
Master of Science Thesis

Simplifying Dynamic Fault Trees
by Graph Rewriting

Sebastian Junges

March 25, 2015

Chair for Software Modeling and Veri�cation
RWTH Aachen University

Supervisors:
Prof. Dr. Ir. Joost-Pieter Katoen

Dr. Mariëlle Stoelinga (University of Twente)

Abstract

The thesis examines rewriting of Dynamic Fault Trees (DFTs) to accelerate their quantitative eval-
uation. Fault trees are a prominent model in the context of reliability engineering, and have been
widely adopted by industry. Dynamic fault trees extend the expressive power of regular fault trees
to allow faithfully modelling common patterns as shared spare components. A major drawback of
the model is that it is subject to the state space explosion problem. In the thesis, minimising the
DFT is presented in order to alleviate this issue. In particular, the objective is to create a formal
framework that allows rewriting DFTs by replacing prede�ned patterns in the DFTs with other
patterns — that is, by the application of graph rewriting.

One cornerstone for this framework is a semantics for DFTs that allows intuitive yet e�cient
reasoning about DFTs. In a comprehensive survey, the complexity of DFTs is uncovered and il-
lustrated by a range of semantic intricacies. Supported by the lessons learned from the survey, a
denotational style semantics is given and used to characterise DFTs and de�ne equivalence classes
upon it.

The rewrite framework is based upon a reduction to standard graph rewriting. This allows the
rewrite rules to be de�ned in terms of DFT patterns, while exploiting the well-researched �eld of
graph rewriting — including the available tool-support. Rules in the framework can be proven cor-
rect by utilising one of the presented theorems which show that simple criteria on the rules imply
the equivalence of input and output of the rewrite procedure. The wide range of rules de�nable in
the framework is illustrated by a selection of rewrite rules, which form a minimal basis.

The last part of the thesis demonstrates the practical relevance of the framework. A prototype of
a fully-automatised tool chain for rewriting is applied on a broad range of benchmarks, which are
based on case studies from literature. We compare the quantitative analysis of the original DFTs
with their rewritten counterparts. Many simpli�ed instances are analysed 10 times faster, some
even up to a factor 100. The memory consumption is drastically reduced. As a consequence, DFTs
up to four times larger than feasible without simpli�cation can be analysed within the same time
and memory limits.

v

Preface
While writing the last sentences of my thesis, I’m both happy and proud that I �nished my thesis
about the simpli�cation of dynamic fault trees. A topic which, before I started it, would never
have been my �rst choice. However, in retrospective, I’m very glad that I was allowed to work
on it. During my visit at the University of Twente, I started working on some properties of the
underlying models for dynamic fault trees. Then, Dennis Guck introduced a particular problem:
the generation of the underlying models was a bottleneck in the analysis of fault trees. Together
with Mariëlle Stoelinga and Arend Rensink the aimed to alleviate this problem by graph rewriting.
They invited me to join their discussion...

Acknowledgements First of all, I would like to thank my supervisors, �rst of all for giving me
the opportunity to visit Twente. Joost-Pieter Katoen, thanks for the freedom you gave me and the
patience to let me work on it until it was done, as well as the many valuable hints and the detailed
feedback. Mariëlle Stoelinga, thanks for the long and fruitful discussions and all the feedback you
gave me, also after I left Twente again. Furthermore, I would like to thank Arend Rensink for
all his help, on Groove and on several other thesis-related questions, and Dennis Guck, for the
extraordinary long list of help I received from you on an almost daily basis. Enno Ruijters, I really
appreciated how you were always there to discuss absurd fault trees and questions about them.
Before I started on dynamic fault trees, I had great discussions with Nils Jansen and Christian
Dehnert, for which I’m grateful.

I would like to thank the people from the MOVES group in Aachen for all their support, and the
FMT group for making me feel very welcome at Twente. Furthermore, I would like to thank Erika
Ábrahám and the whole THS group for introducing me to science and the opportunities they gave
me — it was a huge kick start and helped me write this thesis.

Ultimately, besides writing a thesis, life goes on. I’m very glad I’ve such supportive and helpful
friends. The way my parents support and motivate me is extraordinary, and I really appreciate
that. Last but not least, Irma, thank you for your wonderful support!

*

Erklärung
Hiermit versichere ich, dass ich die vorgelegte Arbeit selbstständig verfasst und noch nicht
anderweitig zu Prüfungszwecken vorgelegt habe. Alle benutzten Quellen und Hilfsmittel sind
angegeben, wörtliche und sinngemäße Zitate wurden als solche gekennzeichnet.

Sebastian Junges
Aachen, den 24. 3. 2015

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Objective . 3
1.3. Related work . 4
1.4. Outline of the thesis . 5

2. Preliminaries 7
2.1. Stochastics . 7
2.2. Markov automata . 9

2.2.1. Model de�nition . 9
2.2.2. Quantitative objectives . 14
2.2.3. Equivalence relations . 15

2.3. Graph Rewriting . 16
2.3.1. Theory . 17
2.3.2. Groove . 19

3. On Fault Trees 27
3.1. Fault tree analysis . 27
3.2. Static fault trees . 28

3.2.1. Static elements . 28
3.2.2. Quantitative properties of a fault tree . 29
3.2.3. De�ciencies of static fault trees . 31

3.3. Dynamic fault trees . 34
3.3.1. Dynamic elements . 34
3.3.2. Mechanisms in DFTs . 38
3.3.3. Quantitative analysis of DFTs . 39
3.3.4. Semantic intricacies of DFTs . 40

3.4. Case studies using DFTs . 55
3.4.1. Hypothetical Example Computer System . 56
3.4.2. Railroad crossing . 57
3.4.3. Multiprocessor Computing System . 57
3.4.4. Cardiac Assist System . 57
3.4.5. Fault Tolerant Parallel Processor cluster . 58
3.4.6. Mission Avionics System . 59
3.4.7. Active Heat Rejection System . 60
3.4.8. Non-deterministic water pump . 60
3.4.9. Sensor-�lter . 60
3.4.10. Section of an alkylate plant . 62
3.4.11. Simple Standby System . 63
3.4.12. Fuel Distribution System . 64
3.4.13. A brief discussion of the benchmark collection 65

3.5. Formalising DFTs . 67
3.5.1. Fault tree automaton construction . 67
3.5.2. Reduction to Bayesian Networks . 67
3.5.3. Reduction to Stochastic Well-formed Petri Nets 68
3.5.4. Reduction to GSPN . 69
3.5.5. Reduction to a set of IOIMCs . 69
3.5.6. Algebraic encoding . 69

viii Contents

4. Semantics for Dynamic Fault Trees 71
4.1. Rationale . 71
4.2. New Semantics for Dynamic Fault Trees . 72

4.2.1. DFT syntax . 72
4.2.2. Failure and event traces . 75
4.2.3. Introducing the running examples . 75
4.2.4. State of a DFT . 76
4.2.5. Towards functional-complete event chains 91
4.2.6. Activation . 93
4.2.7. From qualitative to quantitative . 95
4.2.8. Policies on DFTs . 97
4.2.9. Syntactic sugar . 98

4.3. Equivalences . 99
4.3.1. Quantitative measures on DFTs . 100
4.3.2. Equivalence classes . 100

4.4. Partial order reduction for DFTs . 102
4.5. Extensions for future work . 110

5. Rewriting Dynamic Fault Trees 113
5.1. DFTs and normal forms . 114
5.2. Rewriting DFTs . 116

5.2.1. Graph encoding of DFTs . 116
5.2.2. De�ning rewriting on DFTs . 118
5.2.3. Preserving syntax . 123
5.2.4. Preserving semantics . 128

5.3. Correctness of rewrite rules . 132
5.3.1. Validity of rules without FDEPs and SPAREs 132
5.3.2. Adding FDEPs . 139

5.4. DFT rewrite rules . 141
5.4.1. Static elements and the pand-gate . 142
5.4.2. Rewrite rules with functional dependencies 155

6. Experiments 161
6.1. Groove grammar for DFTs . 161

6.1.1. Concrete grammar . 161
6.1.2. Control . 163

6.2. Implementation details . 163
6.3. Experimental results . 165

6.3.1. Benchmarks for rewriting . 165
6.3.2. Performance of DFTCalc . 166
6.3.3. The e�ect of rewriting . 172

7. Conclusion 179
7.1. Summary . 179
7.2. Discussion and Future Work . 180

Bibliography 183

A. Overview of Results 189

B. Detailed environment information 197

List of Symbols 199

Index 201

1. Introduction
This chapter introduces fault tree analysis and dynamic fault trees as a powerful model used within
fault tree analysis. The �rst section motivates the use of fault trees and dynamic fault trees in
particular. Three hypotheses expound the bene�ts of simplifying fault trees and the charm of using
graph rewriting to achieve this. The second section gives an overview of the derived objectives for
the thesis. The third section provides a brief overview of the related literature and the last section
outlines the further contents of the thesis.

1.1. Motivation
Individuals and companies - even society as a whole - depends ever more on increasingly com-
plex systems. So-called safety critical systems, for which reliable operation is key to prevent
life-threatening situations are manifold. Besides typical examples as (nuclear) power plants and
avionics, also the power grid and phone lines are safety critical systems. Other than safety-issues,
unreliability of systems may cause tremendous �nancial loss and seriously harm the reputation of
the trade mark (cf. the Ford Pinto fuel tank and the Pentium �oating-point unit bug). To ensure
that systems are reliable, standards and certi�cates have been introduced. For these certi�cates, it
is important that the reliability of system can be assessed. A simple approach to improve the reli-
ability of a system is the introduction of redundancy. For functionality in a system that is crucial
for correct operation, multiple components are installed. Only a subset of these components are
required to be operational to keep the system as a whole operational. A well-known example are
the multiple sensors and actuators in aircraft. The spare wheel commonly found in the trunk of a
car is also an example of redundancy, as of the �ve wheels present, only four are required for the
car to be operational. Redundancy, however, is a costly measure. Assessing the reliability allows
for better informed decisions when it comes to adding redundancy.

The assessment of the reliability of — especially safety-critical — systems has been a �eld of
research since the 1920s and has evolved ever since. Two dedicated ways to describe and analyse the
reliability of a complex system have emerged [RH04], FailureModes and E�ects Analysis (FMEA) and
Fault Tree Analysis (FTA). Whereas FMEA [Sta03] works bottum-up, that is, it considers the e�ect
of a component failure on the system, FTA (cf. [VS02]) considers a failure of the system and which
components contribute to this failure, i.e. following a top-down approach. Notice that therefore,
only FTA is suitable to describe system failures that are due to a combination of components failing.

FTA was introduced in the 1960s at Bell Labs during the development of rocket launch control
systems [Eri99], and subsequently adopted in avionics and later in the nuclear reactor industry. It
was put in the limelight in the reports of some famous accidents, among them the Apollo 1 launch
pad �re (1967) [Apo67], the Three Mile Island partial meltdown (1979) [The79], the space shut-
tle disasters Challenger (1986)[The86] and Colombia (2003) [Col03] and the Trans World Airlines
Flight 800 in-�ight breakup (1996) [Nat00]. Its use has been enforced by several authorities, e.g.
the US Federal Avionics Administration (FAA), the US Nuclear Regulatory Commision (NRC) and
the US National Aeronautics and Space Administration (NASA). It has been standardised by the
International Electrotechnical Commision (IEC) [IEC60050-191] and its use throughout industry
is widespread. Outside of avionics and nuclear power plants, FTA is known to be used in the au-
tomotive industry [Lam04; Sch09], miner safety [Goo88; GMKA14], power system dependability
[VCM09] and in railway engineering [CHM07; GKSL+14].

FTA is a methodology consisting of several steps. The three most relevant steps are listed here. In
the �rst step a system failure is described. In the second step, a model is constructed which re�ects
the relation of this system failure with the failures of speci�c components. This model is called
a fault tree. In the third step, the fault tree is evaluated to assess several properties of the system
failure. Such properties can be qualitative, e.g. describing the minimum number of leaf elements
that are required to fail before the system fails, or quantitative, e.g. the reliability of the system
given the failure distributions for the leaf nodes. Reliability is the probability that the system does

2 Chapter 1. Introduction

not exhibit the failure under inspection up to a given time horizon. In this thesis, such quantitative
(more precisely, stochastic) properties are investigated.

Fault trees are a graphical speci�cation language which hierarchically de�ne the system failure
in terms of subsystem failures. Subsystems which are not further divided are called components. In
a fault tree, the top-most level corresponds to the system failure and the bottom-most level corre-
sponds to the failures of a component. Failures are then propagated bottom-up. Each inner node
of the tree (called a gate) represents that the failure of its (sub)subsystems cause the (sub)systems
corresponding to the node to fail. At which point the failure is propagated depends on the type
of the gate. Several types are available, e.g. stating that all subsystems have to fail before the fail-
ure is propagated (AND) or that the �rst subsystem failure is propagated (OR). The construction is
started on the top-most level. All current leaves are investigated. Either, the node corresponds to
a system, which is split into further subsystems. Then, its failure is expressed by a speci�c combi-
nation (encoded by the used gate) of its children, which are added to the tree. Otherwise, the node
corresponds to a components and is not split up further. Such nodes are called basic events.

The commonly used fault trees are also called static fault trees (SFTs), where static corresponds
to the control-theoretic notion of static systems, that is, the system is history independent. In the
context of fault trees this means that the set of failed components at time t uniquely determines
whether the system failure occurs at time t, and that the failures of components are independent of
each other. This is a severe restriction of the expressive power of static fault trees, as many systems,
especially those with redundant components, are not static in nature. For example, consider the
spare wheel in the trunk of a car, whose tire is much more likely to get �at after the wheel is put
into operation, that is, after the failure of an original wheel. In many cases, such systems can be
modelled by static fault trees which then under-approximate the reliability of the system. In the
context of the spare wheel, it can be assumed that the likelihood of a �at tire is �xed and independ
of the tire being in use or not �at tire is always as likely as it is when the wheel is operational.
However, under-approximating the reliability of a system may render the whole analysis useless.
In fact, during early Apollo missions, the NASA used FTA and related methods to compute the
reliability for a full mission success - bringing people to the moon and back again. The results were
so small that NASA abandoned using the FTA until the Challenger disaster [VS02]. To overcome
this restriction, dynamic fault trees have been introduced in which the history of failures a�ects
whether a system fails. In contrast to static fault trees, the dynamic counterparts are extended with
several gates, which, e.g., require a speci�c ordering of the basic events to happen or only activate
speci�c components after the occurrence of other failures. Thereby, they enable the modeller to
account for order-speci�c behaviour and failure rates depending on the current state. This yields
fault trees which potentially model the real system behaviour more faithfully and thereby yield
more realistic �gures when evaluating the fault tree. Dynamic Fault Trees have been adopted by
industry and are used by, among others, Airbus [BCCK+10], BMW [Sch09] and the NASA [VS02].

As often, the less expressive model of static fault trees are much easier to analyse. That is, static
fault trees can be put into normal form by basic Boolean manipulations and the reliability can then
be calculated using high-school mathematics [VS02]. All this is possible in polynomial time and
space. On the other hand, dynamic fault trees possess an internal state space. This state space can
be made explicit by transforming a DFT into some kind of transition system. In the context of the
probabilistic properties, a Markov chain lends itself as a straightforward model for the underlying
transition system. Evaluating properties on the DFT then boils down to �rst constructing the
underlying state space, reformulating the property to refer to the underlying state space and then
analysing this property on the underlying state space.

The analysis whether a given transition system satis�es a particular property is called model
checking. Several references to model checking problems have been made since the late 1950s.
The modern version of this research �eld has been pioneered by Clark and Emerson [CE82], and
Quielle and Sifakis [QS82], Clark, Emerson and Sifakis later won the prestigious Turing award
for their work regarding model checking. Although several variants exist, model checking such
transitions systems generally boils down to extensive search through the state space.

This traditional form of model checking handles qualitative aspects. Inspired by the success
story, several extensions for quantitative aspects have been proposed, most notably for systems in-
volving time, e.g. in [AD94], or probability, e.g. in [CY95]. Such methods are thus readily available
to evaluate DFTs. Their performance largely depends on the size of the underlying Markov chain.

Reviewing the process to create dynamic fault trees, we observe that industrial DFTs are not

1.2. Objective 3

created with a small outcome as objective - instead the focus is on easy-to-review fault trees. The
redundancy in the fault tree comes at large computational cost during the evaluation.

Hypothesis 1

Dynamic fault trees, generated mechanically or according the standardised guidelines, can be
signi�cantly reduced by the application of rewriting.

The state-of-the-art algorithm for the quantitative analysis of DFTs (implemented in DFTCalc
[ABBG+13]) creates the underlying state space using a compositional approach, where each gate
is translated into a Markov chain. The underlying Markov chain is then obtained by taking the
parallel composition. With the state space explosion, we get a state space exponential in the number
of gates. To alleviate this, the algorithm applies abstraction methods such as bisimulation after the
composition of two chains. While this drastically reduces the state space for the model checking
procedure, the actual generation of the state space becomes the bottleneck for the algorithm. The
time and memory consumption for the generation, and thus for the overall procedure are directly
a�ected by the size of the state space.

Hypothesis 2

The reduction of the size of the DFT has a major in�uence on the run time of the quantitative
evaluation of the DFT.

Although di�erent in nature, the number of gates in static FTs directly a�ects the performance of
their analysis algorithms. Most known algorithms exploit some Boolean manipulations to minimise
the SFT. While Boolean algebra does not su�ce to reduce dynamic FTs, other methods might be
very well applicable to reduce the DFTs to make them more suitable for evaluation, while their
creation can still follow the engineering practice of easy-to-understand and structured fault trees.

Whereas SFTs are regularly formalised as propositional formulas and their Boolean manipula-
tion can be described as term rewriting, DFTs are usually formalised represented as graphs. This
naturally leads to the idea of using graph rewriting to describe simpli�cation steps of DFTs.

Graph rewriting [AEHH+99] is an active area of research used in several di�erent contexts. The
idea behind graph rewriting is simple. Given a graph (a host) and a rule consisting of two patterns
(presented as graphs), a left-hand side (lhs) and a right-hand side (rhs), an algorithm looks for the
existence of the lhs pattern within the host (matching), and replaces it by the rhs, yielding a new
graph. To replace arbitrary directed acyclic graphs, the quite general notion of algebraic rewrit-
ing [Ehr79] is a good choice. The simpler single-pushout approach (SPO) has as a downside that
dangling edges are removed, thereby actually changing the neighbourhood of nodes in the graph
which are not matched. The double-pushout approach for rewriting simpli�es the characterisa-
tion of the result as a stricter notion of locality is enforced. Tool support for graph rewriting is
readily available. Among other features, Groove [GdRZ+12] has support for typed nodes and rapid
(graphical) prototyping.

Hypothesis 3

Graph rewriting is a suitable technique for both formalising and implementing the rewriting
of DFTs.

1.2. Objective
Based on the motivation given above, a series of objectives have been developed which are an-
swered in this thesis. We brie�y present the objectives — given in the boxes below.

As DFTs are a special family of graphs, DFT rewriting can be implemented analogously to graph
rewriting. Given a DFT and a rule consisting of two patterns (given as partial DFTs), an algorithm
looks for the existence of the lhs pattern and replaces it, yielding a new DFT. In order to exploit
the well-researched theory and algorithms for graph-rewriting, it is bene�cial to let the algorithm
translate both the host DFT and the two partial DFTs to a representation of them in standard graphs,
and then apply standard graph rewriting. The resulting graph can be easily translated back to a

4 Chapter 1. Introduction

DFT afterwards.

Objective 1

De�ne DFT rewriting by means of graph rewriting.

The result, however, is not necessarily a syntactically correct DFT. Moreover, as we want to use
the rewritten DFTs to assess quantitative properties of the original DFT, these properties should be
preserved.

Objective 2

Characterise under which circumstances rewriting a DFT yields a syntactically correct. DFT.

Objective 3

Characterise under which circumstances rewriting a DFT preserves the quantitative proper-
ties of interest.

To formally prove that speci�c properties are preserved, a precise meaning of both model and
property are required. While a broad range of semantics is available from the literature, these are
not necessarily suitable for proving the requirements above.

Objective 4

De�ne a semantics for DFTs suitable to prove that the properties of interest are preserved.

These semantics should agree with, or closely resemble, the common interpretation of DFTs
found in the literature. To prepare the development of a semantics, it is especially interesting to
describe the intricacies of these interpretations.

Objective 5

Survey the common interpretation of DFTs and uncover potential caveats.

With these ingredients, case studies from the literature can be simpli�ed. Ultimately, we want
to show that the rewriting is indeed an e�ective preprocessing step.

Objective 6

Examine the practical relevance of the rewriting.

1.3. Related work

Semantics for DFTs are presented by several authors [BC04; BCS07c; BD05b; BD05a; BD06; Cod05;
CSD00; MPBV+06; MRLB10; Wal09; RS14]. A complete overview and details of the semantics are
given later, in Section 3.5 on page 67. Here, we brie�y give some pointers. The use of FTs in
reliability engineering is well-explained in the NASA handbook of Fault Trees [VS02] and is an
excellent starting point on (the use of) DFTs. Of the various semantics, the operational semantics
described in [CSD00] and compositional semantics given by Boudali et al. [BCS07c] stand out by
the concise de�nitions and large class of DFTs described. Several notions and ideas to de�ne the
semantics for DFTs have been adapted from those papers. Furthermore, graph rewriting is used in
the context of DFTs by [Cod05], where DFTs are translated to GSPN by means of graph rewriting.
Simpli�cation of DFTs is considered by Merle et al. [MRLB10], who use an extension of Boolean
algebra to rewrite DFTs. The result, however, is not a DFT anymore, but a algebraic expression.
Furthermore, they present a simpli�cation rule in [MRL10]. While this rule is very e�ective, the
rule is only applicable on a restricted class of DFTs.

1.4. Outline of the thesis 5

1.4. Outline of the thesis
The remainder of this thesis is structured in six further chapters. In Chapter 2 on page 7 we brie�y
discuss results from probability theory, theory about Markov automata and graph rewriting, both
theoretical and applied. The results presented there are used throughout the thesis. Besides a re-
fresher, its main purpose is to �x some notation. In Chapter 3 on page 27 we discuss fault trees
in much more detail. This includes a discussion on the use of fault trees, their intuitive meaning
and di�erent approaches on the formalisation of DFTs (Objective 5). We additionally introduce a
couple of case studies of real-world systems found in the literature. From this chapter, we conclude
that several, incompatible, semantics exist. The chapter provides an overview and discusses the
practical relevance of the di�erent semantics. In Chapter 4 on page 71, we give our own formal-
isation of DFTs (Objective 4). We include a selection of statements about the behaviour of DFTs
and their proofs. These statements serve the purpose of showing that the semantics agree with
several intuitive properties, the proofs show the straightforward argumentation the semantics al-
low. In Chapter 5 on page 113, we develop a formal framework which allows to specify rewrite
rules on DFTs. We illustrate the framework by a variety of rewrite rules already embedded in this
framework (Objective 1-3) The chapter shows that the correct application of rewrite rules is hard
in general, as many practical rules are only applicable on restricted set of DFTs. In Chapter 6 on
page 161, we show the practical relevance of the rewrite rules by automatically simplifying the
formerly introduced case studies with Groove (Objective 6). The experiments, based on case stud-
ies from the literature, show major improvements in computational costs, thereby con�rming our
hypotheses. In Chapter 7 on page 179 we conclude the thesis with a discussion of the contents and
an outlook with some ideas for future work.

2. Preliminaries
In this chapter, we discuss the required background for this thesis.

We use elementary set operations and relations on sets, which are both covered in, e.g. [Hal60].
We use the common notation, which is brie�y given in e.g. [BK08]. Furthermore, we use basic
notations from �rst-order logic, which is covered in, e.g. [EFT96] and assume some familiarity
with automata theory, as covered in, e.g. [HMU06]. Some further notation is introduced here. The
remainder of the chapter covers basics of probability theory, Markov automata, and graph rewriting
from both a theoretical and a practical point of view.

Notation Given a function f : X → Y , we denote the range of f , i.e. the set {y ∈ Y | ∃x ∈
X f(x) = y}, as Ran(f). Given a partial function g : X 9 Y , we denote the domain of g, i.e. the
set {x ∈ X | g(x) 6= ⊥}, as Dom(f). Given a function h : X → (Y → Z), we often write h(x, y)
to denote h(x)(y).

We use �nite and in�nite words over �nite alphabets. We use the standard notation for com-
posing words via regular expressions, for both �nite and in�nite words1. We denote the set of all
�nite and in�nite words over an alphabet Σ with Σ∗/ω = Σ∗ ∪ Σω . Let w = σ1 . . . σn be a �nite
word. We de�ne wi = σi for 1 ≤ i ≤ n. Furthermore, |w| = n and w↓ = wn.

We denote the powerset of a set A with P(A). All subsets of A of cardinality k are given by
Pk(A).

Special functions The heaviside function u : R→ R is given by u(x) = 0 if x < 0 and u(x) = 1
otherwise. We use 0 to denote a function from the reals to 0, i.e. 0 : R→ {0}.

2.1. Stochastics
A brief introduction into the required probability theory is given by Timmer in [Tim13] and Baier
and Katoen in [BK08]. An in-depth discussion of probability theory is given by, e.g. Ross in [Ros10],
and Ash and Doléans-Dade in [AD00]. Here, we introduce the for this thesis most relevant results
and thereby �x some notation. The presented facts follow [Tim13].

We informally introduce a random variable as a function which maps all possible outcomes of an
experiment to a set of values representing the observations. As an example, consider the random
variable which maps all dice rolls (all outcomes) to either odd or even(observations), by mapping
odd dice rolls to odd and all even dice rolls to even.

In this context, we are interested in the probability of an observation, i.e. we are interested
in the probability that the random variable X evaluates to a value in a subset E of the possible
observations. We write Pr(X ∈ E). The notations Pr(X = e) and Pr(X < e) for some observation
e is used to denote Pr(X = {e}) and Pr(X = {e′ ∈ E|e′ < e}), respectively. Furthermore, the
probability that X evaluates to some value in E under the assumption that X evaluates to some
value in E′ is denoted Pr(X ∈ E | X ∈ E′).

In this thesis, we describe this by probability distributions, which yield a probability for each
observation. We focus on two classes of random variables, the discrete random variables, which
have a countable range2, and continuous random variables, which have a continuous range. We
call the range of a random variable the sample space.

Discrete probability theory In the discrete case, we assume a discrete random variable X :
Ω→ R with S = Ran(X) countable.

De�nition 2.1 (Discrete probability distribution). Given a countable sample space S, a discrete
probability distribution (distribution)) µ : S → [0, 1] is a function such that

∑
s∈S f(s) = 1. �

1For more information about these ω-regular languages, we refer to [Tho90].
2We follow the de�nition from Ash in [AD00] here

8 Chapter 2. Preliminaries

Any discrete random variable can be described by a discrete probability distribution. If the ran-
dom variable is described by

Pr(X = s) = µ(s)

we write that X is distributed according to µ. The set of all discrete probability distributions over
some countable sample space is denoted Distr(S).

The set supp(µ) = {s ∈ S | µ(s) > 0} is called the support of µ. A distribution µ with a
singleton set {s} ⊆ S as support is called a Dirac-distribution, which we denote with 1s. It holds
that µ(s) = 1. Given an equivalence relation R ⊆ S × S on S, we write µ ≡R µ′ if for all s ∈ S,∑
s′∈[s] µ(s′) =

∑
s′∈[s] µ(s′).

Continuous probability theory In the continuous case, we assume a continuous random vari-
able X . In this context, we assume that X thus has a sample space R and that a probability is
assigned to each interval [a,b]. We assume that the probability of point intervals [a, a] is always
zero. Therefore, the probability assigned to a closed interval [a, b] equals the probability assigned to
the corresponding open interval (a, b). The random variable is then speci�ed by a function called
the probability density function.

De�nition 2.2 (Probability density function). Given an interval [a, b] ⊂ R and a random variable
X , a function f(x) : R→ R≥0 with

∫∞
−∞ f(x)dx and

Pr(X ∈ [a, b]) =

∫ b

a

f(x)dx

is the probability density function (density) of X . �

It is common to describe the probability that the observation is smaller than some given value.

De�nition 2.3 (Cumulative distribution function). The cumulative distribution function for a ran-
dom variable X with probability density function f is given by

F (x) =

∫ x

−∞
f(y)dy �

For a random variable X with cumulative distribution function F (x), it holds that

F (x) = Pr(X < x).

We furthermore use a weighted average over the sample space of a continuous random variables,
which is the expected value.

De�nition 2.4 (Expected Value). The expected value E(X) of a random variable X with a proba-
bility density function f(x) is given by

E(X) =

∫ ∞
−∞

x · f(x)dx. �

It is important to notice that the expected value does not always exist.
In this thesis, we focus on the exponential distribution. This distribution has several interesting

properties, which are discussed in-depth by Balakrishnan and Basu in [BB96]. We describe the
most relevant facts.

De�nition 2.5 (Exponential Distribution). A random variable is distributed according to an expo-
nential distribution if it is described by a probability density function f(x) such that

f(x) = λe−λx · u(x)

for some λ > 0. �

2.2. Markov automata 9

The λ is called the rate of the exponential distribution. The cumulative distribution function
is given by F (x) = (1 − e−λx) · u(x). A random variable which is distributed according to an
exponential distribution is an exponentially distributed random variable.

The exponential distribution is the onlymemoryless distribution (cf. [BB96]). IfX is a continuous
random variable and

Pr(X > x+ y | X > x) = Pr(X > y)

holds, thenX is distributed according to a memoryless distribution. As the exponential distribution
is the only memoryless distribution, X is indeed exponentially distributed.

The minimum of two independent exponentially distributed random variablesX1, X2 with rates
λ1 and λ2, respectively, is exponentially distributed with rate λ1 + λ2. Neither the maximum nor
the sum of two exponentially distributed random variables are randomly distributed.

The expected value of an exponential distribution with rate λ is given by 1
λ as

E(X) =

∫ ∞
−∞

xλe−λx · u(x)dx = λ

∫ ∞
0

xe−λxdx = λ · 1

λ2
=

1

λ

Remark 1. In the remainder of this thesis, we furthermore use the notion of extended random vari-
ables. This are continuous random variables whose codomain consists of the extended reals, i.e.
R ∪ {−∞,∞}. Formal coverage of this is found in e.g. [AD00].

2.2. Markov automata
We brie�y present Markov automata as a model and some relevant objectives on Markov automata.
Markov automata were �rst introduced by Eisentraut et al. in [EHZ10a; EHZ10b]. The section is
largely based on [Tim13], where a detailed discussion can be found.

2.2.1. Model definition
De�nition 2.6 (MA). A Markov automaton (MA)M is a tupleM = (S, ι,Act, ↪→, 99K,AP, Lab)
where

• S is a �nite set of states,
• ι ∈ S is an initial state,
• Act is a set of actions,
• ↪→⊆ S × Act× Distr(S) is a set of immediate transitions.
• 99K ⊆ S × R>0 × S is a set of Markovian transitions.
• AP is a set of atomic propositions.
• Lab is the labelling of the states, Lab : S → P(AP).

�

We explain the model using an adaption of the co�ee-machine example1.

Example 2.1. Consider a co�ee machine at a CS department. We depict the Markov automaton
for this machine in Figure 2.1.

The co�ee machine is used by sta� and by students. Sta� members arrive at the co�ee machine
at a �xed rate of 5 members/hour, whereas students arrive at the machine at a �xed rate of 3
students/hour. At the machine, a user can either have co�ee or espresso. Sta� members always
want espresso (we), whereas students non-deterministically want co�ee (wc) or want espresso.
Whereas sta� members (who want espresso) always select espresso (se) from the machine and
students who want co�ee always select co�ee (sc), students who want espresso are sometimes,
with a chance of 0.1, too sleepy and select co�ee. After the user has selected its choice, he or she
get co�ee (gc) or espresso (ge) based on their choice.

In state s0, no user is at the co�ee machine. Based on the respective rates, either a sta� member
or a student arrives at the machine (s1 or s2). The user wants co�ee or wants espresso and with
the given discrete probability selects espresso or co�ee (s3 or s4). The user then gets the selected

1Which is found in e.g. [Tim13] and [BK08]

10 Chapter 2. Preliminaries

s0

s1 s2

s3 s4

{se} {sc}

5 3

we we wc

1 0.9 0.1 1
te tc

1 1

Figure 2.1.: A Markov automaton depicted.

product and the automaton return to the initial state. Notice that in this model, the selection and
preparation is instantaneous, which also describes why no queue is modelled here.

Formally, the depicted Markov automaton is given by (S, ι,Act, ↪→, 99K,AP, Lab) with
• S = {s0 . . . s4},
• ι = s0,
• Act = {we,wc, te, tc},
• ↪→= {(s1,we,1s3), (s2,we, µ), (s2,wc,1s4), (s3, te,1s0), (s4, tc,1s0)} with µ(s3) = 0.9

and µ(s4) = 0.1,
• 99K= {(s0, 5, s1), (s0, 3, s2)},
• AP = {se, sc},
• Lab(s3) = {se}, Lab(s4) = {sc} and Lab(si) = ∅ for 0 ≤ i ≤ 2.

N

We introduce some auxiliary notation from Sazonov in [Saz14]. For each state s ∈ S, we de�ne

• IT(s) ⊆↪→ as the set of outgoing immediate transitions, i.e.

IT(s) = {t ∈ {s} × Act× Distr(S) | t ∈↪→ }.

• MT(s) ⊆99K as the set of outgoing Markovian transitions, i.e.

MT(s) = {t ∈ {s} × R>0 × S | t ∈99K }.

• act(s) ⊆ Act as the set of action-labels on outgoing transitions, i.e.

act(s) = {a ∈ Act | ∃µ ∈ Distr(S) (s, a, µ) ∈ IT(s)}.

Immediate transitions are called interactive probabilistic transitions in [Tim13]. We partition the
states of an MA into

• interactive states ISM, the set of states with at least one outgoing immediate transition, for-
mally

ISM{s ∈ S | IT(s) 6= ∅},

• deadlock states DSM, the set of states without any outgoing transitions, formally

DSM = {s ∈ S | IT(s) = ∅ ∧MT(s) = ∅},

• Markovian states MSM, all other states, i.e. the set of states with Markovian transitions but
without outgoing immediate transitions, formally

MSM = {s ∈ S | IT(s) = ∅ ∧MT(s) 6= ∅}.

2.2. Markov automata 11

As we do not synchronise multiple automata (closed-world assumption), we can assume w.l.o.g.
that the Markov automaton is action-deterministic. An MA is action-deterministic if for each state,
each outgoing transition has a unique action, or formally

|IT(s)| = |{a ∈ Act | ∃µ ∈ Distr(S). (s, a, µ) ∈ IT(s)}|

We use the maximal progress assumption, which —when combined with the closed world
assumption— states that whenever a state has both outgoing immediate and Markovian tran-
sitions, then the Markovian transitions are never taken (as the probability that they’re taken
before any of the immediate transitions is taken is zero). As a direct consequence, we assume that
interactive states have no outgoing Markovian transitions, formally

∀s ∈ S IT(s) 6= ∅ =⇒ MT(s) = ∅.

For a Markovian state s, we de�ne the exit rate of s, rate(s), as the sum of all rates of outgoing
transitions,

rate(s) =
∑

(s,λ,s′)∈MT(s)

λ

If |MT(s)| > 1, multiple transitions “race” against each other, i.e. each transition �res after a
delay, which is governed by the exponential distribution. The �rst transition to �re is taken. We
say that this transition has won the Markovian race. Thus, the minimum of the delays governed
by a exponential distribution is taken. Therefore, the minimum of the delays is a exponential
distribution with a rate equal to the exit rate of s. We de�ne for each Markovion state s, the
probability distribution next(s) ∈ Distr(S) with

s′ 7→ p

rate(s)
s.t. p =

∑
(s,λ,s′)∈99K

λ.

By reviewing the exponential distribution, we obtain that next(s)(s′) de�nes the probability that
s′ is the successor state of s.

We de�ne paths through an MA partly following Guck et al. in [Guc12; GHHK+13]. In order to
have a more uniform treatment, we introduce the extended action-set.

De�nition 2.7. LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an MA. We de�ne Actχ = Act∪{χ(r) |
∃r∃s ∈ MS r = rate(s)} as the set of actions extended by the rates found in the Markovian
transitions. �

With this notion, we de�ne extended transitions.

De�nition 2.8. LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an MA with s, s′ ∈ S. We de�ne the set
of extended transitions→⊆ S × Act× Distr(S) as follows.

→= {(s, a, µ) | (s, a, µ) ∈↪→ ∨(rate(s) > 0 ∧ a = χ(rate(s)) ∧ µ = next(s))} �

A Markovian state has now exactly one outgoing transition. Sometimes, we are not interested in
the actual source state of the transition. The set of outgoing connections from s, written outgoing(s)
is de�ned as {(a, µ) | (s, a, µ) ∈→}.

We de�ne paths using the extended transitions.

De�nition 2.9 (Path in MA). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an MA. A path π inM is
either an in�nite tuple

π = s0a1µ1t1s1a2µ2t2s2 . . . ∈ S × Actχ × Distr(S)× R≥0 × S)ω,

or a �nite tuple with n ∈ N

π = s0a1µ1t1s1 . . . anµntnsn ∈ S × Actχ × Distr(S)× R≥0 × S)n,

such that for all 0 ≤ i (< n) si, si+1 ∈ S and (si, ai, µi) ∈→, µi(si+1) > 0 and ti = 0 ⇐⇒

12 Chapter 2. Preliminaries

ai ∈ Act. If π is �nite, then the path is said to be �nite and its length is de�ned as n, and in�nite
otherwise. �

We analogously de�ne paths without timing information.

De�nition 2.10 (Time-abstract path). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an MA. A time-
abstract path π inM is either an in�nite tuple

π = s0a1µ1s1a2µ2s2 . . . ∈ S × Actχ × Distr(S)× S)ω,

or a �nite tuple with n ∈ N

π = s0a1µ1s1 . . . anµnsn ∈ S × Actχ × Distr(S)× S)n,

such that ∀0 ≤ i(< n) ∃ti ∈ R such that s0a1µ1t1s1a2µ2t2s2 . . . (anµntnsn) is a (in�nite) path.
�

The set of all �nite paths inM starting from s ∈ S is denoted FinPathsM(s). The set of in�nite
paths is denoted PathsM(s). Given a path π, the pre�x of length n is given as pren(π). We drop the
reference to the MA in all concepts above whenever it is clear from the context. We furthermore
omit (ι) whenever we refer to states from the initial state. A �nite path π = s0a1µ1s1 . . . sn with
n ≥ 0 is called immediate if ∀i < n, ai ∈ Act.

De�nition 2.11 (Elapsed time). LetM be an MA and π ∈ FinPathsM. The elapsed time of π is
the sum of all sojourn times on the path, i.e. we de�ne elapsed(π) =

∑|π|
i=1 π4·i �

De�nition 2.12 (Zeno path). Let M be an MA and π ∈ PathsM. The in�nite path π is called
Zeno, if

lim
n→∞

elapsed(pren(π)) <∞ �

An MA M is called Zeno-free if there exist no Zeno path in M which starts in ι. A Markov-
automaton is Zeno-free if and only if all cycles of reachable states contain at least one Markovian
state. In this thesis, we assume that all Markov automata are Zeno-free.

Furthermore, we assume each Markov automatonM to be deadlock-free, i.e. DSM = ∅. Any
Markov automaton M with DSM 6= ∅ is transformed in a deadlock-free automaton by adding
Markovian self-loops to each deadlock state.

Remark 2. Adding immediate transitions instead of Markovian transitions adds Zeno-paths to the
model.

In the interactive states, non-determinism occurs whenever multiple outgoing transitions are
present. To resolve this non-determinism, we introduce the concept of schedulers (also called poli-
cies or strategies in literature).

De�nition 2.13 (General scheduler). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an MA. A measur-
able1 function S : FinPathsM → Distr(Act) ∪ {⊥} such that for a �nite path π ∈ FinPathsM,

S(π) = ⊥ if π↓ ∈ MSM

and

supp(S(π)) ⊆ act(π↓) otherwise,

is called a general (measurable) scheduler on M. The set of all general schedulers is denoted
GMSchedM. �

Di�erent schedulers are discussed by Neuhäuser et al. in [NSK09].
For this thesis, we furthermore consider time-homogeneous schedulers.

1measurable is property from measure theory, cf. [AD00]. In the context of the thesis, it is not of particular importance.

2.2. Markov automata 13

De�nition 2.14 (Time-homogeneous scheduler). LetM be an MA and S a scheduler overM. If
for all π, π′ ∈ FinPathsM it holds that

tAbs(π) = tAbs(π′) =⇒ S(π) = S(π′)

then S is time-homogeneous. �

Please, notice that time-homogeneous schedulers are measurable, as discussed by Zhang and
Neuhäuser in [ZN10].

A very simple form of scheduler, which is used throughout the thesis is the stationary scheduler.

De�nition 2.15 (Stationary scheduler). Let M be an MA and S a scheduler over M. If for all
π, π′ ∈ FinPathsM it holds that

π↓ = π′↓ =⇒ S(π) = S(π′)

then S is called stationary. �

De�nition 2.16 (Deterministic scheduler). LetM be an MA and S a measurable scheduler over
M. If

Ran(S) ⊆ {1a | a ∈ Act} ∪ {⊥}

then S is called deterministic. The set of deterministic schedulers is given as DSchedM. �

The set of deterministic time-homogeneous and deterministic stationary schedulers are denoted
with DTHSched and DSSched, respectively. For a Markov automatonM with some state s and a
scheduler S , probability mass can be attached to each measurable set of in�nite paths starting in ι
via a cylinder set construction, cf. [Saz14]. We denote this as PrM,s

S (π). We omitM whenever it
is clear from the context and omit s whenever it is the initial ofM.

Other Markovian models Markov automata are a general model. In this thesis, three other
models are used, which are restricted Markov automata.

De�nition 2.17 (IMC). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be a Markov automaton. If ↪→⊆
S × Act× {1s | s ∈ S}, thenM is a Interactive Markov Chain (IMC). �

IMCs are discussed in-depth by Hermanns in [Her02]. Model-checking of IMCs is discussed by
Neuhäuser in [Neu10].

De�nition 2.18 (CTMC). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be a Markov automaton. If ↪→=
∅, thenM is a Continuous Time Markov Chain (CTMC). �

CTMCs are discussed by Norris in [Nor98]. Model-checking on CTMCs is discussed by Baier et
al. in [BHHK03].

De�nition 2.19 (PA). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be a Markov automaton. If 99K= ∅,
thenM is a probabilistic automaton (PA). �

Remark 3. As we assume Markov automata to be action-deterministic, the probabilistic automata
de�ned above are also Markov Decision Processes (MDP).

PAs are discussed by Stoelinga in [Sto02]. Model-checking MDPs is covered by [BK08].

De�nition 2.20 (LTS). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be a Markov automaton. If 99K= ∅
and ↪→⊆ S × Act× {1s | s ∈ S}, thenM is a labeled transition system (LTS). �

Labeled transition systems are a qualitative model. Model checking them is a seperate research
area, an introduction to the topic can be found in [BK08]. Labeled transition systems can be com-
posed by smaller transition systems in several ways, see [BK08]. As IMCs and MAs are extensions
of LTSs, they can be composed likewise, as discussed in [Tim13].

14 Chapter 2. Preliminaries

2.2.2. �antitative objectives

In the context of this thesis, we are interested in four di�erent objectives, unbounded reachability,
time-bounded reachability, and (conditional) expected time.

In this section, we always assume a subset of the state space to be the goal-set. Often, such a
goal set is described by (propositional) formula over the state-labelling.

Unbounded reachability Unbounded reachability is the probability to take a path through the
MA in which eventually, a goal-state is visited.

De�nition 2.21 (Unbounded reachability). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an MA and
G ⊆ S a set of goal-states. The random variable HG : Paths→ {0, 1} yields 1 if there exists a state
from G on π, and 0 otherwise, formally

Ht
G(π) = 1 ⇐⇒ ∃i ∈ N s.t. prei(π) ↓∈ G.

The (unbounded) reachability probability to reach G from s inM under scheduler S , denoted
PrMS (s,3G) is given by

PrMS (s,3G) =

∫
Paths

HG(π)PrM,s
S (dπ). �

The minimal (maximal) reachability probability to reach G from s inM is obtained by taking
the in�mum (supremum) reachability probability over all schedulers. Based on results on MDPs
(cf. [BK08]), we can deduce that it su�ces to take the minimum (maximum) of ranging over the
stationary deterministic schedulers. The minimal reachability probability is denoted PrMmin(s,3G),
the maximum analogously. We omitMwhenever it is clear from the context. We omit swhenever
it corresponds to the initial state ofM.

Calculating the unbounded reachability can be done on the embedded MDP after replacing all
Markovian transitions by interactive transitions, as timing is not important for unbounded reach-
ability. For details, we refer to Hafeti and Hermanns [HH12].

Time-bounded reachability Time-bounded reachability is the probability to take a path
through the MA in which eventually, but before the elapsed time passes a given bound, a goal-state
is visited.

De�nition 2.22 (Time-bounded reachability). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an MA,
G ⊆ S a set of goal-states and t ∈ R≥0 a deadline. The random variable Ht

G : Paths → {0, 1}
yields 1 if there exists a pre�x of π with a state in G and an elapsed time < t, and 0 otherwise,
formally

Ht
G(π) = 1 ⇐⇒ ∃i ∈ N s.t. prei(π) ↓∈ G ∧ elapsed(prei) < t.

The reachability probability to reach G from s within t in M under scheduler S , denoted
PrMS (s,3≤tG) is given by

PrMS (s,3≤tG) =

∫
Paths

Ht
G(π)PrM,s

S (dπ). �

The minimal (maximal) reachability probability to reach G from s inM is obtained by taking
the in�mum (supremum) reachability probability over all schedulers. Based on results on IMCs (cf.
[NSK09]), we can deduce that it does not su�ce to restrict the schedulers to time-homogeneous
schedulers. The minimal reachability probability is denoted PrMmin(s,3≤tG), the maximum analo-
gously. We omitM whenever it is clear from the context. We omit s whenever it corresponds to
the initial state ofM.

The computation of time-bounded reachability be done via a digitisation approach which parti-
tions the time-interval into smaller intervals and a generalised form of uniformisation to calculate
an MDP, as explained in [GHHK+13].

2.2. Markov automata 15

Expected Time The results presented here are taken from [Guc12]. The expected time to reach
a set of states G is the amount of time that we can expect the MA take before reaching a state in
G. It is the (probability) weighted average of the elapsed times before we visit a goal state.

De�nition 2.23 (Expected time). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an MA and G ⊆ S
a set of goal-states. The (extended) random variable VG : Paths → R≥0 ∪ {∞} yields the �rst
time-point t such that π contains a state in G, formally

VG(π) = min{elapsed(pren(π))|π↓ ∈ G}

with min ∅ = ∞. The expected time to reach G from s in M under scheduler S , denoted
ETMS (s,3G) is given by

ETMS (s,3G) = EM,s
S (VG) =

∫
Paths

VG(π)PrM,s
S (dπ). �

The minimal expected time to reachG inM is obtained by taking the in�mum over all schedulers
onM. The maximal expected time is obtained by taking the supremum. In [Guc12], it is shown that
it su�ces to take the minimum (maximum) over all deterministic stationary schedulers to obtain
the minimal (maximal) expected time. The minimal expected time to reach G from s is denoted
ETMmin(s,3G). The maximal analogously. Again, we dropM and s whenever it is clear from the
context, or when s is the initial state ofM. Expected time can be calculated via a reduction to a
stochastic shortest path problem, which can be encoded as a linear program.

We see that the integral does not necessarily exists, as there might be paths which never visit
a goal state. Therefore, we consider a conditional expected time property, inspired by Baier et al.
[BKKM14].

De�nition 2.24. LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an MA and G ⊆ S a set of goal-states
and G′ an assumed visited set. Let the random variables HG′ , VG be de�ned as in De�nition 2.2.2
and De�nition 2.23, respectively. The conditional expected time to reach G from s inM under the
assumption that eventually G′ is visited, denoted ETMS (s,3G|3G′) is given by

ETMS (s,3G|3G′) = EM,s
S (HG′ · VG) =

∫
Paths

HG′(π) · VG(π)PrM,s
S (dπ). �

Assumption 1. In the remainder, we assume that the set of goal states G is given by {s ∈ S |
Lab(s) = a} for some atomic proposition a.

2.2.3. Equivalence relations

In order to compare two di�erent Markov automata, it is important to de�ne a notion of equiva-
lence. Many di�erent forms of equivalence have been proposed. We only give the relevant notions
following [Tim13] which contains a good overview. A more extensive treatment of weak and strong
bisimulation on MAs is given in [Saz14].

A very strict equivalence relation is isomorphism. Intuitively, two Markov automata are iso-
morph if one can obtain the other by renaming the reachable states.

De�nition 2.25. Given an MAM = (S, ι,Act, ↪→, 99K,AP, Lab) with two states s, t ∈ S, s and
t are isomorphic if there exists a bijection f : S → S such that f(s) = t and

∀S′ ∈ S a ∈ Actχ, µ ∈ Distr(S). Lab(f(s′)) = Lab(s′)∧(s′, a, µ) ∈→ ⇐⇒ (f(s′), a, µf) ∈→

where µf is given by µf (x) = µ(f−1(x)) for all x ∈ S. �

Given two isomorph MAs, all earlier de�ned measures coincide [Tim13].

Strong bisimulation Strong bisimulation puts states into equivalence classes where each taken
transition from a state in a given equivalence class can be mimicked from another state in the same
equivalence class.

16 Chapter 2. Preliminaries

De�nition 2.26. Given an MAM = (S, ι,Act, ↪→, 99K,AP, Lab). An equivalence relation R ⊆
S × S is a strong bisimulation forM if for all (s, s′) ∈ R and for all a ∈ Actχ \ Act the following
holds:

• Lab(s) = Lab(s′)
• (s, a, µ) ∈→ =⇒ ∃µ′ ∈ Distr(S). (s′, a, µ′) ∈→ ∧µ ≡R µ′.

and for all a ∈ Act
• Lab(s) = Lab(s′)
• (s, a, µ) ∈→ =⇒ ∃µ′ ∈ Distr(S). ∃a′ ∈ Act(s′, a′, µ′) ∈→ ∧µ ≡R µ′.

Two states s, s′ ∈ S are strongly bisimilar if there exists a strong bisimulation R forM such that
(s, s′) ∈ R. We write s ≈s s′. Two MAs are strongly bisimilar if their initial states are strongly
bisimilar in the union1 of the Markov automata. �

Notice that we allow for di�erent immediate action-labels, as we assume a closed world and do
not derive any measures from the actions chosen.

