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Nondeterminism

Randomness and concurrency

Markov chains are not appropriate for modeling randomized distributed systems,
since they cannot adequately model the interleaving behavior of the concurrent
processes.
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Nondeterminism

Nondeterminism

The use of nondeterminism

I Concurrency – scheduling of parallel components
I in randomised distributed algorithms, several components run partly

autonomously and interact asynchronously
I Abstraction

I partition state space of a DTMC in similar (but not bisimilar) states
I replace probabilistic branching by a nondeterministic choice

I Unknown environments
I interaction with unknown environment
I example: security in which the environment is an unknown adversary

Beware

Nondeterminism is not the same as a uniform distribution!
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Markov Decision Processes

Markov decision process (MDP)

Markov decision processes

I In MDPs, both nondeterministic and probabilistic choices coexist.
I MDPs are transition systems in which in any state a nondeterministic

choice between probability distributions exists.

I Once a probability distribution has been chosen nondeterministically,
the next state is selected probabilistically—as in DTMCs.

I Any MC is thus an MDP in which in any state the probability
distribution is uniquely determined.

Randomized distributed algorithms are typically appropriately modeled by MDPs,
as probabilities a�ect just a small part of the algorithm and nondeterminism is
used to model concurrency between processes by means of interleaving.
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Markov Decision Processes

Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, ÿinit, AP, L) where
I S is a countable set of states with initial distribution ÿinit : S æ [0, 1]
I Act is a finite set of actions
I P : S ◊ Act ◊ S æ [0, 1], transition probability function

such that:

for all s œ S and – œ Act :
ÿ

sÕœS
P(s, –, s Õ) œ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S æ 2AP.
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Markov Decision Processes

Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, ÿinit, AP, L) where
I S, ÿinit : S æ [0, 1], AP and L are as before, i.e., as for DTMCs, and
I Act is a finite set of actions
I P : S ◊ Act ◊ S æ [0, 1], transition probability function such that:

for all s œ S and – œ Act :
ÿ

sÕœS
P(s, –, s Õ) œ { 0, 1 }

Enabled actions

Let Act(s) = { – œ Act | ÷s Õ œ S. P(s, –, s Õ) > 0 } be the set of enabled
actions in state s. We require Act(s) ”= ? for any state s.
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Markov Decision Processes

Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, ÿinit, AP, L) where
I S, ÿinit : S æ [0, 1], AP and L are as before, i.e., as for DTMCs, and
I Act is a finite set of actions
I P : S ◊ Act ◊ S æ [0, 1], transition probability function such that:

for all s œ S and – œ Act :
ÿ

sÕœS
P(s, –, s Õ) œ { 0, 1 }

If |Act(s)| = 1 for any state s, then the nondeterministic choice in any
state is over a singleton set. In this case, M is a DTMC. Vice versa, a
DTMC is an MDP such that |Act(s)| = 1 for all s.
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Markov Decision Processes

An example MDP

I Initial distribution: ÿinit(s) = 1 and ÿinit(t) = ÿinit(u) = ÿinit(u) = 0
I Set of enabled actions in state s is Act(s) = { –, — } where

I P(s, –, s) = 1
2 , P(s, –, t) = 0 and P(s, –, u) = P(s, –, v) = 1

4
I P(s, —, s) = P(s, —, v) = 0, and P(s, —, t) = P(s, —, u) = 1

2
I Act(t) = { – } with P(t, –, s) = P(t, –, u) = 1

2 and 0 otherwise
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Markov Decision Processes

Example: randomized mutual exclusion

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/38

→

y
- so -



Markov Decision Processes

Randomized mutual exclusion

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/38

← a .

← x.

-

Act ( w
, we ) = { coin )



Markov Decision Processes

Randomized mutual exclusion

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/38



Markov Decision Processes

Randomized mutual exclusion
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Markov Decision Processes

Randomized mutual exclusion
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Markov Decision Processes

Intuitive operational behavior

Intuitive operational MDP behavior

1. A stochastic experiment according to ÿinit yields starting state s0 with
probability ÿinit(s0) > 0.

2. On entering state s, a non-deterministic choice among Act(s)
determines the next action – œ Act(s), say.

3. The next state t is randomly chosen with probability P(s, –, t).
4. If t is the unique –-successor of s, then almost surely t is the

successor after selecting –, i.e., P(s, –, t) = 1.
5. Continue with step 2.
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Probabilities in MDPs

Paths in an MDP

State graph

The state graph of MDP M is a digraph G = (V , E ) with V are the
states of M, and (s, s Õ) œ E i� P(s, –, s Õ) > 0 for some – œ Act.

Paths

An infinite path in an MDP M = (S, Act, P, ÿinit, AP, L) is an infinite
sequence s0 –1 s1 –2 s2 –3 . . . œ (S ◊ Act)Ê, written as

fi = s0
–1≠≠æ s1

–2≠≠æ s2
–3≠≠æ . . . ,

such that P(si , –i+1, si+1) > 0 for all i > 0. Any finite prefix of fi that
ends in a state is a finite path.
Let Paths(M) denote the set of paths in M, and Pathsú(M) the set of
finite prefixes thereof.
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Probabilities in MDPs

Paths in MDPs
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Probabilities in MDPs

Probabilities in MDPs

I For DTMCs, a set of infinite paths is equipped with a ‡-algebra and a
probability measure that reflects the intuitive notion of probabilities
for paths.

