]](f) + (1−wp[[P]](1))︸ ︷︷ ︸
probability to diverge

Thus if wp[[P]](1) = 1, then wlp[[P]](f) = wp[[P]](f)

Sandwiching wlp:
For all pGCL programs P, bounded expectation f , and predicate G such
that [G]v wp[[P]](1) it holds:

[G] ·wlp[[P]](f) v wp[[P]](f) v wlp[[P]](f)

Joost-Pieter Katoen Probabilistic Programming 18/32

Probabilistic Programming A syntax for weakest expectations

Overview

1 Relation to operational semantics

2 Motivation

3 Weakest liberal expectations

4 A syntax for weakest expectations

Joost-Pieter Katoen Probabilistic Programming 19/32

Probabilistic Programming A syntax for weakest expectations

RELATIVE COMPLETENESS

SIAM J. on Computing, 1978 Stephen Cook

Joost-Pieter Katoen Probabilistic Programming 20/32

Probabilistic Programming A syntax for weakest expectations

Two verification perspectives

I Extensional: use mathematical formulas as assertions

I Intensional: provide a syntax for assertions

I Why bother about providing a syntax?
I Enable automation (e.g., Dafny, Boogie, Viper, . . .)
I Often used (e.g., invariant templates, super martingales)
I Enables guided search for specialised fragments
I

Joost-Pieter Katoen Probabilistic Programming 21/32

Probabilistic Programming A syntax for weakest expectations

Relative complete verification

Ordinary Programs

F ∈ FO-Arithmetic
implies

wp[[P]](F) ∈ FO-Arithmetic

G =⇒ wp[[P]](F)
is effectively decidable

modulo an oracle for deciding ⇒

Probabilistic Programs

f ∈ SomeSyntax
implies

wp[[P]](f) ∈ SomeSyntax

g v wp[[P]](f)
is effectively decidable

modulo an oracle for deciding v
between two syntactic expectations.

Q: How does the SomeSyntax look like?

Joost-Pieter Katoen Probabilistic Programming 22/32

Probabilistic Programming A syntax for weakest expectations

50 years of Hoare logic

“Completeness is a subtle manner and requires a careful analysis”

Krzysztof R. Apt Ernst-Rüdiger Olderog

Joost-Pieter Katoen Probabilistic Programming 23/32

Probabilistic Programming A syntax for weakest expectations

Requirements on a syntax

√
5−1
2 (reciprocal of Golden ratio)
x := 1;
while (x > 0) {
x +:= 2 [1/2] x -:= 1

}

1

1
π

x := geometric(1/4);
y := geometric(1/4);
t := x+y;
t := t+1 [5/9] skip;
r := 1;
for i in 1..3 {
s := iid(bernouilli(1/2),2t);
if (s != t) { r := 0 }

}

[r = 1]

rational numbers, algebraic numbers, transcedental numbers, etc.

Joost-Pieter Katoen Probabilistic Programming 24/32

Probabilistic Programming A syntax for weakest expectations

Syntax: expressions
I Arithmetic expressions

a −→ r ∈Q>0 non-negative rational

| x ∈ Vars Q>0-valued variable

| a + a addition

| a ·a multiplication

| a −̇a subtraction truncated at zero

I Boolean expressions

ϕ −→ a < a comparing arithmetic expressions

| ϕ ∧ ϕ conjunction

| ¬ϕ negation

Joost-Pieter Katoen Probabilistic Programming 25/32

Probabilistic Programming A syntax for weakest expectations

Syntax: expectations
I Expectations

f −→ a arithmetic expressions

| [ϕ] · f guarding

| f + f addition

| a · f scaling by arithmetic expressions

| Sx : f supremum over variable x

| Jx : f infimum over variable x

I Examples:

Sx : [x ·x < y] ·x ≡ √y Sz : [z · (x +1) = 1] · z ≡ 1
x +1

I f ∈ E is syntactic, if f is expressible in this syntax, i.e., if f ∈ Exp
Joost-Pieter Katoen Probabilistic Programming 26/32

Probabilistic Programming A syntax for weakest expectations

Semantics of syntactic expressions
Recall that state s : Vars→Q>0.

[[a]]s = [[a]]s

[[[ϕ] · f]]s =
{

[[f]]s if [[ϕ]]s = true
0 otherwise

[[f + g]]s = [[f]]s + [[g]]s

[[a · f]]s = [[a]]s · [[f]]s

[[Sx : f]]s = sup
{

[[f]]s[x 7→r] | r ∈Q>0
}

[[Jx : f]]s = inf
{

[[f]]s[x 7→r] | r ∈Q>0
}

Joost-Pieter Katoen Probabilistic Programming 27/32

Probabilistic Programming A syntax for weakest expectations

Examples of expressible expectations
Starting from only rational-valued variable one can express:

I polynomials y + x3 +2x2 + x −7 widely used as templates

I rational functions x2−3x +4
y2·x −3y +1

I square roots
√

x

I irrational, algebraic and transcendental numbers e, π, Ω

I Harmonic numbers Hk =
x

∑
k=1

1
k used in run-time/termination analysis

Hx = Sum
[
vsum, 1

vsum
,x
]
with [[Sum[vsum, f ,x]]]s =

s(x)

∑
j=0

[[f [vsum/j]]]s

Joost-Pieter Katoen Probabilistic Programming 28/32

Probabilistic Programming A syntax for weakest expectations

Expressiveness

The set Exp of syntactic expectations is expressive.
That is, for all pGCL programs P and f ∈ Exp it holds:

wp[[P]]([[f]]) = [[g]]

for some syntactic expectation g ∈ Exp.

Joost-Pieter Katoen Probabilistic Programming 29/32

Probabilistic Programming A syntax for weakest expectations

Relevance

I Relative completeness à la Cook:

bounds like [[g]] v wp[[P]](f) are effectively decidable

I Termination probabilities wp[[P]](1) on any input are expressible

I Probability to terminate in postcondition ϕ as wp[[P]]([ϕ])

I Distribution over final states where t(xi) = vi :

µ
s
P(t) = wp[[P]] ([x1 = v1 ∧ ·· · ∧ xk = vk])

Thus Kozen’s measure transformers can be syntactically expressed

Joost-Pieter Katoen Probabilistic Programming 30/32

Probabilistic Programming A syntax for weakest expectations

Take-home messages
I Expectations are the quantitative analogue of predicates

I Probabilistic weakest preconditions relate to expected rewards

I Liberal preconditions take possible divergence into account

I Computing expectations for straight-line programs is simple

I Calculating expectations for loopy programs requires fixed points
As fixed points are incomputable, loop invariants are used

I A syntax to express all weakest preconditions for pGCL programs

Next lecture: how to treat loops?

Joost-Pieter Katoen Probabilistic Programming 31/32

Probabilistic Programming A syntax for weakest expectations

Next lecture

Tuesday Nov 22, 16:30

Joost-Pieter Katoen Probabilistic Programming 32/32

	Relation to operational semantics
	Motivation
	Weakest liberal expectations
	A syntax for weakest expectations