Given two strong bisimilar MAs, time-unbounded reachability and expected time coincide
[Saz14]. If the MAs are IMCs, then also time-bounded reachability coincides [HK10].

Weak bisimulation We consider an instance of weak bisimulation. We restrict ourselves to
IMCs here, as this notably simpli�es the presentation. Furthermore, we restrict ourselves to a very
coarse instance as this su�ces for our needs.

The idea behind weak bisimulation is that we consider paths of transitions where it is not ob-
servable whether a transition has occurred. In this setting, we cannot observe paths who do not
change their labelling. We do, however, observe Markovian transitions.

Therefore, we consider a sequence of an immediate path, a Markovian transition and an imme-
diate path. We formalise this as follows.

De�nition 2.27 (Weak transition). LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an MA with s, s′ ∈
S. If either there exists an immediate path π from s to s′ with ∀y, y′ ∈ π ∩ S with Lab(y) =
Lab(y′). �

De�nition 2.28. LetM = (S, ι,Act, ↪→, 99K,AP, Lab) be an IMC. An equivalence relation R ⊆
S × S is a weak bisimulation forM if for all (s, s′) ∈ R either s ≈s s′ or

• Lab(s) = Lab(s′), and
• ∀t s.t. there exists a weak transition from s to t, ∃t′ s.t. (t, t′) ∈ R and there exists a weak

transition from s′ to t′.
Two states s, s′ ∈ S are weakly bisimilar if there exists a weak bisimulation R forM such that

(s, s′) ∈ R. We write s ≈w s′. Two MAs are weakly bisimilar if their initial states are weakly
bisimilar in the union of the Markov automata. �

We notice that two states which are weakly bisimilar according to the de�nition above are
branching bisimilar according to [Tim13][De�nition 3.31].

For acyclic IMCs, this notion of weak bisimulation thus preserves expected time and time-
unbounded reachability. Based on statements from [Tim13] and [Saz14], we conjecture that this
notion also preserves time-bounded reachability on acyclic IMCs (for cyclic IMCs, this does not
hold in general due to a notion called divergence, cf. [Her02]).

2.3. Graph Rewriting
In this section, we introduce the required background in graph rewriting. The overall discussion
follows Zambon [Zam13]. We give a theoretic background in algebraic graph rewriting by DPO
and a introduction to Groove, which is the environment we use to de�ne our rewrite system. For
a more complete coverage of the topic, we refer to Rozenbe.g. [Roz97]. Tool-support for model
transformation in general, and graph transformation in particular, is found in numerous tools, cf.
Jakumeit et al. in [JBWD+14].

Graph rewriting, also called graph transformation is a method to modify an input graph to other
graphs by the sequential application of a given set of rules, called a graph grammar.

1The union of two MA is the disjoint union of their state spaces, see [Tim13]

2.3. Graph Rewriting 17

1 2

3

1 2 1 2

4

5

1 2

3

6 7

1 2

6 7

1 2

4

5

6 7

L K R

G D H

Figure 2.2.: Example for DPO graph rewriting [EEPT06]

Di�erent approaches to graph transformation are found in the literature, e.g. hyper-e.g. replace-
ment grammars, cf. Drewes et al. [DKH97], and term graph replacement, cf. Plump [Plu02]. In this
thesis, we use the algebraic approach which has its roots in category theory. Multiple variants
for this algebraic approach exist. We choose the double pushout (DPO) approach, which is de-
scribed by Ehrig in [Ehr79]. In most approaches, including DPO, a rule entails two graphs L and
R. Rewriting of a host graph G is done by �nding a subgraph in G which matches L, e.g. as there
is some mapping from L to the subgraph in G. This subgraph is then replaced by R. Notice that
a particular The e�ect of multiple rules in a grammar which might be applicable to the same host
graph is discussed in the discussion of Groove.

Before we give the formal de�nition of rewriting, we use an example from [EEPT06] to depict
the procedure.

Example 2.2. We describe the application of a given rewrite rule on a given host graph. All graphs
have a vertex label set {1 . . . 7} and an e.g. label set {x}. We depict the rule (graphsL,K ,R) and the
host-graph (G) as well as an intermediate step (D) and the �nal result (H) in Figure 2.2. We depict
vertex labels, but omit the e.g. labels. The arrows between the graphs depict the graph morphisms
and are explained later in the section.

We consider a rule given by the three graphs L, K and R. Graph L describes the subgraph
which has to be matched in a host graph. The graph K describes a subgraph of L which we
call the interface. After successfully matching L in G, elements which are matched L but not the
interface are removed, yielding graph D. D has to be a valid graph, so dangling edges (i.e. edges
without a source or target vertex) inD are not allowed. To prevent dangling edges inD, additional
conditions on the match of L in G are put. In this particular example, we trivially match L in G,
after which we remove all matched edges and the vertex labelled 3. This yields D. Notice that we
do not have dangling edges in D, as all edges which lead to a deleted vertex are also removed.

To �nalise the rewriting step, graphs R and D are merged, such that elements which originate
from the interface are not duplicated. In this particular example, we add graph R to graph D, such
that the two vertices from K are merged, yielding H . N

2.3.1. Theory
We apply graph rewriting on labelled graphs, that is directed graphs with labelled vertices and
labelled edges.

De�nition 2.29 (Labelled Graph). Let Σ = (Σv,Σe) a the label set with Σv a set of vertex labels
and Σe a set of e.g. labels. A labelled graph G is a tuple G = (V,E, l) with a �nite set of vertices

18 Chapter 2. Preliminaries

V and a set of edges E ⊆ V × V . Moreover l = (lv, le) is the labelling with lv : V → Σv and
le : E → Σe. �

We use G(Σ) to denote the set of all labelled graphs over Σ. It is helpful to have a functional
view on edges.

De�nition 2.30 (Source/target functions). Given a graph G = (V,E, l). The source function
sG : E → V is de�ned as sG : (s,t) 7→ s. The target function tG : E → V is de�ned as tG : (s,t) 7→
t. �

The following formalises the notions of incoming (outgoing) edges, as well their source (target)
vertices.

De�nition 2.31. Given a graph G = (V,E, l). We de�ne In : V → P(E) as v 7→ {e ∈ E |
tG(e) = v} and InV : V → P(V) as v 7→ {sG(e) ∈ V | e ∈ In(v)}.

Analogously, we de�ne Out : V → P(E) as v 7→ {e ∈ E | sG(e) = v} and OutV : V → P(V)
as v 7→ {tG(e) ∈ V | e ∈ Out(v)}. �

Morphisms are structure-preserving mappings. Graph morphisms map adjacent vertices to ad-
jacent vertices and preserve labelling of labels and edges.

De�nition 2.32 (Graph morphism). Given two graphs G = (VG, EG, (lvG, leG)) and H =
(VH , EH , (lvH , leH)). Then g : G → H with gV : VG → VH and gE : EG → EH is a graph
morphism if it

• preserves sources sH ◦ gE = gV ◦ sG, and

• preserves targets tH ◦ gE = gV ◦ tG, and

• preserves vertex labels lvH ◦ gV = lvG, and

• preserves e.g. labels leH ◦ gE = leG.

�

Remark 4. In many cases, we identify an arbitrary morphism between two graphs G and H by
G → H . That doesn’t mean that there is a unique morphism. We refrain from this short form if
multiple morphism between G and H are considered.

A graph morphism g is injective (surjective) if gV and gE are injective (surjective). It helpful to
embed vertices and edges in other nodes. An embedding is an injective morphism s.t. gV (v) = v
and gE(e) = e for all v ∈ VG and e ∈ EG. The composition of two morphisms G → H and
H → K is a morphism, denoted G→ H → K .

The concept of a pushout helps to formalise merging two graphs. The construction is illustrated
in Figure 2.3.

De�nition 2.33 (Pushout). Given three graphsA,B,C and graph morphismsA→ B andA→ C .
Then (D,B → D,C → D) is a pushout if

• A→ B → D = A→ C → D.
• For all graphs D′ and graph morphisms B → D′, C → D′ s.t.

A→ B → D′ = A→ C → D′

there exists a unique graph morphism D → D′ s.t.

B → D → D′ = B → D′, C → D → D′ = C → D′.

We denote the pushout with ABCD or equivalently ACBD. �

The following lemma sketches the construction of a pushout.

Lemma 2.1 (Pushout construction). [Ehr79] Given graphs A,B,C with graph morphisms b : A→
B and c : A→ C .
Let ∼V be a relation such that bV (v) ∼ cV (v) for all v ∈ VA. We de�ne the equivalence relations
≈V as the smallest equivalence relation containing ∼V .

2.3. Graph Rewriting 19

A B

C

(a) Initial situation.

A B

C D

(b) Initial situation together with
pushout.

A B

C D

D′

(c) Pushout criterion depicted.

Figure 2.3.: Pushout construction.

Let D = (VD, ED, lD). We have that VD = VB ∪ VC/ ≈ and ([s], [t]) ∈ ED i� ∃v ∈ [s], v′ ∈
[t]. (v,v′) ∈ EB ∪ EC . Moreover lD = (lvD, leD) is given by

lvD([v]) =

{
lvB([v]) v ∈ VB
lvC([v]) v ∈ VC

leD(([s], [t])) =

{
leB(([s], [t])) ∃v ∈ [s], v′ ∈ [t]. (v,v′) ∈ EB
leC(([s], [t]]) ∃v ∈ [s], v′ ∈ [t]. (v,v′) ∈ EC

The morphism f : B → D is given by fV (v) = [v] and fE((s,t)) = ([s],[t]). The morphism C → D
is de�ned analogously.

We now formalise graph rewriting by DPO. We start by formalising a rewrite rule (the upper
layer in Figure 2.2 on page 17).

De�nition 2.34 (Rewrite rule for graphs). Given three graphs L,K,R. We call a tuple r =
(L,K,R,K → L,K → R) a graph rewrite rule if K → L is an inclusion. We call L the left-
hand side of r, R the right-hand side of r and K the interface of r. �

We often abbreviate a rule with (L← K → R). A rule is injective if K → R is.
Applying a rewrite rule on a graph is called a rewrite step. We �rst de�ne such a step, and then

give a lemma which gives a constructive description of such a rewrite step and the obtained result.

De�nition 2.35 (Rewrite step). Given two graphsG andH and a rewrite rule r = (L← K → R),
the host graphG can be rewritten toH by r if there exists a graphD such thatKLDG andKRDH
are pushouts. We writeG r−→ H and call this a rewrite step onG by r. We call r applicable onG. �
Lemma 2.2. [Ehr79] Given a rule r = (L← K → R) and a graph G, the graphH as in De�nition
2.35 can be constructed as follows.

1. Find a graph morphism κ : L→ G. Check that the following conditions hold.

• For all (s, t) ∈ EG\κE(L), it holds that s, t 6∈ κG(L)\κG(K) (dangling e.g. condition).
• For all {v, v′} ⊆ VL and for all {e, e′} ∈ EL, κ(v) = κ(v′) =⇒ {v, v′} ⊆ VK and
κ(e) = κ(e′) =⇒ {e, e′} ⊆ EK (identi�cation condition)..

2. GetD = (VG\(κV (L)\κV (K)), EG\(κE(L)\κE(K)), lD) where lD = (lvG|VD, leG|ED).
Get the graph morphismK → D as κ|K , and the embedding D → G.

3. Construct the pushoutKRDH by using Lemma 2.1

2.3.2. Groove
In this section, we consider Groove [GdRZ+12], a general-purpose labelled graph rewriting tool set.
The description of Groove in this section is based on [Zam13]. A complete description of features
is given in the Grooveuser manual [RBKS12]. We illustrate the usage of Groove by a running
example.

20 Chapter 2. Preliminaries

Building

House

School

Address

Pupil

Schoolbus

at

inFrontOf

livesIn

address

a�ends

in

Figure 2.4.: The type declaration for the school bus example.

Remark 5. Groove internally uses an alternative algebraic approach for graph rewriting, called
single pushout (SPO). SPO can simulate any rewrite grammar given in DPO [Ehr79], thus a rewrite
grammar given in DPO can be de�ned insideGroove. In the remainder of the thesis, we only require
basic knowle.g. of DPO and Groove, as given in this chapter.

Amongst others, Groove contains a generator, which given an input graph and a set of rewrite
grammar, recursively generates a state space of produced graphs. To this end, the generator starts
with a state space of only the input graph. Now, in every step, Groove takes a graph G from the
state space and a rule r from the grammar. If the rule can be applied to the graph, the state space is
extended with the result of applying r toG. Moreover, Groove contains a simulator, which provides
a GUI to manually execute the graph rewriting and to specify graphs and rules. Whenever we refer
to Groove, we refer to the combination of simulator and generator.

In the remainder of this section, we brie�y discuss how rewrite rules in Groove are speci�ed,
and how the recursive exploration of the state space can be guided. We illustrate these features by
an running example.

2.3.2.1. Groove graph specification

Graphs are speci�ed by a set of nodes and directed multi-edges between them. A node can have a
type, which is a encoded as a node label. Furthermore, nodes can have identi�ers (invisible to the
grammar) and labels (labelled self-loops). Edges are all labelled by a set of labels. Multi-edges are
equivalent to a single edges with the union of the labels. A type-graph is a graph which restrict the
set of well-formed graphs. It consists of a node for each allowed type and labelled edges between
these types to de�ne the set of allowed edges in a graph. Type graphs support a kind of inheritance
as also known in object oriented programming [Pie02]. A type T which inherits properties from
another type T ′ may have, additionally to its own set of allowed in- and outgoing edges, the in-
and outgoing edges of T ′.

In this example, we introduce the general setting and deduce a type graph for the setting. We
then consider a particular example and depict the graph for the scenario.

Example 2.3. We consider an (extraordinary) school bus which is used to bring pupils from their
home to the their school. We consider a world with buildings, (school) busses and pupils. Houses
and schools are buildings, and buildings have an address. A bus can be in front of any building.
A pupil has a name. Their home is a house in which they live and each pupil attends a school.
Moreover, a pupil can be at a building or in a bus. We depict a type graph for this in Example 2.3.

We consider a small example scenario in Section 2.3.2.1 containing only one school and one bus,
and two pupils with their house Notice that we assume the pupils to be at their homes initially
and that the bus is in front of one of the pupils homes. We use this small scenario in further
examples. N

2.3.2.2. Groove rule specification

A rule in Groove is given by a large graph consisting of four di�erent categories.

• Reader elements (continuous thin / black) are nodes or edges which have to be matched in
order to make the rule applicable, but are untouched.

2.3. Graph Rewriting 21

Joanne : Pupil

Versailles : House Phileas : Schoolbus

Hogwarts : School

Address
aline = "Place d’Armes, 78000 Versailles"

country = "France"

House
WindsorCastle

Mary : Pupil

Address
country = "Schotland"

Address
aline = "Windsor, Berkshire SL4 1NJ"

country = "England"

address

address

address

at
livesIn

a�ends

at
livesIn

a�ends

inFrontOf

Figure 2.5.: The input graph for the school bus example.

• Embargo elements (dashed fat / red) are nodes or edges which make the rule inapplicable
whenever they are successfully matched.

• Eraser elements (dashed thin / blue) are nodes or edges which have to be matched in order to
make the rule applicable. These elements are removed during the application of the elements.
Please, notice that the removal of a node als removes all adjacent edges.

• Creator elements (continuous fat / green) are nodes or edges which are added during the
application of the rule.

Furthermore, nodes can be quanti�ed and labels can be tested, e.g. whether a label “age” is greater
than some number. Moreover, paths between two nodes can be described by a regular expression.

We illustrate this by extending our running example. For a more complete introduction, we refer
to [RBKS12].

Example 2.4. We continue using the setting and scenario from Example 2.3.
Starting from the initial scenario, the bus has a selection of actions which can be executed se-

quentially. We encode these actions as rewrite rules to re�ect the impact of the action on the
scenario.

PickupAtHouse The bus can pick up a pupil if the pupil is at a house and the bus is in front of
that house. We depict the rule for this in Figure 2.6a.

DriveHtS/DriveStS The bus can drive from a house to a school (Figure 2.6b) or from a school
to another school (Figure 2.6c). Notice that a bus is not allowed to drive from a school to the same
school again.

DriveStH/DriveHtH The bus can drive from a school to a house (Figure 2.6d), but due to
limited parking space, this is only possible if there is no other bus in front of the house. The rule
to drive from a house to another house is analogously de�ned.

DropPupils If the bus is at a school, it can unload all pupils in the bus which attend that school
(Figure 2.6e) The ∀-node indicates that the rule should be applied to all matching pupils at once.
Notice that we only consider this action, if there is at least one pupil in the bus which attends the
school.

BuyBus/SellBus We can also buy new busses, which start in front of a school (Figure 2.6f), or
sell (Figure 2.6g) them whenever no pupils are in the bus.

We illustrate a particular development of the initial scenario by the sequential application of
the rewrite rules presented. For compactness, we choose not to depict identi�ers or addresses, as
they’re not of importance here. The graphs are depicted in Figure 2.7 on page 23

22 Chapter 2. Preliminaries

House Pupil

Schoolbus

inFrontOf in

at

(a) Pick up a pupil.

Schoolbus

SchoolHouse

inFrontOfinFrontOf

(b) Drive to school.

Schoolbus

SchoolSchool !=

inFrontOf inFrontOf

(c) Drive to another school.

Schoolbus

HouseSchool

Schoolbus

inFrontOf inFrontOf inFrontOf

(d) Drive to house.

∀>0 Pupil

SchoolbusSchool

@

a�ends

inFrontOf

in
at

(e) Drop pupils at school.
Schoolbus

School

inFrontOf

(f) Add a school bus.

Schoolbus

Pupil

in

(g) Remove a school bus.

Figure 2.6.: The di�erent rules for corresponding actions.

1. The bus picks up the pupil at the house where the bus starts (apply PickupAtHouse).
2. The bus drives to another house (apply DriveHtH).
3. The bus picks up the pupil at the other house (apply PickupAtHouse).
4. The bus drives to the school (apply DriveHtS).
5. The bus drops o� all pupils attending the school (apply DropPupils).

Of course, many other developments of the input graph are possible. N

The example shows that often, multiple rules are applicable. Grooveconstructs states, which
contain a particular instance of a graph, and connects these states via transitions labelled with a
rule-name. A transition si

r−→ si+i denotes that the graph at si+i can be obtained by applying rule
r on si. The states together with the transitions constitute a labeled transition system (LTS).

Example 2.5. We consider the setting from Example 2.4. In Figure 2.8, we depict part of the labeled
transition system. An open state is a state which has other outgoing transitions, but that these are
not explored. A closed state is a state for which all outgoing transitions are depicted. The path via
the left (states s0 to s5) correspond to the scenario from Example 2.4 as depicted in Figure 2.7. The
right path to s5 depicts a path in which the bus takes the �rst pupil to school before picking up
and dropping the other pupil. The triangles at s1, s2, s6 and s7, s8, s9 show pathes in which the
bus potentially takes a detour via another building. N

2.3.2.3. Groove control programs

For various reasons, we might not want to construct the full labeled transition system. Relevant
reasons are that

• the LTS might be in�nite, or

• we are interested in reaching particular state and we have extra information how to �nd it,
or

• some rules should be applied in a given order based on additional constraints.

2.3. Graph Rewriting 23

Pupil

HouseHouse

Pupil

Schoolbus

School

at
livesIn

at
livesIn

inFrontOf

a�ends a�ends

(a) Initial scenario

Pupil

HouseHouse

Pupil

Schoolbus

School

at
livesIn

inFrontOf

a�ends

livesIn

a�ends

in

(b) After picking up the �rst pupil.

Pupil

HouseHouse

Pupil

Schoolbus

School

at
livesIn

inFrontOf

a�ends

livesIn

a�ends

in

(c) After driving to another house.

Pupil

HouseHouse

Pupil

Schoolbus

School

livesIn

inFrontOf

in

a�ends

livesIn

a�ends

in

(d) After picking up a second pupil.

Pupil

HouseHouse

Pupil

Schoolbus

School

livesIn

in

a�ends

livesIn

a�ends

inFrontOfin

(e) After driving to the school.

Pupil

HouseHouse

Pupil

Schoolbus

School

livesIn

at
a�ends

livesIn

at
a�ends

inFrontOf

(f) After dropping the pupils.

Figure 2.7.: One possible development of the initial scenario.

s0 : start

s1 : closed

s2 : open

s3 : open

s4 : open

s5 : open

s6 : open

s7 : closed

s8 : open s9 : open

s10 : open

s11 : open

PickupAtHouse

HouseToHouse HouseToSchool

PickupAtHouse

HouseToSchool

HouseToSchool

DropPupilsAtSchool

DropPupilsAtSchool

SchoolToHouseSchoolToHouse

HouseToHouse

PickupAtHouse

HouseToSchoolDropPupilsAtSchool

Figure 2.8.: Part of a labeled transition system.

24 Chapter 2. Preliminaries

To this end, Groove supports:

• control programs, which allow the user to restrict the possible applications of rules. A full
speci�cation of this language is not in the scope of this thesis, but given in [RBKS12]. In the
next example, we discuss a simple control program.

• strategy, in which the way of exploration can be set, e.g. the user can enforce breadth-�rst
search through the LTS.

Example 2.6. We continue with the scenario from Example 2.4 on page 21. We develop a control
program (given in Listing 2.1) which prevents the bus from driving to a building without picking up
or dropping pupils. We construct two recipes for this, each containg a choice. A choice is a splitting
point in the program which says that either of the blocks separated by an or statement should be
applied. A recipe is a method which is only applicable if there is a sequence of rules in the recipe
which are all subsequently applicable. The getPupil recipe states that the bus should either

• �rst drive from a house to another house and then pick up a pupil at that house, or
• �rst drive from a school to a house and then pick up a pupil at that house.

The recipe ensures that at least one of the options above have to fully applicable, otherwise the
recipe is not considered applicable. The control program contains a main part, which starts at
line 11. The bus �rst picks up the pupil at the house where the bus starts, and then applies either
getPupil or dropPupil as long as possible (alap). As long as possible means as long as either
getPupil or dropPupil is applicable.

Listing 2.1: Control program
1 recipe getPupil() {
2 choice {DriveHtH; PickupAtHouse;}
3 or {DriveStH; PickupAtHouse;}
4 }
5

6 recipe dropPupil() {
7 choice {DriveHtS; DropPupilsAtSchool;}
8 or {DriveStS; DropPupilsAtSchool;}
9 }

10

11 // program starts here.
12 PickupAtHouse;
13 alap {
14 choice getPupil();
15 or dropPupil();
16 }

We depict the full LTS obtained by executing the control program in Figure 2.9. The continuous
edges are now labelled with either a rule or a recipe. Dotted states are states created during applying
a recipe. The internal states are states from which a next of the recipe can be applied, whereas
absent states are states which are rejected, as no next rule in the recipe cannot be applied. The
dotted transitions indicate which rule was applied. Moreover, we see that there is now a result
state, which is a state where the control program has ended. The strategy in�uences the order in
which the states are created.

If we want the bus to collect all pupils before driving to the school, we can change the main part
of the program, as shown in Listing 2.2. Here, we always try to get another pupil, and only drop
pupils at school if this fails. The LTS obtained by this control program contains only the left path
depicted in Figure 2.9.

Listing 2.2: Alternative main program
12 PickupAtHouse;
13 alap {
14 try getPupil();
15 else dropPupil();
16 }

2.3. Graph Rewriting 25

s0 : start

s1 : closed

s2 : internal s3 : internal

s4 : closeds5 : closed

s6 : absent

s7 : internal

s8 : closed

s9 : absent

s10 : internal

s11 : result

s12 : absent

s13 : internal

s14 : absent

PickupAtHouse

getPupil/DriveHtH dropPupil/DriveHtS

dropPupilgetPupil

PickupAtHouse DropPupilsAtSchool

getPupil/DriveStH

getPupil/DriveStH

getPupil

getPupil/DriveHtH

dropPupil/DriveHtS

dropPupil

PickupAtHouse

getPupil/DriveHtH
dropPupil/DriveHtS

dropPupil

DropPupilsAtSchool

getPupil/DriveStH [2]
DropPupilsAtSchool

Figure 2.9.: Full LTS from control program.

N

3. On Fault Trees
In this chapter, we discuss fault trees. After a brief introduction in fault tree analysis, we consider
static fault trees (SFTs), describe how quantitative measures can be de�ned on them and discuss
some of their de�ciencies. We continue with the introduction of dynamic fault trees (DFTs) and
show how the de�ciencies of SFTs are overcome by DFTs. We discuss the underlying concepts
(which we call mechanisms) and show how to de�ne quantitative measures on DFTs. We then
illustrate some of the semantic intricacies which are due to the informal de�nition of DFTs. Fol-
lowing those, we present a collection of DFTs found in the literature and give a brief summary of
the existing DFTs. These case studies are used in later experiments. We conclude the chapter by an
overview of existing semantics by giving their characteristics, as well as the restrictions they put
upon DFTs, and showing some of the di�erent choices regarding the earlier described intricacies.

3.1. Fault tree analysis
Fault tree analysis (FTA) is a method in reliability engineering. The concepts of fault and failure
are elementary in the �eld. Several more or less equivalent de�nitions for the terminology exists,
for an overview, see [Meu95]. We use the de�nitions from [ISO 24765].

“ 3.1122 fault
1. a manifestation of an error in software.
2. an incorrect step, process, or data de�nition in a computer program.
3. a defect in a hardware device or component. Syn: bug

NOTE: A fault, if encountered, may cause a failure. ”“ 3.1115 failure
1. termination of the ability of a product to perform a required function or its in-

ability to perform within previously speci�ed limits. ISO/IEC 25000:2005 (...).
2. an event in which a system or system component does not perform a required

function within speci�ed limits.
NOTE A failure may be produced when a fault is encountered. ”We clarify the di�erence with an example. It is important to notice that the di�erence between

fault and failure depends on the scope of our analysis.

Example 3.1. Consider a computer with two memory modules. When one of the memory modules
has a defect, this is fault in the computer. If now both memory modules are defect, these faults lead
to a computer failure. Please notice, when we would consider the memory module as system, the
fault would indeed be a failure. N

Now fault tree analysis is described in [VS02] as an top-down approach to analyse the an
undesired-event, a failure, in a given system. Then, this system is analysed

“ (...) in the context of its environment and operation to �nd all realistic ways
in which the undesired event (top event) can occur. The fault tree itself is a graphic
model of the various parallel and sequential combinations of faults that will result in
the occurrence of the prede�ned undesired event. The faults can be events that are
associated with component hardware failures, human errors, software errors, or any
other pertinent events which can lead to the undesired event. A fault tree thus depicts
the logical interrelationships of basic events that lead to the undesired event, the top
event of the fault tree. ”

28 Chapter 3. On Fault Trees

Although fault trees are a qualitative model, i.e. they relate binary events in order to state
whether a system failure occurs in the presence of given faults, they can be used for quantitative
analysis whenever quantitative information about the occurrence of the faults is present.

As we focus on the analysis of fault trees, we use some simpli�ed phrasing in the remainder. We
use the system failure to refer to the failure which is described in the fault tree under some given
context and environment. We talk about the system behaviour to refer to the "various parallel and
sequential combinations of faults that will result in the occurrence" of the system failure. We use
faults to refer to any input of a fault tree. We assume that the faults are statistically independent.
We say that a component fails to refer to the occurrence of a fault. As long as a component has not
failed, it is called operational.

Whereas fault trees are also an documentation e�ort, we focus on the quantitative analysis of
fault trees. Therefore, elements of a fault tree which do not a�ect such analyses are not considered.

3.2. Static fault trees
Static fault trees are graphical modelling language to describe the combinations of faults that lead
to the undesired top-level event. They were invented at Bell Laboratories for the analysis of missile
systems [Eri99].

SFTs are directed acyclic graphs with a unique source (top-level element, top) and a set of sinks.
The set of vertices which are reachable from a vertex v via one edge are called the successors of v.
Remark 6. A formal treatment of fault trees is presented in Chapter 4 on page 71.

The vertices of the graph are called elements and can have di�erent types, which we introduce
next. We then introduce quantitative analysis of the fault tree. This section ends with a discussion
of the limited expressive power of static fault trees.

3.2.1. Static elements

Please notice that while the tree is constructed top-down, failures propagate from the bottom to
the top, i.e. from the successors of a element to that element.

(a) BE

>

(b) CONST(>)

⊥

(c) CONST(⊥)

. . .

(d) OR

. . .

(e) AND

k

. . .

(f) VOT(k)

Figure 3.1.: Element types of static fault trees.

We �rst introduce types for the sinks in the DAG.

• A basic event (BE), depicted in Figure 3.1a, represents a component of the system. Basic events
do not have any inputs, i.e. are the sinks of the DAG. Their failure represents the failure of
the represented component. Notice that we assume that the basic events are statistically
independent, and therefore, each fault in the system is represented by at most one basic
event. We often identify components by the basic event which represents them.

• A constant element is an element which either encodes a fault which is always present called
constant faults(given-failure elements), or is fail-safe, i.e. it never fails. The two types are de-
picted in Figure 3.1b and Figure 3.1c, respectively. Constant elements are found with di�erent
names in the literature (often with distinct modelling use cases), as house event, undeveloped
events (for fail-safe elements), or evidence (for constant faults).

3.2. Static fault trees 29

All elements which are not sinks in the DAG are called gates. Gates propagate a failure of their
successors depending on some type-speci�c condition over the successors. If the condition is ful-
�lled, we consider the gate failed.

Next, we present the three standard gate types for standard fault trees. We omit the inhibit
gate, as, regarding quantitative analysis, it is equivalent to the and-gate. The possibility and con-
sequences of adding a xor-gate or a not-gate are discussed in Section 3.2.3 on page 31.

• The or-gate (OR), depicted in Figure 3.1d, has failed if it at least one of its successors has
failed. Its typical use is that a subsystem-fault can be caused by several di�erent faults. It
corresponds to the logical or operation.

• The and-gate (AND), depicted in Figure 3.1e, has failed if all of its successors have failed. Its
typical use is that a subsystem-fault is caused by a combination other faults. It corresponds
to the logical and operation.

• The voting-gate (VOT(k)), depicted in Figure 3.1f, has failed if at least k of its successors have
failed, where k is a given threshold. The or-gate is a voting-gate with a threshold of one, the
and-gate is a voting-gate with a threshold which is equal to the number of inputs. Moreover,
the voting gate can be simulated by AND and OR.

Remark 7. We use rectangular boxes directly on top of elements to add identi�ers to the elements.
The next example shows an SFT.

Example 3.2. Consider the SFT as shown in Figure 3.2. It depicts a fault tree for computer hard-
ware. We construct the SFT in an hierarchical manner, based on the following description. The
computer hardware (CH) is assumed to fail if the processor unit, or the memory unit, or the disk
unit fails. The processor unit (PU) fails if either the processor or the fan fails. We do not further
develop reasons for a processor (P) failure, but assume it is a basic event. The fan (F) is assumed to
be fail-safe in the modelled scenario. The memory unit (MU) fails if both memory cards (M1, M2)
have failed. Failure of memory cards is considered to be a basic event. The disk unit (DU) fails if
two of the three disks fail. While the failures of the �rst two disks are considered basic events (D1,
D2), we assume the third (D3) has already failed. N

CH

PU MU

2

DU

P

⊥

F M1 M2 D1 D2

>

D3

Figure 3.2.: A static fault tree for computer hardware.

3.2.2. �antitative properties of a fault tree
A (static) fault tree of a system can be used as basis for a quantitative analysis, if appropriate infor-
mation about the components is available. In this thesis, we assume that a continuous probability
distribution describing the probability of failure between 0 and t, for some t ∈ R≥0. We will call
such a distribution the failure distribution of a component.

Given a fault tree F for a system, the failure distributions for each component represented by a
basic event, and a system life time T , we are mostly interested in two properties.

• Reliability RF (T)

Reliability, in general, is often de�ned similar to the following de�nition from [ISO 24765]

30 Chapter 3. On Fault Trees

“ 3.2467 reliability
1. the ability of a system or component to perform its required functions under

stated conditions for a speci�ed period of time.
(...) ”In the context of quantitative analysis, the following de�nition from [IEC60050-191] is par-

ticularly signi�cant.

“ 191-12-01 reliability
the probability that an item can perform a required function under given condi-
tions for a given time interval (t1, t2). ”In the remainder, we use reliability always under the assumption that t1 = 0. The reliability

function maps a value for t2 to the reliability for (0, t2).
The reliability of a system is the probability that no system failure occurs during the given
system life time. As a concrete example, for a satellite which is expected to work for 10
years, the reliability gives the probability that the satellite does not fail within 10 years. In
the context of FTA, the reliability becomes the probability that the top-level element of a
fault tree does not fail.
The reliability function ofF , denotedRF , maps a time to the corresponding system reliability.
It corresponds to 1−FDF , where FDF is a continuous probability distribution describing the
probability that the top-level element of F has failed before t. As a consequence, RF is
monotonically decreasing.
For SFTs, either RF (0) = 0 (consider a constant failure) or RF (0) = 1. For the latter
case, we can further distinguish those cases where limT→∞RF (T) = 0 (consider a fail-
safe element) and those with limT→∞RF (T) = 1. SFTs without constant elements all have
RF (0) = 1, limT→∞RF (T) = 0.

• Mean Time To Failure MTTFF

We give the de�nition from [IEC60050-191]1.

“ 191-12-07 mean time to failure
The expectation of the total time duration of operating time of an item, from the
instant it is �rst put in an up state, until failure, (...) ”Given the reliability function RF , using the de�nition of expected value from De�nition 2.4

on page 8, we derive

MTTFF =

∫ ∞
0

1−RF (t)dt

We notice that for scenarios with limT→∞RF (T) 6= 0, MTTFF may not exist, in which we
de�ne it to be in�nity.

A thorough formalisation of these (and other) properties, as well as an overview over the existing
algorithms is given by Ruijters and Stoelinga in [RS14]. Here, we only introduce minimal cut sets
as this notion is helpful in later chapters.

A cut set for an SFT is a subset of the basic events in the fault tree such that the occurrence of
faults for all these basic events causes a system failure. A minimal cut set is a subset of a cut set
such that each proper subset of the minimal cut set is not a cut set. With the cut sets given, the
system reliability is easily deduced from the failure distributions.

1We merged the de�nitions from mean time to failure and time to failure.

3.2. Static fault trees 31

Example 3.3. The set of minimal cut sets for the SFT depicted in Figure 3.2 on page 29 is

{{P}, {M1,M2}, {D1}, {D2}}. N

Assumption 2. Although failure distributions can be arbitrary probability distributions, in this the-
sis, we assume the failure distributions for components to be exponential distributions, and use the
failure rate to describe the failure distribution.

Besides of referring to system reliability or MTTF, we also use system performance to refer to an
arbitrary but �xed measure. An improved performance means a higher reliability and/or a higher
MTTF1.

3.2.3. Deficiencies of static fault trees

Static fault trees are both well-understood and heavily used. Their very limited expressive power
has led to many extensions. We describe some systems where important characteristics cannot be
modelled correctly by static fault trees.

Warm and cold spare components Many safety-critical systems feature redundancy in order
to improve safety and dependability. We can distinguish three di�erent types of redundancy.

1. hot redundancy, also active standby.

2. warm redundancy, also passive standby.

3. cold redundancy, also cold standby.

In the remainder, we often consider cold/hot standby a special case of passive standby. We illustrate
the di�erence in the following example.

Example 3.4. We consider an electromechanical crossing barrier with two motors, with di�erent
system con�gurations. We assume a primary (�rst) motor to perform mechanical work in all cases.
We consider the second motor to be redundant. The three cases below re�ect the three types of
redundancy.

1. Both motors are running and performing mechanical work.
If the second motor is running and performing work, it is on active standby, and its failure
rate is not likely to be reduced.

2. Both motors are running, but only the �rst drives the pole.
If the second motor is running, but not performing work, it is on passive standby. Even
though the stress on its parts is reduced, they may still wear o�, so the assumption that it
won’t fail is not applicable. However, it is fair to assume that the failure rate is reduced.

3. By default, the primary motor is on duty. Only if it fails, the second motor is turned on.
If the second motor is not used until the �rst motor has failed, it is on cold standby. It is a
fair assumption that it won’t fail as long as it is not used. N

With static fault trees, we cannot change the failure rate of a component based on the already
failed components, which leads to overestimated failure probabilities involving the failures of com-
ponents which are initially in passive standby.

Sharing of spare pools Many systems consist of spare components which are not dedicated to
a particular task as long as they are unused. We notice that such spare components are often in
passive standby. Below we give a typical example.

1It is possible to increase the system reliability while decreasing the MTTF and vice versa, therefore, system perfor-
mance is only used as an abstract concept.

32 Chapter 3. On Fault Trees

Example 3.5. Consider a car with 4 wheels attached and which is only operational with four
operational wheels attached. The car includes a spare wheel in case one of the attached wheels
fail, e.g. if it has a �at tire. Now, whenever the �rst wheel breaks, we can use the spare to replace
the broken wheel. However, if now another wheel (including the now attached spare wheel) fails,
we cannot use the spare wheel to also overcome this issue, so the car fails. N

Simple con�gurations as presented above can be handled by voting gates, if the components
are hot redundant. However, di�erent components may have di�erent pools of available spare
components.

Temporal conditions The e�ect of a component failure to the overall system is often dependent
on the state of the system. The state of a system itself is often dependent not only on the set of
component failures which have failed, but also the order in which the components have failed.
One example are the shared spare pools above. However, many systems require some external
machinery to recon�gure the system. A typical example is given below.

Example 3.6. Consider a crossing barrier like in Example 3.4. We extend the model by adding a
switching unit, which is able to disconnect the �rst motor from the pole and connect the second
one. As soon as the �rst motor fails, a working switching unit enables the system to use the second
motor.

By this description, we can deduce that the system fails as soon as either both motors have failed,
or the �rst motor and the switching unit have failed. We can re�ne this model by observing that
the switching unit is of no further use to the system after it has switched the motors. Thus, if the
�rst motor fails before the switch fails, the switch will have enabled the second motor and any
future failure of the switch doesn’t a�ect the system’s operational state. Thus, we deduce that the
system fails as soon as either both motors have failed, or the switch and then the �rst motor have
failed (in that particular order). N

Moreover, as with cold redundancy, many failures in a system can only occur after the occurrence
of another event.

Example 3.7. Consider a pump with an electric motor. After a leakage occurs, a short circuit
failure can occur. Notice that this short circuit cannot occur before the leakage. N

Moreover, the occurrence of an event might prevent other failures.

Example 3.8. Consider a valve, which can be stuck open or stuck closed. However, as soon as it
stuck open, it is impossible that it gets stuck closed afterwards. N

With static fault trees, we can neither restrict the ordering of events nor handle order-dependent
failures.

Feedback loops Many systems feature some kind of feedback loops. To model this with a static
fault tree, we have to apply an inconvenient trick. Consider the following example, inspired by
[VS02].

Example 3.9. Consider a power supply unit (PSU) which has to be cooled by a thermal unit (TU).
A failure of the TU causes, amongst others, the failure of the PSU. As the PSU powers the TU, a
failure of the PSU causes a failure of the TU. Following [VS02], such a subsystem is modelled by
splitting the faults of the TU and PSU into internal faults and faults caused by other system. In
Figure 3.3, part of a fault tree involving a PSU and a TU are depicted. N

Repairs Fault trees can be used for assessing both system safety and dependability. In many con-
texts, the foremost interest is in the probability of some system failure, and the fact that components
might be repaired is not important. This might include systems which are hardly repairable, like
launched satellites, or system failures which pose a direct safety threat, like broken brakes in any
mobile system.

However, often, the modeller’s interest is in the availability of a system. Consider server farms,
where a short system downtime is not tragic, but the overall downtime should be minimal. Such

3.2. Static fault trees 33

PSU TU

int. PSU int. TU

Figure 3.3.: Part of an SFT modelling a feedback loop.

systems are often repairable, e.g. by replacing failed components. Di�erent strategies for repairing
are proposed, ranging from components which restore their original state from their failed state
with some rate or delay, yielding independent repair of components, to more complex strategies
involving repair units which queue failed components and restore them, yielding repair strategies
which depend also on the set of failed components.

In this thesis, we do not consider repairs in fault trees. For an overview, we refer to [RS14].

Non-coherent systems Static fault trees are coherent, which means that if some gate propagates
failure at time t, it propagates failure also at t+ δt. This is a limitation in two di�erent senses.

• Some systems feature non-coherent behaviour, as is described by Chu and Apostolakis
[CA80]. Contini et al. [CCR08] argue that the number of real-world non-coherent systems
is rather small. Examples of non-coherent system are systems with special action in fail-
dangerous states (i.e. system states which seemingly have a large probability to lead to a
failure). As an example, consider precautions in chemical plants in case certain sensors do not
work properly. In such systems, additional faults might lead a subsystem from fail-dangerous
to actually failed. Such systems cannot be modelled correctly without non-coherent systems.

• Using non-coherent features within the fault tree may simplify the modelling, even if the
overall system is coherent.

One common gate which features non-coherency is the xor-gate (exclusive or). As described in
[VS02], this is often replaced by the (inclusive) or-gate. However, especially in the case of common
cause failures, this may yield a very di�erent result. In the case of static fault trees, the approxi-
mation is always conservative, i.e. the reliability and MTTF are under-approximated.
In this thesis, we do not consider non-coherent fault trees.

Repetition Often, many identical components and/or groups of components are present in the
modelled system. Repeating subtrees leads to hard-to-read models and moreover, unfolding this
repetition often leads to slower analyses in existing tool-support. In the literature, some e�ort is
done to allow to use replication, e.g. by Bobbio et al. in [BFGP03].
In this thesis, we do not consider support for replication.

Multiple modes The concepts of di�erent standby types, mutual exclusion and of repairs can
be generalised to considering a component in di�erent modes. As with standby types, the mode in
which a component is may be dependent on the mode of other components.

We illustrate this with the following example.

Example 3.10. Consider the hot standby con�guration of a crossing barrier, as described in Ex-
ample 3.4 on page 31. The �rst motor, which is on duty by default, might be subject to additional
stress after the second motor fails. Thus, the failure of the second motor might have an e�ect on
the failure rate of the �rst motor. N
Remark 8. Furthermore, these modes can be an arti�cial construct to model non-constant failure
rates, i.e. non-exponential failure distributions. Parallel and sequential combination of exponential
distributions yields phase-type distributions, which can approximate any probability distribution,
cf. [PH08].

34 Chapter 3. On Fault Trees

. . .

(a) PAND (b) POR

. . .

(c) SPARE

→
. . .

(d) SEQ (e) FDEP

p

(f) PDEP

Figure 3.4.: Additional element types in dynamic fault trees.

3.3. Dynamic fault trees
We are now ready to examine a particular extension of static fault trees which feature some kind
of internal state, which yields the attribute dynamic fault trees. Dynamic fault trees were �rst
introduced by Dugan et al. in [DBB90].

We extend static fault trees by six other gate types. Moreover, we do not longer require the graph
to have a unique source node. Therefore, we have to mark the top-level element. We do this by
always labelling the element (with a rectangular box, as before) and adding an underscore to this
label.

Furthermore, now we are adding elements which depend on the order of events, we highlight
that the assumption of statistical independence implies that two component faults almost surely do
not occur simultaneous. Therefore, we assume that component faults never occur simultaneous.

As DFTs support passive standby, each fault is extended with a passive failure rate, to a total
of two failure rates. The passive failure rate may be 0 to re�ect cold standby. Failure rates of 0
technically do not yield a valid failure distribution, however, this is merely a technical issue1.

Whether basic events have a cold or warm standby component attached is not depicted, but this
follows either from the adjoining description or the table with failure rates, if present.

3.3.1. Dynamic elements
Of the six additional element types described next, the priority-and gate, spare-gate, functional de-
pendency and sequence enforcer are commonly included. The priority-or gate and the probabilistic
dependency were introduced more recently.

Priority-and gate A priority-and gate (pand-gate, PAND) is an and gate which puts additional
constraints on the order in which its successors fail. Usually it is agreed that the requirement is
that the successors fail from left to right. The literature does not agree what happens in case two
events fail simultaneous, we discuss this in Section 3.3.4.6 on page 48.

Pand-gates are commonly included in DFTs, and are also discussed as single extension to static
fault trees in, among others, [YY08; XMTY+13] or in combination with other gates, e.g. in [WP10].

Example 3.11. We model the crossing barrier with additional switching unit from Example 3.6 on
page 32. We depict the DFT in Figure 3.5. Starting from the top, we see that two conditions lead to
the system failure SF. Either, via the left, the switch S fails before the motor MA fails and then the
motor fails, or, via the right, both motors MA,MB fail (in arbitrary order). N

Extending SFTs with priority-and gates makes the fail-safe element syntactic sugar as an infalli-
ble and-gate can be constructed by having two con�icting pand-gates as successors. In Figure 3.6a,
using that two basic events do not fail simultaneously, we can be sure that P1 (A before B) and P2

(B before A) exclude each other (called: con�icting). Consequently, the condition P1 and P2 never
holds, and the and-gate never fails. We would like to emphasise that already one pand-gate su�ces
for infallible subDFTs. In Figure 3.6b, again using that two basic events do not fail simultaneously,

1A formal treatment is included in Chapter 4 on page 71.

3.3. Dynamic fault trees 35

SF

MAS MB

Figure 3.5.: Model for a crossing barrier with switch.

P1 P2

A B

(a) Constructing fail-safe subtrees with con�ict-
ing pand-gates.

C D

A
B

(b) Constructing fail-safe subtrees with a single
pand-gate.

Figure 3.6.: Examples for constructing fail-safe subtrees.
.

eitherA orB fail before bothA andB have failed, therefore, D always fails before C , thus the top
never fails.

Priority-or gate The priority-or gate (por-gate, POR) is featured in Pandora (temporal fault
trees1) by Walker et al. [WP09; WP10; EWG12]. We include the gate here for two reasons. First, it
allows us to re�ect the case study from e.g. [WP10] and [EWG12], and moreover, it allows a better
review of some choices regarding priority-and gates in Section 3.3.4 on page 40.

The por-gate fails if the �rst successor fails before any of the other successors have failed. Notice
that a (binary) por-gate is a kind of dual to the binary pand-gate, as a por-gate with successors A
and B has failed if and only if a pand-gate with successors B and A is infallible.

Example 3.12. Consider two computing devices and an actuator connected via a data link. The
system is considered operational as long as either of the devices is operational and no device blocks
the data link, e.g. by turning into a "babbling idiot"2. Each device can have a processor failure, which
causes no more activity of the device and therefore a failure of the device, or it can have a network
link fault, which turns the device into a babbling idiot if the processor is still working. A babbling
idiot leads to a direct system failure.

We depict the DFT in Figure 3.7. The top-level event fails if either both devices (D) fail, or an
babbling idiot (BI) blocks the data line. Either of the devices fails if either (D1) or (D2) fails. Device
i fails if either a processor (Pi) or the data link (Li) fails. A babbling idiot blocks the link if either of
the devices start babbling (BI1, BI2). Device i starts babbling if (Li) fails and (Pi) has not occurred
before. N

Spare gate Spare gates (SPARE) manage the usage of shared spare components and trigger the
activation of components. Whenever a successor element representing the currently used spare
module fails, the spare gate switches to the next available spare module, i.e. a successor element

1temporal fault trees ≈ static fault trees with priority gates
2Babbling idiots are devices which constantly send messages over a data link, thereby blocking communication of other

devices.

36 Chapter 3. On Fault Trees

SF

D BI

D1 BI1 D2 BI2

L1 P2P1 L2

Figure 3.7.: DFT showing usage of POR gates.

SF

W1 W2 W3 W4 Ws

T1 T2 T3 T3 TsR1 R2 R3 R4 Rs

Figure 3.8.: The DFT for a car with a spare wheel.

which has not yet failed and is not used by another spare component. The next element refers to
the ordering of successors from left to right. A spare module which is used is activated, that is, for
all basic events in the spare module, the failure rate changes from the passive to the active failure
rate.

Example 3.13. Consider a car and its wheels from Example 3.5 on page 32. Each wheel either
breaks due to a broken rim or due to a �at tire. The car fails if one of its wheels fail and cannot be
replaced. We depict the DFT in Figure 3.8.

As soon as the �rst tire or rim fails, the corresponding wheel Wi (1 ≤ i ≤ 4) fails. Now the
spare gate above claims the spare wheel Ws, thereby activating the wheel - and thus its tire and
its rim. Now, for a subsequent failure of another wheel Wj , j 6= i, its corresponding spare gate
cannot claim the spare wheel anymore, and therefore, the spare and then the system fail.

Please notice that assuming a passive standby for the spare wheel adds a — less likely — scenario
where the spare wheel fails before any of the primary wheels. In that case, nothing happens after
the failure of the spare wheel, but any failure on the primary wheels immediately causes the system
to fail. N

Originally, spare modules where limited to basic events, but these restrictions have been relaxed
in recent work, e.g. in [BCS10]. Components belonging to a spare module S are in passive standby
(with their passive failure rate) until S is activated. In the example above, everything connected to
a successor of a spare gate (the tire and the rim in the example above) is part of the spare module.
The following example shows the spare module of a more complex scenario.

Example 3.14. In Figure 3.9, we depicted a fragment of a DFT, with four spare modules, which
we indicate by the dotted boxes. N

Indeed, a successor of a spare-gate represents a spare module. Successors of a gate v are in the

3.3. Dynamic fault trees 37

Figure 3.9.: Depicting spare modules.

SF →

A B

(a) Restricting sequences via
sequence enforcers.

SF

A B

(b) Regarding sequences via
pand-gates.

Figure 3.10.: PAND vs. SEQ

→

⊥

A B

Figure 3.11.: Mutual exclusion with
SEQ

same spare module as v, unless v is a spare gate. A more detailed discussion of the spare modules
is given in Section 3.3.4.5 on page 46.

Sequence enforcer Sequence enforcers (SEQ) are used to guarantee a particular order of element
failures. Please notice that sequence enforcers are unlike common gates, as they do not have an
output, i.e. in the graph, nodes representing sequence enforcers have no incoming edges.

Example 3.15. Recall the water pump from Example 3.7 on page 32. The pump fails if a leakage
(A) occurs and the motor has a short circuit (B). This short circuit can only occur after the leakage.
In Figure 3.10a, we depict a DFT which correctly encodes the system. N

In [IEC60050], the sequence enforcer is only mentioned as an alternative to the pand-gate, which
might be misleading. Whereas the pand-gate is a special and-gate which only fails if some order
restriction is met, the sequence enforcer prevents certain orders from occurring. Consider the
following example.

Example 3.16. Consider the scenario from the last example. In Figure 3.10a the pump fails after
the failure of both A and B. The sequence enforcer ensures that the order in which A and B is
accordingly, i.e. B does not fail before A. In Figure 3.10b we depict a DFT, which fails after the
basic events A,B have failed in that particular order. The possibility that B fails before A does is
not excluded, however, the DFT does not fail if �rst B and then A occurs. N

Sequence enforcers are very powerful gates. Among other things, they can be used to express
mutual exclusion.