I Due to the presence of nondeterminism, MDPs are not augmented
with a unique probability measure.

I Example: suppose we have two coins: a fair one, and a biased one,
say 1

6 for heads and 5
6 for tails. We select nondeterministically one of

the coins, and are interested in the probability of obtaining tails. This,
however, is not specified! This also applies if we select one of the two
coins repeatedly.

I Reasoning about probabilities of sets of paths of an MDP relies on
the resolution of nondeterminism. This resolution is performed by a
policy.1

A policy chooses in any state s one of the actions – œ Act(s).

1Also called scheduler, strategy or adversary.
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Policies

Policies

Policy

Let M = (S, Act, P, ÿinit, AP, L) be an MDP. A policy for M is a function
S : S+ æ Act

such that S(s0 s1 . . . sn) œ Act(sn) for all s0 s1 . . . sn œ S+.
The path

fi = s0
–1≠≠æ s1

–2≠≠æ s2
–3≠≠æ . . .

is called a S-path if –i = S(s0 . . . si≠1) for all i > 0.

For any scheduler, the actions are omitted from the history s0 s1 . . . sn. This is not
a restriction as for any sequence s0 s1 . . . sn the relevant actions –i are given by
–i+1 = S(s0 s1 . . . si). Hence, the scheduled action sequence can be constructed
from prefixes of the path at hand.
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Policies
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Policies

Induced Markov chain

Each policy induces an infinite DTMC. States are finite prefixes of paths in
the MDP.
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Policies

Induced DTMC of an MDP by a policy

DTMC of an MDP induced by a policy

Let M = (S, Act, P, ÿinit, AP, L) be an MDP and S a policy on M. The
DTMC induced by S, denoted MS, is given by

MS = (S+, PS, ÿinit, AP, LÕ)

where for ‡ = s0s1 . . . sn: PS
!

‡, ‡ sn+1
"

= P
! sn, S(‡), sn+1

"
and

LÕ(‡) = L(sn).

MS is infinite, even if the MDP M is finite. Intuitively, state s0 s1 . . . sn of
DTMC MS represents the configuration where the MDP M is in state sn and
s0 s1 . . . sn≠1 stands for the history. Since policy S might select di�erent actions
for finite paths that end in the same state s, a policy as defined above is also
referred to as history-dependent.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/38

T
1222

us



Policies

Induced DTMC of an MDP by a policy

DTMC of an MDP induced by a policy

Let M = (S, Act, P, ÿinit, AP, L) be an MDP and S a policy on M. The
DTMC induced by S, denoted MS, is given by

MS = (S+, PS, ÿinit, AP, LÕ)

where for ‡ = s0s1 . . . sn: PS
!

‡, ‡ sn+1
"

= P
! sn, S(‡), sn+1

"

and
LÕ(‡) = L(sn).

MS is infinite, even if the MDP M is finite. Intuitively, state s0 s1 . . . sn of
DTMC MS represents the configuration where the MDP M is in state sn and
s0 s1 . . . sn≠1 stands for the history. Since policy S might select di�erent actions
for finite paths that end in the same state s, a policy as defined above is also
referred to as history-dependent.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/38

-

n:÷÷÷.⇒i



Policies

Induced DTMC of an MDP by a policy

DTMC of an MDP induced by a policy

Let M = (S, Act, P, ÿinit, AP, L) be an MDP and S a policy on M. The
DTMC induced by S, denoted MS, is given by

MS = (S+, PS, ÿinit, AP, LÕ)

where for ‡ = s0s1 . . . sn: PS
!

‡, ‡ sn+1
"

= P
! sn, S(‡), sn+1

"
and

LÕ(‡) = L(sn).

MS is infinite, even if the MDP M is finite. Intuitively, state s0 s1 . . . sn of
DTMC MS represents the configuration where the MDP M is in state sn and
s0 s1 . . . sn≠1 stands for the history. Since policy S might select di�erent actions
for finite paths that end in the same state s, a policy as defined above is also
referred to as history-dependent.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/38



Policies

Example MDP

Consider a policy that alternates between selecting red and green, starting
with red.
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Policies

Example induced DTMC

Induced DTMC for a policy that alternates between selecting red and green.
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Policies

MDP paths versus paths in the induced DTMC

There is a one-to-one correspondence between the S-paths of the MDP
M and the paths in the Markov chain MS.

For S-path fi = s0
–1≠≠æ s1

–2≠≠æ . . ., the corresponding path in DTMC MS is:

fiS = ‚fi0 ‚fi1 ‚fi2 . . . where ‚fin = s0 s1 . . . sn.