Example 3.17. Consider a binary sequence enforcer. The �rst successor has to fail before the
second successor may fail. As a consequence, if the �rst successor never fails, then the second
successor may never fail. In Figure 3.11, we depict a mutual exclusion of elements A and B, e.g.
encoding a valve stuck open or stuck closed (cf. Example 3.8 on page 32). N

We discuss using cold spares to model sequence enforcers in Section 3.3.4.8 on page 50.

38 Chapter 3. On Fault Trees

PSU TU

(a) Original notation

PSU TU

(b) Alternative notation

Figure 3.12.: A DFT for a system with a feedback loop.

SF

0.2

MAS MB

Figure 3.13.: The failure of the motor leads to a failing switch with probability 0.2

Functional dependency A functional dependency (FDEP) is an element type which forces the
occurrence of basic event failures. As sequence enforcers, functional dependencies have no pre-
decessors in the graph. The �rst successor of an FDEP is called trigger , all other successors are
dependent events. If the trigger fails, then the dependent events should also fail. This introduces a
second notion of basic event failure, namely internal or forced failures, alongside to the component
faults which we also refer to as external failures.

Functional dependencies are helpful to model feedback loops. We consider the example given in
[VS02].

Example 3.18. We consider the system with a feedback loop from Example 3.9 on page 32. We
give the corresponding DFT in Figure 3.12. N

Besides the ease of modelling, functional dependencies are often used in combination with spare
gates to work around the consequences of being a (indirect) successor of a spare gate. We discuss
this in Section 3.3.4 on page 40.
Remark 9. To simplify depicted DFTs, instead of the functional dependency node, we often use a
double dotted arrow to denote FDEPs. The origin of the arrow corresponds to the trigger, while
the target corresponds to the dependent event. We depicted the identical DFT with the alternative
notation in Figure 3.12b.

Probabilistic dependency The probabilistic dependency (PDEP) is an extension of the FDEP,
and is included in the work of Montani et al. [MPBC06; MPBC08; MPBV+06]. It consists of a trigger
input, as well as a non-empty set of dependent events, and contains a probability p.

As soon as the trigger of the PDEP fails, the dependent events fail, but only with probability p.
Thus, a PDEP with p = 1 is equal to an FDEP. For p = 0, the dependent events are certainly not
triggered and the PDEP is super�uous.

Example 3.19. Consider the switch from the barrier crossing (Example 3.6 on page 32). Besides an
event with a continuous failure distribution, we could assume that as soon as the switch is actually
used, it fails with a given (discrete) probability. We have modelled this in the DFT in Figure 3.13 N

3.3.2. Mechanisms in DFTs
When describing DFTs, it is useful to review the di�erent mechanisms which are described in DFT
elements.

3.3. Dynamic fault trees 39

• Failure propagation

The foremost mechanism in a DFT is similar to failure propagation in an SFT. However, we
see some di�erences. First of all, DFTs have two types of failure propagation. One is the
usual propagation to the predecessor (hereafter: failure combination) in the graph, another
is the propagation via functional dependencies (hereafter: failure forwarding). While failure
combination is never cyclic, failure forwarding may (indirectly) cause the failure to propagate
to the original element. Failure via functional dependencies also lets fail in two distinct
ways, either via failure combination as some condition over their successors, or via failure
forwarding.
Moreover in the next section, we discuss how adding priority and spare gates introduces
timing aspects and leads to questions about the temporal behaviour of failure combination
and forwarding.

• Module claiming

Spare gates require exclusive use of spare modules. This requires a mechanism to inform
other spare gates that a subsystem cannot be used anymore. We call this mechanism claim-
ing.

Example 3.20. Recall the car with the spare wheel from Example 3.5 on page 32. The spare-
gate for a wheel has to inform the other spare-gates as soon as it starts using the spare wheel,
that is, after its currently (and initially) used wheel fails. N

As soon as a used spare module fails, the spare-gate which used the module claims another
module (represented by the successor of the spare-gate) which is not yet claimed. Then, the
module is informed it is claimed. The module is then able to communicate to its predecessors
that it has been claimed and is no longer available to these other spare-gates. We say that
a spare-gate uses a module if the gate is active, it claimed the module, and it and has not
claimed another spare module.

• Activation propagation

To realise the support of reduced failure rates in case a component is standby, DFTs introduce
an activation mechanism. Spare modules are initially considered inactive. Active spare-gates
propagate the activation signal to the spare module they use. Inactive spare gates do not emit
any activation signal to any of the spare modules. Thus, as soon as an already active spare-
gate starts a successor, all BEs in the spare module are activated. It is important to notice
that FDEPs do not propagate the activation signal.

• Event prevention

With sequence enforcers, certain failure combinations can be explicitly excluded from the
analysis. This is not limited to ruling out speci�c orders of basic event, but can also be applied
to restrict certain claiming resolutions, although, in many cases, it requires ingenious fault
trees.
Moreover, cold standby components do not fail before activation, which leads also to a kind
of event prevention.

3.3.3. �antitative analysis of DFTs
DFTs are subject to the same quantitative measures as their static counterparts. As the ordering
of the events in�uences the failure of the elements and the failure rate of subsequent events, the
minimal cut set approach is not applicable to DFTs. Many di�erent solutions have been proposed
and are brie�y sketched in Section 3.5 on page 67.

Besides the need for other algorithms, two additional measures for DFTs are useful. Whereas
static fault trees either do never fail or almost surely fail at some point, for DFTs, it may be that
after some sequences of all basic events, the fault tree has failed, and for others, the fault tree does
not fail. The simplest such fault tree is a PAND with two basic events, as depicted in Figure 3.14a.
For DFTs which have a non-zero chance of never failing, the MTTF as commonly de�ned may not
exist. To adapt to this situation, we propose the following two measures.

40 Chapter 3. On Fault Trees

SF

A B

(a) Simple order-
dependent DFT.

s0

s1 s2

s3 s4

1

2

2

1

(b) The corresponding CTMC.

0 2 4 6 8

0.2

0.4

0.6

0.8

1

RF

conditional RF

time

re
lia
bi
lit
y

(c) The reliability function plotted.

Figure 3.14.: Quantitative measures displayed.

• Probability of Failure PrF .
Describes the probability that eventually, the system fails. The following equality holds:

Pr
F

= 1− lim
t→∞

RF (t).

• Conditional MTTF (CMTTF)
Describes the expected time of failure under the assumption that the system eventually fails.

One eminent idea for de�ning algorithms is via a reduction of the DFT to a Markov chain. We
use a trivial reduction in the following example to illustrate the di�erent measures.

Example 3.21. Consider the DFT depicted in Figure 3.14a. We assume A to have a failure rate of
1 and B a failure rate of 2.

We build the CTMC depicted in Figure 3.14b as follows. Initially, we wait in s0 for the failure of
either A or B. After the occurrence of A, the CTMC is in state s1. Only B can still fail, which is
re�ected by the single outgoing transition from s1 to s2. If we are in s2, the top-level element has
failed. If B fails �rst however, the CTMC goes to state s3. A subsequent failure of A leads to s4.
The chance that the transition from s0 to s1 is taken equals 1/(1 + 2) = 1/3.

In Figure 3.14c we have plotted the reliability function. Indeed, in the limit, it equals 1− 1/3 =
2/3. We also plotted the conditional reliability function, which is obtained by considering the
subCTMC containing the states s0, s1, s2. Based on the conditional reliability function, we obtain
a CMTTF of 1.5, while the regular MTTF is in�nity. N

Reductions to other stochastic models are discussed in Section 3.5 on page 67.
Another notion found in the literature (cf. [TD04; LXZL+07]) for SFTs with PANDs is the notion

of minimal cut sequences, which is a generalisation of minimal cut sets. Indeed, it extends each cut
set with ordering information. This method is not correct in general, as we discuss in Section 3.3.4.1.

3.3.4. Semantic intricacies of DFTs
In this section, we discuss a selection of potential pitfalls of DFT analysis. As the necessity of formal
semantics has been stressed independently in, e.g. [CSD00; BCS07c], we do not repeat issues which
are due to missing semantics. Instead, we discuss the possible choices in the semantics and the
issues that arise if these choices are not carefully accounted for. A concise treatment of DFTs is
key in the development of tools and algorithms for quantitative analysis, as otherwise unexpected
results for DFTs are obtained. The presented intricacies are not independent of choices made in
the semantics. However, great care was taken to present a broad range of possible choices for
semantics. All intricacies originate from possibly undesired behaviour of, or claims made about,
existing semantics.

An overview of the di�erent intricacies w.r.t. �xed semantics is given in Section 3.5 on page 67.

3.3.4.1. Distribution of PANDs over ORs

This �rst issue is a common mistake which lies at the hart of issues arising with minimal cut
sequences. It is commonly assumed that the two DFTs depicted in Figure 3.15 are equivalent,

3.3. Dynamic fault trees 41

SF

BA C

SF

BA C

Figure 3.15.: Invalid distribution of or-gate over pand-gates.

which they are not. Consider the following order of failing basic events BAC . The DFT on the
right-hand side fails, as A fails before C fails, and thus either of the two PANDs fail, causing the
top-level element to fail. The DFT on the left-hand side does not fail, as the failure ofB causes that
the right child of the pand-gate fails before the left child.
Remark 10. In connection with minimal cut sequences, the cut sets for both DFTs in Figure 3.15
are given by {A,B} and {A,C}. The cut sequences are then {AB,AC}. For the right-hand side,
the information that C should not fail before AB and B not before AC is missing.

3.3.4.2. The necessity of a causal ordering

Many sources from the literature assume that both failure combination and forwarding is instan-
taneous. That is, as soon as a basic event fails, all predecessors whose fail condition is ful�lled fail,
and all dependent events which are triggered fail. Both predecessors and dependent events may
themselves cause failing elements in the fault tree.

This might lead to priority gates whose successors fail simultaneously, in which case it is often
unclear what exactly is the semantics of a priority gate in case of simultaneous failures. However,
this can be resolved by using a clear de�nition, e.g. here we assume that the priority gates fail if its
inputs are triggered simultaneously.

A similar issue appears for spare gates. Multiple spare gates can fail at once, which is usually
caused by the instantaneous failure propagation. The claiming of spare gates is then ill-de�ned,
as an ordering is required for the claiming. We call this situation a spare race. Spare races can be
resolved in numerous ways.

However, important in this context is the importance of respecting a causal order, as illustrated
by the following example.

Example 3.22. Consider the following thought-experiment as depicted in Figure 3.16. Consider
three spare-gates (A, B, C). The failure of P causes a spare race between A and B. Now assume
that A wins the race and claims the spare modules S. Spare-gate B does not have any available
successors left, and therefore fails. By failure combinationD fails as well. The failure ofD triggers
the failure of Z , which means that C enters the spare race. With the assumption that claiming and
failure propagation are both instantaneous, which means that C is racing at the same point to get
a spare component. C however cannot win, as we used that A claimed it in the argument before.

We now consider some backward reasoning, showing that the failure of P and assuming that
C claims S does not invalidate any property. If C claims S, then certainly Z must have failed. As
we consider the initial failure of P , the only reason why Z fails is that D failed. D only fails if B
failed. B fails if Y fails — B cannot claim S as it is claimed by C . Y indeed fails, as P causes Y to
fail. N

The example given shows the need for some causal ordering. Notice that three mechanisms
played together in the given example:

• Failure combination (X → A, Y → B, Z → C and B → D).

• Failure forwarding (P → {X,Y }, D → Z).

• Successful claiming (A→ S) and unsuccessful claiming (B → S).

42 Chapter 3. On Fault Trees

BA C

X Y ZP S

D

Figure 3.16.: Part of a DFT to illustrate missing causality.

Introducing a notion of causality for one of these mechanisms indeed resolves the issue described
above under the assumption that common syntactical restrictions regarding the spare modules are
applied. We discuss the syntactical restrictions on spare modules in Section 3.3.4.5 on page 46. A
full discussion on which mechanisms should include a causal ordering is out of scope of this thesis.
In the next paragraph, we brie�y discuss the most-used method for implementing a causal order.

Causal and temporal ordering We observe that in DFTs, a notion of ordering is already em-
bedded, e.g. in the de�nition of priority gates. This is usually interpreted as a temporal ordering,
which leads to two di�erent notions of ordering in DFTs.

However, one implementation of causal ordering is by assuming (in�nitesimal) time steps for
applying cause-e�ect relations. Thereby, only one order relation is present in the DFT. Moreover,
this resembles the real behaviour of the modelled system, at least when applied to claiming or
failure forwarding.

Example 3.23. Recall the feedback loop between a thermal and a power unit, as discussed in
Example 3.18 on page 38. The failure of, e.g. the power unit triggers the failure of the thermal
unit. Indeed, we could rephrase this and write that the power unit causes the subsequent failure of
the thermal unit. We furthermore recall the car with a spare wheel from Example 3.5 on page 32.
Indeed, we could describe the mechanism by writing that the claiming of the spare wheel by any
of the gates causes the spare wheel to be unavailable for any subsequent replacements. However,
if we inspect the failure combination in Example 3.6 on page 32, the failure of both motors does
not happen after the last motor has failed, but exactly with the failure of the last motor. N

Remark 11. The distinct applications of failure combination and failure forwarding often go along
the lines sketched in the previous example. However, strictly splitting these two types of failure
propagation in DFTs is troublesome, as FDEPs are also used because they are typically able to
transfer failures from one spare module to another, without being subject to exclusive claiming or
activation, cf. the examples in Section 3.3.4.5 on page 46.

We furthermore observe that a causal ordering is a partial ordering. The standard interpretation
of basic events places them in a total order, therefore, the standard interpretation of the temporal
gates also uses this total order. If the causal order is resolved by a temporal argument, the semantics
of a temporal gate are a�ected by the resolution of the causal order.

Example 3.24. Consider the DFT depicted in Figure 3.17. Assuming a causal ordering for failure
forwarding, the following situation arises. An initial occurrence of C causes subsequent failures
of A andB. Depending on the order of A and B, T fails. If we assume here that the causal order is
resolved by a (total) temporal order, than A and B fail in some order, but not simultaneously. This
causes a non-deterministic failure-behaviour of T , due to the (common cause, thereby simultane-
ous) failure of C . N

Thus, combining causal and temporal ordering leads to new questions. As an example, we may
ask, which events can occur simultaneously. It could be argued that the in�nitesimal time steps are
almost surely not identical and that thus, failures of events due to causal dependencies do not occur
simultaneous. But arguing the other way around is also possible, i.e. by stating that the forwarding

3.3. Dynamic fault trees 43

T

A B C

Figure 3.17.: Causal order and temporal ordering combined.

T

X Y

A

⊥

B

⊥

B′

(a) The reference DFT.

T

Y

A

⊥

B′

(b) After elimination of the left
or-gate.

T

X

A

⊥

B

(c) After elimination of the
right or-gate.

Figure 3.18.: Illustrating the e�ect of ordered failure combination.

is not chaotic and might model deterministic behaviour whose timing is well-de�ned, and that any
assumption ruling out such cases ignores potential interesting corner cases.

Moreover, especially the combination of the — often unexpected — causal relation due to failure
combination and the temporal conditions of the gates leads to DFTs that are hard to analyse. In
particular, gates do not only fail upon their failure condition being ful�lled, but they also in�uence
the possible interleavings of gate-failures. In the next example, failure combination is assumed to
be totally ordered. Put it di�erently, no two gates fail simultaneously. If this ordering is assumed
to be a temporal ordering, seemingly equivalent DFTs have di�erent interpretations.

Example 3.25. Consider the DFT depicted in Figure 3.18a. Please notice that X fails if and only
if A fails, as A is the only failable successor. Therefore, we could expect that changing the �rst
successor of T to A does not change the semantics. The resulting DFT is depicted in Figure 3.18b.
Analogously, the elimination of Y yields the DFT depicted in Figure 3.18c, and by an analogous
argument, we presume it is equivalent.

We reconsider the reference DFT (Figure 3.18a). Under the assumption that the failure combi-
nation is totally ordered and that we use a temporal ordering for this, after a failure of A, either X
fails before Y or Y before X . Whether the pand-gate T fails is depending on the used ordering.
Now, the two "simpli�ed" DFTs di�er fundamentally. In Figure 3.18b, the �rst successor of T (A)
surely fails before the second successor (Y). This leads to a failure of T . In Figure 3.18c, the second
successor of T (A) surely fails before the �rst successor of T (X). Therefore, T does not fail. N

The embedding in claiming yields also room for di�erent interpretations, which we do not dis-
cuss here. To summarise, while merging a causal ordering with a temporal ordering seems natural
and appropriate in many situations, it leads to delicate issues when interpreting DFTs. In particular,
it seems more natural to assume true concurrency semantics for failure combination.

3.3.4.3. Claiming and non-determinism

In the last section, we saw that we might introduce non-determinism to handle the embedding
of a causal order in a temporal order. Moreover, spare races might be resolved as being non-
deterministic. Some authors have argued against non-determinism in fault trees, e.g. Merle et al.
in [MRLB10] argue that especially critical infrastructures should be designed as deterministic.

On the other hand, especially in systems where human action is involved, policies might not
be as precise (or precisely followed) that we could consider the system deterministic. Moreover,

44 Chapter 3. On Fault Trees

FTA is not only applicable to existing systems, but might also be applied during design time, as
described in [VS02]:

“ 6. Use of FTA to assist in designing a system. When designing a system, FTA
can be used to evaluate design alternatives and to establish performance-based design
requirements. In using FTA to establish design requirements, performance require-
ments are de�ned and the FTA is used to determine the design alternatives that satisfy
the performance requirements. Even though system speci�c data are not available,
generic or heritage data can be used to bracket performance. This use of FTA is often
overlooked, but is important enough to be discussed further (...) ”During design-time, the lack of speci�c data might be handled by non-determinism due to under-

speci�cation. Nevertheless, we agree that it is valuable to have support for deterministic claiming
policies in DFTs.

Non-deterministic models may be resolved by assuming a probability distribution over the possi-
ble resolutions of the non-determinism. In [CSD00], a uniform distribution is assumed. This choice
is accounted for by the assumption that the spare-modules have equal properties. This assumption,
however, is not enforced by the semantics. Moreover, in [CSD00], spare modules are always basic
events.

We give an example where the non-determinism can be resolved by any distribution - and there-
fore by the uniform distribution - as the outcome for each resolution is equivalent. We then show
that many minor changes to the DFT cause systems in which the way of resolving spare races
a�ects the behaviour of the DFT.

Example 3.26. Consider the DFT given in Figure 3.19a. The DFT describes a hypothetical com-
munication system consisting of two radios R1 and R2, which both have to be operational. Each
radio consists of an antenna (A1 and A2, respectively) and a power unit (P1 and P2, respectively).
Both power units have their own power adaptor (PA1 and PA2, respectively). The power adaptors
are connected to a common power supply (PS). Moreover, each power unit can use one of the two
spare batteries (B1, B2). We assume that the failure distributions of B1 and B2 are identical.

In case PS fails, some kind of spare race is triggered. However, as there are spares for both P1

and P2, the actual order of claiming has no in�uence on the system. Even if there exists only one
(available) spare module, each ordering of the spare race yields equivalent outcomes, as the second
power unit which tries to claim a battery would fail, and therefore, the whole system would fail.

However, we could also assume that the system only fails if both radios have failed, i.e., if SF
is an and-gate (or a spare gate, as depicted in Figure 3.19b), instead of an or-gate. In that case,
having only one spare module potentially leads to di�erent outcomes, either because one of the
antennas might have failed before the spare race, or due to di�erent failure distributions for the two
antennas. Please notice, that with two available spare modules - and without the assumption that
the failure distributions of the spare modules are identical, the outcome might also be dependent
of the way the spare race is resolved. N

Besides the given example, if we consider subtrees as spare modules, then even isomorphic spare
modules might behave di�erently upon claiming, given that some events of the module already
failed before, without causing the failure of the whole spare module. Such modules fail potentially
sooner after claiming than their fully operational counterparts.

Non-deterministic claiming allows to construct non-deterministic failure propagation, which
can than be used arbitrarily throughout the DFT.

3.3.4.4. Early and late claiming

Conceptually, there are two important di�erences between claiming and activation.

1. The moment a module is being used somewhere is not necessarily the moment it is activated.

2. Components which are not subject to exclusive claiming might also be inactive or active.

In this section, we discuss the former. The latter is described in the next section.
One may think of numerous scenarios in which spare modules get assigned to a dedicated task

without actually performing the task, e.g. scenarios in which hardware is manually replaced. If we

3.3. Dynamic fault trees 45

SF

R1 R2

P1

PA1

A1
P2

PA2

A2

B1 B2PS

(a) Both radios required for operation.
SF

R1 R2

P1

PA1

A1
P2

PA2

A2

B1 B2PS

(b) The second radio is redundant.

Figure 3.19.: DFT of a communication system.

limit this discussion to existing DFT behaviour, then this distinction is visible in DFTs with nested
spare gates, i.e. spare modules which contain spare-gates. In particular, we can think about three
di�erent claiming behaviours in those cases where a used spare module of an inactive spare gate
fails:

Early claiming. The claiming behaviour of a spare gate is independent from its activation status.
It is ensured that an operational spare gate has claimed an operational successor.

Late claimingwith late failing. Inactive spare gates do not claim a successor. As soon as a spare gate
is activated, it is ensured that the gate has claimed a subsystem, otherwise it fails upon activation.
Inactive spare gates never fail.

Late claiming with early failing. Inactive spare gates do not claim a successor. It is ensured that
an inactive and operational spare gate has an available successor, otherwise it fails with the last
successor becoming unavailable.

We illustrate the di�erence in the next example.

Example 3.27. Consider the DFT depicted in Figure 3.19b, originating from a communication
system as described in Example 3.26. We assume here that the second radio R2 is in passive standby.

Consider the failure of just PA2. If we assume early claiming, then the power unit of the second
radio directly claims some batteries, which are then not available any more for P1. If, on the
contrary, we assume late claiming, then P2 does not claim any of the batteries. Only after the

46 Chapter 3. On Fault Trees

failure of R1 and the subsequent activation of R2, P2 tries to claim a battery. With early failing, P2

fails if either both B1 and B2 have failed or either of them have failed and the other is claimed by
P1. With late failing, P2 fails only if it fails to claim something upon activation of R2. N

Which behaviour �ts best depends on the use case and cannot be �xed in general. We notice that
both behaviours have some semantical consequences which go beyond the described situation.

On one hand, late claiming introduces failure due to claiming or activation, respectively. While
with early claiming, a spare-gate is only claiming after a successor has failed, and therefore, it does
not fail to claim without a successor failing at the same moment. With late claiming with early
failure, spare gates may fail due to successors being claimed by other spare gates. Moreover, the
claiming may then cause spare races, which results in event propagation and claiming becoming
interdependent. Analogously, for late claiming with late failure, spare gates may fail upon acti-
vation. Thereby, activation may cause spare races, and event propagation and activation become
interdependent.

The next example shows a scenario for failure upon claiming and failure upon activation.

Example 3.28. We continue with Example 3.27. We consider the subsequent occurrence of PS B1

B2.
First, we assume late claiming with early failing. P2 does not claim any battery as it is not yet

active. P1 thus claims B1. After the failure of B1, P1 claims B2. Now, no successor of P2 is available
anymore and it has not claimed anything, thus it fails.

Second, we assume late claiming with late failing. As above, P1 claims B1 and P2 does not claim
anything. After PS, After the failure of B1, P1 claims B2. The failure of B2 causes the failure of P1,
and R2 is activated. Now P2 is activated. As it can not claim any successor, P2 fails. N

On the other hand, using late claiming allows uniform treatment of the two mechanisms, which
reduces the complexity of the behaviour especially in DFTs without nested spares, as a spare mod-
ule is active if and only if it is claimed. Early and late claiming are generally incomparable w.r.t.
the common quantitative measures on DFTs.

3.3.4.5. Spare modules revisited

In this section, we continue discussing di�erences between claiming and activation. We focus on
the precise extent of spare modules and the consequences thereof w.r.t. claiming and activation.

We start by restricting spare modules to basic events, as this is the original and most widespread
variant. Activation and claiming coincide here. Thus, to activate a component, it has to be claimed.
On the other hand is claiming exclusive, which leads to work-arounds to model system behaviour
with DFTs. These work-arounds are not good practice as they are hard to understand.

Example 3.29. We consider a system consisting of two radios, which fail as soon as their power
supply fails. The power supply can be replaced by a power generator, which is powerful enough to
drive both radios. The failure rate of the power generator switches rises as soon as the generator
is used, i.e. as soon as either of the primary power supplies fail. In Figure 3.20 we depict di�erent
DFTs for the system.

In Figure 3.20a, as soon as the primary power supply fails (P1 and P2, respectively), the corre-
sponding radio (R1, R2) claims the power generator Ps. If the primary supply of the other unit
fails, the DFT assumes the system fails, as the usage of the power generator is exclusive. Thus, the
depicted DFT fails to model that the power generator is able to power both radios.

In Figure 3.20b, as soon as one of the primary power supplies fails, the radio claims their “con-
nection” to the power generator (s1 or s2). However, only the connection is activated. The power
generator is stays thus either active or passive, independent of the failure of the primary power
supplies.

In Figure 3.20c, we give a work-around. The �rst unit with a failed power supply claims and acti-
vates the power generator. If the power supply of the other unit fails as well, it uses the connection,
which fails with the power generator. Depending on the exact failure propagation behaviour, a fail-
ure of the power generator before the second primary power supply fails might cause the power
unit which used the power generator before to claim the connection (s). However, this connection
would then directly fail. N

3.3. Dynamic fault trees 47

SF

R1 R2

P1 P2 Ps

(a) The power generator can only be used by one
radio.

SF

R1 R2

P1 P2

s1 s2

Ps

(b) The power generator never switches from
passive to active.

SF

R1 R2

P1 P2Ps s

(c) The DFT is using a workaround.

Figure 3.20.: Di�erent attempts of modelling a shared power generator.

A straightforward solution to overcome the restrictions of exclusive claiming would be given
by propagating activation in reverse direction through FDEPs. Upon activation of the dependent
event, the trigger of such FDEP is then activated as well. However, there are also scenarios where
such a reverse through-put is not wanted, cf. Example 3.18 on page 38.

If we allow more general spare modules, then we also see scenarios in which a module is activated
under given circumstances, but does not add to the failure of the spare module with which it is
activated. This is illustrated by the following example.

Example 3.30. Consider a spare pump in an industrial environment where a failing ventilator
(vnt) of the pump doesn’t a�ect the pump itself, but leads to failures elsewhere in the system. The
ventilator is activated together with the pump. The DFT is depicted in Figure 3.21. N

Up until now, we have been rather imprecise about the precise interpretation of spare modules.
We recall the accurate description depicted in Figure 3.9 on page 37. There, the spare modules were
independent, i.e. unconnected, trees. In this section, we saw that this restriction leads to work-

SF

A

B

p2p1

⊥

vnt. oth.

Figure 3.21.: DFT with an element whose failure does not contribute to its module.

48 Chapter 3. On Fault Trees

Figure 3.22.: Dependent spare modules.

arounds which do not agree with the hierarchical way DFTs should be created. Spare modules can
be generalised from spare module trees to independent acyclic graphs, which simpli�es modelling,
cf. Figure 3.21. However, dropping independence yields multiple open questions. We review the
DFT in Figure 3.22. There, spare modules are no longer represented by a unique represting gate.
It remains open what happens if one of the primary spare modules fail. We do not cover further
details in this thesis, as any extension towards this requires dedicated treatment and is not present
in any existing semantics.

3.3.4.6. Selection of priority gates

In standard DFTs, as described e.g. in [VS02] or [IEC60050], only priority-and gates are described.
However, these sources do not clarify the proposed behaviour in case two inputs fail simultane-
ously. Both inclusive and exclusive pand-gates are found in the literature, see Table 3.2 on page 70.
Furthermore, priority-or gates, though not as common as priority-and gates, simplify the modelling
of speci�c situations.

In the following, we also consider the simultaneous-and gate, which has less practical relevance
and is not a priority-gate (it is commutative) but eases the subsequent argumentation. Moreover, we
consider the standard OR and AND. We start with depicting the behaviour of the gates in Table 3.1.
Here, we describe the situation of two inputs, A and B, failing. Three scenarios are possible: A
occurs before B, A occurs at the same moment as B, or A occurs after B. These three situations
are listed in the table as t(A) < t(B), t(A) = t(B) and t(A) > t(B), respectively. For each gate
G(A,B), the shaded area depicts the situations in which G(A,B) is considered failed.

t(A) < t(B) t(A) = t(B) t(A) > t(B)

A B A,B B A

AND(A, B)
OR(A, B)
SAND(A,B)
PAND≤(A, B)
PAND<(A, B)
POR≤(A, B)
POR<(A, B)

Table 3.1.: Behaviour of several binary gates with given occurrence of their inputs.

In the following, we assume instantaneous failure propagation, and that we are allowed to have
AND and ORs. We observe the following.

3.3. Dynamic fault trees 49

SAND(A,B)

X1 X2

A B

(a) SAND from PAND≤.

PAND≤(A,B)

X1 X2

A
B

(b) PAND≤ from POR≤.

POR≤(A,B)

X

A B

(c) POR≤ from PAND≤.

Figure 3.23.: Using inclusive priority gates to simulate other inclusive gates.

If we add one of the inclusive priority gates, then the other inclusive gate as well as the sand-gate are
syntactic sugar.

We show how the gates can be emulated by a series of other gates. In Figure 3.23a we use that
requiring t(A) ≤ t(B) and t(B) ≤ t(A) is equivalent to t(A) = t(B). In Figure 3.23b, we restrict
the failure propagation of the POR by the requirement that bothA andB have failed. In Figure 3.23c
we route the input of A to both inputs of B. Please notice that only the last construction does not
work for non-instantaneous failure propagation.

With the inclusive priority gates, we cannot simulate exclusive priority gates.

This statement can be deduced by noticing that all available gates fail whenever both inputs fail
simultaneous. By an inductive argument, it is impossible to construct a subtree with two inputs
whose top-level element does not fail if the inputs fail simultaneous.

With the exclusive POR, we can simulate all described priority gates.

Constructing an exclusive PAND with an exclusive POR is done analogously to the inclusive case
(cf. Figure 3.23b). Assuming we can use a sand-gate, an inclusive POR can be constructed as de-
picted in Figure 3.24a. It remains to show that we can indeed construct a sand gate. Using exclusive
PORs, we depict a possible construction in Figure 3.24b. We can use (exclusive) pand-gates as they
can be simulated. To see why this construction is correct, let us �rst assume that A and B occur
simultaneously. As the PANDs Z1, Z2 are exclusive, they do not fail, therefore, Y does not fail.
On the other hand, X fails, and therefore, the top level exclusive POR has a left child which fails
strictly before the right child fails. Now, if only A or B fails, then no further gates fail. If �rst A
fails andB afterwards, thenZ1 fails, and therefore Y fails. AlthoughX does also fail, the exclusive
nature of the top level POR gate prevents the failure propagation. The remaining case where �rst
B and then A fails is analogous.
Please notice that we can get from exclusive to inclusive gates because the standard AND and OR
are, in some sense, inclusive gates as well.

With the exclusive PAND, we cannot simulate any other of the described priority gates.

To substantiate this, we show the following two statements independently.
• With the exclusive PAND together with AND and OR, we cannot simulate the exclusive POR.

The por-gate fails already after the failure of just A. Furthermore, we observe that no com-
bination of just AND and OR su�ces to model the POR. Thus, any solution uses at least one
pand-gate. Such a PAND fails only if both successors have failed, and this was not simultane-
ous. Let t1 denote the moment the �rst successor of such a PAND failed and t2 the moment
the second successor failed. The PAND has to fail after just the occurrence of A, thus A fails
at t2, and t1 6= t2. However, then there has to be an event which failed at t1, however, we
considered a scenario with just A failing, and A fails not at t1.

• With the exclusive PAND together with AND and OR, we cannot simulate any inclusive priority
gate.

50 Chapter 3. On Fault Trees

POR≤(A,B)

=

D1

<

D2

B
C

(a) POR≤ from POR< and SAND.

SAND(A,B)

X Y

Z1 Z2

A B

(b) SAND from exclusive gates.

Figure 3.24.: Using the exclusive POR to simulate inclusive gates.

Using the statements above, it su�ces to show that we cannot simulate the inclusive PAND.
As above, any simulation requires the usage of the exclusive PAND. The exclusive PAND only
fails after the failure of the non-simultaneous failure of its two successors. Now, if we consider
the simultaneous failure ofA andB, then we have only one moment of failure, so none of the
exclusive PAND gates fail. Due to coherency, we can thus assume that no exclusive PANDs
are present in the candidate subDFT, and that it is therefore no simulation of the inclusive
PAND.

If we assume that the failure combination is not instantaneous, the used constructions are not
necessarily valid, cf. Section 3.3.4.2 on page 41. With instantaneous failure combination, we get the
full expressive power only when using the exclusive POR-gate, as it cannot be simulated by any
other combination of gates, and the exclusive POR moreover su�ces to simulate the other gates
(in combination with AND and OR).

3.3.4.7. Under-approximation of exclusive-or

We recall from Section 3.2.3 on page 31 that xor-gates induce non-coherent behaviour, which is
also not present in DFTs. For static fault trees, this is often circumvented by assuming or-gates for
xor-gates. Whereas this approach is guaranteed to under-approximate the system performance for
SFTs, this approach is not suitable for DFTs, as shown in the following example.

Example 3.31. Consider the DFT depicted in Figure 3.25. We assume the or-gate X is used to
model an x-or gate. We consider the sequence BCD. Whereas the real system (with an exclusive
or behaviour) fails after the additional occurrence of A and then E, the DFT cannot fail anymore
as X is considered failed, thus Y and Z and thereby the ordering requirement of the PAND is
violated. In this particular example, using an or-gate to model xor-behaviour over-approximates
the system performance.

Please, notice that the precise behaviour of the pand-gate in case one of the successors is non-
coherent is unspeci�ed. Therefore, we use a somewhat verbose DFT in which we circumvent any
unspeci�ed behaviour. N

The di�erence is caused by the presence of elements such as PAND, where failed children may
prevent the failure propagation of their parents. As SFTs are also DFTs, using or-gates for xor is
neither guaranteed to be under- nor over-approximating the system performance.

3.3.4.8. Emulating sequence enforcers

Both [BCS10] and [MPBV+06] do not include sequence enforcers, as they claim that the induced
behaviour of a sequence enforcer, supposedly, can be modelled by cold spares. We claim that only
a small, yet interesting, fragment can be modelled. First, we give a positive example.

3.3. Dynamic fault trees 51

SF

Z

Y

X

A B C D E

Figure 3.25.: DFT in which an or over-approximates the system performance.

SF

→

A B

(a) A DFT with sequence enforcing.

SF

A B

(b) An equivalent DFT using cold spares.

Figure 3.26.: Using a cold spare gate for sequence enforcing.

Example 3.32. Consider the DFT in Figure 3.26a. We observe that the system fails after A and B
have failed, and that the failure of B can only occur after the failure of A. The DFT in Figure 3.26b
is equivalent. The spare gate ensures that B can not fail as long as A has not failed, and only after
A and B have failed, the spare gate fails. N

The idea is that the activation mechanism is able to enforce a sequence of events, by assuming
cold standby. However, we identify three situations in which such a replacement is not appropriate.
We think that the �rst two are due to limited expressive power of spare gates w.r.t. sequence
enforcing, while the last seems to indicate that other ways of modelling yield equivalent DFTs.

The �rst situation is mainly due to the exclusive claiming of spares. This prevents succesfully
combining spare-gates and sequence enforcers.

Example 3.33. Consider the DFT depicted in Figure 3.27a. LetB andC be modules with in passive
standby. By using the sequence enforcer, we restrict C such that C can only fail after B. Please
notice that A does not have to fail �rst, as B and C are in passive standby. In Figure 3.27b, we
depict the DFT after the transformation as described in Example 3.32. We notice that this DFT
has, besides questionable syntax, also two semantic issues. First, the claiming of B by the spare
gate Y prevents S from ever claiming B, and second, C requires two di�erent dormant failure
distributions, as it is both in cold and in passive standby. N

The second situation yields di�erent results in case one of the restricted inputs is a gate.

Example 3.34. Consider the DFT depicted in Figure 3.28a. It is similar to the DFT for mutual
exclusion, as given in Figure 3.11 on page 37. If we use the scheme from Example 3.32, we obtain
the DFT depicted in Figure 3.28b. Now, initially, as A did not occur, the spare module with basic
elements B, C is not active. Under the assumption of cold standby, B and C are thus disabled.
However, in the original DFT, only the failure propagation throughD is restricted. Therefore, both

52 Chapter 3. On Fault Trees

S

→

A B C

(a) A sequence enforcer and a spare gate.

S Y

A B C

(b) Erroneous attempt with two spare gates.

Figure 3.27.: Combining sequence enforcers and spare gates.

→SF
D

A B C

(a) A sequence enforcer with a gate as restricted
input.

SF

D

A B C

(b) An erroneous attempt with cold spares.

Figure 3.28.: Sequence enforcers with a gate below restricted inputs.

B and C are initially enabled. Only the sequences BCA and CBA violate the restriction imposed
by the sequence enforcer. N

To see why it is impossible to simulate the DFT depicted in Figure 3.28a with spare-gates, we
notice that with spare gates, we can only activate a module once. Modules which are active are
never deactivated. Reconsidering Example 3.34, we notice that for the sequence BAC , C is active
initially, and deactivated after the occurrence of B. After A has occurred, C is activated again.
This is not possible to emulate with spare gates.

The third case considers multiple sequence restrictions.

Example 3.35. In Figure 3.29, we display issues when multiple sequence enforcers are used. The
DFT in Figure 3.29a ensures that C fails only after A and B have failed. A straight-forward ap-
proach would be to use cold spares instead of sequence enforcers, depicted in Figure 3.29b, using
the same scheme as in Example 3.32. However, this is incorrect due to the claiming behaviour
induced by spare gates. Consider the failure of �rst A and then B. The failure of A causes the
spare to claim C , which means that the failure of B causes the corresponding spare gate to fail,
as it cannot claim C anymore. However, this scenario can be resolved di�erently. As indicated by
the phrasing above, the DFT in Figure 3.29c is equivalent to the DFT in Figure 3.29a. This DFT can
then be translated as expected to Figure 3.29d. N

Although in many situations, cold spares are not suitable to directly model sequence enforcing,
sequence enforcers can be emulated in several situations.

Notice that the straight-forward application of sequence enforcers restricts the occurrence of a
failure to happen only after certain failures. If, however, we want to restrict a failure such that
it only occurs before some other failure, then a solution using sequence enforcers requires a less-
straightforward solution, which is similar to the construction for mutual exclusion, cf. Figure 3.11
on page 37. Instead of this construction, priority gates may yield a less verbose solution. In the
following example, based on a case study from [WP10], we show both approaches.

Example 3.36. Consider a primary system which is monitored with a sensor, which can fail (sensor
fails, A). If the sensor detects problems (wrong data, B) in the primary system, the system is reset.
If (reset error, C) has occurred, the system reset yields a dangerous situation. We assume that the
combination of wrong data and the reset error leads to a system failure. We depict a corresponding

3.3. Dynamic fault trees 53

SF

→ →

A B C

(a) Using sequence enforcers.

SF

A B C

(b) Attempt with cold spares.

SF

→

A B C

(c) Using alternative representation with se-
quence enforcers.

SF

A B C

(d) Equivalent solution with cold spares, directly
obtained from the alternative representation
for sequence enforcers.

Figure 3.29.: Comparing sequence enforcers and cold spares for multiple sequence enforcers.

DFT using a sequence enforcer in Figure 3.30a. The occurrence of �rst A and then B is prevented,
as it would cause a failure of X , which is not allowed due to the sequence enforcer.

In [WP10] however, this was modelled analogously to the DFT presented in Figure 3.30b.
Using priority-or, we model that the fallback system is initialised if (B) occurs, provided the

sensor did not fail �rst, as then, the wrong data issue is never detected. In other words, POR(B,
A). The initialisation of the second system is correctly modelled, however a more direct solution
would have been to add a sequence enforcer excluding from any detection from a failed sensor. N

3.3.4.9. Behaviour of failed spare gates

Some semantics allow functional dependencies to have dependent gates instead of only dependent
events. Gates then fail either when the type-dependent condition on their successors is ful�lled, or
if triggered. In semantics where dependent gates are not allowed, a simple construction, depicted
in Figure 3.31, is used to model the same behaviour. Moreover, semantics which allow dependent
gates may use the same internal representation.

→

⊥

X SF

A B C

(a) Using a sequence enforcer.

SF

X1

B A C

(b) Alternative with a POR.

Figure 3.30.: Emulating sequence enforcers using priority-or.

54 Chapter 3. On Fault Trees

SF

S

A B C

(a) Functional dependent gates.

SF

X

Y

S

A B C

(b) Representation via extra event.

Figure 3.31.: Internal representation of dependent gates.

SF

Z

S

X1 X2

A B Y1 C Y2 D E

Figure 3.32.: Deactivation of spare modules via POR.

This naturally leads to a situation in which the spare gate is expected to not claim any further
spare modules. This construction is a speci�c case, where even though the spare gate itself has
not yet failed, any future failure of the spare gate has no in�uence on the occurrence of the system
failure. Thus, one would expect that the spare gate does not "care about" failing, i.e. no new modules
are claimed to prevent the failure. In terms of Example 3.26 on page 44, one would not change
batteries of a broken radio. However, many semantics do not support such a deactivation of a
spare gate, neither due to failure forwarding nor due to the "don’t care"-scenario. We notice that
this can be circumvented, again by an overly complex DFT. The method used closely resembles the
usage of the POR in Example 3.36 on page 52.

Example 3.37. The DFT depicted in Figure 3.32 shows a DFT with a spare gate S, which does not
claim any further spare modules after the failure ofA. This is realised by bringing the spare modules
in an infallible state. Concretely, the occurrence of A is forwarded to the special events Y1, Y2,
whose failure prevents any future failure of X1 and X2. Therefore, the spare gate S will never
claim any new spare module after the occurrence of A. As a consequence, D is never activated
after an occurrence of A. N

Remark 12. The example shows a solution for only one spare gate. In case multiple spares share
spare modules, the DFT gets more complex, as we need POR gates for each spare gate and additional

3.4. Case studies using DFTs 55

gates and basic events to keep track of the claiming state. As such a construction depends on the
precise semantics1, we do not present the general case here.

3.3.4.10. Evidence

Often, from a generic fault tree, certain scenarios are derived in which certain states (or faults) are
assumed in the system. This is particularly interesting when considering survivability of a system,
i.e. the behaviour of the system given a speci�c bad state. Using so called evidence has a couple of
advantages, as described by Haverkort in [Hav14]:

“ Given Occurrence Of Disaster (GOOD) models start with a disaster, hence, there
is no need to model the "failure process" or the "disaster probability."
GOOD models avoid:

• estimating rare-event disaster probabilities
• estimating attack success probabilities
• sti�ness in model evaluations

”A more detailed discussion of this is found e.g. in [CH05]. The current version of DFTCalc (cf.
Section 3.5.5 on page 69) supports evidence.

Evidence can be naturally modelled by using constant fault element in a DFT. However, it re-
quires semantically well-de�ned handling of the multiple "simultaneous" failures at initialisation.
This is especially important if primary modules of spare gates fail, as it may lead to an under-
speci�ed state w.r.t. the spare usage of the di�erent spare gates.

Summary

For designers of DFT tool support, the intricacies presented above show some of the possible
choices - and consequences - for the numerous decisions for which the literature has not yet agreed
upon a common solution. Furthermore, the intricacies show the expressive power of the DFTs, in-
cluding the possible workarounds for situations which are not directly supported by DFTs. Such
workarounds lead to even harder to understand instances, but also to a class of DFTs where from
the designers view, it is though to make assumptions about the structure of the DFT. The list of in-
tricacies also yields welcome support for examining and comparing existing semantics in the next
section.

3.4. Case studies using DFTs
In this section, we present existing DFTs from the literature. We aim to show the wide variety of
features. We therefore include instances of the following families of DFTs.

• The DFT example from the NASA handbook on fault trees [VS02] (HECS) and the railroad
crossing example from the Arrangeer project (RC).

• The most commonly used benchmarks for tools (MCS, FTPP, CAS).

• Two benchmarks with an interesting structure w.r.t. FDEPs (AHRS, NDWP)

• Example for conditional claiming of spares (3S).

• A case study of a plant (SAP), of a airplance controller (MAS), and of a maritime propulsion
system (FDS).

• Generated DFTs from an architecture language (SF).

We choose to not to include the following DFTs:
1In fact, whether this construction is possible in the general case also depends on the chosen semantics.

56 Chapter 3. On Fault Trees

HECS

IFPSF
BSF

3

MSF

P1 P2
SWHW BUS1 BUS2

A1 A2 AS

M3M2M1 M4 M5

MIU1 MIU2

Figure 3.33.: Hypothetical Example Computer System DFT.

• Examples given in this thesis, as they were mostly crafted to show particular features.

• FTHPA [DBB92] as the structure is covered by FTPP and MAS, and the used modelling seems
outdated.

• Cascaded Pand [BD05b; YY08] benchmarks, as the structure of these synthetic benchmarks
is also found in SAP.

• The controller from the automtive industry given in [Sch09], as it is too large to present here.
The structure of the dynamic parts is also captured by other benchmarks.

• Fault trees for railroads (MOVARES) as discussed in [GKSL+14], as they are too large and
details are con�dential.

• The X2000 Avionics system architecture DFT as presented in [TD04], as it only features one
spare-gate in the overall DFT.

It is important to notice that the large case studies we exclude here are largely static, i.e. only
a fraction of the fault trees contain dynamic gates. These are interesting for rewriting, but do not
suit our discussion of features present in DFTs.

After the introduction, we give a short summary of the features and structures we found in the
existing benchmarks.

The failure rates are not in the scope of this section. Full details of models used for benchmarking
are found in Section 6.3.1 on page 165.

3.4.1. Hypothetical Example Computer System
The Hypothetical Example Computer System (HECS) is a system described in [VS02] as an example
of modelling with DFTs. It features a computer system consisting of a processing unit, a memory
unit and an operator interface consisting of hardware and software. The subsystems described
above are connected via a 2-redundant bus. The processing unit itself consists of two processors
and an additional spare processor which can replace either of the two processors. The processing
unit requires one working processor. The memory unit contains 5 memory slots, with the �rst
three slots connected via a memory interface and the last three connected via another memory
interface. Memory slots either fail by themselves, or if all connected interfaces have failed. The
memory unit requires 3 working memory slots. We depict the fault tree in Figure 3.33.

3.4. Case studies using DFTs 57

RC

controller

2

sensor barrier

s1 s2 s3 s4netw

motorsswitch

sw
mp ms

Figure 3.34.: Railroad Crossing DFT.

3.4.2. Railroad crossing
The Railroad Crossing (RC) is a DFT which gives an example DFT for failures at level crossing,
introduced by Guck et al. in [GKSL+14]. The railroad crossing fails if one of its modules fail. There
are three modules.

• The barrier, which consists of a primary motor with a cold spare motor, as well as a switching
unit for changing the motor. The barrier fails if either both motors fail, or if the switching
unit fails before the failure of the �rst motor.

• The controller, which is considered a basic component.

• The observation module, consisting of four sensors. These sensors communicate over a net-
work. In case the network fails, the sensors are considered to have failed. The observation
module is operational as long as three sensors are operational.

The DFT is depicted in Section 3.4.2.

3.4.3. Multiprocessor Computing System
The Multiprocessor Computing System (MCS) is another model for a computer. The original source
considered modelling dependability via Petri nets [MT95]. It considers computing modules (CMs)
consisting of a processor, a memory unit and two disks. A computing module fails if either the
processor, the memory unit or both disks fail. In the presented MCS, there are two computing
modules connected via a bus. Additionally, a memory unit is connected to the bus, which can be
used by both computing modules in case the original memory module fails. The MCS fails, if all
CMs fail or the bus fails.

Translations into DFTs are given by both Crouzen [Cro06] and Montani et al. [MPBC06].
Crouzen changed the original model by adding the assumption that usage of the spare memory
component is exclusive, i.e. only one computing module can use the spare memory component.
Montani et al. additionally added a power supply, whose failure causes all processors to fail with
a certain probability. Based on the model, we assume this probability must be one. The DFT is
depicted in Figure 3.35.

Arnold et al. [ABBG+13] took the version as presented by in [MPBC06] and scaled it to four
computing modules, by assuming two independent groups of computing modules with indepen-
dent spare memory and power supplies. Another variant is given by Codetta in [Cod05]. Here,
it is assumed that the two disks are divided into a primary and a backup disk. Moreover, a third
computing module is added.

3.4.4. Cardiac Assist System
A fault tree for a system for cardiac assistance is presented by Vemuri et al. in [VDS99]. Based
upon this, Boudali and Dugan present a DFT for a Hypothetical Cardiac Assist System (HCAS) in

58 Chapter 3. On Fault Trees

System

CM
BUS

CM1 CM2

MEMORY1 MEMORY2

M1 M2 M3

DISK1 DISK2

D11 D12 D21 D22PROC1 PROC2

PS

Figure 3.35.: Multiprocessor Computing System DFT.

[BD05b]. The system contains four modules which are all required for correct operation of the
HCAS.

• A processing module consisting of a processor with a spare processor in warm redundancy.

• A motor module consisting of two motors of which at least one has to be operational.

• A pump module consisting of two units (L, R). The pump module fails if �rst L and then
R fails. Both L and R consist of a pump. They share a spare pump P3 which can take over
either of them.

• Some switches whose failure propagates to the processors.

Remark 13. We did not �nd any explanation why the ordering of pump module failures is im-
portant. Interestingly, even without any operational pump, the HCAS might still be operational
according to the DFT. Besides demonstration purposes - the DFT includes all standard DFT ele-
ments, it is possible that the modelled failure for HCAS is not whether the HCAS is operational,
but whether it leads to a dangerous situation. In case the pumps fail in reverse order, the system
might get into a degraded state which is no direct threat to the patient.

Another DFT inspired by the original description in [VDS99] is given by Boudali et al. in
[BCS07a]. The Cardiac Assist System (CAS) consists of the same four modules as the HCAS. Two
modules have changed however:

• The order in which the pumps fail does not in�uence the failure of the pump unit anymore.

• Changing a motor requires a switching unit which can fail as well, cf. Example 3.6 on page 32.

We depict the CAS DFT in Figure 3.36.

3.4.5. Fault Tolerant Parallel Processor cluster
The fault tolerant parallel processor (FTPP) cluster is a processor architecture for extra reliability.
DFTs for di�erent con�gurations of such architectures are given by Dugan et al. in [DBB92]. They
describe a particular instance of an FTPP cluster with 16 processing elements (PE) partitioned
into four groups of PEs. Each of these groups contains an additional network element, which is
connected to all processing nodes within the group and to all network elements of other groups. On
a logical level, the cluster contains 4 triads, each containing three PEs and a spare PE. The cluster
has failed as soon as one of the triads fails. Then, with respect to redundancy, three di�erent
con�gurations are considered.

3.4. Case studies using DFTs 59

SYSTEM

PUMPS

PUMP1 PUMP2

PA PB PS

CPU

P B
TRIGGER

CS SS

MOTOR

SWITCH MOTORS

MA MBMS

Figure 3.36.: Cardiac Assist System DFT.

Configuration I Con�guration I considers the triads to span over the four groups, with each
triad consisting of three PEs from the groups one, two and three, and the spare PE from group
four. All spare PEs are considered in hot standby. Notice that the representation uses PANDs to
model the spare behaviour, as the original source did consider spare modules to always model cold
standby.

Configuration II Con�guration II considers each triad in a di�erent group, with the spare PEs
for each triad in the same group as the rest of the triad. Again, all spare PEs are considered in hot
standby. Again, no spare gates were used. A simpli�ed version which does not consider failures of
NEs is given by Xiang et al. in [XMTY+13].

Configuration III Con�guration III is likewise to con�guration I, except that the spare PEs are
assumed to be in cold standby, and that spare gates are used.

3.4.6. Mission Avionics System

The Mission Avionics System models parts of the electronics architecture for use in military aircraft
as proposed by Boeing. Modelling the system as a DFT was done by Dugan et al. in [DBB92].

In [DBB92], no hot spares were available. Therefore, modelling hot spares with a shared pool
required a work-around. The next example describes the used modelling of pooled spares in hot
standby. Notice that it was assumed that each processor has identical failure rates, as otherwise,
this type of modelling would not be appropriate.

Example 3.38. Consider a system consisting of two modules, where each module has 2 processors,
of which one is redundant. For extra redundancy, two additional processors are given which can
replace any of the processors in any of the modules. A processor is replaced as soon as it fails. A
direct solution using hot standby is given in Figure 3.37a.

We observe that for the �rst processor fault to occur, each of the processor faults has an identical
e�ect on the subsequent state of the system. Either, one of the processors in of the modules fails,
which leads to claiming one of the processors from the pool, i.e. the size of the pool of available
spare processors is decreased by one. Otherwise, one of the processors in the spare pool fails,
which also leads to one less available spare processor. For the second fault, the same reasoning
holds. After the �rst two faults, no spare processors are left and each processor which fails causes
a spare gate to fail.

In [DBB92], the same behaviour is modelled by a DFT as depicted in Figure 3.37b. Instead of six
basic events, ten are given. The six basic events labelled E1 . . . E6 describe the processor faults
of any of the six processors under the assumption that at most one processor has failed. The
basic events B1 . . . B4 describe processor faults of the processors which are assigned to one of the
modules and cannot be replaced by spare processors anymore. The sequence enforcers ensures that

60 Chapter 3. On Fault Trees

SF

A1 A2

B1 B2 B3 B4 C1 C2

(a) Using spare-gates to model spare sharing.

SF

A1 A2

2

X

→S1 →S2 →S3 →S4

E1 E2 E3 E4 E5 E6

B1 B2 B3 B4

(b) Work-around with sequence enforcers.

Figure 3.37.: Pooled spares remodelled.

faults B1 . . . B4 cannot occur before the spare pool is empty. The functional dependencies re�ect
that none of the processors can fail anymore as being spare elements after the pool is empty. N

In Figure 3.38, we depict the version with spare gates, as given by Vemuri et al. in [VDS99].
Besides general hardware (MEMory, DataBus, etc.), the model features a large number of general
purpose processing units with dedicated task, with some spare processing units capable to replace
any of the failed units.

3.4.7. Active Heat Rejection System
The Active Heat Rejection System (AHRS) DFT is introduced by Boudali and Dugan in [BD05a].
Heat rejection systems are commonly found in air- and spacecrafts. The DFT, depicted in Fig-
ure 3.39 models a system with two redundant thermal units containing a pump unit. Each pump
unit has a dedicated spare pump in cold standby. Moreover, the two pump units share an extra
spare pump. The primary pumps are connected to a power generator, which moreover powers the
dedicated spare pump of the other power unit, respectively. The shared spare pump has a dedicated
power generator.

3.4.8. Non-deterministic water pump
The Non-Deterministic Water Pump is a synthetic case study by Boudali et al. [BCS07a] to show
the support for non-determinism in the presented approach. We depicted the DFT in Figure 3.40 on
page 62. The system consists of two pump units (P1, P2) each consisting of a regular pump (A1, A2)
and a backup pump system (S1, S2). The backup pumps systems share a spare pump (B3). The
backup pumps primary modules (B1, B2) have a common cause failure (X). The assumed non-
determinism is due to the spare race in case X fails.

3.4.9. Sensor-filter
The Sensor-Filter benchmark (SF) is obtained from the Compass tool set [BCKN+09]. Given an
AADL1 model of a system, the tool set searches for combinations of basic faults which lead to the
prede�ned con�gurations in the given system. These combinations are represented in form of a
DFT, cf. Bozzano et al. [BCCK+10]. The sensor-�lter benchmark is a synthetic example, which
contains a number of sensors and �lters which are connected to each other. In Figure 3.41 on
page 62, a DFT for a particular instance with one sensor and one �lter and four fault con�gurations
is given.

1Architecture Analysis & Design Language, see [FGH06]

3.4. Case studies using DFTs 61

MAS

CPU

SO2 PG SMSO1CW

CWA CWB

CWAev CWBev

SO1A SO1B

SO1Aev SO1Bev

SO2A SO2B

SO2Aev SO2Bev

PGA PGB

PGAev PGBev

SMA SMB

SMAev SMBevS2S1

VMB

VMB1 VMB2

VMS MB

MB2MB1 MB3

DB

DB2DB1 DB3

MEM

MM1 MM2VM1 VM2

VM1A VM1B

VM1Aev VM1Bev

VM2A VM2B

VM2Aev VM2Bev VMS1 VMS2

Figure 3.38.: The Mission Avionics System DFT.

SF

A

A1 A2

B

B1 B2 SP

P1 P2 P3

Figure 3.39.: Active Heat Rejection System DFT.

62 Chapter 3. On Fault Trees

SF

P1 P2

A1 A2
S1 S2

B1 B2 B3X

Figure 3.40.: Non-Deterministic Water Pump DFT.

TLE

CFG1 CFG2 CFG3 CFG4

G2G1
E1

E3E6 E5

E7 E2
E4

Figure 3.41.: Sensor-�lter DFT

Remark 14. Based on the description of the system, we doubt that the usage of PAND is intended.
The PANDs originate from the translation of failures which are reached via a sequence of faults.
The latter faults are, according to the description given, only enabled after the former. This event
restriction is not modelled in the given DFT. According to the given DFT, the latter events are
enabled from the start and their failure brings the system in a fail-safe state, cf. Example 3.16 on
page 37.

3.4.10. Section of an alkylate plant
A Section of an Alkylate Plant (SAP) was modelled as DFT by Chiacchio et al. in [CCDM+11b],
based on an undescribed1 fault tree from an unspeci�ed safety report. The PANDs are inserted
"as the alarm equipment considers the time of occurrence of a fault." The spare gates is used to
model cold standby of a spare battery. Notice that two of the basic events (BE1 and BE3) are
originally assumed to be discrete probabilities. This could be modelled using either PDEP gates or
by analysing the four DFTs obtained by replacing both BE1 and BE3 with both constant failures
and fail safe elements and combining the obtained measures accordingly.
Remark 15. We observe that assuming BE12 and BE3 to have a discrete probability leads to the
following unmentioned behaviour. In those cases where BE1 holds, it holds from time t = 0, and
so does IE6 and IE4. Then, IE1 -and thus, the system- can only fail if IE3 holds from t = 0. This
can only happen if also BE3 holds, as the probability that IE9 holds from t = 0.

Here, we give the fault tree and assume constant failure rates for BE1 and BE3.
1Only a technical speci�cation of the basic events is given.
2According to the original source this is a "human error."

3.4. Case studies using DFTs 63

TE

IE2

BE1

BE2

IE1

IE3 IE4

IE6 IE7IE5 IE8IE9
BE3

BE4 BE5 BE6 BE7 BE8 BE9 BE10 BE11 BE12

Figure 3.42.: Section of Alkylate Plant DFT.

SF

OmS

IF

ST

Om

OmP

SensFail

SFail

PFail NoInput

Figure 3.43.: Simple Standby Sys-
tem DFT.

3.4.11. Simple Standby System

The Simple Standby System (3S) is a benchmark, for fault trees expressed in Pandora, described by
Walker and Papadopoulos [WP10]. It features a monitored system which in case a sensor indicates
errors in the primary system switches to the standby system. We give the description of the system,
following the phrasing of [WP10] but changed the ordering to re�ect the top-down approach.

• System failure is caused by a combination of both Omission- Primary (OmP) and Omission-
Standby (OmS).

• Omission of Standby (OmS) occurs if it has been triggered and it su�ers an internal failure
(IF), if it does not get triggered (Om), or if there is no input (NoInput).

• An internal failure occurs if the standby has been triggered and has failed (SFail).

• Standby is triggered (ST) if the sensor detects omission from primary before the failure of
the sensor occurs (SensFail).

• Omission of trigger occurs if the sensor fails before or at the same time as an omission of
primary.

• Omission from Primary is caused by an omission of input (NoInput) or internal failure (PFail).

The Pandora expression for the fault tree uses gates for simultaneous failures and exclusive
PANDs, which is not supported by any of the available tools. However, these expressions are
always connected via an or-gate, which yields the inclusive PAND. In Figure 3.43, we give the
version based on the inclusive pand-gate, which can be handled by DFTCalc. We notice that the
POR gate was orinally supposed to be exclusive, however, a simultaneous failure almost surely
does not occur.

64 Chapter 3. On Fault Trees

M

M

C

P1

P3

P2

V4
V2

V1

V3

SF1 E1

E2SF2

CF

Figure 3.44.: Schematic representation of the Fuel Distribution System.

3.4.12. Fuel Distribution System
A fuel distribution system for a maritime propulsion system is given by Edifor et al. in [EWG12].

The system, depicted in Figure 3.44, consists of two engines. Each engine has its own fuel tank.
Between the tank and the corresponding engine, a pump is used to pump the fuel from the tank
to the engine. A �owmeter in front of the engine monitors the fuel �ow. In case it is interupted, a
controller is informed. The system has a spare pump, which is connected to both tanks and both
engines. In case the controller is informed of a missing fuel �ow via either of the sensors, the
system is recon�gured such that the spare pump replaces the broken pump. This is done via two
valves, respectively. One of the valves is in front of the primary pump and reroutes the fuel to the
spare pump, the other behind the spare pump to reconnect the engines fuel supply with the spare
pump. Please notice that the spare pump can replace either of the pumps, but not both.

The system fails if either of the engines fails. An engine fails if it either has an internal failure,
or has no fuel supplied. No fuel is supplied if the primary pump fails (internally) and the primary
pump is not replaced by the external pump. The primary pump is not replaced if

• the spare pump successfully replaced the other pump, or

• the corresponding sensor has failed before the failure of the pump, or

• the controller has failed, or

• one of the two corresponding valves have failed before the failure of the pump.

The spare pump is assumed to be in cold standby, so it can only fail after it is put into operation.
The failure of valves means that they are stuck, i.e. after their failure, they cannot be used during
recon�guration. Otherwise, their failure has no impact on the system.
Remark 16. The authors present also a fault tree, given as a Pandora expression. We notice that the
given fault tree does not match the description of the system, e.g. a failure of �rst pump 1 and then
valve 3 leads to a failure of engine 1. Moreover, the spare pump is described to be in cold standby,
however, this cannot be modelled in Pandora, cf. also Section 3.3.4.8 on page 50.

In Figure 3.45 on page 66, we present a DFT based on the original fault tree but adapted such
that it matches the given description. We do, however, assume P3 is in hot standby, as it is in the
original fault tree.

We describe the fault tree here only for engine 1. Either the engine fails internally (IE1) or there
is no fuel delivered to the engine (NFE1). No fuel is delivered either with pump 1 and pump 3
(NFE1WP3) or without pump 3 (NFE1NP3).

Let us �rst unfold the case with pump 1 and 3: No fuel is delivered if pump 1 and pump 3 have
failed and engine 1 has claimed pump 3 (E1P3). Engine 1 claims pump 3 in two di�erent scenarios.
Either pump 1 has failed before pump 2 (P1BP2) and nothing which prevents recon�guration of
pump 1 to pump 3 (NP1CP3) has happened before that, or pump 2 has failed without claiming pump
3 before pump 1 (P2TP1NC) and then pump 1 failed and nothing which prevents recon�guration
of pump 3 to pump 1 (NP1CP3) has happened before that. Pump 2 fails to claim pump 3 either
if pump 1 claimed it �rst (which is not applicable in the case of P2TP1NC, or if something which
prevents recon�guration of pump 3 to pump 2 failed before pump 2.

3.4. Case studies using DFTs 65

Failures which prevent engine 1 from claiming pump 3 (NP1CP3) are a failed pump 3 or a re-
con�guration error (RE1), which is either a controller failure, a sensor failure of the �owmeter, or
valves 1 or 3 failing. For engine 2, this is analogous.

We now consider the case with pump 1 and not pump 3: No fuel is delivered if pump 1 has failed
an the engine cannot claim pump 3 anymore (NE1P3). This is the case if pump 3 has failed, or
engine 2 has claimed pump 3 (E2P3, analogous to the case E1P3) or a recon�guration unit does not
work anymore (RE1).

3.4.13. A brief discussion of the benchmark collection
Above, we’ve presented a collection of benchmarks. Here, we brie�y review the benchmark col-
lection.

We observe that in all benchmarks, the spare modules are basic events, none of the benchmarks
contain subtrees, or even nested spares, as spare modules. This seems partly due to the fact that
subtrees for spare modules are not supported by the original tools which used the benchmark.

• In, e.g. HECS (Figure 3.33 on page 56), memory failures are much deeper developed than
processor failures, which might be due to - now outdated - restrictions on spare modules.

• In, e.g. CAS (Figure 3.36 on page 59), the primary modules of one of the spares is not in-
dependent. While this is not problematic in this particular case, nesting such a DFT below
another spare leads to unde�ned behaviour1.

• In, e.g. AHRS (Figure 3.39 on page 61), the shared spare pump and its power supply are
connected via an FDEP, but the power supply could be also be a spare module together with
the spare pump. This would also allow the power supply would be only activated upon usage,
likewise as in Example 3.29 on page 46, without resorting to extended semantics for FDEPs.

Spare races can occur in MCS (Figure 3.35 on page 58) and FTTP. Resolving the non-determinism
due to claiming is potentially problematic in these benchmarks - depending on the assumed failure
rates and the usage of evidence. In many other benchmarks, the common cause failures directly
lead to system failures, which makes the resolution of spare races obsolete.

Please, notice that although [VS02] explicitly described the usage of FDEPs to resolve cyclic
dependencies introduced by feedback loops, none of the benchmarks actually have such loops.
Therefore, the lack of causal ordering as discussed in Section 3.3.4.2 on page 41 has no e�ect on
the obtained results. Ordered failure combination, has only an e�ect on the result of the SAP and
FDS benchmark (Figure 3.42 on page 63).

To the best of our knowledge, none of the benchmarks encodes a non-coherent system, so no
or-gates are used to model xor-gates. Changing the behaviour of failed spare gates would change
some results, e.g. in the MCS benchmark (Figure 3.35 on page 58). Likewise, the comments about
the unclear behaviour w.r.t. evidence also apply on that DFT.

Furthermore, sequence enforcers were only used in older versions of some DFTs to model the
spare management. With tool support for the warm spare gate, sequence enforcers are not present
anymore. On the other hand, we’ve seen that in — at least — the sensor-�lter benchmark, sequence
enforcers would allow a more accurate modelling of the system behaviour. The usage of cold spares
to restrict the sequencing is not �awed in any of the benchmarks.

We observe that (correct usage) of priority gates is mostly used to model recon�guration, as it
gives more freedom then spare gates. On the other hand, without spare gates, warm spares can
only be modelled via extra basic events and sequence enforcers.

We notice that all presented benchmarks, except MAS and FTPP, were presented to accompany
the feasibility of some particular approach. The DFTs are therefore often compact and have only
a small static fragment. Based on fault trees in the Arrangeer and error models in the Compass
project, we claim that DFTs for many systems are indeed largely static, i.e. the vast majority of
elements is static, presumably even the vast majority of subtrees. This is substantiated by the fault
trees presented in [Sch09; GKSL+14; TD04]. Most descriptions of DFTs which accompany tools
for DFT analysis do not match the guide lines for hierarchically constructed DFTs — it seems that
many constructs are crafted to match the system, but not following a hierarchical approach. Some

1The formalisations in Section 3.5 on page 67 all exclude sharing successors of spare gates.

66 Chapter 3. On Fault Trees

SF

E1 E2

IE1 IE2

NFE1 NFE2

NFE1WP3NFE1NP3 NFE2WP3 NFE2NP3

NE1P3 NE2P3

E1P3E2P3

P1BP2XP2BP1XP1TP2X P2TP1X

P1TP2NC P2TP1NC

NP1BP3 NP2BP3

NP1CP3 NP2CP3

P1TP2 P1BP2 P2TP1P2BP1

P1∗ P2∗

P1∗ P2∗

P3∗

P3∗

RE1

VE1

V1 V3

SF1

RE2

VE2

V2 V4

SF2CF∗ CF∗

Figure 3.45.: Fuel Distribution System DFT.

3.5. Formalising DFTs 67

of these benchmarks are thus of limited value when it comes to assessing the practical relevance
of simpli�cation in Chapter 5 on page 113.

3.5. Formalising DFTs

In this section, we consider and compare several existing formalisations of DFTs.
It is important to notice that upon the introduction of DFTs (e.g. DFTs are used e.g. in , they where

not formalised. This has lead to an unclear meaning of speci�c fault trees, as outlined in [CSD00].
Since this initial formalisation, several others have been introduced which are not fully compatible
to each other. We discuss eight di�erent formalisations in greater depth. A tabular comparison of
speci�c features is given afterwards, in Table 3.2 on page 70. We do not include the formalisations
as used in the two Monte-Carlo based approaches presented in [BNS09] and [CCDM+11a], and the
de�nition as given in [RS14]. Attempts for using minimal cut sequences as presented in [TD04]
and in [LXZL+07] are excluded as they these are not suitable to describe the behaviour of DFTs, as
discussed in Section 3.3.4.1 on page 40.

3.5.1. Fault tree automaton construction

The �rst formalisation of the semantics of a DFT is given by Coppit et al. in [CSD00]. It gives
an operational semantics-style axiomatisation of DFTs, formalised in Z1. The semantics provides a
notion of a state of the fault tree, which contains information about the order in which elements
have failed as well as usage information for the spare gates. Then, for any two states s, s′ and a basic
event e, for a DFT in state s and the occurrence of e, it is formalised whether s′ is a valid resulting
state w.r.t. the semantics. Based on this, a fault tree automaton is constructed which describes the
non-deterministic transition system. Then, for a given fault tree automaton, the underlying CTMC
is de�ned, which enables us to calculate the reliability function of a fault tree by computing it on
the underlying (deterministic) CTMC.

The formalisation of PANDs is inclusive. FDEPs cause immediate propagation of the failure to
the dependent events. Triggers are allowed to be subtrees, while the dependent events should be
basic events. Spare gates require that their successors are basic elements. All such basic events are
required to have only functional dependencies, spare gates or sequence enforcers as predecessors.
Sequence enforcers are included in the most general form. In case of a spare race, non-determinism
occurs. Please notice that no notion of causality is included. In the translation to the CTMC, the
non-determinism is resolved by a uniform distribution as described in Section 3.3.4.3 on page 43.

Tool support in Galileo was presented in [SDC99]. Some of the underlying algorithms were
presented in [MCSD99].

3.5.2. Reduction to Bayesian Networks

A popular method to support quantitative analysis of (dynamic) FTs is based on a reduction some
kind of Bayesian Networks (BN) [Pea88]. We consider the reduction to Discrete Time Bayesian
Networks (DTBN) in [BD05b] and the reduction to Continuous Time Bayesian Networks (CTBN)
in [BD06] both by Boudali and Dugan, as well as the reduction to Dynamic Bayesian Networks
(DBN, [Gha98]) by Montani et al. in [MPBC06; MPBV+06; MPBC08]. The underlying idea is
to introduce random variables for each element in the fault tree. Random variables representing
gates are conditionally dependent on the random variables representing the children. Notice that
no cycles introduced by FDEPs are allowed in the DFT, as this would yield a cyclic BN. Basic events
are multi-valued variables, which encode not only whether they’ve failed, but also whether they
are active. This enables the integration of warm-standby.

Tools for Bayesian network analysis are widely available. The reduction to Bayesian Networks
allows several additional analyses on Fault trees, e.g. the most likely explanation analysis which is
not treated in other papers.

1A formal language based upon Zermelo-Fraenkel set theory[Spi92].

68 Chapter 3. On Fault Trees

3.5.2.1. Reduction to Discrete or Continuous Time BN

The reduction to a DTBN as described in [BD05b] divides the interval from t = 0 to t = T , where
T denotes the mission time, into n intervals. Failure events are then during an interval 0 ≤ i ≤ n,
instead of at a time point 0 ≤ t ≤ T . Notice that for limn→∞, the DTBN is equivalent to the CTBN
described in [BD06]. Obviously, the discretisation introduces some inaccuracies. On the global
level presented here, besides this inaccuracy, the two formalisms are equivalent.

Each gate is represented by a random variable. Conditional dependencies with all children are
given. For static gates, these conditional rules are directly derived from the truth table for these
gates. PANDs are assumed to be inclusive. FDEPs directly cause the failure of their dependent
events. The triggers may be subtrees, while the dependent events are assumed to be basic events.
Spare gates are assumed to have only basic events as successor. Sharing spares is not explained in
the paper. Moreover, common cause failures for spare modules is not handled.

3.5.2.2. Reduction to Dynamic BN

The encoding to a Dynamic Bayesian Network discretises the time, but instead of slicing, it assumes
discrete time points for each event.

For each element in the DFT, a DBN is introduced, which are merged into a single DBN after-
wards. During the merging process, the conditional probability tables are merged. For this process,
it is assumed that the conditional failure probability is equal to the maximum conditional failure
probability in the two merged nodes, given any condition - which introduces an error but yields
smaller tables. For the PAND, an additional variable is introduced which keeps track of the order-
ing. PANDs are considered inclusive. FDEPs are extended to PDEPs. Failures are instantaneously
propagated. Warm spare gates assume basic events as children. The behaviour in case of a spare
race is unspeci�ed. Sequence enforcers are not included. Tool support was included in the tools
DBNet[MPBC06] and Radyban[MPBC08]. However, none of these is publicly available at the time
of writing.

3.5.3. Reduction to Stochastic Well-formed Petri Nets

Stochastic Well-formed Coloured Nets (SWN) [CDFH93] are an extension to Petri nets. Bobbio et
al. [BFGP03] reduce parametric fault trees to SWNs. Parametric fault trees are SFTs with subtree-
replication, which yields a smaller state space by exploiting symmetry. This approach was ex-
panded to DFTs by Bobbio and Codetta in [BC04]. Moreover, repair via so called repair-boxes was
introduced. We only discuss ordinary DFTs here.

For each element in a DFT, a small Petri net is given, which has input-places and an output-
transition. That is, each DFT element operates based on the presence of tokens in its input places.
A failure of the gate causes a transition to �re which then places tokens in any predecessors of
the DFT. To compose a SWN for a DFT with multiple elements, the inputs and outputs are merged
according to the structure of the DFT.

Remark 17. The semantics of a SWN - as described in the references cited in [BC04] - allow only
one transition to �re at a time. Therefore, we assume that only one transition �res at once. SWNs
allow for priority assignments to select which transition to �re in cases where multiple transitions
are enabled. The presented semantics for DFTs however do not mention this.

Gate failures are ordered, as synchronisation between the elements is done via placing tokens,
the e�ect of any element failing is not simultaneously processed by the predecessors. The PANDs
are inclusive, FDEPs do not distinguish di�erent dependent events. Both triggers and dependent
events are assumed to be basic events. The spare gates assume basic events as successors. Any
sharing is implicitly assumed to be amongst symmetric spare gates using identical basic events
as spare elements. Thus, non-determinism during claiming is hidden. Warm and cold standby
are discussed, but their implementation remains unclear. Sequence enforcers are presented in a
general fashion, but their interpretation when putting restrictions on gates is di�erent. Instead
of invalidating a sequence, the gates are just delayed until the earlier gates (w.r.t. the sequence
enforcer) have failed. Tool support is presented, but not available any more.

3.5. Formalising DFTs 69

3.5.4. Reduction to GSPN
A reduction of DFTs to Generalised Stochastic Petri Nets (GSPN) [MBCD+94] is given by Codetta
in [Cod05]. The overall idea is to use a graph transformation for an element-wise reduction to a
GSPN. This GSPN can then be reduced to a CTMC using existing algorithms [Bal07].

In a �rst step, a place for each vertex is added. A marking on such a place means that the
element has failed. Each gate is then replaced by a subnet which places a mark in its output place
depending on markings in the input places. The standard semantics for GSPN are assumed, gates
thus fail ordered.

The static gates are trivially de�ned. For PANDs, an extra place checks whether the ordering
is respected. The ordering is assumed to be inclusive. FDEPs mark all dependent events failed,
in a non-deterministic ordering1. Warm spares are supported, but neither spare pool sharing nor
non-singleton spare pools are handled. The sequence enforcer requires all successors to be basic
events. Tool support is described, but not publicly available.

3.5.5. Reduction to a set of IOIMCs
Input/Output-Interactive Markov Chains (IOIMCs) are an extension of Interactive Markov Chains
suitable for a compositional design of Markovian processes. A reduction to IOIMCs is described
by Boudali et al. in [BCS07c; BCS07a; BCS10]. The overall idea is again to de�ne small IMCs for
each element in a fault tree, where inputs are encoded as transitions labelled with an input action
an the failure propagation is encoded by a transition with an output action. The encoding of the
complete DFT is then given by the parallel composition of these IOIMCs. Moreover, spare gates
distribute claiming and activation information via extra transitions. It is important to notice that
only one transition at a time can �re in IMCs, which means that all elements fail in some order.
The order is non-deterministic in the model.

The encoding of the static gates is straightforward. PANDs are non-inclusive (simultaneous
failures do not occur), FDEPs propagate their failures of the triggers to the dependent elements2.
Both triggers as well as dependent elements may be subtrees. Dependent gates are resolved by
extra internal transitions which are alike extra basic events connected to an or-gate, as discussed
in Section 3.3.4.9 on page 53. Spare gates have independent subtrees as spare modules. Spare gates
in spare modules are allowed and follow the late claiming with early failure mechanism. Sequence
enforcers are not included in the semantics.

It has tool-support, delivered by Coral[BCS07b], which is now replaced by DFTCalc[ABBG+13].
DFTCalc includes support for evidence, by replacing the gates with a constant failure.

3.5.6. Algebraic encoding
This section is dedicated to a formalisation of DFTs by an algebraic description, as described by
Merle et al. in [MRLB10; MRLV10; MRL14]. Similar e�orts are described by Walker in [Wal09;
WP10] and Schilling [Sch09]. However, those formalisations do not include spare gates and is
therefore excluded from the discussion here.

Static fault trees are trivially embedded into Boolean algebra. In [MRLB10], the authors use
earlier work which extends the Boolean algebra with temporal operators for before, inclusive be-
fore and simultaneous to formalise "priority DFTs with repeated events." These are static fault trees
with PANDs and FDEPs. "Repeated events" are used to emphasise that the underlying graph is
not necessarily a tree. Although the formalisation method supports both inclusive and exclusive
PANDs, the authors choose the inclusive variant as it "seems more coherent with the designers’
expectations." All failure propagation is immediate. The authors state that including "the concept
of ’non-determinism’ is hardly acceptable in the engineering practice." Furthermore, the authors
give a canonical representation for DFTs in the algebra, which extends minimal cut sets with or-
dering information, as well as a scheme for deducing the top-level failure distribution given fault
distributions. In [MRLV10], the authors use the same algebra for spare gates. The considered spare
gates only allow basic events as successors. It is explicitly assumed that the basic do not occur
simultaneous, which excludes common cause failures in spare gates. Activation is realised by con-
sidering two events - one with a warm and one with a hot failure rate and explicitly excluding

1It remains unclear how this non-determinism is resolved for the reduction to a CTMC.
2We follow [BCS07c; BCS07a] here

70 Chapter 3. On Fault Trees

the occurrence of both failures. Sequence enforcers are not included. Constant-failures are not
presented, although present in the algebra. The algebraic encoding has not yet publicly available
tool-support.

Table 3.2.: Comparing di�erent semantics for DFTs.

FTA CTBN DBN SWN GSPN IMC AE
Ord. failures yes no no yes yes yes no
Spare modules events events events events events subtrees events
Spare races yes no ? yes yes yes no
Pand-gate ≤ ≤ ≤ < < < ≤
Dep. events BE BE BE BE BE BE & gates BE
Seq. enforcer yes no cold spares yes no cold spares no
Por-gate no no no no no noa nob

PDEP no no yes no no no no
Replication event no no subtrees no no no
Evidence no no no no no no nob

Tool Galileoc no DBNetc,
Radybanc DrawNet unnamedc Coralc,

DFTCalc
no

Ord. failures: whether the gates fail ordered (either total or partial).
Spare modules: the type of spare modules supported.
Spare races: whether constructions which possibly lead to spare races are supported.
Pand-gate: whether the pand-gate is inclusive or exclusive.
Dep. events: the type of the non-�rst successors of an FDEP.
Whether sequence enforcers are supported. Cold spares means that SEQ is modelled via a cold

spare.
Por-gate: whether por-gates are supported.
PDEP: whether PDEPs are supported.
Replication: What subtrees are allowed to be replicated.
Tools based on the given semantics.

a Recently introduced in DFTCalc.
b Can be modelled directly within the framework.
c Not available at the time of writing.

4. Semantics for Dynamic Fault Trees

In this chapter, we introduce a denotational style semantics for DFTs. The rationale for introducing
yet another semantics, as well as the assumptions which led to the version presented in this thesis,
are discussed in the �rst section. The second section contains formal treatment of the semantics
of a DFT in terms of a Markov automaton. Based upon these semantics, the earlier mentioned
quantitative measures on DFTs are de�ned using the underlying Markov automaton and some
notions of equivalence are formalised. Furthermore, the chapter contains the outlines of state-
space reduction technique based on partial order reduction, which is useful to widen the de�ned
equivalence classes. We �nish the chapter by brie�y discussing some extensions to the presented
semantics.

4.1. Rationale
To formalise the simpli�cation of DFTs - the major topic of this thesis - a precise meaning of sim-
pli�cation is required. In this thesis, we choose to require the outcome of the simpli�cation process
to be a DFT which is equivalent w.r.t. the aforementioned quantitative measures. Any algorithm
which provides this simpli�cation can only be proven correct in the presence of a precise de�ni-
tion of DFTs. The class of DFTs whose semantics are well-de�ned should contain the common
constructs of shared spares and common cause failures. Notice that syntactic restrictions might
lead to more complex simpli�cation steps, as the simpli�cation should always yield a well-de�ned
DFT.

Based on the brief review of existing semantics in Section 3.5 on page 67, two candidates among
the existing semantics meet the requirement of being concise on a general class of DFTs. First,
the operational style semantics discussed in Section 3.5.1 on page 67 and second, the reduction
to IOIMC discussed in Section 3.5.5 on page 69. Please recall that these semantics are not fully
compatible to each other.

The lack of available tool-support for the semantics for the operational style semantics and the
restrictive spare modules, besides the lack of causal ordering, are major drawbacks for the usage of
the operational style semantics. For the IOIMC semantics, the ordered failure combination together
with the direct translation into IOIMCs yields a complex context in which rules have to be applied.
Furthermore, the late claiming yields additional scenarios which have to be handled correctly.

We therefore choose to de�ne semantics, with the following requirements.

• The semantics should yield a qualitative model to ease arguments, as also done in [CSD00].
The qualitative model should re�ect the trace-based view also used in Chapter 3 on page 27 in
which we discussed the e�ect of a trace of basic events on a fault tree. The qualitative model
should be subsequently translated into a quantitative model upon which the measures can
be de�ned. The quantitative model should support non-determinism.

• As DFTCalc is the only available state-of-the-art tool, the de�ned semantics should be com-
patible with the IOIMC semantics on a large and well-de�ned class, which should comprise
most of the case studies in Section 3.4 on page 55.

• Whenever the semantics are incompatible with the semantics of DFTCalc, it should yield
simpler semantics. It is bene�cial if the semantics are compatible with the operational se-
mantics.

For the de�nition of the qualitative model, we use a more denotational style of semantics, com-
pared to [CSD00]. Thus, given a state of the DFT and a basic event failing, the next state is de�ned.
For the quantitative model, we choose Markov Automata as they come with native support for
non-determinism.

72 Chapter 4. Semantics for Dynamic Fault Trees

As the IOIMC semantics use ordered failure combination which was embedded in the tempo-
ral ordering, we want to include ordered failures. Based on discussion introduced brie�y in Sec-
tion 3.3.4 on page 40, we assume the failure forwarding to be ordered and the failure combination
to be instantaneous. This yields semantics which are equivalent to the operational style semantics
if no functional dependencies are present. We can enforce compatibility to DFTCalc by using func-
tional dependencies instead of plain failure combination. We assume inclusive pand-gates as used
in other existing semantics, and only include inclusive por-gates as syntactic sugar. The more gen-
eral exclusive por-gates, as well as sequence enforcers and probabilistic dependencies are brie�y
discussed later in Section 4.5 on page 110. We assume early claiming, as this prevents failure from
activation or failure from claiming. The semantics are de�ned on a large class of DFTs. Some fea-
tures which are present in a single other semantics have been left out or only touched in Section 4.5
on page 110. These features are: 1. sequence enforcers present in the operational semantics, 2. the
probabilistic dependencies present in the Bayesian Network semantics, 3. The sharing of primary
spare modules with the top modules. Apart from these, the class of well-de�ned DFTs in the given
semantics is a superset of each set of well-de�ned DFTs w.r.t. any existing semantics.

4.2. New Semantics for Dynamic Fault Trees
In this section, we formalise the various mechanisms present in DFTs. After the formalisation of
DFTs from a syntactical point of view, we formalise failure combination and claiming on a restricted
class of DFTs. We de�ne the state of a DFT based on a sequence of basic events which have failed.
This yields a deterministic description of the next state.

We then cover functional dependencies and the mechanism of failure forwarding (internal
events). Resolving functional dependencies may introduce non-determinism, that is, for a chain of
failed basic events, there is no unique state of the DFT. We construct a transducer which encodes
the state space based on external and internal events and yields a qualitative model of the DFT.

The e�ects of activation and the quantitative information is added and during the transforming
from the functional transducer into a Markov Automaton (MA).

Moreover, we introduce the notion of a policy and describe some syntactic sugar which can be
added to ease the modeller’s life.

We do not cover sequence enforcers, probabilistic dependencies or por-gates in this section.

4.2.1. DFT syntax
DFT elements have di�erent types. We distinguish between types for inner nodes, called gates, and
types for sinks, called leafs.

De�nition 4.1 (DFT gate-types). The set Gates of DFT gate-types is de�ned as

Gates = {AND,OR, PAND, FDEP, SPARE} ∪ {VOT(k) | k ∈ N}.

Elements of such types are called and-gate, or-gate, priority-and gate(pand-gate), functional de-
pendency, spare(-gate), and voting-k-of-n gates, respectively. �

De�nition 4.2 (DFT leaf-types). The set Leafs of leaf-types is de�ned as

Leafs = {BE,CONST(>),CONST(⊥)}

. Leafs of such types are called basic events, given-failure element, and fail-safe elements, respec-
tively. �

The set Gates ∪ Leafs of element-types is the union of gate-types and leaf-types. We extend the
DFT with por-gates in Section 4.2.9 on page 98.

DFTs describe the behaviour of the system given the failures of components. For the stochastic
analysis we feature in this thesis, the active and passive failure distributions are of interest.

De�nition 4.3 (Component failures). A component failure ω is a triple ω = (id, FDa, FDp) ∈
N × DistrR≥0 × (DistrR≥0 ∪ {0}), with id a unique identi�er, FDa the active failure distribution,
and FDp the passive failure distribution. �

4.2. New Semantics for Dynamic Fault Trees 73

Remark 18. The identi�er is introduced for technical reasons, as a set of component failures would
otherwise not allow the presence of multiple failures with identical failure distributions.

In this thesis, we assume the active failure distributions to be an exponential distribution with
a rate λ > 0. Instead of writing FD = λe−λx · u(x), we write R(ω) = λ. We assume the passive
failure distribution either be an exponential distribution or the zero function. We therefore have
for any ω = (i, FDa, FDp) that

FDp = α× FDa with α ∈ [0,1].

We call α the dormancy factor of ω denoted αω .

De�nition 4.4 (Dynamic fault trees). A DFT FΩ over component failures Ω is a tuple FΩ =
(V, σ,Tp,Θ, top).

• V is a �nite set of elements
• σ : V → V ∗ gives for each element v a word representing the (ordered) successors of v.
• a type mapping Tp : V → Gates ∪ Leafs, Tp injective. If Tp(v) = K , we may write v ∈ K .
• The attachment function Θ: Ω→ {v ∈ V | Tp(v) = BE}, s.t. Θ is injective.
• top ∈ V is the top-level element. �

We drop the superscript Ω whenever it is clear from the context. We often abuse the notation
and write σ(v) to denote the set

{v′ ∈ V | ∃i ∈ N s.t. σ(v)i = v′}.

The degree of an element v is de�ned as the out-degree of v, i.e. deg(v) = |σ(v)|.

De�nition 4.5 (Graph of a DFT). LetF = (V, σ,Tp,Θ, top) be a DFT. We de�neE(σ) = {(v, v′) |
∃v ∈ V. v′ ∈ σ(v)}. ThenGF = (V,E(σ)) denotes the graph of F andG�F = (V,E(σ)∪E(σ)−1)
the undirected graph of F . �

We de�ne the predecessor set θ(v) = {v′ | v ∈ σ(v′)}, and the closures as

σ∗(v) = {v′ ∈ V | there exists a path from v to v′ 6= v in GF }

and

θ∗(v) = {v′ ∈ V | there exists a path from v′ 6= v to v in GF }.

De�nition 4.6 (Element hierarchy). Given a DFT F = (V, σ,Tp,Θ, top). The partial order R on
V induced by reachability on (V,E(σ)) is the element hierarchy of F . Formally, R ⊆ V × V with
(v, v′) ∈ R i� v′ ∈ σ∗(v). �

For any DFT F with elements V and K ∈ Gates ∪ Leafs, the set FK = {v ∈ V | Tp(v) = K}
contains the nodes of F of type K . For any element from v ∈ V , we sometimes write that v is a
K to denote that the type of v is K , i.e. Tp(v) = K .

Modules consist of sets of elements which are connected via module paths.

De�nition 4.7 (module path). Given a DFT F = (V, σ,Tp,Θ, top), a path p = v0e1v1 . . . envn
through G�F is a module path if

• ∀0 ≤ i ≤ n vi 6∈ FDEP, and
• ∀0 ≤ i < n vi ∈ SPARE =⇒ vi+1 6∈ σ(vi).

Let v, v′ ∈ V , we de�ne the set spmpF (v, v′) as {p = v0e1 . . . envn | pspare module path ∧ v0 =
v ∧ vn = v′}. �

The set SMRF of spare module representatives of a DFT F is SMRF = {v ∈ V | ∃s ∈ FSPARE. v ∈
σ(s)}. The extended module representatives of a DFT F is EMRF = SMRF ∪ {>}. The module
EMF,r represented by r with r ∈ EMRF is de�ned as

EMF,r = {v ∈ V | spmpF (v, v′) 6= ∅}

74 Chapter 4. Semantics for Dynamic Fault Trees

If EMF,r is represented by a r 6= top, then EMF,r is called a spare module|see module. We denote
these modules with SMF,r . Otherwise, it is called the top-module. We drop the subscript F when-
ever it is clear from the context. For every spare-gate s, we call σ(s)1 the primary spare module
representative and the spare module it represents the primary module.
Remark 19. The notion of spare modules is more general than in Section 3.3.4.5 on page 46, as we
do include elements connected to the module via undirected paths to be in the same module. This
more general treatment eases modelling and simpli�es some proofs.

De�nition 4.8 (Module relation). Given a DFT F = (V, σ,Tp,Θ, top). The module relation ./⊆
V × V is the smallest equivalence relation such that (v, v′) ∈./ if spmpF (v, v′) 6= ∅ �

Basic events which have no attached component failure are called dummy events. For a dummy
event e, we de�neR(e) = 0. In the other cases, we often identify basic events with their attached
component failure. For some basic event e with an attached component failure ω, Θ(ω) = e, We
writeR(e) forR(ω) and αe for αω .
Remark 20. Dummy events, unlike infallible elements, can be dependent events.

We recall from Chapter 3 that DFTs are acyclic. This, as well as other restrictions, is missing in
the de�nition above.

De�nition 4.9. We call a DFTF = (V, σ,Tp,Θ, top) well-formed if all of the following conditions
hold.

1. The DFT is acyclic.

GF is acyclic

2. Exactly the leaf types do not have successors.

∀v ∈ V σ(v) = ∅ ⇐⇒ ∃T ∈ Leafsv ∈ T

3. The threshold of the voting gate is between one and the number of successors.

∀v ∈ VOT(k) 1 ≤ k ≤ |σ(v)|

4. The top level element is not an FDEP.

Tp(top) 6∈ FDEP

5. FDEPs have no incoming edges.

∀v ∈ FFDEP. θ(v) = ∅

6. The second child of an FDEP is always a basic event.

∀v ∈ FFDEP. σ(v)2 ∈ FBE

7. FDEPs have exactly two successors.

∀v ∈ FFDEP. |σ(v)| = 2

8. Modules EMr are independent.

∀{r, r′} ⊆ EMR EMr ∩ EMr′ = ∅

9. Primary spare modules do not contain given-failure elements.

∀r ∈ SMR ∃s ∈ FSPARE r = σ(s)1 =⇒ SMr ∩ FCONST(>) = ∅.

10. Primary spare modules are never shared.

∀r ∈ SMR ∃s ∈ FSPARE r = σ(s)1 =⇒ ∀s′ ∈ FSPARE \ {s} r 6= σ(s′)1 �

4.2. New Semantics for Dynamic Fault Trees 75

The conditions (1-6) are standard. The condition that FDEPs have exactly two successors (7) sim-
pli�es further proofs. We introduce FDEPs with more successors as syntactic sugar in Section 4.2.9
on page 98. The independence of two spare modules (8) is a liberal restriction which prevents am-
biguity in the meaning of claiming spares. Primary spare modules (9) are not allowed to contain
given-failure elements s.t. we can simplify the de�nition of the initially claimed elements. This
rather strict restriction can be removed in many cases, see Section 4.5 on page 110. Condition (10)
is again a simpli�cation. Primary modules are initially claimed by a unique predecessor. Therefore,
they cannot be claimed later on and sharing them is super�uous.

In the case studies, we saw some examples where primary modules where shared with the top-
module. This is not possible with the semantics described here. We refer to Section 4.5 on page 110
for some further treatment.

Assumption 3. In the remainder of this chapter, we assume a DFT to be well-formed.

4.2.2. Failure and event traces

We consider strictly ordered sequences of component failures, where each component failure oc-
curs at most once.

To formalise, we consider a sequence ξ over a set K as an injective function from {1, . . . , n} to
K with n ≤ |K| to K . We call n the length of ξ, denoted by |ξ|. The set of all such sequences is
denoted K�. We often consider these sequences to be words over the alphabet K . We use ξi to
denote the i’th item on the sequence ξ, i.e. ξ(i). The last item of a sequence is denoted ξ↓ = ξ|ξ|.
Furthermore, let x ∈ K . We write x ∈ ξ if there exists i ≤ |ξ| s.t. ξi = x.

We write ε for the empty sequence, i.e. for the sequence mapping the empty set to K . Given a
sequence ξ = ξ1 . . . ξn we de�ne for each m ≤ n the pre�x of length m as ξ|m = ξ1 . . . ξm. We
abuse the notation and write ξ|−i to denote ξ|(|ξ|−i) for any i > 0. With pre(ξ) = {ξ|i | i < |ξ|}
we denote the set of all pre�xes of ξ. We write ξ · x with x 6∈ ξ for concatenation, i.e. given
ξ : {1, . . . n} → K , ξ · x : {1, . . . , n, n + 1} → K , such that ξ · x(n + 1) = x and for all i ≤ i,
ξ · x(i) = ξ(i).

De�nition 4.10 ((Component) Failure trace). Given a set of component failures Ω, we call any
ρ ∈ Ω� a (component) failure trace. �

De�nition 4.11 ((Basic) Event trace). Given a DFT F , we call any πF ∈ F�
BE a (basic) event trace

over F . �

4.2.3. Introducing the running examples

We give two running examples, which are not motivated by reality, but by their compactness.
Remark 21. In the DFT, we display the attached component failure in the basic event. Often, we
are not interested in the component failures and omit them.

The �rst example is a regularly used pattern.

Example 4.1. The DFT, depicted in Figure 4.1, describes a system of two components (radio1,
radio2), which share a spare module (C). The system fails if both components fail. The DFT for
this system is given by FΩ = (V, σ,Tp,Θ, top) with Ω = {a, b, c} and

• {sys, X, Y,A,B,C}
• σ given by

– σ(sys) = XY ,
– σ(X) = AC ,
– σ(Y) = BC ,
– σ(A) = σ(B) = σ(C) = ε.

• Tp given by Tp(sys) = AND, Tp(X) = Tp(Y) = SPARE, Tp(A) = Tp(B) = Tp(C) = BE.
• Θ given by Θ(a) = A, Θ(b) = B, Θ(c) = C .
• top = sys N.

The second example shows some functional dependencies in a very compact manner.

76 Chapter 4. Semantics for Dynamic Fault Trees

Example 4.2. The DFT, depicted in Figure 4.2, describes a system of three components (a, b, c).
The failure of a causes b and c to fail, whereas the failure of b causes c to fail. The system fails if
�rst a, then b and then c fails. The DFT for this system is given by FΩ = (V, σ,Tp,Θ, top) with
Ω = {a, b, c} and

• {sys, X, Y, Z,A,B,C}
• σ given by

– σ(sys) = ABC ,
– σ(X) = AB,
– σ(Y) = AC ,
– σ(Z) = BC ,
– σ(A) = σ(B) = σ(C) = ε.

• Tp given by Tp(sys) = PAND, Tp(X) = Tp(Y) = Tp(Z) = FDEP, Tp(A) = Tp(B) =
Tp(C) = BE.

• Θ given by Θ(a) = A, Θ(b) = B, Θ(c) = C .
• top = sys N.

sys

X Y

a b c

A B C

Figure 4.1.: The DFT from Example 4.1.

SF
YX

Z

a

A

b

B

c

C

Figure 4.2.: The DFT from Example 4.2.

4.2.4. State of a DFT
In this section, we set out to formally describe the e�ect of a failed basic event to the internal
state DFT. Therefore, we �rst have to give a de�nition of the state of a DFT. Notice that we ignore
functional dependencies in this section and only discuss them later, when we discuss the e�ect of
a component failure to the internal state of a DFT in Section 4.2.5 on page 91.

Intuition Our foremost interest is to de�ne the set of event traces after which the top-level ele-
ment fails. We use a structural induction to de�ne the set of failed elements in the tree for a given
event trace π. For static elements, we give an expression which encodes whether the element has
failed, depending solely on the failure of the successor elements given π. For the pand-gate, failure
combination also depends on the failure of the successor elements after pre�xes of π. In a second
step, we compress this information to a �ag whether, up to the largest pre�x of π, the successors
have failed in the expected order. Spare gates claim a new element whenever their claimed suc-
cessor fails. If no other successor can be claimed, the spare gate fails as well. Thus, the failure
of spare gates depends on the information which representatives are claimed by which spare gate
after the occurrence of π. From this information, we can extract the set of representatives which
are available for a certain spare gate to claim.

We require that claiming cannot be undone, i.e., once claimed by a gate, a representative remains
claimed by this gate. We assume that spare module representatives can only be claimed if they were
not already claimed by some other gate before the basic event in π was triggered. Together with the
independence of spare modules and the fact that we ignore functional dependencies here, resolving
the interdependence between claiming and failing is simpli�ed, as the semantics make sure that
after each failure of a basic event, at most one spare gate claims another element1. This also ensures
that no spare module representative is ever claimed by two di�erent spare gates.

We describe the internal state of a DFT for each trace of basic events. Put it di�erently, we de�ne
the state of the DFT F after the subsequent occurrence of the events in the event trace π by using

1we prove this in Theorem 4.30.

4.2. New Semantics for Dynamic Fault Trees 77

two predicates, Failed(π) and ClaimedBy(π). The predicates describe which gates are considered
failed after π occurred, and which spare module representatives are used, and if so, by which spare
gate, respectively. We de�ne them inductively over the length of π and (structure) inductively over
the graph of the DFT.

Formal specification We introduce a construction of the mappings Failed and ClaimedBy,
which we will characterise with the help of auxiliaries later in this section to ease both under-
standing and working with these de�nitions.
Remark 22. The construction we use here follows the de�nition and characterisation of the model-
relation for CTL-formulae on labelled transition systems as given in [BK08].

De�nition 4.12. Given an DFT FΩ = (V, σ,Tp,Θ, top). We de�ne a relation |=F ⊆ V × F�
BE,

called the model-relation, and a set {†sF ⊆ V ×F�
BE | s ∈ FSPARE}, with a claiming relation for each

spare gate.
The model relation and the claiming-relations are then de�ned as the smallest1 relations such

that for arbitrary v ∈ V and π ∈ F�
BE:

• For π = ε, either:
v ∈ FBE ∪ FCONST(⊥) ∪ FSPARE: The node does not fail.

v 6|=F π

v ∈ FCONST(>): The node does fail.

v |=F π

v ∈ FAND ∪ FPAND: The node fails if all children fail:

v |=F π ⇐⇒ ∀v′ ∈ σ(v). v′ |=F π

v ∈ FOR: The node fails if it has a child that has failed.

v |=F π ⇐⇒ ∃v′ ∈ σ(v). v′ |=F π

v ∈ FVOT(k): The node fails if at least k children have failed.

v |=F π ⇐⇒ ∃{v1, . . . ,vk} ⊆ σ(v).

k∧
i=1

vi |=F π

and for any s ∈ FSPARE and v ∈ V

v †sF π ⇐⇒ v = σ(v)1.