Vice versa, for a path ‚fi0 ‚fi1 ‚fi2 . . . in the DTMC MS, ‚fi0 = s0 for some state s0
such that ÿinit(s0) > 0 and, for each n > 0, ‚fin = ‚fin≠1 sn for some state sn in the
MDP M such that P(sn≠1,S(‚fin≠1), sn) > 0. Hence:

s0
S(‚fi0)≠≠≠≠æ s1

S(‚fi1)≠≠≠≠æ s2
S(‚fi2)≠≠≠≠æ . . .

is a S-path in M.
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Policies

Probability measure on MDP

Probability measure on MDP

Let PrM
S , or simply PrS, denote the probability measure PrMS associated

with the DTMC MS.

This measure is the basis for associating probabilities with events in the
MDP M. Let, e.g., P ™

!
2AP"Ê be an Ê-regular property. Then PrS(P)

is defined as:

PrS(P) = PrMS(P) = PrMS{ fi œ Paths(MS) | trace(fi) œ P }.

Similarly, for fixed state s of M, which is considered as the unique starting
state,

PrS(s |= P) = PrMSs { fi œ Paths(s) | trace(fi) œ P }

where we identify the paths in MS with the corresponding S-paths in M.
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Policies

Positional policy

Positional policy

Let M be an MDP with state space S. Policy S on M is positional (or:
memoryless) i� for each sequence s0 s1 . . . sn and t0 t1 . . . tm œ S+ with
sn = tm:

S(s0 s1 . . . sn) = S(t0 t1 . . . tm).

In this case, S can be viewed as a function S : S æ Act.

Policy S is positional if it always selects the same action in a given state. This
choice is independent of what has happened in the history, i.e., which path led to
the current state.
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Policies

Finite-memory policies

I Finite-memory policies (shortly: fm-policies) are a generalisation of
positional policies.

I The behavior of an fm-policy is described by a deterministic finite
automaton (DFA).

I The selection of the action to be performed in the MDP M depends
on the current state of M (as before) and the current state (called
mode) of the policy, i.e., the DFA.
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Policies

Finite-memory policy

Finite-memory policy

Let M be an MDP with state space S and action set Act.
A finite-memory policy S for M is a tuple S = (Q, act, �, start) with:

I Q is a finite set of modes,
I � : Q ◊ S æ Q is the transition function,
I act : Q ◊ S æ Act is a function that selects an action

act(q, s) œ Act(s) for any mode q œ Q and state s œ S of M,
I start : S æ Q is a function that selects a starting mode for state

s œ S.
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Policies

An MDP under a finite-memory policy

The behavior of an MDP M under fm-policy S = (Q, act, �, start) is:

I Initially, a starting state s0 is randomly determined according to the
initial distribution ÿinit, i.e., ÿinit(s0) > 0.

I The fm-policy S initializes its DFA to the mode q0 = start(s0) œ Q.

I If M is in state s and the current mode of S is q, then the decision
of S, i.e., the selected action, is – = act(q, s) œ Act(s).

I The policy changes to mode �(q, s), while M performs the selected
action – and randomly moves to the next state according to the
distribution P(s, –, ·).
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Policies

Finite-memory policies

Relation fm-policy to definition policy

An fm-policy S = (Q, act, �, start) is identified with policy,
SÕ : Pathsú æ Act which is defined as follows.

1. For the starting state s0, let SÕ(s0) = act(start(s0), s0).
2. For path fragment ‚fi = s0 s1 . . . sn let

SÕ(‚fi) = act(qn, sn)

where q0 = start(s0) and qi+1 = �(qi , si) for 0 6 i 6 n.

Positional policies can be considered as fm-policies with just a single mode.
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Policies

Positional versus fm-policies

Positional policies are insu�cient for Ê-regular properties

Consider the MDP:

Positional policy S– always chooses – in state s0
Positional policy S— always chooses — in state s0. Then:

PrS–(s0 |= ⌃a · ⌃b) = PrS— (s0 |= ⌃a · ⌃b) = 0.

Now consider fm-policy S–— which alternates between selecting – and —.
Then: PrS–— (s0 |= ⌃a · ⌃b) = 1.

Thus, the class of positional policies is insu�ciently powerful to
characterise minimal (or maximal) probabilities for Ê-regular properties.
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Policies

Other kinds of policies

I Counting policies that base their decision on the number of visits to a
state, or the length of the history (i.e., number of visits to all states)

I Partial-observation policies that base their decision on the trace
L(s0) . . . L(sn) of the history s0 . . . sn.

I Randomised policies. This is applicable to all (deterministic) policies.
For instance, a randomised positional policy S : S æ Dist(Act), where
Dist(X ) is the set of probability distributions on X , such that
S(s)(–) > 0 i� – œ Act(s). Similar can be done for fm-policies and
history-dependent policies etc..

I There is a strict hierarchy of policies, showing their expressiveness
(black board).
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Summary
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Summary

Summary

Important points

1. An MDP is a model exhibiting non-determinism and probabilities.
2. Non-determinism is important for e.g., randomized distributed

algorithms.
3. Policies are functions that select enabled actions in states.
4. A policy on an MDP induces an infinite DTMC, even if the MDP is

finite.
5. Probability measures on MDP paths are defined using induced DTMC

paths.
6. A positional policy selects in a state always the same action.
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