• For |π| > 0:
For |=, the conditions of π = ∅ apply, unless de�ned below.
v ∈ FBE: The node fails if the event has occurred before.

v |=F π ⇐⇒ ∃j s.t. πj = v

v ∈ FPAND: The node fail if all children fail and do it according their order.

v |=F π ⇐⇒ ∀v′ ∈ σ(v). v′ |=F π∧
∀π′ ∈ pre(π)∀i < deg(v). σ(v)i+1 |=F π

′ =⇒ σ(v)i |= π′

1indeed, the description is unique

78 Chapter 4. Semantics for Dynamic Fault Trees

v ∈ FSPARE: The spare fails if all claimed children have failed and it cannot claim another.

v |=F π ⇐⇒ ∀v′ ∈ σ(v) (v′ †vF π|−1 =⇒ v′ |=F π)

v′ 6 †vFπ|−1 =⇒ (v′ |=F π ∨ ∃s ∈ FSPARE v
′ †sF π|−1)

Let s ∈ FSPARE, if

s 6|= π ∧ ∀v′ ∈ σ(s). v †sF π|−1 =⇒ v |=F π

then we call s claiming after π. For each s ∈ FSPARE, we de�ne the next spare for s at π as

NextSpare(π,s) = min{σ(v)j ∈ V | σ(v)j 6|=F π∧ 6 ∃s′ ∈ FSPARE σ(v)j †s
′
F π|−1}.

Now for all v ∈ V and s ∈ FSPARE:

v †sF π ⇐⇒ s claiming and v = NextSpare(π,s) ∨ v †sF π|−1 �

Remark 23. The de�nitions of the model relation for basic events and priority-and gates in the
inductive step (i.e. |π| > 0) are also correct for the base case π = ε.

The semantics allow a SMR to be claimed by a set of spares. In Corollary 4.31 on page 90, we
show that the cardinality of the set is always less or equal 1. Moreover, we show that the primary
component of a spare never fails at π = ε in Corollary 4.17 on page 87.

Instead of the relations introduced above, we use the following mappings in the remainder.

De�nition 4.13. Let FΩ = (V, σ,Tp,Θ, top) be a DFT. We de�ne the set of failed elements after
π as

Failed : F�
BE → P(V),

Failed(π) = {v ∈ V | v |=F π},

and the mapping of representatives claimed by after π as

ClaimedBy : F�
BE → (V → P(FSPARE))

ClaimedBy(π)(v) = {s ∈ FSPARE | v †sF π} �

We de�ne auxiliary mappings to which simplify notation and then give an characterisation of
the mappings above.

The following map describes which elements are available for claiming given a spare-gate.

Available : F�
BE \ {ε} → FSPARE → P(V)

Available(π)(v) = {v′ ∈ σ(v) | ClaimedBy(π|−1)(v′) = ∅ ∧ v′ 6∈ Failed(π)}

We de�ned being claimed by from the perspective of a SMR. We the following map gives is from
the viewpoint of a spare-gate.

Claimed : F�
BE → (FSPARE → P(V))

Claimed(π)(v) = {v′ ∈ σ(v) | v ∈ ClaimedBy(π)(v′)}

Furthermore, we use the following de�nition to denote that some element v failed before or
simultaneous with v.

FBπ(v, v′) = ∀π′ ∈ pre(π). v′ ∈ Failed(π′) =⇒ v ∈ Failed(π′)

The following lemmas characterise these sets.

Lemma 4.1 (Characterisation of Failed(π)). Given a DFT FΩ = (V, σ, Tp,Θ, top) and π ∈ F�
BE.

We characterise Failed(π) via an induction over the length of π:

4.2. New Semantics for Dynamic Fault Trees 79

π = ε: We use a induction over the structure of (V,E).

v ∈ FBE ∪ FSPARE ∪ FCONST(⊥): The node is not in the set of failed nodes.

v 6∈ Failed(π)

v ∈ FCONST(>): The node is in the set of failed nodes.

v ∈ Failed(π)

v ∈ FAND: The node has failed i� all children have failed:

v ∈ Failed(π) ⇐⇒ σ(v) ⊆ Failed(π)

v ∈ FOR: The node has failed i� it has a child that has failed.

v ∈ Failed(π) ⇐⇒ σ(v) ∩ Failed(π) 6= ∅

v ∈ FVOT(k): The node failed if at least k children have failed.

v ∈ Failed(π) ⇐⇒ |σ(v) ∩ Failed(π)| ≥ k

v ∈ FPAND: The node failed if all children have failed according to the given ordering.

v ∈ Failed(π) ⇐⇒ σ(v) ⊆ Failed(π) ∧ ∀i < deg(v)FBπ(σ(v)i+1,σ(v)i)

|π| > 0: We use a induction over the structure of (V,E). The characterisations of π = ε apply, unless
de�ned below.

v ∈ FBE: The node fails if the event has occurred before.

v ∈ Failed(π) ⇐⇒ ∃j ≤ |π|. πj = v

v ∈ FSPARE: The spare fails if all claimed children have failed and it cannot claim another.

v ∈ Failed(π) ⇐⇒ Claimed(π|−1)(v) ⊆ Failed(π) ∧ Available(π)(v) = ∅

Proof. We distinguish the di�erent cases as in the lemma.

v ∈ FAND:

v ∈ Failed(π)⇐⇒ v |=F π

⇐⇒ ∀v′ ∈ σ(v) v′ |=F π

⇐⇒ ∀v′ ∈ σ(v) v′ ∈ Failed(π) ⇐⇒ σ(v) ⊆ Failed(π)

v ∈ FOR:

v ∈ Failed(π)⇐⇒ v |=F π

⇐⇒ ∃v′ ∈ σ(v) v′ |=F π

⇐⇒ ∃v′ ∈ σ(v) v′ ∈ Failed(π) ⇐⇒ σ(v) ∩ Failed(π) 6= ∅

80 Chapter 4. Semantics for Dynamic Fault Trees

v ∈ FVOT(k):

v ∈ Failed(π)⇐⇒ v |=F π

⇐⇒ ∃{v1, . . . ,vk} ⊆ σ(v)
∧k

j=1
vj |=F π

⇐⇒ ∃{v1, . . . ,vk} ⊆ σ(v)
∧k

j=1
vj ∈ Failed(π)

⇐⇒ ∃{v1, . . . ,vk} ⊆ σ(v) {v1, . . . ,vk} ⊆ Failed(π)

⇐⇒ |σ(v) ∩ Failed(π)| ≥ k

v ∈ FCONST(⊥) or v ∈ FBE ∪ FSPARE with π = ε :

v 6∈ Failed(π) ⇐⇒ v 6|=F π

v ∈ FCONST(⊥) or v ∈ FBE ∪ FSPARE with π = ε :

v ∈ Failed(π) ⇐⇒ v |=F π

v ∈ FBE, π 6= ε:

v ∈ Failed(π)⇐⇒ v |=F π

⇐⇒ ∃j ≤ |π|. πj = v

v ∈ FSPARE, π 6= ε:

v ∈ Failed(π) ⇐⇒ v |=F π ⇐⇒
∀v′ ∈ σ(v)(v′ †vF π|−1 =⇒ v′ |=F π)∧
(v′ †vF π|−1 =⇒ v′ |=F π ∨ ∃s ∈ FSPARE v

′ †sF π|−1) ⇐⇒
{v′ ∈ σ(v) | v′ †vF π|−1} ⊆ {v′ ∈ σ(v) | v′ |=F π)}∧
{v′ ∈ σ(v) | v′ †vF π|−1} ⊆ {v′ ∈ σ(v) | v′ |=F π ∨ ∃s ∈ FSPAREv

′ †sF π|−1)} ⇐⇒
Claimed(π|−1) ⊆ Failed(π)∧
{v′ ∈ σ(v) | v′ †vF π|−1} ⊆ {v′ ∈ σ(v) | v′ |=F π ∨ ∃s ∈ FSPAREv

′ †sF π|−1)} ⇐⇒
Claimed(π|−1) ⊆ Failed(π)∧
σ(v) ⊆ {v′ ∈ σ(v) | v′ |=F π ∨ ∃s ∈ FSPAREv

′ †sF π|−1)} ⇐⇒
Claimed(π|−1) ⊆ Failed(π)∧
σ(v) ∩ {v′ ∈ σ(v) | ¬v′ |=F π ∧ ∀s ∈ FSPARE¬v′ †sF π|−1)} = ∅ ⇐⇒

Claimed(π|−1) ⊆ Failed(π)∧
{v′ ∈ σ(v) | v′ 6∈ Failed(π) ∧ ClaimedBy(π)(v′) = ∅} = ∅ ⇐⇒

Claimed(π|−1) ⊆ Failed(π) ∧ Available(π)(v) = ∅

v ∈ FPAND:

v ∈ Failed(π) ⇐⇒ v |=F π ⇐⇒
∀v′ ∈ σ(v). v′ |=F π∧
(π = ε ∨ ∀π′ ∈ pre(π). ∀i < deg(v). σ(v)i+1 |=F π

′ =⇒ σ(v)i |=F π
′) ⇐⇒

∀v′ ∈ σ(v). v′ |=F π∧
∀π′ ∈ pre(π). ∀i < deg(v). σ(v)i+1 |= π′ =⇒ σ(v)i |=F π

′ ⇐⇒
σ(v) ⊆ Failed(π)∧
∀i < deg(v). ∀π′ ∈ pre(π). σ(v)i+1 ∈ Failed(π′) =⇒ σ(v)i ∈ Failed(π′)⇐⇒
σ(v) ⊆ Failed(π) ∧ ∀i < deg(v). FB(σ(v)i+1, σ(v)i)

4.2. New Semantics for Dynamic Fault Trees 81

Lemma 4.2 (Characterisation of ClaimedBy(ε)). LetF = (V, σ, Tp,Θ, top) be a DFT. The following
statement holds.

∀v ∈ SMR∀s ∈ FSPARE. v = σ(s)1 =⇒ s ∈ ClaimedBy(ε, v)

Proof. From De�nition 4.12 we know

v †sF ε ⇐⇒ v = σ(v)1.

The following corollary is an equivalent statement from the perspective of an spare-gate.

Corollary 4.3. Let F be a DFT. The following statement holds.

∀s ∈ FSPARE. Claimed(ε, s) = {σ(s)1}.

The following statement is a direct corollary to De�nition 4.12.

Corollary 4.4. Let F be a DFT and π ∈ F�
BE, x ∈ FBE and v ∈ SMRF . It holds that

ClaimedBy(π · x, v) =ClaimedBy(π, v)∪
{s ∈ FSPARE | v = NextSpare(π · x, v) and s claiming after π · x}

Proposition 4.5. Let F be a DFT and π ∈ F�
BE, x ∈ FBE and s ∈ FSPARE. It holds that

Claimed(π · x, s) = Claimed(π, s) ∪
{
{NextSpare(π · x, v)} if s claiming after π · x
∅ else.

Proof.

Claimed(π · x, s) =

{v′ ∈ σ(s) | s ∈ ClaimedBy(π · x, v′)} =

{v′ ∈ σ(s) | v′ = NextSpare(π · x, s) and s claiming after π · x
∨ s ∈ ClaimedBy(π, v′)} =

{NextSpare(π · x, s) | and s claiming after π · x}∪
{v′ ∈ σ(s) | s ∈ ClaimedBy(π, v′)} =

Claimed(π, s) ∪ {NextSpare(π · x, s) | and s claiming after π · x}

The following characterisation is a directly rewritten representation of NextSpare.

Corollary 4.6. Let F be a DFT and π ∈ F�
BE and s ∈ FSPARE. NextSpare(π, s) = minj{σ(v)j ∈ V |

σ(v)j 6∈ Failed(π) ∧ ClaimedBy(π|−1, σ(v)j) = ∅}.

It remains to show our claims that no SMR is never claimed by more than one spare. Furthermore,
we want to formalise some properties of failure propagation and claiming, to show the accuracy
of the presented semantics and to streamline further arguments.

Properties of DFTs and their behaviour The presented proofs are rather technical, but also
give a nice hands-on introduction. We start with the fact that claiming is never undone and that
claiming is only done by spare gates which are operational.

Lemma 4.7. Let F be a DFT with elements V . Let π, π′ ∈ F�
BE s.t. π

′ ∈ pre(π). It holds that for all
s ∈ FSPARE,

Claimed(π′, s) ⊆ Claimed(π, s)

and that

{v ∈ V | ClaimedBy(π′, v) = ∅} ⊇ {v ∈ V | ClaimedBy(π, v) = ∅}.

82 Chapter 4. Semantics for Dynamic Fault Trees

Proof. We show the claims for π = π′ · x. For the �rst point, we simply deduce

Claimed(π′ · x, s) = Claimed(π′) ∪Xfor some X =⇒ Claimed(π′ · x) ⊇ Claimed(π′, s′)

For the second point,

{v ∈ V | ClaimedBy(π′, v) = ∅} ⊇ {v ∈ V | ClaimedBy(π′ · x, v) = ∅} =⇒
{v ∈ V | ClaimedBy(π′, v) 6= ∅} ∩ {v ∈ V | ClaimedBy(π′ · x, v) = ∅} = ∅ =⇒
{v ∈ V | ClaimedBy(π′, v) 6= ∅ ∧ ClaimedBy(π′ · x, v) = ∅} = ∅ =⇒
{v ∈ V | ∃s ∈ FSPARE. s ∈ ClaimedBy(π′, v)∧

∀s ∈ FSPARE. s 6∈ ClaimedBy(π′ · x, v)} = ∅ =⇒
{v ∈ V | ∃s ∈ FSPARE. s ∈ ClaimedBy(π′, v) ∧ s 6∈ ClaimedBy(π′ · x, v)} = ∅ =⇒
∀v ∈ V. ¬(∃s ∈ FSPARE. s ∈ ClaimedBy(π′, v) ∧ s 6∈ ClaimedBy(π′ · x, v)) =⇒
∀v ∈ V. ∀s ∈ FSPARE. ¬s ∈ ClaimedBy(π′, v) ∨ s ∈ ClaimedBy(π′ · x, v) =⇒
∀v ∈ V. ∀s ∈ FSPARE. (s ∈ ClaimedBy(π′, v) =⇒ s ∈ ClaimedBy(π′ · x, v)) =⇒
∀v ∈ V. ClaimedBy(π, v) ⊆ ClaimedBy(π · x, v)

which follows as for the �rst point. The lemma now follows with induction over the length π′ and
transitivity of ⊆.

Proposition 4.8. Let F be a DFT with s ∈ FSPARE and π ∈ F�
BE.

s ∈ Failed(π) =⇒ Claimed(π|−1, v) = Claimed(π, v)

Proof. By Lemma 4.7, it su�ces to show

s ∈ Failed(π) =⇒ Claimed(π|−1, s) ⊇ Claimed(π, s)

To the contrary, let us assume Claimed(π, s) 6⊆ Claimed(π|−1, s).

¬(Claimed(π, s) ⊆ Claimed(π|−1, s)) =⇒
¬({v ∈ σ(s) | s ∈ ClaimedBy(π, v)}} ⊆ {v ∈ σ(s) | s ∈ ClaimedBy(π|−1, v)}) =⇒
{v ∈ σ(s) | s 6∈ ClaimedBy(π, v)} ∩ {v ∈ σ(s) | s ∈ ClaimedBy(π|−1, v)} 6= ∅ =⇒
{v ∈ σ(s) | s 6∈ ClaimedBy(π, v) ∧ s ∈ ClaimedBy(π|−1, v)} 6= ∅ =⇒
∃v ∈ σ(s)s 6∈ ClaimedBy(π, v) ∧ s ∈ ClaimedBy(π|−1, v) =⇒
∃v ∈ σ(s)¬v †sF π ∧ γ

π|−1
v,s =⇒

s claiming and v = NextSpare(π, s) =⇒
s 6|=F π ∧ ∀v′ ∈ σ(s)(v′ †sF π|−1 =⇒ v′ |=F π) =⇒
s 6∈ Failed(π)

Which is a contradiction to the premise, so our assumption must be wrong.

Next, we show that indeed, an element never recovers from a failure. We refer to this property
as coherency. We need to show simultaneously that once an element is unavailable for claiming by
a spare gate, it remains unavailable.

Proposition 4.9. Let F be a DFT. Let π, π′ ∈ F�
BE and π

′ ∈ pre(π). It holds that
• Failed(π′) ⊂ Failed(π), and
• ∀v ∈ FSPARE. Available(π′, v) ⊇ Available(π, v).

Proof. We prove Failed(π′) ⊆ Failed(π) and ∀v ∈ FSPARE. Available(π′, v) ⊇ Available(π, v) by a
structural induction over the graph of F , showing that

v ∈ Failed(π′) =⇒ v ∈ Failed(π)

4.2. New Semantics for Dynamic Fault Trees 83

by using

∀σ(v). σ(v) ∈ Failed(π′) =⇒ σ(v) ∈ Failed(π′).

Based on this assumption, for every v ∈ V :

Available(π′, v) = {v′ ∈ σ(v) | ClaimedBy(π′−1) = ∅ ∧ v′ 6∈ Failed(π′)}
⊇ {v′ ∈ σ(v) | ClaimedBy(π′−1) = ∅ ∧ v′ 6∈ Failed(π)}
⊇ {v′ ∈ σ(v) | ClaimedBy(π−1) = ∅ ∧ v′ 6∈ Failed(π)}
= Available(π, v)

For Failed(π), we make a case distinction.

v ∈ FBE:

v ∈ Failed(π′) =⇒ v ∈ π′ =⇒ v ∈ π =⇒ v ∈ Failed(π′)

v ∈ FAND:

v ∈ Failed(π′) =⇒ σ(v) ⊆ Failed(π′) =⇒ σ(v) ⊆ Failed(π) =⇒ v ∈ Failed(π)

v ∈ FOR:

v ∈ Failed(π′) =⇒ σ(v) ∩ Failed(π′) 6= ∅ =⇒ ∃v′ ∈ σ(v). v′ ∈ Failed(π′) =⇒
∃v′ ∈ σ(v). v′ ∈ Failed(π) =⇒ σ(v) ∩ Failed(π) 6= ∅ =⇒ v ∈ Failed(π)

v ∈ FVOT(k): Using the same expansion as for OR, we get

v ∈ Failed(π′) =⇒ |σ(v) ∩ Failed(π′)| ≥ k =⇒ . . . =⇒
|σ(v) ∩ Failed(π)| ≥ k =⇒ v ∈ Failed(π)

v ∈ FPAND:

v ∈ Failed(π′) =⇒
σ(v) ⊆ Failed(π′) ∧ ∀1 ≤ i < deg(v). FBπ′(σ(v)i, σ(v)i+1) =⇒
σ(v) ⊆ Failed(π′)∧
∀1 ≤ i < deg(v) ∀π̂ ∈ pre(π′). σ(v)i+1 ∈ Failed(π′) =⇒ σ(v)i ∈ Failed(π′) =⇒
σ(v) ⊆ Failed(π) ∧ ∀1 ≤ i < deg(v)

∀π̂ ∈ pre(π′). σ(v)i+1 ∈ Failed(π̂) =⇒ σ(v)i ∈ Failed(π̂)∧
(By coherency, the right hand side is always true.)
∀π̂ ∈ pre(π) \ pre(π′). σ(v)i+1 ∈ Failed(π̂) =⇒ σ(v)i ∈ Failed(π̂) =⇒

σ(v) ⊆ Failed(π)∧
∀1 ≤ i < deg(v) ∀π̂ ∈ pre(π). σ(v)i+1 ∈ Failed(π̂) =⇒ σ(v)i ∈ Failed(π̂) =⇒
v ∈ Failed(π)

v ∈ FSPARE: We show that v ∈ Failed(π′) =⇒ v ∈ Failed(π′ · x) for x ∈ FBE. By induction over

84 Chapter 4. Semantics for Dynamic Fault Trees

the length of π′, we can then conclude that v ∈ Failed(π′) =⇒ v ∈ Failed(π).

v ∈ Failed(π′) =⇒
Claimed(π′|−1, v) ⊆ Failed(π′) ∧ Available(π′, v) = ∅ =⇒
Claimed(π′|−1, v) ⊆ Failed(π′ · x) ∧ Available(π′, v) = ∅ =⇒
(with Propostion 4.8)
Claimed(π′, v) ⊆ Failed(π′ · x) ∧ Available(π′, v) = ∅ =⇒
Claimed(π′, v) ⊆ Failed(π′ · x) ∧ Available(π′ · x, v) = ∅ =⇒
v ∈ Failed(π · x)

It remains to show that Failed(π′) 6= Failed(π). Consider π↓, it holds that π↓ 6∈ π′ and thus
π↓ 6∈ Failed(π′).

We are often interested in analysing what the e�ect of a failure is, i.e. how it propagates. There-
fore, we de�ne a map which encodes which elements have just failed, i.e. JustFailed(π) denotes
those gates whose failure is triggered by the failure of π↓. Let x ∈ FBE.

JustFailed : F�
BE → P(V)

JustFailed(ε) = Failed(ε)

JustFailed(π · x) = Failed(π · x) \ Failed(π)

Proposition 4.10. Let F be a DFT and v ∈ FAND ∪ FOR ∪ FVOT(k). Then

v ∈ JustFailed(π) =⇒ ∃v′ ∈ σ(v). v′ ∈ JustFailed(π).

We only show this for the voting gate1.

Proof. Let v ∈ FVOT(k) with k > 0. We have that JustFailed(ε) = Failed(ε), and thus v ∈
JustFailed(ε) =⇒ |σ(v) ∩ Failed(ε)| ≥ k ≥ 1. Now consider π = π′ · x.

v ∈ JustFailed(π′ · x) =⇒
v ∈ Failed(π′ · x) ∧ v 6∈ Failed(π′) =⇒
|σ(v) ∩ Failed(π′ · x)| ≥ k ∧ |σ(v) ∩ Failed(π′)| < k =⇒
|σ(v) ∩ Failed(π′ · x)| − |σ(v) ∩ Failed(π′)| > 0 =⇒
(by coherency)
|σ(v) ∩ Failed(π′ · x) \ Failed(π′)| > 0 =⇒
∃v′ ∈ σ(v). v′ ∈ Failed(π′ · x) ∧ v′ 6∈ Failed(π′) =⇒
∃v′ ∈ σ(v). v′ ∈ JustFailed(π′ · x).

An alternative characterisation for PANDs allows simpli�ed proofs. A pand-gate can only fail as
long as its children failed according the given ordering, thus Failable(π) denotes those gates which
still can fail.

Failable : F�
BE → P(FPAND)

Failable(π) =

FPAND π = ε

{v ∈ FPAND | v ∈ Failable(π|−1)∧
(∀i < deg(v) σ(v)i+1 ∈ JustFailed(π) =⇒ σ(v)i ∈ Failed(π))} else.

With this predicate, we can formulate an equivalent characterisation of Failed(π) for the case of
pand-gates.

1As and-gates and or-gates are just special cases, the proof is formally complete.

4.2. New Semantics for Dynamic Fault Trees 85

Lemma 4.11 (PAND with Failable). Let F be an DFT and v ∈ FPAND, furthermore let π ∈ F�
BE \{ε}.

v ∈ Failed(π) ⇐⇒ σ(v) ⊆ Failed(π) ∧ Failable(π|−1)

Proof. ⇐. We only have to show that

σ(v) ⊆ Failed(π) ∧ v ∈ Failable(π|−1) =⇒ ∀1 ≤ i < deg(v). FBπ(σ(v)i, σ(v)i+1)

σ(v) ⊆ Failed(π) ∧ v ∈ Failable(π|−1) =⇒
σ(v) ⊆ Failed(π) ∧ v ∈ Failable(π|−2)∧
∀i ∈ {1, . . . ,deg(v)}σ(v)i+1 ∈ JustFailed(π|−1) =⇒ σ(v)i ∈ Failed(π|−1) =⇒
. . . =⇒
∀π′ ∈ pre(π)∀i ∈ {1, . . . ,deg(v)}
σ(v)i+1 ∈ JustFailed(π′) =⇒ σ(v)i ∈ Failed(π′) =⇒

∀i ∈ {1, . . . ,deg(v)} ∀π′ ∈ pre(π)

σ(v)i+1 ∈ Failed(π′) ∧ σ(v)i+1 6∈ Failed(π′|−1) =⇒ σ(v)i ∈ Failed(π′)

We partition the combinations of i and π′ into the cases where σ(v)i+1 6∈ Failed(π′|−1) holds. The
other case are those combinations of i and π′ for which σ(v)i+1 6∈ Failed(π′|−1) does not hold. For
those, it remains to show that

σ(v)i+1 ∈ Failed(π′) ∧ σ(v)i+1 ∈ Failed(π′|−1) =⇒ σ(v)i+1 ∈ Failed(π′),

which follows directly from coherency and the fact that Failed(ε) = ∅ as outlined below.

σ(v)i+1 ∈ Failed(π′) ∧ σ(v)i+1 ∈ Failed(π′|−1) =⇒
∃π̂ ∈ pre(π)σ(v)i+1 ∈ JustFailed(π̂) =⇒
∃π̂ ∈ pre(π)σ(v) ∈ Failed(π̂) =⇒
σ(v) ∈ Failed(π′)

Merging both cases we get

∀i ∈ {1, . . . ,deg(v)} ∀π′ ∈ pre(π) σ(v)i+1 ∈ Failed(π′) =⇒ σ(v)i ∈ Failed(π′)

which is by de�nition

∀1 ≤ i < deg(v). FBπ(σ(v)i, σ(v)i+1)

⇒. We only have to show that

σ(v) ⊆ Failed(π) ∧ ∀1 ≤ i < deg(v). FBπ(σ(v)i, σ(v)i+1) =⇒ v ∈ Failable(π|−1)

∀1 ≤ i < deg(v). FBπ(σ(v)i, σ(v)i+1) =⇒
∀1 ≤ i < deg(v) ∀π′ ∈ pre(π). σ(v)i+1 ∈ Failed(π′) =⇒ σ(v)i ∈ Failed(π′) =⇒
∀1 ≤ i < deg(v) ∀π′ ∈ pre(π). σ(v)i+1 ∈ JustFailed(π′) =⇒ σ(v)i ∈ Failed(π′) =⇒
(By induction over the length of π′ we get:)
∀1 ≤ i < deg(v) ∀π′ ∈ pre(π). Failable(π′) =⇒
∀1 ≤ i < deg(v). Failable(π|−1)

We give a characterisation of a pand-gate that has just failed.

Proposition 4.12. Let F be a DFT and v ∈ FPAND. Let π ∈ F�
BE and x ∈ BE.

v ∈ JustFailed(π · x) =⇒ σ(v)↓ ∈ JustFailed(π · x)

86 Chapter 4. Semantics for Dynamic Fault Trees

Proof.

v ∈ JustFailed(π · x) =⇒
v ∈ Failed(π · x) ∧ v 6∈ Failed(π) =⇒
σ(v) ⊆ Failed(π · x) ∧ v ∈ Failable(π) ∧ v 6∈ Failed(π) =⇒
σ(v)↓ ∈ Failed(π · x) ∧ v ∈ Failable(π) ∧ v 6∈ Failed(π)

It remains to show that

v ∈ Failable(π) ∧ v 6∈ Failed(π) =⇒ σ(v)↓ 6∈ Failed(π)

v ∈ Failable(π) ∧ v 6∈ Failed(π) =⇒
By the monotonicity of Failable
v ∈ Failable(π) ∧ σ(v) 6⊆ Failed(π) =⇒
∀1 ≤ i < deg(v). FBπ(σ(v)i, σ(v)i+1) ∧ σ(v) 6⊆ Failed(π) =⇒
∀1 ≤ i < deg(v). FBπ(σ(v)i, σ(v)↓) ∧ σ(v) 6⊆ Failed(π)

Now, if we assume σ(v)↓ ∈ Failed(π),

∀1 ≤ i < deg(v). σ(v)i ∈ Failed(π) ∧ σ(v) 6⊆ Failed(π)

which is a contradiction. Thus, σ(v)↓ 6∈ Failed(π).

Corollary 4.13. Let F be a DFT and v ∈ FPAND. Let π ∈ F�
BE.

v ∈ JustFailed(π) =⇒ σ(v)↓ ∈ JustFailed(π)

Proof. Proposition 4.12 covers π 6= ε. We just have to show

v ∈ JustFailed(ε) =⇒ σ(v)↓ ∈ JustFailed(ε),

which follows directly as the successors cannot fail before ε.

Before we continue with spare gates, we formally show that only elements in the predecessor-
closure of a given-failure element can be in the set of failed elements after π = ε.

Proposition 4.14. It holds that

Failed(ε) ⊆
⋃

c∈FCONST(>)

θ∗(c)

Proof. Assume X = {v ∈ V | v ∈ Failed(ε) ∧ v 6∈ ⋃
c∈FCONST(>)

θ∗(c)}. It follows that ∀v ∈
X. FCONST(>) ∩ σ∗(v) = ∅. By Lemma 4.1 we know that for v ∈ FCONST(⊥) ∪ FBE ∪ FSPARE, v 6∈
Failed(ε), and thus v 6∈ X . Take now a v ∈ X . By Proposition 4.10,for v ∈ FAND ∪ FOR ∪ FVOT(k),
and by Corollary 4.13 for v ∈ FPAND, it holds that v′ ∈ σ(v), v′ ∈ X . However, as no leaf nodes
can be in X , either X is in�nite or empty. As DFTs are �nite, X is empty.

We are now going to do characterise failure-propagation for spare-gates. As with pand-gates, we
start with an alternative characterisation for spare-gates and then characterise a spare-gate which
has just failed. As preparation, we start with a observation based on the fact that a spare-gate only
claims one spare module at a time.

Lemma4.15. LetF be aDFTwith s ∈ FSPARE andπ ∈ F�
BE. Letm ∈ N s.t.σ(s)m = NextSpare(π, s).

It holds that

arg max
i
{σ(s)i | σ(s)i ∈ Claimed(π|−1, s)} < j

4.2. New Semantics for Dynamic Fault Trees 87

Proof. Assume that there exists k > m, σ(s)k ∈ Claimed(π|−1), then there exists π′ ∈ pre(π)
such that σ(s)k = NextSpare(π′, s). We have that NextSpare(π′, s) = minj{σ(v)j ∈ V | σ(v)j 6∈
Failed(π′) ∧ ClaimedBy(π′′|−1, σ(v)j) = ⊥}. As m < k, it holds that either σ(s)m ∈ Failed(π′) or
ClaimedBy(π′|−1, σ(v)m) 6= ⊥. This is a contradiction to coherency, as σ(v)m = NextSpare(π, s),
which yields σ(s)m 6∈ Failed(π) and ClaimedBy(π|−1, σ(v)m) = ⊥.

We de�ne the unique element which was last claimed by a spare-gate.

LastClaimed : F�
BE → (FSPARE → V)

LastClaimed(π)(s) = max
i
{σ(s)i ∈ Claimed(π, s)}

Proposition 4.16. Let F be a DFT with s ∈ FSPARE and π ∈ F�
BE, then

∀v ∈ Claimed(π, s) ∃π′ ∈ pre(π) ∪ {π}. v = LastClaimed(π, s).

Proof. By de�nition, Claimed(π, s) ⊆ σ(s). For v = σ(s)1, by Corollary 4.3, Claimed(ε, s) = {v},
so LastClaimed(ε, s) = v. For v ∈ Claimed(π, s) \ {σ(s)1}, there exists a π′ ∈ pre(π) s.t. v 6∈
Claimed(π′|−1, s) and v ∈ Claimed(π′, s). It follows that v = NextSpare(π′, s). With Lemma 4.15,
it follows that maxi{σ(s)i ∈ Claimed(π′, s)} = v.

Furthermore, we observe that primary modules do not fail at initialisation.

Corollary 4.17. Let F be a DFT and s ∈ FSPARE. It holds that

σ(s)1 6∈ Failed(ε)

Proof. We consider X = SMσ(s)1 . By a structural induction over the graph of F , restricted to the
elements in X , we show that Failed(ε) ∩ X = ∅. The types of the sinks in the DAG are either
the usual leaf-types or spare-gates. Notice that given-failure elements are not in the module, as by
De�nition 4.9 we have that FCONST(>) ∩ SMσ(s)1 = ∅. Following Lemma 4.1, none of the possible
sinks is initially failed. The possible gate-types are the usual gate-types, but without the spare-
gates. Again by Lemma 4.1, none of these fail if no successor has failed. By structural induction,
we have that no element in X fails initially, and thus σ(s)1 does not fail at initialisation.

Lemma 4.18. Let F be a DFT and s ∈ FSPARE, furthermore let π ∈ F�
BE \ {ε},

s ∈ Failed(π) ⇐⇒ LastClaimed(π|−1, s) ∈ Failed(π) ∧ Available(π)(s) = ∅.

Proof. We only have to show

Claimed(π|−1, s) ⊆ Failed(π) ⇐⇒ LastClaimed(π|−1, s) ∈ Failed(π)

Notice that from left to right is trivial as it is a specialisation. Furthermore, for LastClaimed(π, s) =
σ(s)1, we have that Claimed(π, s) = {σ(s)1}, and we are done. Now, we assume that

Claimed(π|−1, s) 6⊆ Failed(π),

which means

Claimed(π|−1, s) 6⊆ Failed(π) =⇒
∃v ∈ Claimed(π|−1, s). v 6∈ Failed(π) =⇒
∃v ∈ Claimed(π|−1, s) \ {LastClaimed(π|−1, s)}. v 6∈ Failed(π)

As v 6= LastClaimed(π|−1, s), there must be a π′ ∈ pre(π|−1) with LastClaimed(π′|−1, s) = v

(cf. Proposition 4.16). Moreover, we can choose π′ as above s.t. s is claiming, as otherwise, v =
LastClaimed(π|−1, s).

88 Chapter 4. Semantics for Dynamic Fault Trees

For s claiming at π′ we have Claimed(π′|−1) ⊆ Failed(π′) (cf. De�nition 4.12), thus especially
v ∈ Failed(π′), and thus, by coherency, v ∈ Failed(π), which is a contradiction. Thus,

Claimed(π−1,s) ⊆ Failed(π).

Proposition 4.19. Let F be a DFT and v ∈ FSPARE. Let π ∈ F�
BE and x, y ∈ BE.

v ∈ JustFailed(π · xy) =⇒ LastClaimed(π · x) ∈ JustFailed(π · xy)

Proof.

v ∈ JustFailed(π · xy) =⇒
v ∈ Failed(π · xy) ∧ v 6∈ Failed(π · xy) =⇒
LastClaimed(π · x) ∈ Failed(π · xy) ∧ v 6∈ Failed(π · xy)

As we have

LastClaimed(π · x, v) ∈ JustFailed(π · xy) ⇐⇒
LastClaimed(π · x, v) ∈ Failed(π · xy) ∧ LastClaimed(π · x, v) 6∈ Failed(π · x)

it su�ces to show

v 6∈ Failed(π · xy) =⇒ LastClaimed(π · x, v) 6∈ Failed(π · x).

Therefore,

v 6∈ Failed(π · xy) =⇒
LastClaimed(π, v) 6∈ Failed(π · x) ∨ Available(π · x) 6= ∅ =⇒
LastClaimed(π, v) 6∈ Failed(π · x)∨

(LastClaimed(π, v) ∈ Failed(π) ∧ Available(π · x) 6= ∅) =⇒
(LastClaimed(π, v) = LastClaimed(π · x, v) ∧ LastClaimed(π, v) 6∈ Failed(π · x))∨
(LastClaimed(π, v) ∈ Failed(π) ∧ Available(π · x) 6= ∅) =⇒
LastClaimed(π · x, v) 6∈ Failed(π · x)∨

(LastClaimed(π, v) ∈ Failed(π) ∧ Available(π · x) 6= ∅) =⇒
LastClaimed(π · x, v) 6∈ Failed(π · x) ∨ LastClaimed(π · x, v) = NextSpare(π · x, v) =⇒
LastClaimed(π · x, v) 6∈ Failed(π · x)

Corollary 4.20. Let F be a DFT and v ∈ FSPARE. Let π ∈ F�
BE and x, y ∈ BE.

v ∈ JustFailed(π · x) =⇒ LastClaimed(π, v) ∈ JustFailed(π · x)

Proof. Proposition 4.19 covers π 6= ε. We just have to show

v ∈ JustFailed(x) =⇒ LastClaimed(ε, v) ∈ JustFailed(x).

We have that LastClaimed(ε, v) = σ(v)1. It is clear that v ∈ JustFailed(x) =⇒ σ(v)1 ∈
Failed(x). By Corollary 4.17, we have that σ(v)1 6∈ Failed(ε), which completes the proof.

We can observe that failure propagation always is caused by an immediate successor in the DFT.

Proposition 4.21. Let F be a DFT with an element v 6∈ FBE ∪ FFDEP, and π ∈ F�
BE. The following

holds:

v ∈ JustFailed(π) =⇒ ∃v′ ∈ σ(v). v ∈ JustFailed(π).

4.2. New Semantics for Dynamic Fault Trees 89

We omit the proof here as the cases v ∈ FPAND and v ∈ FSPARE are implied by respectively
Corollary 4.13, and Corollary 4.20. and the other cases are straight-forward applications of the
de�nitions of Failed and JustFailed.

Corollary 4.22. Let F be a DFT with an element v 6∈ FBE∪FFDEP, and π ∈ F�
BE. The following holds:

v ∈ Failed(π) =⇒ ∃v′ ∈ σ(v). v ∈ Failed(π).

Proof. Follows immediately from Proposition 4.21, coherency and that JustFailed(π) ⊆ Failed(π).

The following de�nition and corollaries help us to streamline further arguments based on the
reasoning above.

De�nition 4.14 (Immediate failure-cause path). Given a DFT F with an element v, v 6∈ FFDEP and
a basic event e, each directed path p = x1 . . . xm from v = x1 to e = xm is called an immediate
failure-cause path for v from e if

∀i. xi ∈ FPAND =⇒ xi+1 = σ(xi)↓ �

The set ifcp(v) = {p | ∃e ∈ FBEs.t. p is a immediate failure-cause path for v from e} is the set
of all immediate failure cause paths for v.
Remark 24. Delayed failure-cause paths are introduced in Section 4.4 on page 102.

Corollary 4.23. Let F be a DFT with element v, v 6∈ FFDEP.

∀p ∈ ifcp(v). p ⊆ σ∗(v)

Proof. Each directed path only visits successors.

Corollary 4.24. Let F be a DFT with an element v, and π ∈ F�
BE \ {ε}. The following holds:

v ∈ JustFailed(π) =⇒ ∃p ∈ ifcp(v).∀v′ ∈ p. v′ ∈ JustFailed(π) ∧ p↓ = π↓

The proof is a successive application of Proposition 4.21(each element which has just failed has a
child which has just failed) and Corollary 4.13(for pand-gates the last child has just failed), together
with the fact that π↓ is the only basic event which has just failed.

Corollary 4.25. Let F be a DFT with an element v. The following holds:

v ∈ Failed(ε) =⇒ ∃p ∈ ifcp(v).∀v′ ∈ p. v′ ∈ Failed(π) ∧ p↓ ∈ CONST(>).

De�nition 4.15. Given a DFT F with elements V and π ∈ F�
BE \ {ε}. Let v ∈ V and v1 . . . vm =

p ∈ ifcp(v). If for all 1 ≤ i < m, vi ∈ FSPARE =⇒ vi+1 = LastClaimed(π|−1, vi), we call
p an immediate failure cause path at π. The set ifcpπ(v) ⊆ ifcpπ(v) is the set of all immediate
failure-cause paths at π. �

The following follows then directly from Corollary 4.24 and Corollary 4.20.

Corollary 4.26. Let F be a DFT with an element v, and π ∈ F�
BE \ {ε}. The following holds:

v ∈ JustFailed(π) =⇒ ∃p ∈ ifcpπ(v).∀v′ ∈ p. v′ ∈ JustFailed(π) ∧ p↓ = π↓

The following corollaries are a direct consequence from the restrictions in De�nition 4.9.

Corollary 4.27. Let F be a DFT and r ∈ EMRF .

∀v ∈ SMr. θ
∗(v) ⊆ σ∗(r) ∪ EMr

Corollary 4.28. Let F = (V, σ, Tp,Θ, top) be a DFT and r ∈ SMRF and v ∈ V \ SMr . Then the
following statement holds

∀p ∈ ifcp(v) ∀x ∈ V x ∈ p =⇒ r ∈ p ∧ ∃s ∈ θ(r) ∩ FSPARE. s ∈ p

90 Chapter 4. Semantics for Dynamic Fault Trees

Corollary 4.29. Given a DFT F with element v, it holds that

∃s ∈ FSPARE. v ∈ σ∗(s) =⇒ ∃r ∈ SMRF . v ∈ SMr

Theorem 4.30. Let F be a DFT and π ∈ F�
BE. At most one spare gate is claiming after π.

The proof will also show this immediate consequence.
Corollary 4.31. Let F be a DFT with elements V and π ∈ F�

BE, it holds that

∀v ∈ V. |ClaimedBy(π, v)| ≤ 1

Proof of Theorem 4.30. We use an induction over the length of π, with which we simultaneously
show the statement of the theorem and of Corollary 4.31.

For π = ε, by de�nition of claiming, no spare-gate is claiming. Furthermore, we have that all
spare-gates have claimed their primary component. By the restrictions in De�nition 4.9, it follows
that |ClaimedBy(π, v)| ≤ 1. By Corollary 4.17, we have that these elements have not failed.

Let π = π′·x. Consider x. Either ∀s ∈ FSPARE. x 6∈ σ∗(s). Then ∀s ∈ FSPARE, s 6∈ JustFailed(π·x)
and s 6∈ Claiming(π ·x). Thus we only have to consider ∃s ∈ FSPARE. x ∈ σ∗(s). By Corollary 4.29,
we have ∃r ∈ SMRF . x ∈ SMr . We consider such a SMr .

• Either r 6∈ JustFailed(π′ ·x), but then, we claim, JustFailed(π′) ⊂ SMr . To show this, assume
∃v ∈ JustFailed(π) \SMr . By Corollary 4.26, there must be a directed path p from v to x, s.t.
∀y ∈ p. y ∈ JustFailed(π · x). Following Corollary 4.28, we have that for all such p, r ∈ p,
but as r 6∈ JustFailed(π · x), we have a contradiction. Thus JustFailed(π) ⊂ SMr . Using
Corollary 4.27 and Corollary 4.26, we have that JustFailed(π) ∩ SMRF = ∅, and thus, no
spare-gate is claiming.

• Now r ∈ JustFailed(π′ ·x). By the induction hypothesis, we know that |ClaimedBy(π, r)| ≤
1. If ClaimedBy(π′, r) = ∅, then there exists no spare gate which is claiming or has just
failed. The remaining case is thus ClaimedBy(π′, r) = {s} for some s ∈ FSPARE, which we
cover in the steps below.

1. We observe that for

R = {r′ ∈ V | r′ ∈ σ(s) ∧ r′ 6= r} ⊆ SMRF ,

it holds that

R ∩ JustFailed(π′ · x) = ∅.

Again, we assume to the contrary that there exists an r′ ∈ R s.t. r′ ∈ JustFailed(π′ ·x).
Then there exists a p directed path from r′ to x. As before, for all such p, we
have that r ∈ p. If r ∈ p, then certainly an s′ ∈ θ(r) such that s′ ∈ p and
s′ ∈ FSPARE. If s′ = s, then the DFT has a cycle, so s′ 6= s. Now for such a
s′ ∈ JustFailed(π′ ·x), LastClaimed(π′, s′) ∈ JustFailed(π′). If LastClaimed(π′, s′) = r,
then ClaimedBy(π′, r) ⊆ {s, s′}, which is impossible by the induction hypothe-
sis. Thus, LastClaimed(π′|−1, s

′) 6= r. By repeating this argument on the path from
LastClaimed(π′|−1, s

′) we either have in�nitely many spare-gates which have just
failed, or a cycle.

2. If r 6= LastClaimed(π′, s), then s neither fails or claims, as no other successor of s fails,
see (1).

3. If s 6∈ JustFailed(π′ · x), then JustFailed(π′ · x) ⊆ SMr . Let K = θ(r) ∩ FSPARE ∩
JustFailed(π′ · x). We only have to show K = ∅, as all directed paths which go from
any v 6∈ SMr to x have to go through r and through one of the spare gates in θ(r), cf.
(1).
Now assume that ∃s′ ∈ K , s′ 6= s. As r 6= LastClaimed(π′, s′), there must be a directed
path from LastClaimed(π′, s′) to x via some ŝ1 ∈ K . We know that s′ 6= ŝ1, as the DFT
is acyclic. Now for ŝ1, by repeating the argument, we get that there must be a ŝ2 ∈ X ,
with ŝ2 6∈ {s′, ŝ1}. Thus K is either in�nite or empty, and as the DFT is �nite, X is
empty.

4. Following (2), we assume r = LastClaimed(π′, s). Furthermore s cannot fail and claim
at the same time (cf. Proposition 4.8). Assume that s claims, then we have one spare-

4.2. New Semantics for Dynamic Fault Trees 91

gate claiming. However, following (3), no other spare gates fail. Now s claims a single
node v, which – by de�nition – has not been claimed before, so ClaimedBy(π′ · x) =
{v}.

5. Assume s fails. We have that

(θ(r) \ {s}) ∩ JustFailed(π′ · x) ⊆ θ∗(s)

by a similar argument as in (4). Thus, for all v ∈ JustFailed(π′), either v ∈ SMr , or

∀p ∈ ifcp′π(v). ∀v′ ∈ p. v′ ∈ JustFailed(π′ · x) =⇒ s ∈ p

Now either θ∗(s)∩ FSPARE = ∅, and we are done, or s ∈ SMr′ for some r′ ∈ SMR. But
then, we can consider SMr′ like SMr with an analogous argument, ignoring elements
in SMr and using s instead of x as target for all failure paths. Again, the next spare
either claims or fails, but if it claims, no further spare gates fail or claim.

The following propositions are helpful handling spare gates. The follow from the proof above.

Proposition 4.32. Given a DFT F , and a event trace π such that a v ∈ FSPARE is the (unique) spare-
gate that is claiming. Let S be the set of spares that have just failed after π, i.e. S = {s ∈ FSPARE |
s ∈ JustFailed(π)}. It holds that S ⊆ σ∗(v).

Proposition 4.33. Given a DFT F with a spare-gate s ∈ FSPARE. Let z = LastClaimed(π|−1)(s).

z ∈ JustFailed(π) =⇒ ∀z′ ∈ σ(s) \ {z}. z′ 6∈ JustFailed(π)

Defining the internal state of a DFT The internal state of a DFT F contains all information to
deduce the e�ect of any following failure of a basic event.

De�nition 4.16. Given a DFT F and π = F�
BE, the (internal) state after the occurrence of π is a

tuple Stateint(π) = (Failed(π), Failable(π),ClaimedBy(π)). �

The internal state Stateint(π ·x) depends on F , x and Stateint(π), but not on π itself. We formalise
this in the following statement.

Proposition 4.34. Given a DFT F and π · x, π′ · x ∈ F�
BE. If Stateint(π) = Stateint(π′), then

Stateint(π · x) = Stateint(π′ · x).

We omit a proof here. The proof involves rewriting every item in Stateint(π · x) in terms of F , x
and Stateint(π).

4.2.5. Towards functional-complete event chains

In the semantics introduced above, we simply ignored functional dependencies and only discussed
basic events. Here, we extend the semantics to component failures and functional dependencies.

Intuition Each component failure causes a basic event to �re. Moreover, functional dependencies
may also trigger dependent basic events, that is, after the trigger of the functional dependency has
failed, dependent basic events fail.

While gates fail immediately with their triggering event, we de�ne functional dependencies
such that they fail ordered. As we assume that only in�nitesimal time passes to trigger functional
dependencies, we require all functional dependencies to �re before any non-dependent event fails.
This leads to an alternating sequence of basic events attached to component failures and possibly
empty sequences of basic events which are triggered by functional dependencies. The possible
paths can be grouped to form a qualitative model. This model covers the DFT model up to the
disabled basic events as their attached component failures are in cold standby, which we cover in
the next section.

92 Chapter 4. Semantics for Dynamic Fault Trees

Formal specification We start with a formalisation of the dependent basic events, and then
discuss an automaton which provides, given a failure trace, all possible and corresponding event
traces. Functional dependencies are gates in the DFT syntax, but it is more convenient to have the
direct relation.

DepEvents(v) =
⋃

v′∈{w∈FDEP|σ(w)1=v}
{σ(v′)2}

For v′ ∈ DepEvents(v), we write v v′, we refer to v as the trigger and to v′ as the dependent
event. Please, notice that we can have cyclic dependencies, either direct or indirect, e.g. we could
have v1 v2 and v2 v1.

De�nition 4.17. Given a event chain π, the set of dependent or triggered events is

∆(π) = (
⋃

v∈Failed(π)

DepEvents(v)) \ {v ∈ π} �

We introduce the functional (dependency) transducer , which returns for a given failure trace the
possible event traces.

De�nition 4.18 (Functional Dependency transducer). Given a DFT FΩ = (V,E,Tp,Θ, top), we
de�ne the transducer TF = (Q,Σ,Γ, I,}, δ)

• State space Q = Ω� × F�
BE,

• Input alphabet Σ = Ω.

• Output alphabet Γ = FBE.

• Initial states I = {(ε, ε)}.
• Final states } = {(ρ, π) | ∆(π) = ∅}.
• Transition relation δ ⊆ Q× Σ× Γ×Q, with

δ ={((ρ, π), ω,Θ(ω), (ρ · ω, π ·Θ(ω))) | ω 6∈ ρ ∧∆(π) = ∅ ∧Θ(ω) 6∈ π} (4.1)
∪{((ρ, π), ε, x, (ρ, π · x)) | x ∈ ∆(π)} (4.2)
∪{((ρ, π), ω, ε, (ρ · ω, π)) | ω 6∈ ρ ∧∆(π) = ∅ ∧Θ(ω) ∈ π} (4.3)

T is called the functional transducer of F . �

The state space is constructed as any combination of failure and event trace. The input alpha-
bet consists of the possible component failures, while the output alphabet consists of the possible
(basic) events. The initial state describes the state in which no component has failed and no event
has failed. We mark any state as accepting in which the set of dependent events is empty. We call
these �nal states resolved, and all others unresolved. The transition relation consists of three types
of transitions. The transitions connect the states such that the reachable state space is a tree. The
state identi�ers correspond to the concatenation of all transitions. All these transitions share that
they do not allow component failures to occur twice, hence ω 6∈ ρ. The transition set consists of
three subsets, which we discuss below:

1. The �rst set encodes those cases in which there are no functional dependent events, and a
component failure occurs whose attached basic event has not been internally triggered by a
functional dependency. It causes the attached basic event to fail.

2. The second set describes the cases in which there are functional dependent events. In that
case, without a component failure, an event may be triggered internally. Here, ω 6∈ ρ is
implicitly encoded, cf. De�nition 4.17.

3. The third set consists of those cases in which the attached events of a component failure
have been internally triggered, by some transition from (2). The component failure does not
a�ect on the internal state of the DFT.

4.2. New Semantics for Dynamic Fault Trees 93

(ε, ε)

(b, B)(a,A) (c, C)

(ab,AB)

(ac,AC) (ca, CA)

(cb, CB)

(ba,BA) (bc, BC)

(abc,ABC)

(acb,ACB) (bac,BAC) (bca,BCA) (cab, CAB)

(cba, CBA)

a/A
b/B

c/C

b/B c/C
a/A

c/C
a/A

b/B

c/C

b/B c/C a/A b/B

a/A

Figure 4.3.: The reachable fragment of the functional transducer from Example 4.3.

Please notice that the reachable fragment of TF is much smaller than the total state space.
We write T (ρ) to denote {π | (ρ, π) ∈ L(T)}

Examples

Example 4.3. The functional transducer of the fault tree from Example 4.1 on page 75 is depicted
in Figure 4.3. We notice that the DFT doesn’t contain any functional dependencies. Therefore, the
set of dependent events is empty after any event trace. All events are governed by the occurrence
of component failures, which are not restricted. The constructed transducer therefore describes all
possible sequences of these component failures. N

Example 4.4. The functional transducer of the fault tree from Example 4.2 on page 76 is depicted
in Figure 4.4. Several functional dependencies are present in the DFT. Initially, none of elements
has failed, and thus, none of the events is triggered. The �rst occurrence of a basic event is thus
governed by the �rst occurrence of a component failure. We consider all three transitions sepa-
rately.

• Let us �rst consider the case that c occurs �rst. With c, basic event C occurs, but no further
basic events are triggered. Thus, next, the transducer waits for another component failure.
This can be either a or b, but not c.

• Now, if we consider the occurrence of b (with B failing), then a functional dependency with
dependent event C is triggered. As there exists a dependent event for the event trace B,
the component failures are not (yet) enabled, instead, we �rst have to execute C (without a
component failing, hence ε/C).

• The last remaining option is the occurrence of a (with A). Two functional dependencies are
triggered. The transducer can either �rst execute B or C . W.l.o.g., we assume here that it
takes B. Now, the set of dependent events for the trace AB is still not empty, therefore, the
transition ε/C exists.

Furthermore, we consider the state a/ABC as obtained in the path described above. Here, compo-
nent failures of b and c can still occur, but do not have an e�ect on the DFT, as the attached basic
events have already failed. N

4.2.6. Activation
As discussed before, we need to enhance our model with information about the active and inactive
components. We do not embed this information into the qualitative model, but instead add this

94 Chapter 4. Semantics for Dynamic Fault Trees

(ε, ε)

(b, B)(a,A) (c, C)

(a,AB)
(a,AC) (ca, CA) (cb, CB)(b, BC)

(a,ABC)
(a,ACB)

(ca, CAB) (cba, CBA)

(ab,ABC)

(ac,ABC)

(abc,ABC)

(acb,ABC)

(ab,ACB)

(ac,ACB)

(abc,ACB)

(acb,ACB)

(cab, CAB)

(bc, BC) (ba,BCA)

(bca,BCA) (bac,BCA)

a/A
b/B

c/C

ε/B ε/C ε/C a/A
b/B

ε/C
ε/B

a/A

ε/B a/A

b/ε
c/ε

c/ε

b/ε

b/ε

c/ε

c/ε

b/ε

c/ε

c/ε

a/A

b/ε

Figure 4.4.: The reachable fragment of the functional transducer from Example 4.4.

4.2. New Semantics for Dynamic Fault Trees 95

information only during the transition from the qualitative model to the quantitative model.

Intuition Components are activated if their attached basic event is part of an active module. The
module represented by top is always active. Other modules are active from the moment

• their representative is claimed by an active spare, or
• the spare which claimed their representative becomes active,

whatever happens �rst. This corresponds to early claiming with late activation, as discussed in
Section 3.3.4.4 on page 44.

Formal specification We are only interested in the activation of component failures, therefore,
we introduce the mapping Activated : F�

BE → P(Ω).
In order to ease the de�nition of this mapping, we introduce the auxiliary Active as the smallest

�xpoint such that:

Active : F�
BE → P(V)

Active(π) = EMtop ∪
⋃
{SMr | ClaimedBy(π, r) ∈ Active(π)}

With this notion, a component (failure) is activated whenever its corresponding basic event is
active.

Activated(π) = {ω ∈ Ω | Θ(ω) ∈ Active(π)}

Examples We describe the activation mechanism for our two running examples.

Example 4.5. We consider Example 4.1 on page 75. The functional transducer of this is described
in Example 4.3 on page 93. The two spare gates are in the module of the top-level, and therefore
are active. The two primary components (a, b) are claimed by active components, and therefore
are also active. The spare module (c) is not active. It will become active as soon as it is claimed by
an active spare. As both spare gates are already active, we only have to consider the moment that
c is claimed. c is claimable as long as it has not failed, and is not yet claimed by any spare. It is
claimed by the �rst spare that is claiming, (radio1) or (radio2), which depends on either (a) or (b)
failing. Thus considering the functional transducer, it is claimed in the states (a,a), (b,b), active in
all successor states, and never activated in a state where c has occurred before. N

Example 4.6. We consider Example 4.2 on page 76.
As we do not have spare-gates in this example, all basic events are connected to the top level

element without interference of a spare-gate. Thus, all component failures are active right from
the start. N

We consider an additional example, to discuss a case with nested spares.

Example 4.7. We reconsider the example DFT given in Figure 3.19b on page 45, which was also
used in Section 3.3.4.4 on page 44 to discuss early claiming with late activation. We see that initially,
the SF spare-gate is active as it is the top. Therefore, also the primary module of SF is active, i.e.,
R1, A2 and P1 are active. Again, as the spare-gate P1 is active, also its primary component PA1 is
active. If we consider the failure of just PA2, P2 has to claim a new spare module (B1 in this case).
However, as P2 is not active, B1 is not activated. If we consider a subsequent failure of A2, then
SF claims a spare module. As SF is active already, P2 is now activated, and as P2 is now active, also
B1 is activated. N

4.2.7. From qualitative to quantitative

In this section, we construct the underlying quantitative model, which enables us to de�ne prob-
abilistic measures on the DFT. The model is constructed by transforming the transducer into a
Markov automaton, and additionally taking active and inactive component failures into account.

96 Chapter 4. Semantics for Dynamic Fault Trees

Intuition We transform each state in the functional transducer to a state in a Markov automaton.
Transitions which are due to triggered events are �red immediately and are therefore represented
by immediate transitions. Transitions governed by a component failure occur as soon as the com-
ponent fails, which happens with a �xed rate. This rate is either the active or the passive failure
rate, which depends on the outgoing state.

Formal specification The qualitative model for a DFTF is de�ned via the functional transducer
of F .

De�nition 4.19 (Computation Tree). Given a DFTF . Let TF = (Q,Σ,Γ, I,}, δ) be the functional
transducer of F . We de�ne the labelled Markov automaton CF = (S, ι,Act, ↪→, 99K,AP, Lab).

• S = Q.
• ι = I .
• A = {τx | x ∈ BEF }
• ↪→={(s, τx, (s′ 7→ 1)) | (s, ε, x, s′) ∈ δ}

•
99K={(s,R(ω),s′) | (s, ω,Θ(ω),s′) ∈ δ ∧Θ(ω) ∈ Activated(s2)} ∪

{(s,α(ω) · R(ω),s′) | (s, ω,Θ(ω),s′) ∈ δ ∧Θ(ω) 6∈ Activated(s2) ∧ α(ω) 6= 0}
• AP = V
• Lab s.t. Lab((ρ,π)) = {v ∈ V | v ∈ Failed(π)}

We call CF the computation tree of F . �

We do not include transitions which describe component failures whose attached basic event
has been triggered before, cf. type (3) in De�nition 4.18, as they do not change the internal state of
the DFT.

Remark 25. Please notice that we de�ned Markov automata to not have deadlock states. However,
deadlock states can be eliminated as discussed before, so we do de�ne them with deadlocks for
simplicity. Moreover, this Markov automaton is indeed an IMC. However, de�ning it as the more
general MA comes at no costs and allows the DFT semantics to be easily extended with PDEPs in
Section 4.5 on page 110.

Configuration The locations contain all information required to construct the MA. When intro-
ducing the internal state of a DFT, we already saw that we indeed only require the three predicates
in that state. We then introduced the triggered events after π, but it is easy to see that these follow
directly from the internal state. Likewise, the internal state and the structure of the DFT determine
the active components.

Ultimately, we are interested in the properties of the system and not in the internal state of the
DFT. The con�guration of the system is the information from the DFT that is relevant to construct
the computation tree.

De�nition 4.20. Given a DFT FΩ = (V, σ,Tp,Θ, top) with the functional transducer TF . For
any state s = (ρ, π), the con�guration of s is the tuple C(s) ∈ B2 × Ω2 given by

(ρ, π) 7→ (top ∈ Failed(π),∆(π) = ∅, {ω ∈ Ω | Θ(ω) ∈ π}, {ω ∈ Ω | Θ(ω) ∈ Active(π)).�

The internal state su�ces to construct the con�guration of a state.

Corollary 4.35. Let F be a DFT with (ρ, π) and (ρ′, π′) states in the functional transducer. If
Stateint(π) = Stateint(π′), then C((π, ρ)) = C((π′, ρ′)).

Reviewing the construction of TF and CF , we see that any model which correctly oracles the
con�guration for a state yields the same computation tree, up to the action labels and the state
labelling.

For the measures of interest, we do not require the full label set and we do not use the action set
either. Indeed, we often only require the top node in the label set. Thus, we de�ne C∗F as CF with
the label set restricted to {top}.

4.2. New Semantics for Dynamic Fault Trees 97

(ε, ε)

(b, B)(a,A) (c, C)

(ab,AB)

(ac,AC) (ca, CA)

(cb, CB)

(ba,BA) (bc, BC)

(abc,ABC)
(acb,ACB) (bac,BAC) (bca,BCA) (cab, CAB)

(cba, CBA)

R(a)
R(b)

αc · R(c)

R(b) R(c)
R(a)

R(c)
R(a)

R(b)

R(c)
R(b) R(c) R(a) R(b)

R(a)

Figure 4.5.: The reachable fragment of the computation tree from Example 4.8.

Examples We give the computation trees for our running examples.

Example 4.8. We consider Example 4.1 on page 75. We describe the computation tree, depicted
in Figure 4.5, based on its transducer, cf. Example 4.3 on page 93. The transducer does not contain
any ε/x transitions — as there were no FDEPs in the DFT, therefore, the computation tree does not
contain immediate transitions. In location (ε, ε), the component c is not yet activate, therefore, the
rate of the outgoing transition is reduced by the multiplication with the dormancy factor. N

Example 4.9. We consider Example 4.2 on page 76. We describe the computation tree, depicted
in Figure 4.6, based on its transducer, cf. Example 4.4 on page 93. We see that the reachable state
space is smaller. This is due to two reasons. First, the transitions of type (3) are not included.
Second, as we are not interested in what happens after the failure of the top level, we omitted all
outgoing transitions from locations (ρ, π) with top ∈ Failed(π). We see that the ε/x transitions
are re�ected by immediate transitions. As every basic event is in the top-module, all components
are active from the start and there is no reduced rate at one of the Markovian transitions. N

4.2.8. Policies on DFTs
A policy on DFTs yields for each state of the DFT an ordering of the functional dependencies to be
resolved.

De�nition 4.21 (DFT Policy). Let F be a DFT. A partial function Pol : Ω�×ΠF 9 FBE is a partial
policy over F with

Pol(ρ, π) =

{
⊥ if ∆(π) = ∅
X for some X ⊆ ∆(π)

We call Pol a (complete) policy over F if for all ρ, π,

Pol(ρ, π) =⊥ ∨|Pol(ρ, π)| = 1. �

We write Pol∅ to denote the partial policy over F such that Pol(ρ, π) = ∆(π) for all π with
∆(π) 6= ∅.

A policy on F restricts the functional transducer of F , by restricting the possible transitions in
unresolved states.

98 Chapter 4. Semantics for Dynamic Fault Trees

(ε, ε)

(b, B)(a,A) (c, C)

(a,AB)
(a,AC) (ca, CA) (cb, CB)(b, BC)

(a,ABC)
(a,ACB)

(ca, CAB) (cba, CBA)

(ba, bca)

R(a)
R(b)

R(c)

τb τc τc R(a)
R(b)

τc
τb

R(a)

τb R(a)

Figure 4.6.: The reachable fragment of the computation tree from Example 4.9.

De�nition 4.22 (Policy-induced functional transducer). Given a DFT FΩ = (V,E,Tp,Θ, top)
and a policy Pol, we de�ne the transducer T [Pol] = (Q,Σ,Γ, I,}, δ)

• State space Q = Ω� × F�
BE,

• Input alphabet Σ = Ω.

• Output alphabet Γ = FBE.

• Initial states I = {(ε, ε)}.
• Final states } = {(ρ, π) | ∆(π) = ∅}.
• Transition relation δ ⊆ Q× Σ× Γ×Q, with

δ ={((ρ, π), ω,Θ(ω), (ρ · ω, π ·Θ(ω))) |ω 6∈ ρ ∧∆(π) = ∅ ∧Θ(ω) 6∈ π}
∪{((ρ, π), ε, x, (ρ, π · x)) |x ∈ Pol(ρ,π)}
∪{((ρ, π), ω, ε, (ρ · ω, π)) |ω 6∈ ρ ∧∆(π) = ∅ ∧Θ(ω) ∈ π}

TF [Pol] is called the functional transducer of F under policy Pol. �
The policy-induced computation tree CF [Pol] is de�ned analogously to the computation tree

(De�nition 4.19), however on T [Pol].

4.2.9. Syntactic sugar
We brie�y discuss three extensions1 to the DFT syntax which do not alter the expressive power of
DFTs. Further ideas are discussed in Section 4.5 on page 110.

FDEPs with multiple dependent events We allow FDEPs to have more than one dependent
event. An FDEP with multiple dependent events then simply models a set of FDEPs.

De�nition 4.23. A (not well-formed) DFT F is called a DFT with multiple dependent events if
it satis�es all conditions but condition (6) (from the well-formedness de�nition (De�nition 4.9).
Instead of condition (6), ∀v ∈ FFDEP. |σ(v)| = 2, we require

∀v ∈ FFDEP. |σ(v)| ≥ 2. �
1which can be combined, although not formally treated here

4.3. Equivalences 99

We interpret this by simply splitting the FDEPs with multiple dependent events into multiple
FDEPs.
De�nition 4.24. Given a DFT F = (V, σ,Tp,Θ, top) with multiple dependent events. We de�ne
the DFT F ′ = (V ′, σ′,Tp′,Θ′, top′) as equivalent. We de�ne that Θ′ = Θ and top = >. Further-
more, let X = {v ∈ FFDEP | |σ(v)| > 2} the elements which are removed Y = {yxi | x ∈ X ∧ 2 ≤
i ≤ deg(x)} their replacements. We de�ne

• V ′ = V \X ∪ Y .
• σ′ = σ|V \X ∪ {yxi 7→ σ(x)1σ(x)i | yxi ∈ Y }.
• Tp′ = Tp ∪ {y 7→ FDEP | y ∈ Y }. �

We observe the following (without proof).
Corollary 4.36. The DFT F ′ from De�nition 4.24 is well-formed.

Por-gates We extend DFT gate-types with (inclusive) por-gates (POR).
De�nition 4.25. An por-extended DFT F = (V, σ,Tp,Θ, top) is a regular DFT with Tp→ Gates∪
Leafs replaced by Tp → Gates ∪ Leafs ∪ {POR}. The por-extended DFT F is well-formed if all
regular well-formedness criteria (cf. De�nition 4.9) are met and additionally

∀v ∈ POR. |σ(v)| = 2

holds. �
As discussed in Section 3.3.4.6 on page 48, the POR can be modelled using a PAND and an OR.

De�nition 4.26. Let F = (V, σ,Tp,Θ, top) be a well-de�ned por-extended DFT. We de�ne F ′ =
(V ′, σ′,Tp′,Θ′, top′) as equivalent. We de�ne

Z = {z(m1...mn)
(x1...xn) ∈ V | ∀1 ≤ n. mi ∈ N ∧ xi ∈ FPOR ∧ xi = σ(z)mi

}

and Y =
⋃{{yx1 , yx2} | x ∈ FPOR}. Furthermore, we de�ne

• V ′ = V \ FPOR ∪ Y .
•

σ′ = σ|V ′\Z ∪ {z(m1...mn)
(x1...xn) 7→ v1 . . . vk | z(m1...mn)

(x1...xn) ∈ Z ∧ vi ∈ V ′ with }

vi =

{
yx1 if x = σ(z)i ∧ ∃1 ≤ j ≤ n mj = i

σ(z)i otherwise.

∪ {yx1 7→ σ(x)1y
x
2 | yx1 ∈ Y } ∪ {yx2 7→ σ(x) | yx2 ∈ Y }.

• Tp′ = Tp|V ′ ∪ {yx1 7→ PAND | yx1 ∈ Z} ∪ {yx2 7→ OR | yx2 ∈ Z}.
• Θ′ = Θ
• top′ = top if top 6∈ FPOR and top′ = z>1 otherwise. �

We observe the following (without proof).
Corollary 4.37. The DFT F ′ from De�nition 4.26 is well-formed.

Another extension which can be found in e.g. DFTCalc are sequential-and gates (seqand-gates).
Seqand-gates only have basic events as successors and none of the successors is allowed to have
other predecessors. Seqand-gates fail if all successors have failed, and the basic event are in cold
standby until all basic events left of it have failed. They are thus (cold) spare gates with unshared
spare modules where each spare module consists of a single basic event.

4.3. Equivalences
We de�ned a quantitative model for DFTs and showed for some properties that it does indeed ful�l
our requirements. In this section, we formally de�ne the most important probabilistic measures for
DFTs on this underlying model. Furthermore, we de�ne a notion of equivalency on DFTs, which
we use later in Section 4.4 on page 102 and in Chapter 5 on page 113 to prove correctness of rewrite
rules.

100 Chapter 4. Semantics for Dynamic Fault Trees

4.3.1. �antitative measures on DFTs
We give a formal de�nition of the probabilistic measures from Section 3.3.3 on page 39.

De�nition 4.27 (Failure states). Let F be a DFT and CF = (S, x̄, ι, A, ↪→, 99K,AP, L) the com-
putation tree of F . Let FailF = {s ∈ S | top ∈ L(s)}. Then FailF is the set of failure states of
F . �

The probability of failure is the time unbounded probability to reach the set of failure states in
the MA.

De�nition 4.28 (Minimal probability of failure). Given a DFT F and a partial policy Pol on F , the
minimal probability of failure of F under Pol, minPrFF [Pol], is given by

minPrFF [Pol] = min
S∈DSSchedM

CF [Pol]
Pr
S

(3FailF). �

The maximal probability of failure is given analogously.
A DFT is eventually failing if the minimal chance of failure is one.
The reliability given a mission time RelyF (t) is the time bounded probability to reach the set of

failure states in the MA. As for the chance of failure, we de�ne the in�mum and the supremum1

by ranging over all possible schedulers. The (conditional) mean time to failure MTTFF (CMTTFF)
is the expected time to reach the set of failure states (under the condition that we eventually reach
the failure states).
Remark 26. Please notice that the policies induce a restricted class of stationary schedulers. The
minimum/maximum values that are realisable for, e.g. reachability, are not necessarily realisable
with stationary schedulers and thereby especially not realisable by just ranging over all policies.

We only give the de�nitions for the minimal values below. In the remainder, we omit the policy
whenever we use Pol∅.

De�nition 4.29 (Minimal Reliability). Given a DFT F , a partial policy Pol on F , and a mission
time t ∈ R>0, the minimal reliability of F under Pol given t, minRelyF [Pol](t), is given by

minRelyF [Pol](t) = 1− max
S∈DSched

CF [Pol]
Pr
S

(3≤tFailF). �

De�nition 4.30 (Minimal Mean time to failure(MTTF)). Given a DFT F and a partial policy Pol
on F , the minimal mean time to failure in F under Pol minMTTFF [Pol] is given by

minMTTFF [Pol] min
S∈DSSchedM

ET
CF [Pol]
S (3Fail). �

De�nition 4.31 (Minimal Conditional MTTF). Given a DFT F and a partial policy Pol on F , the
conditional mean time to failure in F under Pol, minCMTTFF [Pol] is given by

minCMTTFF [Pol] min
S∈DSSchedM

ET
CF [Pol]
S (3Fail|3Fail). �

We notice that if the DFT is eventually failing, the MTTF and the CMTTF coincide.

4.3.2. Equivalence classes
We consider equivalence of two DFTs, in order to prepare the development of reduction rules.

Intuitively, two DFTs should be considered equal if they fail after the same set of failure traces.
However, such trace equivalences do not preserve the measures we’re interested in on the general
class of DFTs. Consider the following de�nition.

1We write minimum and maximum, which is �ne here as we have only �nitely many paths

4.3. Equivalences 101

De�nition 4.32 (May and Must fail). Let F be a DFT and T its functional transducer.

• May-fail in F : 3FailF = {ρ | ∃π ∈ T (ρ). (ρ, π) ∈ FailF }

• Must-fail in F : 2FailF = {ρ | ∀π ∈ T (ρ). (ρ, π) ∈ FailF } �

DFTs with equivalent may-fail and must-fail sets do not have the same MTTF and reliability as
there are two orthogonal problems.

1. The moment of activation. The naive encoding in may-fail and must-fail does not account
for di�erent points of changing from a cold to a hot failure rate. This may yield di�erent
probability masses for the paths in 3FailF (2FailF) and 3FailF ′ (2FailF ′). Please notice
that one could easily extend the notion of these paths to include information about the set
of activated components.

2. The moment of choice. Like all trace equivalences, the moments where non-determinism is
resolved is not taken into account. Whereas we’re not really interested in the moment or the
way the non-determinism is resolved, this directly a�ects the time-bounded properties and
thus the measures we want to preserve. It is important to notice that restricting ourselves to
time-independent schedulers does not resolve this issue, as the foundation of this problem
lies in the fact that the non-determinism may occur before any basic event has occurred, or
after a non-empty failure trace.

Notice that on DFTs without non-determinism or warm components, this notion above indeed
preserves the measures-of-interest.

For the general class of DFTs, we con�ne ourselves to a more conservative equivalence criterion.
A simple approach is to only de�ne the equivalence on the underlying computation trees.

Strong equivalence

De�nition 4.33 (Strongly equivalent). Given two DFTs F, F ′. The DFTs F and F ′ are strongly
equivalent, denoted F ≡ F ′, whenever C∗F ≈w C∗F ′ . �

We would like to argue on a qualitative level. Using the notions from Section 4.2.7 on page 96,
we introduce the following equivalence relation.

De�nition 4.34. Let F be a DFT with TF = (Q,Σ,Γ, I,}, δ). Let R ⊆ Q×Q be an equivalence
relation with (s, s′) ∈ R. If

• C(s) = C(s′)

•
∀t ∈ Q∃ω ∈ Ω ∪ {ε} e ∈ FBE ∪ {ε} (s, ω, e, t)

=⇒
∃t′ ∈ Q∃e′ ∈ FBE ∪ {ε} (s′, ω, e′, t′) ∈ δ ∧ (t, t′) ∈ R

then we call R a con�guration-equivalence. Two states s, s′ ∈ Q are con�guration-equivalent if
there exists a con�guration-equivalenceR such that (s, s′) ∈ R. Two DFTsF, F ′ are con�guration-
equivalent if in the disjoint union of TF and TF ′ their initial states are con�guration equivalent. �

We directly obtain that con�guration-equivalence su�ces to imply strong equivalence.

Corollary 4.38. Given two DFT F, F ′. If F and F ′ are con�guration-equivalent, then they are
strongly equivalent.

For abstraction of a single DFT, the following notion, which follows from Corollary 4.35 is help-
ful.

Corollary 4.39. Given a DFT F with the functional transducer TF and two states (ρ, π), (ρ, π′)
in the functional transducer. If Stateint(π) = Stateint(π′) then (ρ, π) and (ρ, π′) are con�guration-
equivalent.

102 Chapter 4. Semantics for Dynamic Fault Trees

SF

X1

B CA

(a) The DFT.

R(a)
R(b)

R(c)

R(b)
R(c)

τA

τC R(a)
R(b)

R(c) R(b) τC τA R(b) R(a)

(b) The corresponding functional transducer.

Figure 4.7.: A positive example for partial order reduction.

Weak equivalence In Chapter 5 on page 113, we want to eliminate subtrees which are infallible.
In particular, we want to remove dispensable basic events. However, this would not be covered be
the notion above. We therefore de�ne the very liberal notion of equivalence based on the measures
de�ned above.

De�nition 4.35 (Weakly equivalent). Given two DFTs F, F ′. The DFTs F and F ′ are weakly
equivalent, denoted F u F ′, whenever all of the following conditions hold.

• minPrFF = minPrFF ′ and maxPrFF = maxPrFF ′ .
• ∀t ∈ R≥0. minRelyF (t) = minRelyF ′(t) and ∀t ∈ R≥0. maxRelyF (t) = maxRelyF ′(t).
• minMTTFF = minMTTFF ′ and maxMTTFF = maxMTTFF ′ . �

First, strong equivalence implies weak equivalence, cf. Section 2.2.3 on page 15.

Corollary 4.40. Let F, F ′ be two DFTs. If F ≡ F ′ then also F u F ′.

Second, a DFT F with unconnected basic events is indeed weakly equivalent to a DFT with this
BE removed. We discuss this in detail in Section 5.2.4 on page 128

We notice that we always have to argue about all policies. In the next section, we discuss how
we can restrict the policies under consideration

4.4. Partial order reduction for DFTs
Partial order reduction (POred) is a well known technique in model checking [BK08]. It aims to
reduce non-determinism due to interleaving, as it introduces a �xed ordering on sets of interleaving
events for which the actual ordering is unknown. To preserve semantics, it is important that the
outcome of such a set of events doesn’t rely on the ordering applied on it.

We introduce partial order reduction here for two reasons. First, we have seen that a large part of
the non-determinism in DFTs is pointless, i.e., for each scheduler we get the same result. Applying
POred might give a speed up in the state-space generation, which is clearly a bottleneck in existing
tool sets.

Second, and more important in our context, the notion of POred simpli�es correctness proofs of
rewrite rules which include FDEP-gates. We illustrate the idea with two small examples - one in
which the outcome does not rely on the ordering and one in which it does.

Example 4.10. We consider the DFT depicted in Figure 4.7a. After the failure of B, both A and C
are triggered. The order in which A and C then fail does not matter, even in the presence of the
PAND. In Figure 4.7b, we depict the functional transducer. If we assume thatA is always triggered
beforeC is, then the dotted part of the functional transducer is eliminated. Notice that the resulting
functional transducer is then deterministic. N

This ordering obviously does not work if it a�ects both children of the PAND.

Example 4.11. We consider the DFT depicted in Figure 4.8a. After the failure of A, both B and
C are triggered. The order in which B and C then fail matters, as �rst B and then C causes the

4.4. Partial order reduction for DFTs 103

SF

X1

B CA

(a) The DFT.

R(a)
R(b)

R(c)

τB
τC

R(a)

R(c)
R(a)

R(b)

τC τB R(c) R(a) R(b) R(a)

(b) The corresponding functional transducer.

Figure 4.8.: A negative example for partial order reduction.

system to fail, while �rst triggering C and then B renders the PAND infallible. Therefore, we
cannot make the functional transducer (Figure 4.8b) determinismistic. N

It is not surprising that the partial order reduction is not valid in the latter example. Like the
ample-set construction [BK08], we now want simple rules on the level of DFTs which allow us to
omit parts of the underlying transducer. We �rst require some further terminology for basic events
and their connection via FDEPs.

De�nition 4.36 (Potential enabling). Given a DFT F = (V, σ,Tp,Θ, top), for each v ∈ FBE,
we de�ne the potential triggered FDEPs as PotTrig(v) = {v′ ∈ FFDEP | ∃p ∈ ifcp(v′) p↓ = v}.
Furthermore, we de�ne for v ∈ FDEP, the set PotEnables(v) as the set of functional dependencies
which might be triggered after v is triggered, that is, PotEnables(v) = PotTrig(v2). �

We call basic events where di�erent orders in which they fail yield in con�ict. We give a very
naive attempt to characterise events that are in con�ict.
Remark 27. We call this naive as this version indeed re�ects an idea which emerged very early in
the preparation for this thesis. Later on, it became clear that some other events are also in con�ict.
However, as we will see, this naive concept is already very powerful and for a large class of DFTs,
it is powerful enough.

De�nition 4.37 (Naive mutual con�ict). Let F = (V, σ,Tp,Θ, top) be a DFT with x, y ∈ FBE.
We call v and v′ in mutual pand-con�ict if there exists a pand-gate z ∈ FPAND such that

∃i, j < deg(z) i 6= j ∧ ∃p ∈ ifcp(σ(z)i) p↓ = x ∧ ∃p′ ∈ ifcp(σ(z)j) p
′
↓ = y.

Furthermore, v and v′ are in naive mutual spare-con�ict if there exist two di�erent spare gates
s, s′ ∈ FSPARE, s.t.

∃z ∈ σ(s)∃z′ ∈ σ(s′)∃p = ifcp(σ(z)) p↓ = x ∧ ∃p′ ∈ ifcp(σ(z′)) p′↓ = y

We call v and v′ in naive mutual con�ict, if they’re either in mutual pand-con�ict or in naive mutual
spare-con�ict. Otherwise, they’re naively con�ict-free. �

Please, notice that the notions are over-approximations. There are numerous cases which are
considered con�icting here but are not problematic in practice, e.g. spares in independent subtrees
may fail in any order, as they never claim the same successors.

We have given a syntactical meaning for being naively con�ict-free. The next proposition yields
a semantic consequence.

Proposition 4.41. Let FΩ be a DFT and TF its functional transducer with a state (ρ, π) ∈ Ω�×F�
BE

and {x, y} ⊆ ∆(π) with x, y naively con�ict-free. For (ρ, π · xy) and (ρ, π · yx) it holds that
Failed(π · xy) = Failed(π · yx).

Proof. Let C = Failed(π ·xy), and C ′ = Failed(π · yx). We �rst show C = C ′. We use a structural
induction. Assume that not, than w.l.o.g. ∃v ∈ C \ C ′

104 Chapter 4. Semantics for Dynamic Fault Trees

v 6∈ FBE as v ∈ {e ∈ π} ∪ {x,y}.

v ∈ FVOT(k) then there exists some child v′ ∈ C \C ′ which contradicts the induction hypothesis.

v ∈ FPAND.

v ∈ C \ C ′ =⇒
v ∈ Failed(π · xy) ∧ v 6∈ Failed(π · yx) =⇒
σ(v) ⊆ Failed(π · xy) ∧ v ∈ Failable(π · x) ∧ v 6∈ Failed(π · yx) =⇒

σ(v) ⊆ Failed(π · xy) ∧ v ∈ Failable(π · x)∧
(σ(v) 6⊆ Failed(π · xy) ∨ v 6∈ Failable(π · y)) =⇒

(σ(v) ⊆ Failed(π · xy) ∧ v ∈ Failable(π · x) ∧ σ(v) 6⊆ Failed(π · yx))∨
(σ(v) ⊆ Failed(π · xy) ∧ v ∈ Failable(π · x)∧
v 6∈ Failable(π · y) ∧ σ(v) ⊆ Failed(π · yx)) =⇒

∃v′ ∈ σ(v). v′ ∈ C \ C ′∨
(σ(v) ⊆ Failed(π · xy) ∧ v ∈ Failable(π · x)∧
v 6∈ Failable(π · y) ∧ σ(v) ⊆ Failed(π · yx)) =⇒

σ(v) ⊆ Failed(π · xy) ∧ v ∈ Failable(π · x)∧
v 6∈ Failable(π · y) ∧ σ(v) ⊆ Failed(π · yx) =⇒

v ∈ Failable(π) ∧ v 6∈ Failable(π · y) ∧ σ(v) ⊆ Failed(π · yx) =⇒
v 6∈ Failable(π · y) ∧ v ∈ Failable(π) ∧ σ(v) ⊆ Failed(π · yx) =⇒
(v 6∈ Failable(π)∨

(∃j < deg(v). σ(v)j+1 ∈ JustFailed(π · y) ∧ σ(v)j 6∈ Failed(π · y)))∧
v ∈ Failable(π) ∧ σ(v) ⊆ Failed(π · yx) =⇒
∃j < deg(v). σ(v)j+1 ∈ JustFailed(π · y)∧
σ(v)j 6∈ Failed(π · y) ∧ σ(v) ⊆ Failed(π · yx) =⇒

∃j < deg(v). σ(v)j ∈ JustFailed(π · yx) ∧ σ(v)j+1 ∈ JustFailed(π · y) =⇒
∃j < deg(v). x ∈ ifcp(σ(v)j) ∧ y ∈ ifcp(σ(v)j+1)

Which contradicts the fact that x and y are not in mutual con�ict.

v ∈ FSPARE

Let z = LastClaimed(π · x, v) = LastClaimed(π · y). We can conclude z 6∈ Failed(π) and

z ∈ Failed(π · xy) ∧ z ∈ Failed(π · yx),

otherwise, ∃v′ ∈ σ(v). v′ ∈ (C \ C ′) which contradicts the induction hypothesis.

Let us �rst assume v ∈ JustFailed(π ·x). We notice that this should lead to a contradiction without
resorting to the con�ict-free graph. To see why, we see that the failure of x su�ces to let v fail,
that is, v is not able to claim anything anymore even before the failure of x and x causes the last
claimed successor z to fail. In order to ensure that v does not fail after yx, the failure of y would
need to prevent the failure of z, but that is excluded by the induction hypothesis. We formalise this
below.

As argued above, the following su�ces to come to a contradiction.

v ∈ JustFailed(π · x) =⇒
z ∈ Failed(π · x) ∧ Available(π · x, v) = ∅ =⇒
z ∈ Failed(π · x) ∧ ∀z′ ∈ σ(v). ClaimedBy(π, z′) 6= ∅ ∨ z′ ∈ Failed(π · x)

4.4. Partial order reduction for DFTs 105

We use this later in the following argument.

z ∈ Failed(π · yx) =⇒
z ∈ JustFailed(π · y) ∨ (LastClaimed(π · y, v) = z ∧ z ∈ JustFailed(π · yx)) =⇒
v ∈ Failed(π · yx) ∨ Available(π · y, v) 6= ∅∨

(LastClaimed(π · y, v) = z ∧ z ∈ JustFailed(π · yx)) =⇒
Available(π · y, v) 6= ∅ ∨ (LastClaimed(π · y, v) = z ∧ z ∈ JustFailed(π · yx)) =⇒
(∃z′ ∈ σ(v). ClaimedBy(π, z′) = ∅ ∧ z′ 6∈ Failed(π · y))∨

(LastClaimed(π · y, v) = z ∧ z ∈ JustFailed(π · yx)) =⇒
(∃z′ ∈ σ(v). ClaimedBy(π, z′) = ∅ ∧ z′ 6∈ Failed(π · y) ∧ z′ ∈ Failed(π · x))∨

(LastClaimed(π · y, v) = z ∧ z ∈ JustFailed(π · yx)) =⇒
(∃z′ ∈ σ(v). ClaimedBy(π, z′) = ∅ ∧ z′ ∈ JustFailed(π · yx)∧
z′ ∈ JustFailed(π · x))∨
(LastClaimed(π · y, v) = z ∧ z ∈ JustFailed(π · yx)) =⇒

LastClaimed(π · y, v) = z ∧ z ∈ JustFailed(π · yx) =⇒
(z 6∈ Failed(π · y) ∧ Available(π · yx, v) 6= ∅ ∨ v ∈ Failed(π · yx))) =⇒
(z 6∈ Failed(π · y) ∧ (false) (*)

We conclude that v ∈ JustFailed(π · xy). Therefore, we have that

∃v′ ∈ σ(v) ∃p ∈ ifcp(v′) p↓ = y

First, we apply some de�nitions to come to a useful case distinction.

v ∈ JustFailed(π · xy) =⇒
v 6∈ Failed(π · x) ∧ LastClaimed(π · x) ∈ Failed(π · xy) ∧ Available(π · xy, v) = ∅ =⇒
(LastClaimed(π)(v) 6∈ Failed(π · x) ∨ Available(π · x, v) 6= ∅)∧

LastClaimed(π · x)(v) ∈ Failed(π · xy) ∧ Available(π · xy, v) = ∅ =⇒
(LastClaimed(π)(v) 6∈ Failed(π · x) ∧ LastClaimed(π · x)(v) ∈ Failed(π · xy)∧

Available(π · xy, v) = ∅)∨
(Available(π · x, v) 6= ∅ ∧ LastClaimed(π · x)(v) ∈ Failed(π · xy)∧
Available(π · xy, v) = ∅

We see two cases. For the �rst case, we add σ(v)∩Available(π ·x) = ∅, otherwise, the second case
below does apply. The �rst case is already contradictory without resorting to assumption that x
and y are con�ict-free.

LastClaimed(π)(v) 6∈ Failed(π · x) ∧ LastClaimed(π · x)(v) ∈ Failed(π · xy)∧
Available(π · xy, v) = ∅ ∧ Available(π · x) = ∅ =⇒
Available(π · x, v) = ∅

Which yields a contradiction as in (*). We thus conclude

Available(π ·x, v) 6= ∅∧LastClaimed(π ·x)(v) ∈ Failed(π ·xy)∧σ(v)∩Available(π ·xy) = ∅

Now, we use that v 6∈ Failed(π · yx). We have that:

v 6∈ Failed(π · yx) =⇒ LastClaimed(π · y, v) 6∈ Failed(π · yx) ∨ Available(π · yx, v) 6= ∅

We show that in both cases, we can deduce that there exists an s ∈ FSPARE\v such that s is claiming
after π · x.

• We start with the latter case, i.e. we assume Available(π · yx) 6= ∅. Thus, ∃z′ ∈ σ(v) z′ 6∈

106 Chapter 4. Semantics for Dynamic Fault Trees

SF

B

X

A

C D

Figure 4.9.: Naive con�ict-free events and a single spare-gate.

Failed(π · yx) ∧ ClaimedBy(π · y, z′) = ∅. By the induction hypothesis, z′ 6∈ Failed(π · xy).
Therefore, ClaimedBy(π·x, z′) = {s} for some s ∈ FSPARE. As we have ClaimedBy(π·y, z′) =
∅, we can conclude that s claims z′ after π · x. In particular, LastClaimed(π · x, s) = z′.
We show that s 6= v. Assume that s = v, we deduce that z′ = LastClaimed(π · x, v) ∈
Failed(π · xy) and that z′ 6∈ Failed(π · xy).

• We now discuss the former case, i.e. we assume LastClaimed(π·y, v) 6∈ Failed(π·yx). Let z′ =
LastClaimed(π ·y, v). By the induction hypothesis, we have z′ 6∈ Failed(π ·xy). Furthermore,
we have that z′ 6∈ Available(π ·xy). It follows that for some s ∈ FSPARE (with s 6= v as above).

ClaimedBy(π · x, z′) = {s} ∧ ClaimedBy(π · x, z′) = {v}

It follows that z′ 6= z. Notice that s claiming z′ after π leads directly to a contradiction with
ClaimedBy(π · x, z′) = {v}. Therefore, s claims z′ after π · x.

As s 6= v claiming after π · x, LastClaimed(π, s) ∈ JustFailed(π · x) and therefore,

∃j < deg(s)∃p ∈ ifcp(σ(s)j) p↓x)

We already had

∃v′ ∈ σ(v) ∃p ∈ ifcp(v′)p↓ = y

which contradicts the con�ict-freeness of x and y.

The following corollary follows directly.

Corollary 4.42. Let FΩ be a DFT and TF its functional transducer with a state (ρ, π) ∈ Ω� × F�
BE

and {x, y} ⊆ ∆(π) with x, y naively con�ict-free. For (ρ, π · xy) and (ρ, π · yx) it holds that
Failable(π · xy) = Failable(π · yx).

The naive version of mutual con�ict-free is not strong enough to yield equivalent claiming,
which we illustrate in the following example.

Example 4.12. We consider the DFT depicted in Figure 4.9. We consider the initial failure of A.
The failure triggers B and C . We see that independent of the order of B and C , as soon as they’ve
both failed then the spare-gate fails. If C is triggered �rst, then neither C norD are ever activated.
That is, the failure rate of D is reduced, and thereby the probability that D triggers X is reduced.s
Notice that the problem here is thus that the activation of the spare module is important even
though the module representant fails immediately afterwards. N

Based on the example above, we consider more events to be in mutual con�ict, and thereby
weaken the concept of con�ict-free.

De�nition 4.38 (Activation-sensitive mutual con�ict). Let F = (V, σ,Tp,Θ, top) be a DFT with
x, y ∈ FBE. We say that v and v′ are in (activation-sensitive) mutual spare-con�ict if there exist two
di�erent spare gates s, s′ ∈ FSPARE, s.t.

∃z ∈ σ(s)∃z′ ∈ σ(s′)∃p = ifcp(σ(z)) p↓ = x ∧ ∃p′ ∈ ifcp(σ(z′)) p′↓ = y

4.4. Partial order reduction for DFTs 107

SF

X1

C DBA

Figure 4.10.: Other dependent events

We call v and v′ in (activation-sensitive) mutual con�ict, if they’re either in mutual pand-con�ict or
in mutual spare-con�ict. �

We call two events con�ct-free if they’re not in activation-sensitive mutual con�ict.

Proposition 4.43. Let FΩ be a DFT and TF its functional transducer with a state (ρ, π) ∈ Ω�×F�
BE

and {x, y} ⊆ ∆(π) with x, y naively con�ict-free. For (ρ, π · xy) and (ρ, π · yx) it holds that
ClaimedBy(π · xy) = ClaimedBy(π · yx).

We omit the proof here due to limited space. The proof follows the proof for Proposition 4.41.
Notice that we may use that Failed(π · xy) = Failed(π · yx), as activion-sensitive con�ict-free
implies naive con�ict-free. This also leads to the following important corollary.

Corollary 4.44. Let FΩ be a DFT and TF its functional transducer with a state (ρ, π) ∈ Ω� × F�
BE

and {x, y} ⊆ ∆(π) with x, y naively con�ict-free. It holds that

C(ρ, π · xy) = C(ρ, π · yx).

Until now, we only considered two basic events and assumed that they were consequetively
triggered. In the presence of other dependent events, we cannot simply assume that the outcome
is order independent.

Example 4.13. We consider the DFT depicted in Figure 4.10. A failure of A triggers B and D,
which are con�ict-free. If we assume that D is triggered before B, then the DFT never fails (the
event chain is ADBC). On the other hand, if we assume that B fails �rst, we have the con�icting
dependent events C and D left. The path ABCD causes the DFT to fail. N

We generalize the notion of con�ict-free to commutativity.

De�nition 4.39. Let R ⊆ FBE × FBE be the largest relation such that for all vRv′

• v, v′ are con�ict-free, and

• for all w′ ∈ PotEnables(v′), vRw′, and

• for all w ∈ PotEnables(v), wRv′.

For any vRv′, we say that v and v′ are mutual commutative. We denote R with ~. �

Remark 28. The notion of commutativity is symmetric, but it is not transitive.
This notion indeed su�ces to tackle

Lemma 4.45. Let F be a DFT and T its functional transducer. Let s = (ρ, π) denote a state in T .
Let x ∈ ∆(π) such that x ~ y for all x 6= y ∈ ∆(π). Let sx = (ρ, π · x). Let τ(s) denote the states
reachable from s by ε,y transitions. Then

{C(ŝ) | ŝ ∈ τ(s) ∩}} = {C(ŝ) | ŝ ∈ τ(sx) ∩}}

108 Chapter 4. Semantics for Dynamic Fault Trees

T

X Y

Xf Yf

AB B′

Figure 4.11.: FDEPs being triggered simultaneously
.

We omit some technical details, the proof goes along many proofs for (bi)simulation equivalence
and partial order reductions, see [BK08].

Proof sketch. W.l.o.g. we can assume ∆(π) > 1. Let sy = (ρ, π · y) for some x 6= y ∈ ∆(π). Let
C(τ(s)) denote {C(ŝ) | ŝ ∈ τ(s) ∩}}. It su�ces to show that

C(τ(sy)) = C(τ(sx))

Assume that this is not the case, then there exists an ŝy ∈ C(τ(sy))\C(τ(sx)) — the other direction
is analogous.

Let

s
y−→ s1

z1−→ s2 −→ . . . ŝy

denote this corresponding path — notice that x = zi for some i. We show that any such path can
be mimicked by starting with

s
x−→ s′0 . . .

From s′0, we continue with y−→ to s′1. This is certainly possible as y ∈ ∆(π). We notice that
C(s′1) = C(t) with s1 · (ε, x). Either z1 = x, and we are done. Otherwise, we repeat this construc-
tion. Notice that z1 ∈ ∆(π · xy) as we can conclude from z1 ∈ ∆(π · y) that z1 ∈ ∆(π · yx) and
from there it follows with con�guration equivalence.

The lemma contains explicitely states that one has to consider all dependent events. In particular,
this also includes events which are triggered via another path.

Example 4.14. We consider the DFT in Figure 4.11. The functional dependencies triggered by
X and Y are con�icting. We notice that they may be triggered at the same time by the failure of
A. N

Along the lines of potentially triggered, we can now de�ne which dependencies should be con-
sidered to always ful�l the requirements of Lemma 4.45. We state the following without proof.

Proposition 4.46. Let F be a DFT and π · π′ ∈ F�
BE with ∆(π) = ∅. Then

∆(π · π′) ⊆
⋃
x∈π′

PotEnables(x)

.

We can use this to proposition to syntacticly determine a superset of the basic events which
might be triggered concurrently with a given basic element.

4.4. Partial order reduction for DFTs 109

Corollary 4.47. Let F be a DFT with x ∈ FBE. It holds that

x ∈ ∆(π) =⇒ ∆(π) ⊆ {y ∈ FBE | ∃z ∈ FBE x ∈ PotEnables∗(z) ∧ y ∈ PotEnables∗(z)},

where PotEnables∗ denotes the transitive closure of PotEnables.

The transitive closure of PotEnables captures the set of all elements which are on a delayed failure
path, which we do not formally introduce here. Intuitively, a delayed failure path is a failure path
which might lead through FDEPs.

Based upon merging the corollary with Lemma 4.45 and Corollary 4.38, we arrive at the following
theorem.

Theorem 4.48. Let FΩ be a DFT and x ∈ FBE such that x~ y for all y ∈ {y ∈ FBE | ∃z ∈ FBE x ∈
PotEnables∗(z) ∧ y ∈ PotEnables∗(z)}. Let Pol be a partial policy such that Pol(ρ, π) = {x} if
x ∈ ∆(π). The computation tree CF [Pol] ≈ CF . We call x preferential.

Again, we omit technical details in the proof.

Proof sketch. For any location (ρ, π) with x ∈ ∆(π), we have by Lemma 4.45 that all ∀s ∈
τ(ρ, π)∃s′ ∈ τ(ρ, π · x) such C(s) = C(s′). Therefore, s ≈s s′ by Corollary 4.38. The by τ -
transition reachable equivalence classes w.r.t. strong bisimulation are thus identical for (ρ, π) and
(ρ, π · x) and neither of the states is accepting. Thus (ρ, π) and (ρ, π · x) are weakly bisimilar. The
bisimulation quotients of CF and CF are isomorphic, as the restriction to Pol thus only removes
transitions inside equivalence classes.

The theorem thus allows us to reduce the non-determinism introduced by multiple FDEPs, as
we can assume a total ordering on the independent FDEPs.

Often, the delayed failure forwarding through dependent events behaves exactly as the imme-
diate failure propagation. We call this phenomenon δ-independence. δ-independence can be char-
acterised in a very similar fashion to preferential basic events. We therefore restrict ourselves to a
brief overview.

We use δ-independence to eliminate the gap between a basic event x being caused by a compo-
nent failure and a dependent event y. We assume y to be preferential here to ease the de�nitions.
We then de�ne the δ-independence as a property of the tuple, and we can assume that x occurs
before y in the setting we’re interested in.

We use the following syntactic criterion to �nd independent tuples:

De�nition 4.40. Let F be a DFT with x, y ∈ FBE. We say that y is ignorant about x if

∀v ∈ FSPARE∀p ∈ ifcp(v). p↓ 6= x∧
∀v ∈ FPANDi = min{vi ∈ σ(v) | ∃p ∈ ifcp(vi). p↓ = y}
∀j > i∀p′ ∈ ifcp(σ(v)j)p

′
↓ 6= x �

Remark 29. Notice that the ignorance is not symmetric. However, we could likewise de�ne igno-
rance from x to y.

Based on this syntactic assumption, we can then show the following semantic consequence,
which we not prove here.

Proposition 4.49. Let F be a DFT with {x, y} ⊆ FBE and π ∈ FBE \ {x, y}�. For v ∈ FPAND, it
holds that v ∈ Failed(π ·xy) ⇐⇒ v ∈ Failable(π)∧σ(v) ⊆ Failed(π ·xy). For v ∈ FSPARE, it holds
that v ∈ Failed(π · xy) ⇐⇒ LastClaimed(π, v) ∈ Failed(π · xy) ∧ Available(π, v) = ∅.

With this notion, we see that y can fail immediately with x without changing the semantics.

A note on the connection with the IOIMC semantics Before we conclude the chapter with a
small outlook, let us brie�y review a major point in our rationale, the compatibility with the IOIMC
semantics.

We see three major di�erences.

1. Immediate vs. delayed failure propagation.

110 Chapter 4. Semantics for Dynamic Fault Trees

T

X Y

Xf Yf

AfBf B′
f

Af

⊥

Bf

⊥

B′
f

(a) Replacing failure combination by forwarding.

T

X Y

Xf Yf

Af

Af

⊥

Bf

⊥

B′
f

(b) Replacing failure forwarding by combination.

Figure 4.12.: Transforming DFTs for compatibility with IOIMC semantics.

2. Early vs. late claiming.

3. Activation semantics (how is activation propagated).

The �rst di�erence seems most severe from a practical point of view and is discussed here in greater
detail. Early vs. late claiming is a problem which only occurs in nested spares, which is, to the best
of our knowledge not used in literature (cf. Section 3.4.13 on page 65) and di�erences in what
exactly is activated are only relevant to non-treelike subtrees - these are again not used in the
case studies. We conjecture that in many situations, any di�erences emerging here could be easily
resolved.

We reconsider Figure 3.18a on page 43 which illustrated the e�ect of delayed failure propaga-
tion. We notice that we can replace the DFT by Figure 4.12a - now what was immediate failure
propagation according to the earlier de�ned semantics has become failure forwarding and is there-
fore delayed. With the help of the notions of preferential basic events and delta-independency, we
can argue that in fact, the topmost functional dependencies can be eliminated without a�ecting
the measures of interest (This rewriting is formalised in Chapter 5 on page 113.). Based on this
observation, we propose that any DFT which should be analysed according to IOIMC semantics is
�rst transformed as displayed in Figure 4.12b and then rewritten with the framework in our next
chapter - based on the semantics presented above. We conjecture that any di�erence in the out-
come of the stochastic analysis is due to the points two and three discussed above. In particular,
on all known benchmark instances, calculating the measures-of-interest yields the same result.
Remark 30. By changing successor relations into functional dependencies, also the claiming and
activation mechanisms are a�ected. We are aware that the method presented is not correct in a
formal sense, and is solely discussed here as a starting point for further research.

4.5. Extensions for future work
The presented semantics can be extended to support even more expressive power for DFTs. Due
to time- and space restrictions, we only present some brief notes about these extensions.

Probabilistic dependencies We recall from Section 3.3.1 on page 34 that probabilistic depen-
dencies are much alike functional dependencies, but only propagate the failure with some dis-
crete probability. To account for this, we can alter the set of dependent events to a multiset from
FBE× [0,1]. To put it di�erently, instead of a set of dependent sets we have a set of triggered PDEPs.
We illustrate the functional transducer and the computation tree for a small example.

Example 4.15. In Figure 4.13a, we show a small DFT consisting of two basic events (A,B). If A
fails, then B fails with probability 0.8. In the functional transducer (cf. Figure 4.13b), we see that

4.5. Extensions for future work 111

SF
0.8

A B

(a) DFT with PDEP
.

a/A

b/B

ε/Bε/ε a/A

(b) Functional transducer.

R(a)

R(b)

τA

0.2 0.8
R(a)

(c) Computation tree.

SF
0.8

A B C

(a) PDEP with multiple dependent events.

SF

0.8

A X B C

(b) Simulating multiple dependent events with bi-
nary PDEPs.

Figure 4.14.: PDEPs with multiple dependent events as syntactic sugar

after the failure of A (left path), there are two internal outgoing transitions, one corresponding to
B being triggered, and one where we B is not triggered (indicated by the line above B) - notice
that the failure of the PDEP is thus non-determinismistic. For the latter transition, it is important
that this remove B from the set of dependent events. Now the set of dependent events is empty
again - and we have only an outgoing transition triggered by the component failure b. The compu-
tation tree depicted in Figure 4.13c now combines the transitions ε/B and ε/B into a immediate
transitions as before, but instead of a dirac-distribution, use the distribution {x 7→ 0.8, y 7→ 0.2}
where x is the location reached if B is triggered and y if B is not triggered. N

It is important to realise that the semantics between a single PDEP with multiple basic events is
di�erent frommultiple PDEPs with a a single basic event.

We illlustrate how PDEPs with multiple basic events can be turned into syntactic sugar in Fig-
ure 4.14. We see that we introduce a basic event which may be triggered by the PDEP, if it is, all
dependent events of the original PDEP are triggered with probability 1 (i.e. by a regular FDEP). If
not, non of the original dependent events are triggered.

Sequence enforcers We recall that sequence enforcers require that their successors fail from left
to right. Any event chain which breaks this condition is ruled out. We notice that on a functional
transducer basis, we can therefore run into a deadlock in which any further event would break
the condition. The standard assumes that these deadlocks are allowed, and then the semantics are
straightforward to de�ne. Any transition to a location in which a sequence enforcer condition is
violated (the sequence enforcer has failed) is removed, i.e., locations with failed sequence enforcers
are not reachable. We illustrate this by depicting the functional transducer (Figure 4.15b) for a
simple DFT (Figure 4.15a).

Liberal sharing The well-formedness de�nition given in De�nition 4.9 has a bunch of restric-
tions on spare modules. Their main objective is to prevent multiple spare-gates to claim simultane-
ously - thereby preventing non-determinism on the level of a single event-chain. These restrictions
are in many cases too strong. In particular, they invalidate the “switch” construction in Section 3.4.2
on page 57 (representing barrier failures). We observe that the primary spare module is not inde-
pendent. However, 1. The primary spare module is activate right from the start, either because it
is connected to the top or as it claimed by the active spare. 2. A failure of the module causes only
one spare-gate to claim, as no other spares have an immediate cause failure path to the module. In
conclusion, the semantics can — and should — be less restrictive. However, this further complicates
the proofs.

112 Chapter 4. Semantics for Dynamic Fault Trees

SF

→

A B C

(a) Simple DFT with sequence enforcer.

a/A
b/B

b/B c/C a/A

c/C b/B c/C

(b) Corresponding functional transducer.

Furthermore, the DFTs can be extended by an Activation Dependency. Whereas functional de-
pendencies route failures from its trigger to the dependent events, activation throughput activates
all dependent events upon the activation of its trigger. With this, we could simplify several DFTs
(cf. Figure 3.21 on page 47 and Figure 3.20c on page 47) and eventually ease the rewrite process.

5. Rewriting Dynamic Fault Trees
Fault trees in general, and DFTs in particular, have a tendency of being verbose. First, fault trees
are often a form of documentation of the system under consideration. Here, it makes sense to
divide systems (trees) in di�erent subsystems (subtrees) based on aspects which might contradict
minimality of the DFT, cf. [VS02]. Second, ever more tools deliver computer-generated fault trees
based on architecture descriptions, cf. Section 3.4.9 on page 60. The systematic fashion in which
these are created often introduce a verbose structure.

Algorithms for the analysis of DFTs often create an underlying model, e.g. a Markov chain, and
then analyse the underlying model. The size of the underlying model is, in general, exponential
in the size of the DFT it encodes. Due to the symmetric nature of DFTs observed in practice,
state space reduction techniques like (weak) bisimulation are particularly e�ective, cf. [BCS07c].
However, the size of intermediate model is still potentially very large - in fact - it is the current
bottleneck in DFTCalc. Thus, less verbose DFTs encoding the same system potentially improve the
performance of DFTCalc.

For the analysis of scenarios with components which have already failed or certainly do not fail,
this information might be used to create a less verbose DFT which correctly encodes the system
behaviour for the given scenario. The notion of correctness can vary. For some qualitative analysis,
it might be important that speci�c intermediate states are preserved. Here, we are only interested
in the quantitative measures we discussed before (cf. Section 4.3.1 on page 100) and therefore, we
are not interested in the intermediate states. The goal of this chapter is to formalise rewriting
verbose DFTs into smaller DFTs, while maintaining —at least— these measures.

We notice that various rules are not context-free. We give an example that even simple (static)
rules are not necessarily context-free.

Example 5.1. Consider Figure 5.1. In Figure 5.1a, we observe that gate A fails if and only if C
fails. It seems a general rule that the or-gate (B) does not contribute to the failure behaviour of
A. We can therefore remove it as a successor of A, as depicted in Figure 5.1b. In the larger DFT
F in Figure 5.1c, we apply the same reasoning, which is perfectly valid. However, by removing
the connection, we prevent the activation of D. Thus, in the DFT F ′ in Figure 5.1d, D is never
activated. Assuming D is in cold-standby, D never fails, and thus never triggers C , which also
causes F ′ to have a higher reliability and MTTF than F . N

The rule discussed above is the application of the subsumption rule from Boolean algebra. It is
extremely e�ective, as it would allow us to reduce the DFT from 5.1a to a DFT with just element

A

B

C D

(a) A small DFT which can
be simpli�ed.

A

C D

(b) The simpli�ed result.

X

A

B

C D

Y

(c) A DFT with the same
structure as before

X

A

C D

Y

(d) An incorrectly simpli-
�ed DFT

Figure 5.1.: Rewriting is not context free.

114 Chapter 5. Rewriting Dynamic Fault Trees

Lattice axioms:

a ∨ b = b ∨ a a ∨ (a ∧ b) = a (a ∨ b) ∨ c = a ∨ (b ∨ c)
a ∧ b = b ∧ a a ∧ (a ∨ b) = a (a ∧ b) ∧ c = a ∧ (b ∧ c)

Boundedness and distributivity:

0 ∨ a = a (a ∨ b) ∧ (a ∨ c) = a ∨ (b ∧ c)
1 ∧ a = a (a ∧ b) ∨ (a ∧ c) = a ∧ (b ∨ c)(*)

(*) follows from other axioms.

Table 5.1.: Axiomisation of a bounded distributive lattice
(L,∨,∧, 1, 0) with a, b, c ∈ L.

C . However, the example shows us that great care is required when applying the rule. We discuss
the context in which such a rule is valid in greater detail during this chapter.

The remainder of this chapter is structured as follows. We �rst discuss some normal forms, as
this guides our expectations for the rewrite rules. We then introduce a general framework for DFT
rewriting. We introduce several context restrictions which limit the DFTs on which a rule can be
applied. We give the proof obligation for abstract rules to be correct. In the last section, we discuss
a selection of rules which we have been embedded in the framework, and proof them correct by
showing the aforementioned proof obligations.

5.1. DFTs and normal forms
Let us shortly recall valid rewrite steps for SFTs, which originate from the axioms in a bounded
distributive lattice, see Table 5.1. As discussed in Example 5.1, these rules do not hold on general
DFTs. However, our rules will allow the same rewriting of static fault trees, as the context of static
fault trees allows all the rules to be applied. Instead of explicitly presenting associativity rules,
we introduce �attening rules which combine several gates of the same type to one such gate with
multiple inputs. Associativity of the gates is easily deduced from that.

De�nition 5.1 (Normal forms for static fault trees). Given an SFT F = (V, σ,Tp,Θ, top). If

• top ∈ OR, and

• σ(top) ⊆ AND, and

• {σ(v) | v ∈ σ(top)} ⊆ BE.

then it is in disjunctive form. If,

• top ∈ AND, and

• σ(top) ⊆ OR, and

• {σ(v) | v ∈ σ(top)} ⊆ BE,

then it is in conjunctive form. �

We recall from Section 4.4 on page 102 that for static fault trees extended with functional depen-
dencies, we can eliminate all functional dependencies by the introduction of or-gates. Thus, the
same normal forms as for static fault trees exist.

Proposition 5.1. For every static fault tree F , possibly extended with FDEPs, equivalent DFTs Fc and
Fd exist, with Fc in conjunctive form and Fd in disjunctive form.

We notice that the DNF for an SFT corresponds to enumerating all minimal cut sets. We could
now try to �nd a normal form which enumerates all minimal cut sets. However, if we consider
the DFT encoding a por-gate, we notice that we cannot hope for a DNF with pand-gates instead of
and-gates.

5.1. DFTs and normal forms 115

Proposition 5.2. Given the DFT F as depicted in Figure 5.2, for any DFT F ′ = (V ′, σ′, Tp′,Θ′, top′)
with Dom(Tp) = {OR,AND, PAND,BE,CONST(⊥),CONST(>)} s.t. F ≡ F ′, it holds that

∃x ∈ FOR ∃y ∈ FPAND y ≺ x.

We exclude voting-gates, as or-gates are just special voting-gates.

Z

X

A B

Figure 5.2.: A small DFT encoding the behaviour of a single por-gate.

Proof sketch. We’re looking for a DFT F ′ with the behaviour described below. From Section 4.3.2
on page 100, we know that we can use a trace equivalence here.

π top ∈ Failed(π)

ε 7
A 3
B 7
AB 3
BA 7

A failure of B before A makes the system infallible. Any equivalent DFT F ′ thus has a y ∈ F ′PAND,
such thatA ≺ σ(y)i andB ≺ σ(y)j with i < j. Especially, we can assume that σ(y)j ∈ Failed(B).
W.l.o.g. we can assume that top ∈ Failed(π) ⇐⇒ y ∈ Failed(π), otherwise, the pand-gate would
be dispensable1, but then there must be another pand-gate, equivalent to y. However, we require
that top ∈ Failed(A), thus y ∈ Failed(A). Now, consider σ(y)j . As y ∈ Failed(A), we can conclude
that σ(y)j ∈ Failed(A).

We have that σ(y)j ∈ Failed(A) and σ(y)j ∈ Failed(B). There thus is a path from σ(y)j to A
and a path toB such that all elements on the path fail withA andB, respectively. The pathes have
to be merged with an or-gate, as the alternative AND and PAND only fail if the elements on both
paths have failed.

We thus have an or-gate x such that y ≺ x.

We could easily extend the proposition to include FDEPs and voting-gates. The addition of spare-
gates makes a proof signi�cantly harder, but we conjecture that this also holds in the presence of
spare-gates.

Ultimately, a structure like in por-gates might yield a normal form, where on the left input
we connect a pand-gate which decodes a single sequence, and on the right-hand side, we decode
combinations which disable this sequence. The top-level node would still be an and-gate. However,
to bring a fault-tree in such a form is not easily done by atomic operations on the graph, instead,
it boils down to constructing all sequences, which is as hard as constructing the underlying state
space — something which we want to speed up. In the context of this thesis, we therefore abandon
the idea of transforming DFTs in a normal form. This is further motivated by the problems which
appear with adding functional dependencies and spare gates, which due to timing behaviour and
syntactical restrictions do not allow for (relatively) �at normal forms.

As a consequence, we do not have a characterisation of completeness of a rule system.

1We omit the formal proof here.

116 Chapter 5. Rewriting Dynamic Fault Trees

5.2. Rewriting DFTs

As DFTs are just special graphs, a straightforward approach to rewriting DFTs is by graph transfor-
mation. We aim to do this analogously to standard graph rewriting, by providing a left-hand (lhs)
and a right-hand (rhs) subDFT, matching the lhs in a given host DFT and replacing it by the rhs.
To keep rules simple, we want to assure that no other part of the DFT is changed. This motivates
us to use DPO graph rewriting.

A DFT and the subDFTs are easily encoded as a labelled graph, by using the underlying graph
of the DFT, labelling nodes corresponding to the information encoded in Tp, Θ and top and la-
belling the edges to encode the ordering. This labelled graph can then be transformed using graph
transformation rules. However, standard graph transformation on these graphs does not meet our
requirements. In particular, we want to be able to change element types, which is not possible by
a straightforward transformation of the subDFTs.

Therefore, we encode the DFT in a more verbose manner, enabling us to use standard graph
transformation. An alternative approach would be to de�ne the transformation directly on DFTs,
but that would require more new formalisms. Moreover, the reduction to standard graph transfor-
mations brings the theory developed here much nearer to the implementation thereof, as discussed
in Section 6.1 on page 161.

5.2.1. Graph encoding of DFTs

We present our encoding of a DFT as a labelled graph. The idea is that instead of labelling the
elements (nodes in the graph) directly, we attach secondary nodes for each DFT element, which
we call the carry nodes. These nodes are then used to "carry" the information of the element. With
this construction, we can match any subDFT in a DFT purely based on the graph structure, while
maintaining the element type in the graph. Later, for the rewriting, if we want to restrict an element
to a given type, we add the carry node to the left-hand side of the rule.

Remark 31. An alternative approach would be the use of self-loops as carries. However, without the
introduction of multi-edges, using self-loops is not suitable for handling multiple di�erent labels,
and matching subsets of such labels.

The following de�nition is used to construct edge labels to encode the ordering.

De�nition 5.2. Let F = (V, σ,Tp,Θ, top) be a DFT. A mapping o : E(σ) → N is edge order
preserving if for each v ∈ VA with 1 ≤ i < j ≤ deg(v) it holds that

o((v, σ(v)i)) < o((v,σ(v)j)).

If for all v ∈ VA and 1 ≤ i ≤ deg(v) we have o(v, σ(v)i) = i, then we call o trivial. �

We �rst give the de�nition and continue then with an example illustrating the encoding.

De�nition 5.3. Labelled graph of a DFT Given a DFT FΩ = (V, σ,Tp,Θ, top). Let o be the trivial
edge order preserving mapping. A labelled graph F = (VF , EF , lF) over ((Ω ∪ {d} ∪ Gates ∪
Leafs ∪ {0, top}),N) is the DFT graph representation for F with

• VF = (V × {1, 2}) ∪ {(v, 3) | v ∈ FBE} ∪ {vtop},

• EF = {((v, 1), (v′, 1)) | (v, v′) ∈ E(σ)}
∪ {((v, 1), (v, 2)) | v ∈ V }
∪ {((v, 1), (v, 3) | v ∈ FBE}
∪ {(top, 1), (vtop, 2)}

5.2. Rewriting DFTs 117

• lvF= (v, 1) 7→ 0

∪ (v, 2) 7→ Tp(v)

∪ (v, 3) 7→
{

Θ−1(v) if de�ned for v
d else.

∪vtop 7→top

leF= ((v, 1), (v′, 1)) 7→ o((v, v′))

∪ ((v, 1), (v, 2)) 7→ 0

∪ ((top, 1), vtop) 7→ 0

�

Example 5.2. In Figure 5.3 we depict a DFT and its encoding as labelled graph. The encoding has
three element nodes, with on their left side their carry nodes. Moreover, the topmost node has a
carry node which identi�es it as the top node, while the two basic elements have extra carry nodes
for the attachment function. All carry nodes are connected via edges labelled with 0, while the
other two edges have non-zero labels encoding the ordering. N

SF

a

A

b

B

PAND

top

BE BE

a b

0

0

1

2

0
0

0
0

Figure 5.3.: A DFT and the labelled graph representation of a DFT

In order to de�ne transformations on DFTs via their encoded labelled graph representation, we
also need the decoding.

We �rst partition the nodes of any labelled graph F over ((Ω ∪ Gates ∪ Leafs ∪ {0, top}),N).
The set Carries of carry nodes is de�ned as

CarriesF = {v ∈ VF | ∃(v′, v) ∈ EF . leF (v′, v) = 0}.

Moreover, the set ElementsF of element nodes is de�ned as ElementsF = VF \ CarriesF .

De�nition 5.4 (DFT of a labelled graph representation). Given a labelled graphF = (VF , EF , lF)
over ((Ω∪Gates∪Leafs∪{0, top}),N). If the following conditions all hold, we call F a valid DFT
encoding.

• Carry nodes do not have outgoing edges and only one incoming edge.

∀v ∈ CarriesF . Out(v) = ∅ ∧ |In(v)| = 1.

• Each element node has at least a carry node for the type connected.

∀v ∈ ElementsF . ∃v′ ∈ OutV(v) ∩ Carries. lvF (v′) ∈ Gates ∪ Leafs.

• There exist as many carry nodes for the type as there exist elements.

|ElementsF | = |{v ∈ CarriesF | lvF (v) ∈ Gates ∪ Leafs}|.

118 Chapter 5. Rewriting Dynamic Fault Trees

• Exactly the elements with a type carry labelled as a basic element also have a carry repre-
senting the attachment.

∀v ∈ ElementsF .
∃v′ ∈ OutV(v) ∩ Carries. lvF (v′) ∈ BE ⇐⇒
∃v′′ ∈ OutV(v) ∩ Carries. lvF (v′′) ∈ Ω ∪ {d}

• Carries are not labelled 0.

∀v ∈ ElementsF . lvF (v) 6= 0.

• Element nodes are labelled with 0.

∀v ∈ ElementsF . lvF (v) = 0.

• Each component failure is used as a label as most once, i.e. for all ω ∈ Ω,

6 ∃{v, v′} ⊆ VF . lvF (v) = ω = lvF (v′)

• There is exactly one node labelled as top node.

∃v ∈ VF . lvF (v) = top ∧ ∀v′ ∈ VF \ {v}. lvF (v′) 6= top

• Two edges with the same source are labelled di�erently or 0, i.e., for all {(s, t), (s, t′)} ⊆ EF ,

leF (s, t) = leF (s, t′) =⇒ leF (s, t) = 0.

We de�ne F the decoding of F with F = (V, σ,Tp,Θ, top) over Ω′ = {ω ∈ Ω | ∃v ∈
VF . lvF (v) = ω}, s.t.

• V = ElementsF .
• σ s.t. for all v ∈ V , σ(v) = v1 . . . vm with

∀1 ≤ i ≤ m. (v, vi) ∈ EF , and
∀1 ≤ i ≤ m. leF (v, vi) 6= 0, and
∀1 ≤ i < j ≤ m. leF (v, vi) < leF (v, vj)

• Tp(v) = x∃v′ ∈ OutV(v) ∩ Carries. ∧ x = lvF (v′) ∈ Gates ∪ Leafs
• Θ(ω) = v s.t. {v} = InV(v′) where lvF (v′) = ω.
• top = v s.t. {v} = InV(v′) where where lvF (v′) = top. �

For each DFT, subsequent application of encoding and decoding keeps the DFT intact.

Corollary 5.3. Given a DFT F and a labelled graph representation F for F . Let F ′ be the DFT
encoded by F . It holds that F = F ′.

The proof involves a straightforward check of all conditions and applying the de�nitions of both
directions. We do not present the full proof here.

5.2.2. Defining rewriting on DFTs
The idea we formalise here is captures in Figure 5.4. Given a DFT we want to rewrite with a given
rule, we �rst encode the DFT as a labelled graph as discussed above. As we want to de�ne the
rewrite rule on DFTs, we also need to encode the rule as a rewrite rule for labelled graphs. After
the application of the rewrite rule, we decode the labelled graph back to a DFT, also discussed
above.

The core of the rewrite rule consists of the two subDFTs, representing the left- and right hand
side of the rule.

De�nition 5.5. Given a DFTF = (V, σ,Tp,Θ, top). A subDFT ofF is a tupleX = (VX , σX ,Tp]X)

with VX ⊆ V , σX = σ|VX
and Tp]X = Tp|Z where Z ⊆ VX . Moreover, we call any Y =

5.2. Rewriting DFTs 119

DFT F

Labeled graph F
(encoding F)

Apply rule r by DPO.

Labeled graph F ′

(encoding F ′)
Rewrite rule encoding

DFT F ′

Rewrite rule r
encode decode

rewrite step

Figure 5.4.: Formalise DFT rewriting via standard graph rewriting

(VY , σY ,Tp]Y) a subDFT if there exists a DFT F ′ such that Y is a subDFT of F ′. We call Y well-
formed if there exists a well-formed DFT F ′ such that Y is a subDFT of F ′. �

We use notions and notations for DFTs also on subDFTs.
Encoding a subDFT as a labelled graph is de�ned analogously to DFTs. For elements where

the type mapping is unde�ned, we simply do not add type carries. We illustrate this after the
introduction of rewrite rules.

A rewrite rule on DFTs consists, like DPO rewrite rules, of an interface, left- and right hand side
graphs, a set of homomorphisms. Additionally, rewrite rules on DFTs contain a context restriction,
which de�nes a set of DFTs on which the rule may be applied. We split the interface into an input
(sinks in the graph) and an output interface. Intuitively, only nodes from the input interface may
have successors which are not matched, and input elements do not have successors in the rewrite
rule. Types of the input elements may not change. Nodes from the input and the output interface
may have unmatched predecessors. Output interface nodes should not be FDEPs, as FDEPs cannot
have predecessors. Contrary to DPO, the interface of a rewrite rule for DFTs does not contain
edges. The additional homomorphisms are due to the fact we distinguish between input and output
interface.

De�nition 5.6 (Rewrite rule). A rewrite rule on DFTs is a tuple (Vi, Vo, L,R,H,C) consisting of
• A set of input elements Vi
• A set of output elements Vo
• A matching subdft L = (VL, σL,Tp]L)

• A result subdft R = (VR, σR,Tp]R)
• Four graph morphisms H = {hi, ho, hl, hr}, where VK denotes Vi ∪ Vo.

– Two embeddings hi : Vi → VK and ho : Vo → VK .
– One embedding hl : VK → L
– An homomorphism hr : VK → R such that hr|Vi

is injective.
• A context restriction set C = {(Ci, ζi) | i ∈ N CiDFT, ζi : L → V } of embargo DFTs where
ζi is a homomorphism for each i ∈ N.

such that the following conditions hold.
• The input and output elements are disjoint.

hi(Vi) ∩ ho(Vo) = ∅

• The left-hand side elements without children are exactly the input elements.

hLab(Vi) = {v ∈ L|σ(v) = ∅}.

• No input element is mapped to a right-hand side which has successors.

∀v ∈ hr(Vi). σ(v) = ∅

• At least all the elements which are not input elements are typed.

VL \ hLab(Vi) ⊆ Dom(Tp]L) ∧ VR \ hr(Vi) ⊆ Dom(Tp]R).

120 Chapter 5. Rewriting Dynamic Fault Trees

A

B

C D

A′

C′ D′

Figure 5.5.: The L and R subDFTs of the subsumption rule.

• Typing of input elements in the matching and the result graph agree.

∀v ∈ Vi. Tp]Lab(hLab(v)) = Tp]R(hr(v)).

• Output elements are not typed as FDEPs.

∀v ∈ Vo. Tp]Lab(hLab(v)) 6= FDEP 6= Tp]R(hr(v)) �

We write (L ← (Vi ∪ Vo) → R,C). We abuse the notation and use hl (hr) also to denote the
embedding from VK into L (R).

De�nition 5.7 (DPO variant of a rewrite rule for DFTs). Given a rewrite rule on DFTs r =
(Vi, Vo, L,R, {hi, ho, hl, hr},C), we de�ne the graph rewrite rule (L, Vi ∪ Vo,R, hl, hr} as the
corresponding rewrite rule. �

The de�nition above does not add the carries of the interface elements to the interface of the
graph rewrite rule. This is not of importance, as the carries are only connected to these interface
nodes. With this graph rewrite rule, the carries are deleted and added afterwards, thereby not
changing them. Notice that the attachment function is untouched. Thus, we cannot delete any
basic events with an attached component failure.

Furthermore, the de�nition above does not take the context restriction into account. We do not
treat the enforcement of the context restriction here. As the host graph is �nite, there exist only
�nitely many graphs in the context restrictions which potentially describe the host graph. For the
formal treatment here, we assume that the context restrictions on the host graph are enforced by
an additional check. For the application in Chapter 6 on page 161, the used tool set Groove supports
the context restrictions as formulated here.

Example 5.3. In this example, we cover the subsumption rule discussed already in Example 5.1,
where we argued that the rule is not context-free.

First, let us capture the left and right subDFTs which are at the heart of the rule. We display
them in Figure 5.5. A triangle depicts an untyped element.

We de�ne Vi = C,D and Vo = A. The homomorphisms hi, ho, hl are trivial embeddings (the
identi�ers share the same name). The homomorphism hr is given by A 7→ A′, C 7→ C ′, D 7→ D′.
Furthermore,

L = ({A,B,C,D}, {A 7→ CB,B 7→ CD,C 7→ ε,D 7→ ε}, {A 7→ AND, B 7→ OR})

and

R = ({A′, C ′, D′}, {A′ 7→ C ′, C ′ 7→ ε,D′ 7→ ε}, {A′ 7→ AND}).

The context restriction is given as

C = {F DFT | ∃x ∈ σ∗(ζ(D))θ∗(x) ⊆ σ∗(ζ(D)) ∪ {ζ(D)} ∨ θ(ζ(D)) 6= ∅}

All conditions from De�nition 5.6 are ful�lled.
We notice that we cannot match B on an element with other successors than the element

matched by A. If it would be allowed, we would gain a dangling edge, as we remove the ele-

5.2. Rewriting DFTs 121

AND

OR

AND0

1

2

0

1
2

0

1

Figure 5.6.: Graph representation for subsumption rule.

ment matched by B. For the context restriction, we assume a su�cient strong criterion to ensure
that we do not run into the same problems as in Example 5.1 on page 113. For this example, we
use a criterion much stronger than required. The criterion used here guarantees that the element
matched by D does not have any predecessors after rewriting and all successors of this element
have successors only in D. Therefore, either the top-level element is in the subtree, but then the
subtree (a module) is represented by the top level element and is always active. Otherwise, it does
not matter whether the subtree is ever activated or not, as it is futile, exactly as the complete subtree
underneath it.

The corresponding graph rewrite rule is given in Figure 5.6. The actual homomorphisms between
the nodes is given by their relative position in the graph. We see that the two elements without
type do not have carries attached. The graph rewriting removes everything but the tree nodes
corresponding to the elements. In particular, it also removes the type of the topmost element,
which might not be expected. On the right-hand side, this type is added again.

N

Given a rule r = (L← (Vi∪Vo)→ R,C), if the element hierarchy ofL restricted to hLab(Vi∪Vo)
is a superset of the element hierarchy ofR restricted to hr(Vi∪Vo), then r is hierarchy conservative.
If the module relation of L restricted to hLab(Vi ∪ Vo) is a superset of the module relation of R
restricted to hr(Vi ∪ Vo), then r is module conservative.

De�nition 5.8 (Match). Given a DFT F with its graph representation F and rewrite rule r =
(L← (Vi ∪ Vo)→ R,C) and a injective graph morphism κ from L into F such that

1. The dangling edge condition holds.
2. All successors of an output element matched vertex are also in the rule, i.e.

∀v ∈ Vo |OutV(v)| = |OutV(κ(v))|

then κ(L) is a matched graph and κ(Vi ∪ Vo) is the match glue. We call κ the rule match morphism
and call r a matching rule. �

In the de�nition for a match, we ignored the context restrictions. This is captured by the de�ni-
tion of a successful match.

De�nition 5.9 (E�ective embargo). Given a matching rule with rule match morphism κ. Then an
embargo (graph) C(i) is e�ective if there exists an injective homomorphism h from C(i) to G with

h(ζi(Vi)) = κ(hi(Vi)) and h(ζi(Vo)) = κ(ho(Vo)) �

De�nition 5.10 (Successful Match). A matching rule is successful, if no i exists such that Ci is an
e�ective embargo. �

De�nition 5.11 (Rewrite step). Let r = (L ← (Vi ∪ Vo) → R,C) be a rewrite rule and F
and F ′ DFTs with graph representations F and F ′. Let r be successfully matched in F by the
homomorphism κ. Then F is rewritten by r using κ to F ′ if VKLDF/VKRDF ′ is a DPO with
D = (VF \ (κ(VL) \ κ(VK)), EF \ κ(EL)).

The tuple (F, r, κ, F ′) is a a rewrite step. The homomorphismR → F ′ is denoted by η. �

It is not yet clear that the outcome of this procedure again encodes a DFT.

Theorem 5.4. Using the notation from De�nition 5.11, F ′ is a valid DFT encoding.

122 Chapter 5. Rewriting Dynamic Fault Trees

Before we proof this, we introduce some auxiliary notation.
Given a rewrite step (F, (L ← (Vi ∪ Vo) → R,C), κ, F ′) with a DPO VKLDF/VKRDF ′, we

write ν : D 9 F and ν′ : D 9 F ′ to represent the mappings from the common graph to the input
and the output DFT, respectively. We abuse the notation and use η also to denote the mapping
from R to F ′, induced by the homomorphism η : R → F ′.

In the following, we use the term original element to refer to elements in F ′ which already
occurred in F . This is formalised as those elements of F ′ who, in the graph representation, have a
preimage in D w.r.t. the homomorphism from D to F ′, i.e.

original elements = {v ∈ F ′ | ν′−1(v) 6= ⊥}

We use new (old) element to refer to elements which do not have a preimage in D (R), i.e.

new elements = {v ∈ F ′ | ν′−1(v) = ⊥}
old elements = {v ∈ F ′ | η−1(v) = ⊥}

Elements which have a preimage in D and in R are called glued elements. Please, notice that each
original element is either an old or a glued element.

We notice that for any element in v′ ∈ ν′(D \ κ(Vi ∪ Vo))) that for v = ν′−1 ◦ ν(v′), σF (v) =
ν′−1 ◦ ν(σF ′(v

′)),Tp(v) = Tp(v′),Θ(v) = Θ(v′). Therefore, we allow any v ∈ ν′(D \ (Vi ∪ Vo))
to be denoted with either v or ν′−1 ◦ ν(v), as well as the other way around.

The application of the rule changes the labelled graph. However, all properties which ensure
that the labelled graph encodes a DFT are preserved.

Proof sketch for Theorem 5.4. We argue for each of the conditions from De�nition 5.4.
• Carry nodes do not have outgoing edges and only one incoming edge.

Edges are only removed inside κ(L). So no connections to carry nodes are removed unless
the corresponding nodes are also removed. Other carry nodes are not connected to any
elements. No outgoing edges to carry nodes are introduced as F andR are valid encodings
themselves.

• Each element node has at least a carry node for the type connected.
Old nodes have this as F is a valid DFT encoding. New nodes have a type added as R is a
valid subDFT encoding. Nodes with a preimage in κ(Vi) either have a type described (and
thus added) in R, or the type is not speci�ed, but then it was not removed either in L and is
thus in D.

• There exist as many carry nodes for the type as there exist elements.
Together with the two points before, it su�ces to show that each carry node is connected
with at most one type-carry node. New or old nodes have this as F is a valid DFT encoding.
Nodes with a preimage in κ(Vo) have no type, as it is removed with L, which has types for
all elements in Vo. Nodes with a preimage in κ(Vi) either have a type described (and thus
removed) in L, or the type is not speci�ed, but then it not added either in R.

• Exactly the elements with a type carry labelled as a basic element also have a carry representing
the attachment.
For new and for old nodes, this follows from the valid encoding of R and F . For elements
with a preimage in κ(Vi), we never change the type, so exactly the nodes which encoded a
basic element still encode a basic element and we did not touch the attachment carries. For
elements with a preimage in κ(Vo), we have that they are not basic elements before, other-
wise they would be in Vi as well, which is a contradiction. Thus, we do not have attachment
carries on Vo which are no basic elements. We only add attachment carries to those elements
which are new basic elements.

• Carries are not labelled 0, and
• element nodes are labelled with 0.

Follow directly from the fact that all nodes in F ′ originate from a valid DFT encoding.
• Each component failure is used as a label as most once.

Follows directly from the fact that we do not add any attachments, as the component failures
do not even occur in the rewrite rule.

• There is exactly one node labelled as top node.

5.2. Rewriting DFTs 123

The top level element is in D, the carry node using this is not touched. The encoding of
subDFTs does not have carry nodes for the the top.

• Two edges with the same source are labelled di�erently or 0.
For new and for old nodes, this follows from the valid encoding ofR and F . For nodes with
a preimage in κ(Vi), notice that the nodes in hr(Vi) do not have any successors other than
their carries (labelled 0) and in D, the property above holds. For nodes with a preimage in
κ(Vo), notice that these nodes do not have any successors in D, and that in R the property
above holds.

5.2.3. Preserving syntax
Applying well-formed rewrite rules on well-formed DFTs should result in well-formed DFTs. We
�rst give two counterexamples which show that this property is not trivially ful�lled. The �rst
is straightforward and uncovers problems which are caused by the syntactic restrictions for spare
components.

Example 5.4. Consider the DFT from Figure 5.7a. The DFT is obviously constantly failed. The
FDEP is the only FDEP, so it is certainly not in con�ict with other FDEPs, moreover, the trigger
and the dependent event are not below a dynamic gate. We therefore want to eliminate the FDEP,
yielding the DFT depicted in Figure 5.7b.

The propagation of the constant fault via in the given context is trivially generalised to a rule1.
Consider Figure 5.7c and Figure 5.7d, depicting L and R, respectively. Notice that L and R are
well-formed subDFTs.

We apply this rule, which is later captured by Rewrite rule 24, to the graph in Figure 5.7e. The
result depicted in Figure 5.7f is not a well-formed DFT, as �rst, constant faults are not allowed as
primary spare components, and second, the constant fault is connected directly to the top-level
and to the spare. N

The second rule might come as a surprise, as one would not expect cyclic DFTs to be constructed.
That this is possible is a straight consequence of the fact that acyclicity is a global criterion, while
the acyclicity of the host DFT and the rule graphs are just local criteria.

Example 5.5. Consider the DFT from Figure 5.8a on page 125. Based on the same arguments as
in Example 5.4 above, we want to rewrite the FDEP. As a result, the DFT can be rewritten to the
DFT of Figure 5.8b.

We want to use this as a general rule. We use the subDFTs from Figure 5.8c and Figure 5.8d as
L and R, respectively. Again, L and R are well-formed.

Now, we apply the rule on the DFT in Figure 5.8e. The result is depicted in Figure 5.8f. We
introduced a cycle. N

We discuss the actually used form of this rule as Rewrite rule 24.
We conclude that there exist rules with practical relevance that are only applicable on a restricted

class of DFTs. We propose two di�erent solutions.
1. An a-posteriori check, which means that after each rewrite step, we check whether the result

is a well-formed DFT. If it is not, the rule is revoked and we go back to the original host DFT.
2. An a-priori check, which means that before we apply the rule, we check whether the result

will be a well-formed DFT, based on the host DFT and the rewrite rule to be applied.
As the framework is used as basis for a rewriting algorithm, we prefer the a-priori conditions which
prevent the syntax check. In general, this is very hard. We therefore restrict the rules for which we
de�ne this a-priori conditions. For all others, we require the a-posteriori checks. The next theorem
shows that we can leave out the a-posteriori check for a large set of rules. It also shows how tedious
it may be to de�ne such a check for an even larger class of DFTs and rules.

Theorem 5.5. Given a rewrite rule r = (L ← (Vi ∪ Vo) → R,C) and a DFT F with a successfully
matched graph L by κ.
We assume that RSPARE = ∅ and |{[v]./L | v ∈ VL}| ≤ 2. If all of the following conditions hold,

then F rewritten by r using κ is a well-de�ned DFT.

1Indeed, the only di�erence is that in the rule, A is not required to be the top level element

124 Chapter 5. Rewriting Dynamic Fault Trees

a

A

>

B

(a) Initial DFT which can be simpli�ed according
to speci�c rule.

C

a

A

>

B

(b) The resulting DFT after applying the rule.

A

>

B

(c) The matching subDFT.

A

C

>

B

(d) The result subDFT.

T

C

b

D

E

c

F

a

A

>

B

(e) A DFT with a similar construct

T

C

b

D

E

c

F
G

a

A

>

B

(f) An invalid result after applying the rule.

Figure 5.7.: Invalid syntax due to merging spare components.

1. Either

• r is hierarchy conservative, or
• considering S = {(x, y) ∈ Vo × Vi | x ≺R y ∧ x 6≺L y}, we have that either

– ∀{(x, y), (x′, y′)} ⊆ S, y = y′, or
– there exists an w ∈ VR with w ≺ hr(y) for all (x, y) ∈ S and hr(x) ≺ w,

and the following holds:
– {(κ(y), κ(x)) | (x, y) ∈ S}∩ ≺F= ∅.

2. Either

a) r is module conservative, or

b) Merging modules leads to at most one module, formally

∃v, v′ ∈ Vi ∪ Vo s.t.
[v]./L 6= [v′]./L ∧ [hr(v)]./R = [hr(v

′)]./R ∧ ∀w,w′ ∈ Vi ∪ Vo
([w]./L 6= [w′]./L ∧ {[w]./L , [w

′]./L} 6= {[v]./L , [v
′]./L})

=⇒
([hr(w)]./R 6= [hr(w

′)]./R ∨ [hr(w)]./R = [hr(v)]./R),

and either of the following holds:

i. In the host DFT, it already was a single module:

∀v, v′ ∈ Vo ∪ Vi. x 6./L x′ ∧ x ./R x′ =⇒ κ(x) ./F κ(x′)

5.2. Rewriting DFTs 125

A

b

B

c

C

D

e

E

f

F

(a) A DFT which can be simpli�ed with a speci�c
rule.

A

c

C

b

B

e

E

f

F

(b) The result after simpli�cation.

A

B
C

D

E F

(c) The matching subDFT.

A

C
B E F

(d) The result subDFT.
A

e

D2

D1

d

E2

E1

b

B

c

C

(e) Another DFT on which the rule is applicable.

D1

d

E2

E1

b

B

c

C

e

D2

(f) The result has a cycle and thus it is not a well-
formed DFT

Figure 5.8.: Introduction of cycles by rewrite rules.

ii. At most one of the old components were connected to top or to a spare:

∃x ∈ VF s.t. x = topF ∨ x ∈ σ(FSPARE) ∧ ∃y ∈ [v]./L x ./F κ(y)

=⇒
∀y′ ∈ Vo ∪ Vi y′ 6./L v ∧ hr(y′) ./R hr(v)

6 ∃x′ ∈ VF s.t. x′ = topF ∨ x′ ∈ σ(FSPARE). x
′ ./F κ(y′)

. Moreover, the other component does not include a given-failure element, formally
(by adding this to the right-hand side of the formula above).

∧ 6 ∃c ∈ FCONST(>)c ./F y
′

iii. The representants are merged as well: hr(x) = hr(x
′) with x, x′ ∈ Vo and v ./L x

and v′ ./L x′ and θ(κ(x)) ∩ SPAREF 6= ∅ 6= θ(κ(x′)) ∩ SPAREF .

3. {v ∈ Vi ∪ Vo | ∃v′. Tp]R(v′) = CONST(>) ∧ hr(v) ./R v
′}

⊆ {v ∈ Vi ∪ Vo | ∃v′. Tp]L(v′) = CONST(>) ∧ v ./L v′}

4. ∀{v1, . . . , vk} ⊆ Vo with hr(vi) = h(v1) for all 1 ≤ i ≤ k such that ∃s ∈ SPAREF with
κ(v1) = σ(s)1, then for 2 ≤ i ≤ k, θ(κ(vi)) ∩ SPAREF = ∅.

Before we present the proof for the theorem, let us shortly review the conditions.
We exclude any spare-gates from the right hand-side to simplify any further arguments, further-

more, we do not allow more than two modules in the left-hand side of the rule, again to simpli�y
the argument.

126 Chapter 5. Rewriting Dynamic Fault Trees

The �rst condition is regarding the element hierarchy. This condition ensures acyclicity of the
resulting DFT. First, we observe that only if the hierarchy relation of elements is extended, cycles
can occur. For rules which do not extend the relation, we do not have to put context restrictions.
Those rules which change the relation can safely be applied, if it is ensured that after merging
everything but one edge, adding this last edge does not contradict the element hierarchy.

The second condition likewise covers module relations. Again, either the rule is module conser-
vative, meaning that no components are merged by the application of the rule. Otherwise, addi-
tional context restrictions are necessary to ensure the well-formedness of the resulting DFT. Here,
we have to assure that after adding the new connections, we have at most one component which is
the result of merging components. This module was either already a single module in the context
of the host DFT, or one of the modules was not yet connected to either a spare representant or the
top-level element, or the representants are also merged. Furthermore, it assures that the merged
module does not contain given failure elements, which is a very restrictive way to ensure that no
given failure is added to primary module.
Remark 32. A lesser restriction would take into account that by applying the rules, also some
elements are split from their component, which could then be merged with other components.
Although such rules are certainly possible, we choose to exclude such scenarios here, in favour of
a simpler criterion.

The third criterion prevents adding constant failure elements in the primary component by the
right-hand side of the rule.

The fourth criterion ensures that primary components are never shared. We notice that sharing
can only be done via the representant, so we only need to restrict the potential predecessors of
such representants.

Notice that the restrictions directly yield context restrictions for each rule. We are now ready to
present the proof.

Proof sketch of Theorem 5.5. We go through the conditions from De�nition 4.91.

• The second child of an FDEP is always a basic event.
Let us assume that the second child of an FDEP is a new element. But then, the FDEP is either
new or glued, it is certainly in R. As the rule has to be well-formed, we can be sure that the
second child is a basic element. Now, let us assume that the second child of an FDEP is an old
element. Likewise, the FDEP is either old or glued, and certainly in F . We require F to be
well-formed, so the second child is a basic element. Now, we assume that the second child of
an FDEP is a glued element. If the FDEP would be new, then the second child is guaranteed
to be a basic element by the well-formedness of the rule. So, the FDEP is original. By the
well-formedness of F , the second child was originally a basic element. Therefore, it had no
successors and thus was part of the input nodes. For input-nodes, the type does not change,
so it is a basic element in F ′ as well.

• FDEPs have no incoming edges.
If the FDEP is new, then by well-formedness of the rule, it has no incoming edges. If it is old,
it has no incoming edges by the well-formedness of F . For the glued elements, it cannot be
in the output-interface by the third restriction. Thus, it is in the input-interface. But then it
was also an FDEP in F , so by well-formedness of F , there are no original incoming edges,
and by the well-formedness of r there are no new incoming edges.

• FDEPs have exactly two children.
New and old FDEPs are covered by the well-formedness like above. Glued elements are
covered as well, as either it is part of the input-interface and no children are either added or
deleted by the rule, or it is part of the output-interface, but then all children are in R and by
well-formedness of r, there are exactly two.

• The DFT is acyclic, i.e. (V,E(σ)) is acyclic.
Assume F ′ is cyclic. Then there exist elements v, v′ such that v ∈ σ∗(v′) and v′ ∈ σ∗(v).

1albeit in a di�erent order

5.2. Rewriting DFTs 127

Let v0 . . . vk be a path from v to v′ and u0 . . . ul be a path from v′ to v.
As r and F are well-formed, on these pathes there are old and new elements. The cyclic path
v0 . . . (vk = u0) . . . ul thus enters and leaves old elements at least once.
Either r is hierarchy conservative. W.l.o.g. v and v′ are glued elements with vj old elements
for 1 ≤ j < k. Thus, v ≺F v′. Then for each us . . . ut such that, for all s ≤ i ≤ t, ui are
new elements, there exists an alternative path from us to ut via original nodes (nodes in F).
This is a contradiction to the fact that F was acyclic.
Otherwise, the context restriction makes sure that we do not introduce cycles. First, under
the assumption that a cycle in F ′ is introduced, there exists a cycle such that if it enters and
leaves new elements at wi and w′i respectively, then wj ≺F w′j for all but one pair wj , w′j .
Assume there exist wi, w′i di�erent from wj , w

′
j with wi 6≺F w′i. W.l.o.g. let w′j ≺ wi.

By the restrictions from the theorem, we have that either w′j = w′i, but then there is a cycle
w′j . . . wi . . . w

′
i = w′j in F ′. Otherwise, we have that there exists aw such that hr(wi) ≺R w

and w ≺R w′j , which would then lead to the cycle wi . . . w . . . w′j . . . wi in F ′.
Thus, w.l.o.g. assume v and v′ to be glued elements with vj new elements for 1 ≤ j < k and
κ(v) 6≺F κ(v′). We have that κ(v′) 6≺F κ(v′), thus no cycle exists.

• Extended modules EMr are independent and sharing is only done via the representant.
Throughout this proof, we assume that if the rule merges modules the merged modules yield
a single spare module in F ′, which is the precondition of condition 2b in the theorem. First
of all, if v, v′ as in the precondition do not exist, then no two modules are merged and the
rule is module conservative (and we are done directly). Thus, such v, v′ exist. Now for all
other pair of modules, either they are not merged by the rule, or they are merged with the
module generated merging the modules of v, v′.
We want to show that for each module representant r in F ′, there does not exists a mod-
ule path p ∈ spmpF ′(r, r′) with r′ either top or another spare module representant, r′ ∈
EMRF ′ \ {r}.
Assume for a contradiction that such a path exists, and let r and r′ be the representants which
are connected. By the wellformedness of both F and r, we have that the path rv1 . . . vkr

′

consists of both old and new elements.

– Let us �rst assume that r and r′ are original.
If r is module conservative, then r and r′ are only in the same module if they already
were in F , which contradicts the wellformedness of F . Else, if r merges only modules
which were not already in the same module, then we contradict 2(b)i.
Thus, in F , r 6./F r′. To assure that r 6./′F r′, we also have to ensure that for v, v′ ∈ Vo
with r = κ(v) and r′ = κ(v′), hr(v) 6= hr(v

′). By condition 2(b)iii, the representants
are not merged. Now, we consider the elements {x1, x2} ⊆ Vi ∪ Vo which share their
module relation only in the rule, not in F . Let r and r′ be the corresponding module
representant, respectively. On the path rv1 . . . vkr

′, there exist two nodes vi and vj with
1 ≤ i ≤ j ≤ kwith vi = ν′(κ(w)) and vj = ν′(κ(w′)) for some {w,w′} ⊆ Vi∪Vo with
w 6./L w′ and hr(w) ./R hr(w

′). Moreover, we have that κ(w) ./F r and κ(w′) ./F r′.
However, condition 2(b)ii ensures that if r ./F κ(w), then there can not exist w′ s.t.
w′ ./F r′.

– Let us now assume that r is new and r′ is old or r and r′ both new. Then, a spare was
added. However this is not allowed by the precondition of the theorem.

• Primary spare modules are never shared
Let r be a primary spare module representant in F ′ with s ∈ F ′SPARE, σ(s)1 = r. We ensure
that θ(r) = {s}.
Assume for contradiction that θ(r) = {s1, s2} with s1, s2 ∈ F ′SPARE.
If r is old, then certainly, s1, s2 are original, so F was not well-formed. If r is new, then s1, s2

are also in R, so r is not well-formed.

128 Chapter 5. Rewriting Dynamic Fault Trees

Thus, r is a glued element (in the output interface). Let r = ν′(κ(v)) for some v ∈ Vo. Now,
it follows w.l.o.g. that either s1 is glued and s2 is old, or that r = ν′(κ(v′)) for some v′ ∈ Vo,
v 6= v′ and σ(s1) = κ(v) and σ(s2) = κ(v′).
First, consider s1 is glued and s2 is old. As hr(r) is a child of hr(s1), s1 is in the output-
interface. However, as RSPARE = ∅, s1 cannot be a spare then, which is a contradiction.
Second, consider r = ν′(κ(x)) with x ∈ {v1, v2}. By Condition 4, either s1 or s2 are not
spare gates, which is also a contradiction.

• Primary spare modules do not contain given-failure elements.
We want to show that for all r ∈ EMRF ′ and c ∈ F ′CONST(>) it holds that spmp(r, c) = ∅.
Assume for contradiction that there exist such r, c with spmp(r, c) 6= ∅.
Either c is new. As r is original, we have that there must be a path from c to some element
hr(x) with x ∈ Vi ∪ Vo. However, by Condition 3, then x was already connected to some
c′ ∈ FCONST(>). This contradicts the wellformedness of F .
Otherwise c is old, then by the wellformedness of F it was in a module which was merged
by the application of the rule. This contradicts Condition 2(b)ii. Therefore, no such c exists.

The facts that exactly the leaf-types have no successors and the threshold of the voting gate is
lower than the number of successors follow directly from the well-formedness of F and r.

5.2.4. Preserving semantics
Some rewrites change the semantics of a fault tree. We are only interested in rules which are
conservative w.r.t. the earlier de�ned quantitative measures.

De�nition 5.12 (Valid rewrites). A rewrite rule r is valid, if for all well-formed DFTs F , F ′, such
that if rewriting F with r using κ yields F ′, it holds that F u F ′. �

We call a valid rewrite rule r = (L← (Vi ∪ Vo)→ R,C) symmetric, if (R← (Vi ∪ Vo)→ L,C)
is also a valid rewrite rule.

Removing BEs The basic events of r are the basic events which occur in L (and therefore in R).

Lemma 5.6. Given a rewrite rule r and a DFT F such that F is rewritten by r to F ′, FBE ⊆ F ′BE.

Proof. Assume that not, then there exists a node v ∈ FBE s.t. v 6∈ F ′BE, i.e. v ∈ V ∧ Tp(v) = BE
and v 6∈ V ′. We rewrite V ′ and get v 6∈ V \ κ(VL \ (Vi ∪ Vo)), thus v ∈ κ(VL \ (Vi ∪ Vo)) = v ∈
κ(VL) \ (κ(Vi) ∪ κ(Vo)). It remains to show that v ∈ VL =⇒ v ∈ κ(Vi), as that invalidates our
assumption.

As removing of basic events does not �t in our framework, we give a seperate rewrite rule for
rewriting unconnected basic events to given failure events.

Theorem 5.7. Let F = (V, σ, Tp,Θ, top) be a well-formed DFT and v ∈ FBE an basic element such
that θ(v) = ∅ and v 6= top. Then it holds that F ≡ F ′ for

F ′ = (V, σ, Tp \ {v 7→ BE} ∪ {v 7→ CONST(⊥)},Θ|Θ−1(V \{v}), top)

We �rst illustrate that this should hold by an example.

Example 5.6. In Figure 5.9a, we depict a simple DFT whereC is a dispensable basic event. The DFT
fails if both A and B have failed. In Figure 5.9b, we depict the corresponding Markov automaton.
We omitted the state-labelling for space reasons and dotted the states which are reached after a
the occurrence of c. Removal of the basic event C yields a DFT F ′ where C∗F ′ is isomorphic to the
continuously drawn part of the �gure.

To see why RelyF (t) = RelyF ′(t), consider, e.g., the location x reached after the component
failure a, x = (a,A). We see that the component failure c in C∗F brings us to location (ac,AC)
which is isomorphic to the location x ∈ C∗F ′ . However, location x di�ers in the two computation
trees. Whereas in C∗F ′ , component b is the only component participating in the Markovian race, in

5.2. Rewriting DFTs 129

SF

A B C

(a) A small DFT with an dispensable
BE.

R(a)
R(b)

R(c)

R(b)
R(c)

R(a)

R(c)
R(a)

R(b)

R(b) R(a) R(b) R(a)

(b) The corresponding MA.

s

. . .

t1 . . . tn

s′

. . .

ν

λ1 λ1 λn λn

Figure 5.10.: A subchain found in the computation tree of DFT F from Theorem 5.7

C∗F also c participates, with two possible outcomes. Either c loses the race, and b fails �rst. This is
exactly the aforementioned scenario. Otherwise, c wins - but with the only e�ect that we change
the location. As Markov automata are memoryless and the failure rates are location-invariant, we
conclude that we can safely assume that b wins the race. A similar argument can be made for the
location (b, B) where a can be assumed to win over c. This allows us to eliminate the subtrees
emerging from the locations (ac,AC) and (bc, BC). After the elimination of these locations, we
can apply the same argument for (ε, ε), where we can assume that the race is either won by a or
by b, but not by c. N

The argumentation from the example above is partly captured in the following lemma, which
formally shows the conservation of reliabilty in a CTMC (Figure 5.10) closely related to the sub-
structure we �nd during the removal of the transitions corresponding to a dispensable basic event.

Lemma 5.8. Let C = be a CTMC with S = {s, s′, t1, . . . tn} and R(s, ti) = R(s′, ti) = λi and
R(s, s′) = ν and let all other entries of R be zero. It holds that

Pr(s |= 3≤t{ti}) = Pr(s′ |= 3≤t{ti}) ∀1 ≤ i ≤ n

Proof. Let E =
∑n
i=1 λi. The only path from s′ to ti is by the direct transition. Therefore,

Pr(s′ |= 3≤t{ti}) =
λi
E
· (1− e−Et).

There exist two pathes from s to ti: directly or via s′.

Pr(s |= 3≤t{ti}) =
λi

E + ν
· (1− e−(E+ν)t) +

∫ t

0

ν · e−(E+ν)x · Pr(s′ |= 3≤(t−x)ti)dx

130 Chapter 5. Rewriting Dynamic Fault Trees

We thus have to show:

λi
E
· (1− e−Et)− λi

E + ν
· (1− e−(E+ν)t) =

∫ t

0

ν · e−(E+ν)x · Pr(s′ |= 3≤(t−x)ti)dx

Substitution and expansion yields the following for the right hand side:

ν · λi
E
·
∫ t

0

e−(E+ν)x − e−νx · e−Etdx

Using distribution over the integral and solving it yields exactly the left hand side.

Remark 33. Notice that the lemma also follows from the fact that weak bisimulation on CTMCs
preserves reachability properties. However, weak bisimulation on Markov automata is not conser-
vative w.r.t. weak bisimulation on CTMCs.

Proof sketch of Theorem 5.7. First, we notice that F ′ is well-formed. Now, we show that F ′ ≡ F .
Consider any location (ρ, π) in the functional transducer of F with v 6∈ ρ. With Corollary 4.24 we
follow that

Failed(π) ∪ {v} = Failed(π · v),

and thus also Failable(π) = Failable(π · v) and ClaimedBy(π) = ClaimedBy(π · v). This includes
π = ε. Consequently, using an induction over the length of π′ ∈ BE�.

Failed(π · π′) ∪ {v} = Failed(π · v · π′)

Moreover, as v is not the dependent event of any FDEP, we have for all reachable locations that
v ∈ π ⇐⇒ v ∈ ρ. On all locations (ρ, π) with v 6∈ ρ, either there exists an outgoing transition
(v, v) or ∆π 6= ∅.

Let CF = (S, ι,Act, ↪→, 99K,AP, Lab) be the MA under F . As Failed(π · π′) ∪ {v} = Failed(π ·
v · π′) and v 6= top, for s = (ρ · ρ′, π · π′), s′ = (ρ · v · ρ′, π · v · π′) ∈ S it holds that top ∈
Lab(s) ⇐⇒ top ∈ Lab(s′).

For any s, s′ with top ∈ Lab(s) and top ∈ Lab(s′), it holds that s ≈s s′. Moreover, for any s, s′
with FBE ⊆ Lab(s) and FBE ⊆ Lab(s′), s ≈s s′.

We will now construct a �nite chain

CF =M0 . . .Mk = CF ′

such thatMi ≡Mi+1 for each 0 ≤ i < k.
We de�ne k = |FBE|.
LetM1 = (S1, ι1,Act1, ↪→1, 99K1,AP1, Lab1) where all states swith top ∈ Lab(s) and all states

with Lab(s) ⊆ FBE \ top are merged. We have thatM1 ≡M0.
Now, we considerMi, Mi+1 for 1 ≤ i ≤ k. We de�neMi+1 usingMi = (Si, ιi,Acti, ↪→i

, 99Ki,APi, Labi), asMi+1 = (Si, ιi, Ai, ↪→i+1, 99Ki+1,APi, Li).
Before we de�ne the transition relation, we de�ne some auxiliary constructs. Let m = k − i. In
Mi, we consider the set X = Xi

+ ∪ Xi
− ⊆ Si where Xi

+ contain all states (ρ, π) with |π| = m
and v 6∈ π and Xi

− contains all states |π| = m+ 1 and v ∈ π.
The transition relation ofMi+1 is now given as:

↪→i+1 =(↪→i \{((ρ, π), a, 1, (ρ, π · w)) | (ρ, π) ∈ X+, a ∈ Ai, w ∈ FBE})∪
{((ρ, π · v · π′), a, 1, (ρ, π · π′ · w)) |
((ρ, π · v · π′), a, 1, (ρ, π · v · π′ · w)) ∈↪→i ∧(ρ, π · v · π′) ∈ X+}

99Ki+1 =(99Ki \
({((ρ, π), λ, (ρ · w, π · w)) | (ρ, π) ∈ X+, λ ∈ R>0, w ∈ FBE}∪
{((ρ, π), λ, (ρ · v, π · v)) | (ρ, π) ∈ X−, λ ∈ R>0}))
∪ {((ρ, π · v · π′), λ, (ρ · w, π · π′ · w)) |

((ρ, π · v · π′), λ, (ρ · w, π · v · π′ · w)) ∈99Ki ∧(ρ, π · v · π′) ∈ X+}

5.2. Rewriting DFTs 131

For any (x, s) ∈ X− × Si+1 and (x′, s) ∈ X+ × Si+1 with x = (ρ, π · π′) and x′ = (ρ′, π · v · π′)
the following invariants hold by construction:

1. (x, a, 1, s) ∈↪→i+1 ⇐⇒ (x′, a, 1, s) ∈↪→i+1 a ∈ Ai+1

2. (x, λ, s) ∈↪→i+1 ⇐⇒ (x′, λ, s) ∈↪→i+1 λ ∈ R>0

Next, we showMi ≡Mi+1. Assume to the contrary thatMi 6≡ Mi+1. By using the invariants
(1, 2) for onMj with j < i, we have that for any x = (ρ, π · π′), x′ = (ρ′, π · v · π′ with x ∈ Xj

−
and x′ ∈ Xj

+,

outgoingMi(x) = outgoingMi(x′),

and thus
Mi

Pr(x |= 3≤ttop) =
Mi

Pr(x′ |= 3≤ttop) ∀t ∈ R≥0.

Moreover, as no outgoing connection is changed for states x with x ∈ Xj with j 6= i, we have

outgoingMi(x) = outgoingMi+1(x),

and thereby for x ∈ Xj , j < i

Mi

Pr(x |= 3≤ttop) =
Mi+1

Pr (x |= 3≤ttop) ∀t ∈ R≥0 (5.1)

and for x ∈ Xj , j > i

Mi

Pr(x |= 3≤tLab(y)) =
Mi+1

Pr (x |= 3≤tLab(y)) ∀t ∈ R≥0, y ∈ Xi. (5.2)

It remains to show that

Mi

Pr(x |= 3≤tLab(y)) =
Mi+1

Pr (x |= 3≤tLab(y)) ∀t ∈ R≥0, y ∈ Xi−1 (5.3)

We distinguish two cases, x Markovian and x interactive.

• x interactive.
For x ∈ Xi

−, we already have outgoingMi(x) = outgoingMi+1(x) and by (5.1), (5.3) follows.
For x ∈ Xi

+, we change the outgoing transitions. However, for each a ∈ Ai and y ∈ Si, for
each (x, a, 1, y) ∈ outgoingMi that is removed, a new transition (x, a, 1, y′) is added. By
(5.2) we have that outgoingMi(y) = outgoingMi(y′).

• xMarkovian. The situation matches the construct handled in Lemma 5.8. The lemma indeeds
directly yields the validity of (5.3).

Now, it remains to show that Mk ≡ C∗F ′ . This is intuitively clear, as we removed all states
(and transitions to such states) where the removed basic event failed. We did not touch any other
states or transitions. We omit a technical proof of this statement. Notice thatMk indeed possesses
a richer label set. For the requested equivalence modulo the measures of interest, this is not of
importance.

We thus have a �nite chain of Markov automata where each adjacent pair has equivalent mea-
sures of interest. The �rst MA is equivalent to the computation tree of the original DFT and the
last is equivalent to the resulting DFT. By transitivity, the DFTs are thus weakly equivalent.

We have another rule of great practical relevance which does not directly �t in the framework.
The basic idea is depicted in Figure 5.11. Two basic events with an attached failure rate of R(ω1)
andR(ω2), respectively, can be merged to a single basic event with an attached component failure
with a failure rate R(ω1) +R(ω2), but only if the original events are not connected to any other
gates. Intuitively, we then introduce a single event which encodes the failure of the or-gate. The
failure of the or-gate is given by the Markovian race of all its children.

The correctness of the approach is formalised in the next theorem.

132 Chapter 5. Rewriting Dynamic Fault Trees

ω1 ω2
ω

Figure 5.11.: Merging two basic events which are connected only to the same or-gate. The rate of
ω is given in Theorem 5.9

Theorem 5.9. Let FΩ = (V, σ, Tp,Θ, top) be a well-formed DFT and v ∈ FOR such that σ(v) =
{v1, v2} ⊆ FBE and v2 6= top. Let θ(v1) = θ(v2) = {v} and {ω1, ω2} ⊆ Ω with Θ(ωi) = vi for
i ∈ {1, 2}. Then for F ′Ω′ = (V ′, σ′, Tp′,Θ′, top′) with

Ω′ = Ω \ {ω1, ω2} ∪ {ω} s.t. R(ω) = R(ω1 + ω2) and αω =
αω1R(ω1) + αω2R(ω2)

R(ω)

and
• V ′ = V \ {v2},
• σ′ = σ|V ′ \ {v 7→ v1v2} ∪ {v 7→ v1},
• Tp′ = Tp|V ′ ,
• Θ = Θ|Ω′ ∪ {ω 7→ v1},
• top′ = top.

We do not give the proof here. A further generalisation of the framework is thus required here.
Although not in the scope of this thesis, we shortly discuss how the framework could be extended.
First of all, we observe that a (deterministic) DFT encodes a phase-type distribution. Obviously,
there exist several DFTs which encode the same phase-type distribution, see the theorem above for
an example. Subtrees also encode a phase-type distribution, given by the DFT which is isomorphic
to the subtree. Such a subtree can thus be replaced by another DFT which encodes the same phase
type distribution without a�ecting the host DFT.

5.3. Correctness of rewrite rules
In the previous sections, we discussed in detail why rules can be context sensitive. We saw earlier
that each rewrite rule has a corresponding set on which it should not be applied.

Instead of de�ning these DFTs explicitly for each rule, we introduce a small collection of contexts,
that is, DFTs which allow the valid application of a set of rules. It is important to notice that often,
the context restriction could be weakened considerably. We however choose to present the rather
strong restrictions as this eases understanding. For each context restriction, we develop a proof
obligation, a criterion on the rule that su�ces to proof its validity. This notably streamlines the
later presentation of rewrite rules, as for each of these rules, we merely have to show that the rules
ful�ll these proof obligation.

5.3.1. Validity of rules without FDEPs and SPAREs
We start with a couple of contexts for rules which do not contain failure forwarding, claiming or
activation. Notice that this not mean that these mechanisms are not present in the remainder of
the DFT. We only exclude the elements from being matched or added here. Later, we add functional
dependencies and failure forwarding to the rules we consider.

We de�ne the auxiliary concept of failed under an oracle. Intuitively, we have no or only partial
knowledge of the context of the DFT. As we want equal behaviour for many1 states, we ask an

1To see why we write many, instead of all, consider an and-gate with the top-level element of a DFT as successor.

5.3. Correctness of rewrite rules 133

oracle to tell us the state of the input nodes of our rewrite rule. Based on the oracle, the failure is
then propagated through the subDFTs. This propagation works exactly as before.

De�nition 5.13. Let r = (L ← (Vi ∪ Vo) → R,C) be a rewrite rule with basic events B and let
B′ ⊇ B. We call a function f , f : P(Vo) × B′� → P(Vi) such that f(X,π) ⊆ f(X ∪ Y, π) and
f(X,π) ⊆ f(X,π · x) an input-oracle for r. If f(X,π) = f(Y, π) for all X,Y ⊆ Vo, then we call
f output-independent. �

In the following, we restrict ourselves to output-independent oracles. We omit passing the state
of output nodes and write f : B′� → P(Vi).

De�nition 5.14. Let r = (L ← (Vi ∪ Vo) → R,C) be a rewrite rule with basic events B and let
B′ ⊇ B, and f an oracle for r. Let π ∈ B′� and F ∈ {L,R} a subDFT with elements VF . We
recursively characterise the set FailedF [f](π) of failed elements considering f . For v ∈ κ(Vi), we
have that v ∈ FailedF [f](π) i� v ∈ f(π). For v ∈ VF \ κ(Vi), we have that v ∈ FailedF (π) i�
v |=F π given that v′ |=F π for all v′ ∈ f(π)1. �

A large set of rules can actually be applied without any restrictions, other than those necessary
for valid syntax, on the context. Typical examples of this class of rules are rules such as �attening.

Theorem 5.10 (Unrestricted context proof obligation). Let r = (L ← (Vi ∪ Vo) → R,C) be a
rewrite rule with basic events B and let B′ ⊇ B. Let LFDEP = LSPARE = RFDEP = RSPARE = ∅. Then r
is valid if

∀π ∈ B′� ∀f oracle for r
hr(FailedL[f](π) ∩ Vo) = FailedR[f](π) ∩ hr(Vo)

and for all {v, v′} ⊆ Vi ∪ Vo it holds that

v ./L v
′ ⇐⇒ hr(v) ./R hr(v

′).

For the proof, we transfer the oracle function to the host DFT and the result. We omit a rigorous
de�nition and refer to De�nition 4.12.

De�nition 5.15. Given a rewrite rule r = (L ← (Vi ∪ Vo) → R,C) with oracle f and DFTs F ,
F ′ such that F r,κ−−→ F ′. The set FailedF [f](π) is recursively de�ned. For v ∈ κ(Vi), we de�ne v ∈
FailedF [f](π) i� v ∈ {κ(v′) | ∃v′ ∈ f(π)}. For v ∈ F \κ(Vi), we de�ne v ∈ FailedF [f](π) i� v |=F

π, given that v′ |=F π for all v′ ∈ κ(f(π)) and v′ 6|=F π for all v′ ∈ κ(Vi \ f(π)). Furthermore, we
de�ne FailedF ′ [f](π) analogously. For v ∈ η(hr(Vi)), we de�ne v ∈ FailedF ′ [f](π) i� {η(hr(v)) |
v ∈ f(π)}. For v ∈ F ′ \ η(hr(Vi)), we de�ne v ∈ FailedF ′ [f](π) i� v |=F π, given that v′ |=F π
for all v′ ∈ η(hr(f(π))) and v′ 6|=F π for all v′ ∈ η(hr(Vi \ f(π))). �

Proof of Theorem 5.10. Let F = (V, σ,Tp,Θ, top) be an arbitrary DFT with B′ = FBE, such that r
matches with κ on F . Let F ′ = (V ′, σ′,Tp′,Θ′, top′) be the result of rewriting, i.e. F r,κ−−→ F ′. As
we only want to show validity, we can assume that F ′ is well-formed.

We start by showing F and F ′ are con�guration-equivalent.

1. W.l.o.g. we assume that FBE = F ′BE.
The easy direction is FBE ⊆ F ′BE and is covered by Lemma 5.6. We want to show that F ′BE ⊆
FBE. Now assume that v ∈ F ′BE and v 6∈ FBE. Then, it follows that v ∈ VR \ (Vi ∪ Vo).
Furthermore, as F ′ uses the attachment function from F 2, we have that every such v must
be a dummy event. As we do not allow any FDEP gates to be added, and v 6∈ Vi, v never fails
in F ′ and can be replaced elements with type CONST(⊥).

2. We notice that θ∗(η(R)) \ η(R) = θ∗(η(hr(Vo))) \ η(R), which follows directly from the
DPO construction. As we have θ∗(η(R)) \ η(R) ⊆ ν′(D \ (Vi ∪ Vo)), it is safe to say that
θ∗(η(R)) \ η(R) = θ∗(κ(L)) \ κ(L). Let Y be this set of elements. Obviously, Y ∩FBE = ∅.

1We omit a rigorous de�nition here, instead we refer to De�nition 4.12.
2We are not rewriting any of the nodes encoding the attachment function

134 Chapter 5. Rewriting Dynamic Fault Trees

X

W

Y

Z

Figure 5.12.: Illustration for the proof of Theorem 5.10.

3. We build a partition of V ′ such that:

V ′ = W ′ ∪X ∪ Y ∪ Z

with W ′ = η(R) \ η(Vi ∪ Vo)) and X = η(hr(Vi ∪ Vo)).
We notice that all elements in X ∪ Y ∪ Z are old elements, they are also present in F .
Furthermore, for all elements in Y ∪ Z , all successors are also old elements.
We sketch the partition in Figure 5.12.
This yields a similar partition of V :

V = W ∪X ∪ Y ∪ Z

with W = κ(L) \ κ(Vi ∪ Vo)) and X = η(hr(Vi ∪ Vo)).

4. By induction over the length of π, we show that for all v ∈ Z and for all π ∈ B′�, v ∈
FailedF [f](π) = v ∈ FailedF ′ [f](π).
The base case π = ε follows with structural induction directly, as for all v ∈ Z , {z ∈ V |
v ≺F z} = {z ∈ V ′ | v ≺F ′ z}.
We postpone the induction step for a moment, and �rst introduce our next claim.

5. We show that for all v ∈ Y and for all π ∈ B′�, v ∈ FailedF [f](π) ⇐⇒ v ∈ FailedF ′ [f](π),
again by induction voer π.
For the base case, we use again a structural argument. Assume v ∈ FailedF [f](π) but v 6∈
FailedF ′ [f](π). This implies that v 6∈ FDEP. Then there exists a successor v′ ∈ σ(v) such
that v;∈ FailedF [f](π) but v′ 6∈ FailedF ′ [f].
We distinguish several cases.

• v′ ∈ Y , but then we can repeat this argument by taking v′ as v. As DFTs are acyclic
and �nite, we have an ascending chain, thus we enter this case only �nitely often.

• v′ ∈W ′ is impossible as r was matching.
• v′ ∈ X contradicts the precondition from the theorem.
• v′ ∈ Z is covered by the base case from the former induction.

The case v 6∈ FailedF [f](π), v ∈ FailedF ′ [f](π) is analogous.
We now do the induction step for v ∈ Y and v ∈ Z .
Again, we assume that there exists a node v ∈ Y ∪ Z , v 6∈ FDEP, s.t. v ∈ FailedF [f](π) and
v 6∈ FailedF ′ [f](π).
We use a structural induction over the graph of the (sub)DFT X ∪ Y ∪ Z .
For the sinks in the graph, we have v ∈ X∪Z . The case v ∈ X is handled by the precondition.
We regard v ∈ Z . For v ∈ BE, the only reason for a di�erence between F and F ′ would
be if v′ is a dependent event, which has been triggered after a π′ ∈ pre(π). But then our
induction hypothesis interferes.
For all static gates we can use the structural argument as in the base. For pand-gates, we
notice that FailableF (π) ∩ (Y ∪ Z) = FailableF ′(π) ∩ (Y ∪ Z), as otherwise, there must be

5.3. Correctness of rewrite rules 135

some w.l.o.g. a v ∈ FailableF (π), v 6∈ Failable(π) with v′ ∈ σ(v) and v′ ∈ FailedF [f](π′)
and v′ 6∈ FailedF ′ [f](π′) for π′ ∈ pre(π), which is ruled out by the induction hypothesis.
It remains to handle v ∈ SPARE. With Lemmma 4.18, it su�ces to show that

LastClaimedF (π|−1, v) = LastClaimedF ′(π|−1, v)

and

AvailableF (π, v) = AvailableF ′(π, v)

. By applying the de�nition of LastClaimed and the induction hypothesis, we conclude that
this boils down to proving that AvailableF (π′, v) = AvailableF ′(π′, v) for all π′ ∈ pre(π) ∪
{π}. We show this by a nested induction over the length of π′. The base step is trivial.
So, by the induction hypothesis, we assume AvailableF (π′|−1, v) = AvailableF ′(π′|−1). There
are four reasons why AvailableF (π′, v) 6= AvailableF ′(π′, v). W.l.o.g. we assume ∃v′ ∈
AvailableF (π′, v) \ AvailableF ′(π′, v).

• ∃v′ ∈ AvailableF (π′|−1, v) ∩ FailedF [f](π′) and v′ 6∈ FailedF [f](π′). By the structural
induction hypothesis for Failed(π) we can exclude this.

• v claiming after π′|−1, but then it LastClaimed(π′|−1, v) ∈ Failed(π′|−1), which contra-
dicts the induction hypothesis from the induction over π for Failed(π).

• Another spare s ∈ V claimed v′ after π′|−1, which contradicts the induction hypothesis.
We have that s ∈ Y ∪ Z , as with LSPARE = RSPARE = ∅, we have that s 6∈ W ∪X (for
the other direction, we have s 6∈W ′ ∪X .

6. We notice that

∃f ′ : B′� → P(Vi) s.t. FailedF [f ′](π) = FailedF (π) ∧ FailedF ′ [f ′](π) = FailedF ′(π)

We �rst observe that the following statement would be trivially true: ∃f, f ′ ∈ B′� → P(Vi)
such that FailedF [f](π) = FailedF (π) ∧ FailedF ′ [f ′](π) = FailedF ′(π). That is, we reach
for all π ∈ B′� over all subsets of Vi - thereby we must hit the correct set eventually. So the
interesting part is that there is indeed an oracle which ful�ls the left and the right side.
Assume for a contradiction that this is not true, then there exists an oracle f and π ∈ B�

with FailedF [f](π) = FailedF (π) but FailedF ′ [f](π) 6= FailedF ′(π). We show that v ∈
FailedF ′ [f](π)\FailedF ′(π) leads to a contradiction, the other direction is analogous. W.l.o.g.
we consider a minimal π, i.e. we assume ∀π′ ∈ pre(π) that FailedF ′ [f](π) = FailedF ′(π).
Moreover, we notice that we only have to consider elements in η(hr(Vi)). If for each v ∈
η(hr(Vi)), v ∈ FailedF ′ [f](π) ⇐⇒ v ∈ FailedF ′(π), then by De�nition 5.15, this holds for
all v ∈ V . Let us thus consider such a v ∈ η(hr(Vi)). We have that σ(v) ⊆ X ∪ Y ∪ Z .
Following points (4) and (5), we have that any v′ ∈ σ(v),

v′ ∈ FailedF ′ [f](π) ⇐⇒ v′ ∈ FailedF (π).

We only sketch the further proof here — it follows closely the arguments from (4). For any
v′ ∈ Z , a structural induction (like in (5)) using the fact that all elements are old shows that
v′ ∈ FailedF ′(π) ⇐⇒ v′ ∈ FailedF (π). It follows directly that any for v with σ(v) ⊆ Y ,
v ∈ FailedF ′(π) ⇐⇒ v′ ∈ FailedF (π). The structural induction can then be extended
to any v ∈ η(hr(Vo)) with σ∗(v) ∩ η(hr(Vi)) ⊆ {v ∈ η(hr(Vi)) | σ(v) ∈ Y } by the
precondition of the theorem — and subsequently also to their predecessors.
We thus obtain the following key step in the proof: The exists an oracle f such that for all
v ∈ F \ κ(L \ (Vi ∪ Vo)) and for all π ∈ B′�, v ∈ FailedF [f](π) ⇐⇒ v ∈ FailedF ′ [f](π)
implies

v ∈ FailedF (π) ⇐⇒ v ∈ FailedF ′(π).

7. By the requirements and application of rewrite rules, top = top′ and top ∈ X∪Y ∪Z . Thus,
top ∈ FailedF (π) ⇐⇒ top′ ∈ FailedF ′(π).

136 Chapter 5. Rewriting Dynamic Fault Trees

8. As LFDEP = RFDEP = ∅, we have that ∀π ∈ B′�∆F (π) = ∆′F (π).

Thus, F and F ′ have isomorphic (up to the labelling of the nodes) functional transducers.
We continue to show that the computation trees with the restricted label set are also isomorphic,

i.e. C∗F ' C∗F ′ .

9. F and F ′ range over the same set of component failures.

10. The attachment function is untouched, i.e. we have Θ = Θ′.

11. It remains to show that for all π ∈ B′�, we have ActivatedF (π) = Activated′F (π). To this
end we show ActiveF (π) ∩ (FSPARE ∪ FBE) = ActiveF ′(π) ∩ (F ′SPARE ∪ F ′BE). We know from
above that ClaimedByF (π, s) = ClaimedByF ′(π, s′).
We can easily show that EMRF = EMRF ′ as W ∩ EMRF = W ′ ∩ EMRF ′ = ∅.
We thus have to show that

∀v ∈ EMRF ,EMF,v ∩ (FSPARE ∪ FBE) = EMF ′,v ∩ (F ′SPARE ∪ F ′BE).

As W ∩ (FSPARE ∪ FBE) = ∅ = W ′ ∩ (F ′SPARE ∪ F ′BE), it su�ces to show

∀v ∈ EMRF ,EMF,v ∩ (X ∪ Y ∪ Z) = EMF ′,v ∩ (X ∪ Y ∪ Z).

Assume that not, then w.l.o.g. there exist v ∈ EMRF and a v′ ∈ X ∪ Y ∪ Z with v ./F v′

and v 6./F ′ v′, that is, a spare module path was removed by the application of the rule.

∃p = v0e1 . . . vn ∈ spmpF (v, v′) ∃i < nvivi+1 ∈W ∪X

We must enter and leave W ∪ X , so there exist i′ ≤ i and i′′ > i such that vi′ , vi′′ ∈ X
and vj ∈ W ∪ X for all i′ ≤ j ≤ i′′. By the precondition, we have that vi′ ./L vi′′ =⇒
vi′ ./R′ vi′′ . Thus, in F ′, there is a path p′i from vi′ to vi′′ . Please notice that multiple such
path fragments may exist. However, these can all be eliminated likewise.

From Corollary 4.38, we deduce that F ≡ F ′.

Although rules have a direction, many rules can be applied in both directions.

De�nition 5.16. Given a valid rewrite rule r = (L← (Vi∪Vo)→ R, ∅). If (R← (Vi∪Vo)→ L, ∅)
is a valid rewrite rule, then r is called symmetric. �

Indeed, rules with an injective hr homomorphism and without context restriction are always
symmetric. This is captured formally by the following proposition.

Proposition 5.11. Given a rewrite rule r = (L← (Vi ∪ Vo)→ R, ∅). If (Vi ∪ Vo)→ R is injective,
then r is symmetric.

The proof follows directly from the symmetric nature of the proof obligation stated in Theo-
rem 5.10.

We now present modi�ed proof obligations for rules which have a context restriction. The �rst
context (restriction) is used to ensure that two elements in a matched subDFT surely never fail after
the same basic event. We therefore de�ne the set of graphs where the given two elements may fail
simultaneous and add them to the restriction set.

De�nition 5.17 (Independent inputs context). Given a rewrite rule r = (L ← (Vi ∪ Vo) →
R,C) be a rewrite rule with x, y ∈ Vi. The set IndependentInputs(x, y) ⊆ DFTs × (L →
IndependentInputs(x, y)1) is de�ned as

{(F, ζ) | ∀p ∈ ifcp(ζ(x))∀q ∈ ifcp(ζ(y))p↓ 6= q↓}

A rewrite rule r possesses the independent input context restriction w.r.t. x and y if

IndependentInputs(x, y) ⊆ C. �

5.3. Correctness of rewrite rules 137

With independent inputs, we can assure that two input elements never fail simultaneously. We
can therefore restrict the set of oracles.

Theorem 5.12 (IndependentInputs proof obligation). Let r = (L ← (Vi ∪ Vo) → R,C) be a
rewrite rule with basic events B and let B′ ⊇ B. Let LFDEP = LSPARE = RFDEP = RSPARE = ∅ and
A = {{v1, v2} | IndependentInputs(v1, v2) ⊆ C} ⊆ P(Vi)} Then r is valid if

∀π ∈ B′�
∀f oracle for r s.t. ∀ a ∈ A ∀x ∈ B′ a 6⊆ f(π · x) \ f(π)

hr(FailedL[f](π) ∩ Vo) = FailedR[f](π) ∩ hr(Vo)

and for all {v, v′} ⊆ Vi ∪ Vo it holds that

v ./L v
′ ⇐⇒ hr(v) ./R hr(v

′).

Remark 34. Please notice that this does not exclude simultaneous failures (consider π = ε).

Corollary 5.13. Let r = (L ← (Vi ∪ Vo) → R,C) be a rewrite rule as in Theorem 5.12, To prove
r is valid, we can assume {v, v′} 6⊆ JustFailedL[f](π) and {v, v′} 6⊆ JustFailedR[f](π) for all π ∈
B′� \ ε.

Proof sketch of Theorem 5.12. We only have to adapt Item 6 on page 135 from the proof for Theo-
rem 5.10.

Consider the oracle f which ful�ls FailedF (π) = FailedF [f](π). Assume that there exist a
π ∈ B′� and x ∈ B′ \ π such that {v1, v2} ⊆ FailedF (π · x) \ FailedF (π), that is {v1, v2} ⊆
JustFailed(π · x). By Corollary 4.24 we conclude that ∃p ∈ ifcp(v) and ∃p′ ∈ ifcp(v′) with p↓ =
x = p′↓. This, however is not possible as by the context restriction, there is z ∈ V with ∃p ∈
ifcp(v)∃p′ ∈ ifcp(v′) p↓ = p′↓.

Furthermore, we regularly want to assure that an element in a matched subDFT has not failed
initially.

De�nition 5.18 (Event-dependent context). Given a rewrite rule r = (L ← (Vi ∪ Vo) →
R,C) be a rewrite rule with x ∈ Vi. The set EventDependentFailure(x) ⊆ DFTs × (L →
EventDependentFailure(x)1) is de�ned as

{(F, ζ) | ∃p ∈ ifcp(ζ(x)) p↓ ∈ CONST(>)}

A rewrite rule r possesses the event dependent context restriction w.r.t. x if

EventDependentFailure(x) ⊆ C. �

Theorem 5.14 (EventDependentFailure proof obligation). Let r = (L ← (Vi ∪ Vo) → R,C) be a
rewrite rule with basic events B and let B′ ⊇ B. Let LFDEP = LSPARE = RFDEP = RSPARE = ∅ and
A = {v | EventDependentFailure(v) ⊆ C} ⊆ Vi}. Then r is valid if

∀π ∈ B′�
∀f oracle for r s.t. ∀ a ∈ A ∀x ∈ B′ a 6∈ f(ε)

hr(FailedL[f](π) ∩ Vo) = FailedR[f](π) ∩ hr(Vo)

and for all {v, v′} ⊆ Vi ∪ Vo it holds that

v ./L v
′ ⇐⇒ hr(v) ./R hr(v

′).

Corollary 5.15. Let r = (L ← (Vi ∪ Vo) → R,C) be a rule as in Theorem 5.14. To prove that r is
valid, we may assume that v /∈ FailedL[f](ε) and v 6∈ FailedR[f](ε).

Proof sketch of Theorem 5.14. As in the proof for Theorem 5.12, we adapt the proof of Theorem 5.10
by reconsidering point Item 6 on page 135.

138 Chapter 5. Rewriting Dynamic Fault Trees

Consider the oracle f which ful�ls FailedF (π) = FailedF [f](π). Assume that there exist a
v ∈ FailedF (ε) with v ∈ EventDependentFailure. By Corollary 4.25 we conclude that ∃p ∈ ifcp(v)
with p↓ ∈ CONST(>). This directly contradicts the context restriction.

In Example 5.1 on page 113, we saw that we need to assure that rewriting may cause changes
in the elements which are activated. Here, we restrict ourselves to problems that may arise if
connections are eliminated. Problems do not arise if either

• All basic elements and spares are activated as before, because the interface elements are still
connected in the DFT if the matched subDFT is erased.

• The basic events which are disconnected from the representant are (after the application of
the rule) not on immediate cause failure paths from triggers of functional dependencies and
there are no spare gates disconnected.

• The elements are not in a spare module as they’re not connected to a spare or the top-level,
therefore, they are never activated.

We therefore de�ne a context restriction which prevents a rule from being applied on any DFT
where none of the three properties are ful�lled.

De�nition 5.19 (Activation connection context). Let r = (L ← (Vi ∪ Vo) → R,C) be a
rewrite rule with x, y ∈ Vi ∪ Vo. The set ActivationConnection(x, y) ⊆ DFTs × (L →
ActivationConnection(x, y)1) is de�ned as

{(F, ζ) | ¬(φ1(F, ζ, x, y) ∨ φ2(F, ζ, x, y) ∨ φ3(F, ζ, x, y))}

with

φ1(F, ζ, x, y) =∃p ∈ spmpF (ζ(x), ζ(y)) p = v0e1v1 . . . envn ∧ ∀1 ≤ i ≤ n ei 6∈ ζ(L)

φ2(F, ζ, x, y) =φ′2(F, ζ, x) ∧ φ′2(F, ζ, y)

φ′2(F, ζ, z) =(∀r ∈ EMRF ∀v0e1 . . . vm = p ∈ spmpF (ζ(z), r)∃i ≤ m ei ∈ ζ(L))

=⇒
(∀z′ ∈ FBE spmpF (ζ(z), z′) 6= ∅ 6 ∃t ∈ {v1|v ∈ FDEP}
∃p ∈ ifcp(t) p↓ = z′ ∧ ∀z′ ∈ FSPARE spmpF (ζ(z), z′) = ∅

φ3(F, ζ, x, y) = 6 ∃z ∈ EMRF (spmpF (ζ(x), z) 6= ∅ ∨ spmpF (ζ(y), z) 6= ∅)

A rewrite rule r possesses the activation connection context restriction w.r.t. x and y if
ActivationConnection(x, y) ⊆ C �

Theorem 5.16. Let r = (L← (Vi∪Vo)→ R,C) be a rewrite rule with basic eventsB and letB′ ⊇
B. Let LFDEP = LSPARE = RFDEP = RSPARE = ∅ and A = {{v1, v2} | ActivationConnection(v1, v2) ⊆
C} ⊆ P(Vi ∪ Vo)}. Then r is valid if

∀π ∈ B′� ∀f oracle for r
hr(FailedL[f](π) ∩ Vo) = FailedR[f](π) ∩ hr(Vo)

and for all {v, v′} ∈ P2(Vi ∪ Vo) \A, it holds that

v ./L v
′ ⇐⇒ hr(v) ./R hr(v

′),

and for all {v, v′} ∈ A,

v 6./L v′ =⇒ hr(v) 6./R hr(v′).

Proof sketch of Theorem 5.16. We reuse the proof of Theorem 5.10. However, Item 11 on page 136
needs additional attention.

We cannot just show

ActiveF (π) ∩ (FSPARE ∪ FBE) = ActiveF ′(π) ∩ (F ′SPARE ∪ F ′BE)

5.3. Correctness of rewrite rules 139

as this no longer holds.
Instead, we show the stronger statement that

∀π ∈ B′�
∀v ∈ ActiveF (π) ∩ FSPARE v ∈ ActiveF ′(π)∧
∀v ∈ ActiveF (π) ∩ FBE \ Failed(π) v ∈ ActiveF ′(π)∨
∀π′ ∈ B′ \ π ∪ {v}�

top ∈ Failed(π · π′ · v) ⇐⇒ top ∈ Failed(π · π′)∧
ClaimedBy(π · π′ · v) = ClaimedBy(π · π′)∧
∆(π · π′ · v) = ∆(π · π′)

That is, either the element is activated as before, or the failure of the basic event has no in�uence
on the underlying Markov automaton.

The �rst case goes along the same lines as in Item 11 on page 136. We show

∀v ∈ EMRF ,EMF,v ∩ (X ∪ Y ∪ Z) = EMF ′,v ∩ (X ∪ Y ∪ Z).

We consider (v, v′) ∈ EMRF × FSPARE ∪ FBE such that spmpF (v, v′) 6= ∅ and spmpF ′(v, v′) = ∅.
Instead of being able to replace a removed path fragment by another fragment through the replaced
subgraph, we may also replace the path fragment by some path in F , provided that for vi′ and vi′′
as in Item 11 on page 136, we have ActivationConnection(vi′ , vi′′) ⊆ C.

The proof that the conditions of the second case su�ce goes along the lines of the proof of
Theorem 5.7 on page 128, where we show that we can remove unconnected basic events. These
conditions are indeed implied by the second condition from De�nition 5.19. Any basic event which
is not connected to a representant does not in�uence the failure of the top-level. Moreover, such
basic event does not in�uence spare-gates (as it is not connected to a spare module representant)
and no dependent events, as it is not connected to functional dependencies.

5.3.2. Adding FDEPs
We now consider adding FDEPs to the rules, that is, we discuss the correctness of rules which add
or remove FDEPs from the original DFT.

If we review the proof of Theorem 5.10, Item 8 on page 136 we see that we can allow the use
of FDEPs if we prove that the set of dependent events after any event trace is unchanged. This
happens, e.g., when the dependent event is required to have failed before the trigger can fail. Notice
that also Item 1 on page 133 requires some attention, but in case the set of dependent events is
unchanged, the argument is identical line by line.

Theorem 5.17. Let r = (L ← (Vi ∪ Vo) → R,C) be a rewrite rule with basic events B and let
B′ ⊇ B. Let LSPARE = RSPARE = ∅. Then r is valid if

∀π ∈ B′� ∀f oracle for r
hr(FailedL[f](π) ∩ Vo) = FailedR[f](π) ∩ hr(Vo) ∧ ∆L[f](π) = ∆R[f](π)

and for all {v, v′} ⊆ Vi ∪ Vo it holds that

v ./L v
′ ⇐⇒ hr(v) ./R hr(v

′).

Proof. We adapt the proof of Theorem 5.10. It is trivial that Item 8 on page 136 still holds.

Often, the dependent events may change, but triggering the dependent even has no e�ect on
the other outputs anymore. As dependent events are basic events and therefore usually part of the
input interface (unless they’re dummy events), we need to assure that they’re not connected to any
other parts of the DFT (which are not matched by the rule).

De�nition 5.20. Given a rewrite rule r = (L ← (Vi ∪ Vo) → R,C) with v ∈ Vi. The set
NoOtherPreds(v) ⊆ DFTs× (L→ NoOtherPreds(v)1) is de�ned as

{(F, ζ) | ∃v′ ∈ θ(ζ(v))v′ 6∈ ζ(L)}

140 Chapter 5. Rewriting Dynamic Fault Trees

A rewrite rule r possesses the no-other-predecessor context restriction w.r.t. v if NoOtherPreds(v) ⊆
C. �

We observe that the di�erence in dependent events is surely a subset of the right-hand side of
the rule. We cannot longer ensure isomorphism of the underlying Markov chain - we thus aim for
weak equivalence.

Assumption 4. We simplify the reasoning in the following a bit by assuming that for the proofs after
this, only one element is a trigger and that this trigger is part of the input interface.

Whenever the trigger fails, other dependent events might �rst be handled, but this is ultimately
the same thing as that the event is the trigger fails later. Now for each dependent event subset
of dependent events that have failed after the trigger on the host DFT (left-hand side in the rule),
their should be a (possibly empty) subset of the dependent events of this trigger in the resulting
DFT (right-hand side in the rule) such that the sets of failed elements with predecessors in the
DFT. Regarding the rewrite rule, that is all elements in the output-interface and the elements in
the input-interface which are not restricted by the no-other-predecessor context restriction. The
formal version is given in the theorem below.

Theorem 5.18. Let r = (L ← (Vi ∪ Vo) → R,C) be a rewrite rule with basic events B and let
B′ ⊇ B. Let LSPARE = RSPARE = ∅ and |{σ(v)1 ∈ VL | v ∈ LFDEP}| = {x} for some x. Let
A = {v | NoOtherPreds(v) ⊆ C} ⊆ Vi}. Then r is valid if

∀π ∈ B′� ∀f oracle for r
hr(FailedL[f](π) ∩ Vo) = FailedR[f](π) ∩ hr(Vo)∧
x ∈ FailedL[f](π) =⇒ ∀C ⊆ ∆L[f](π)∃C ′ ⊆ ∆R[f](π)

∀π′ ∈ C�∀π′′ ∈ C ′�
hr(FailedL[f](π · π′) ∩ Vi \A ∪ Vo) = FailedR[f](π ·A′) ∩ hr(Vi \A ∪ Vo)

and for all {v, v′} ⊆ Vi ∪ Vo it holds that

v ./L v
′ ⇐⇒ hr(v) ./R hr(v

′).

We omit a full formal proof here. The proof involves showing that the set of output-elements
which have failed coincide after each possible order of dependent events, at each point during the
failure of the dependent events and under consideration of any further failures of input-elements
due to dependent failures outside the rule. This is directly guaranteed by the precondition in the
theorem. That this indeed su�ces is a repetition of the arguments in the proof of Theorem 5.10,
Items 4 and 5 on page 134.

In other cases, we want to eliminate a functional dependency by using failure propagation via
an or-gate. This is only possible under certain semantic assumptions, which were features in Sec-
tion 4.4 on page 102. There, also syntactic criteria which account for these assumptions were given.
We translate them into context restrictions here.

De�nition 5.21. Give a rewrite rule r = (L ← (Vi ∪ Vo) → R,C) with v ∈ LBE. The set
Preferential(v) ⊆ DFTs× (L→ Preferential(v)1) is de�ned as

{(F, ζ) | ∃v′ ∈ FBE ∃x ∈ VF∃p, p′ ∈ ifcp(x). p↓ = ζ(v) ∧ p′↓ = v′∧
ζ(v) and v′ are not mutual commutative}

A rewrite rule r possesses the preferential context restriction w.r.t. v if Preferential(v) ⊆ C. �

De�nition 5.22. Give a rewrite rule r = (L← (Vi ∪ Vo)→ R,C) with v ∈ Vi and v′ ∈ LBE. The
set δ-Independent(v, v′) ⊆ DFTs× (L→ δ-Independent(v, v′)1) is de�ned as

{(F, ζ) | ∃x ∈ FBE∃p ∈ ifcp(ζ(v)).p↓ = x ∧ x is ignorant about ζ(v′)}

A rewrite rule r possesses the delta-independent context restriction w.r.t. v and v′ if Preferential(v′) ⊆
C and δ-Independent(v, v′) ⊆ C. �

5.4. DFT rewrite rules 141

Earlier, we only discussed the semantical context restrictions due to the removal of connections
and thereby creating additional spare modules. When replacing functional dependencies by reg-
ular connections, that is, replacing failure forwarding by failure combination, we regularly add
connections. As we want to focus ourselves here on the failure mechanism, we introduce a rather
severe restriction.

De�nition 5.23. Given a rewrite rule r = (L ← (Vi ∪ Vo) → R,C) be a rewrite rule with
x ∈ Vi ∪ Vo. The set TopConnected(x) ⊆ DFTs× (L→ TopConnected(x)1) is de�ned as

{(F, ζ) | spmp(topF , ζ(x)) = ∅}.

A rewrite rule r possesses the top-connected context restriction w.r.t. x if TopConnected(x) ⊆ C. �

The restriction su�ces to ensure that elements are activated from the start. If no connectiones
are eliminated, then the condition implies that the activation propagation is untouched.
Remark 35. By de�nition, elements which are not connected to any module representant are never
activated. Connecting them to the top-level module causes them to be activated instantly, therefore
a�ecting their behaviour. A dormancy rate di�erent from zero for elements not connected to a spare
module representant is syntactic sugar. We can thus safely assume that all dormancy rates for such
elements are equals 1. During rewriting, we would have to enforce this assumption. That results
in changes in the component failures, which we deliberately prevent in the context of this thesis.

We further simplify the theorem by assuming that we only remove a single functional depen-
dency, notice that this has not a major impact, as the removal of several functional dependencies
can be easily split in several rule applications. The theorem looks as follows.

Theorem 5.19. Let r = (L ← (Vi ∪ Vo) → R,C) be a rewrite rule with basic events B and
let B′ ⊇ B. Let LSPARE = RSPARE = RFDEP = ∅ and |LFDEP| = {x} for some x. Let A =
{v | NoOtherPreds(v) ⊆ C} ⊆ Vi, A′ = {v | Preferential(v) ⊆ C} ⊆ Vi and Â = {(v, v′) |
δ-Independent(v, v′) ⊆ C} ⊆ Vi × Vi such that

σ(x)2 ∈ A ∩A′ ∩ {y | (x, y) ∈ Â}.

Then r is valid if

∀π ∈ B′�
∀f oracle for r ∀f ′ oracle for r with f ′(π) = f(π) ∪ {σ(x)2}
σ(x)1 6∈ f(π) =⇒ hr(FailedL[f](π) ∩ Vo) = FailedR[f](π) ∩ hr(Vo)∧
σ(x)1 ∈ f(π) =⇒ hr(FailedL[f ′](π) ∩ Vo) = FailedR[f](π) ∩ hr(Vo)

and for all v ∈ Vi ∪ Vo it holds that

TopConnected(v) ⊆ C.

We omit a formal proof here. The signi�cant di�erence to the earlier proof obligation occurs
when σ(x)1 ∈ FailedL[f](π) and σ(x)2 6∈ FailedL[f](π). In those cases, we are only interested in
equivalence after the dependent event has been triggered.

5.4. DFT rewrite rules
In this section, we present a selection of rules to illustrate the usage of the framework as well as the
variety of rules that are possible. We choose to display them graphically, as this eases understanding
the given rules.

Notation We choose to present potentially in�nite families of rules. To obtain a concrete rule
from a family, concrete values for any variable occurring have to be selected, as well as instantiating
all but input nodes’ types. Both concretisation of variables and instantiating types should follow all
given restrictions. Some input nodes are marked as optional, which means that the rule is correct

142 Chapter 5. Rewriting Dynamic Fault Trees

both with and without optional nodes. In case we want to obtain the rule without the optional
node present, we also ignore the corresponding rule on the right-hand side.

The following list describes the conventions used to display the families.

• The subDFT L is depicted on the left-hand side, while the subDFTR is depicted on the right-
hand side.

• We label all elements of the graph with a unique identi�er, although these labels do not
occur in the formal de�nition. These labels help us to clearly formulate our proofs and our
homomorphisms.

• Elements without a type are depicted by an upwards-pointing triangle, as used in [VS02] to
depict so-called transfer elements (elements which are shown in a separate drawing). Notice
however that we also use this in, e.g., Rule 1, to depict a family of rewrite rules.

• As in Chapter 4 on page 71 we use dotted arrows to denote functional dependencies, pointing
from the trigger to the dependent element.

• Input and output elements are given by stating their identi�ers in L. We then map them to
the identi�ers in R to display the homomorphism from Vi ∪ Vo to R.

• Any restrictions on variable concretisation or type instantiation, as well as optional nodes
(denoted opt.), are depicted with curly braces in the representation of L.

We choose to display just a selection of the corresponding correctness proofs, as they all follow
the same scheme. We start with the rules regarding static elements and pand-gates. It is important
to notice that the rules are applicable in general DFTs.

5.4.1. Static elements and the pand-gate

We start with some general rules and simpli�cations of chains of binary gates to n-ary gates. We
then show the rules which originate from the lattice axioms for AND and OR. We continue with
constant elements and voting gates and �nish with di�erent rules for PANDs.

Structural identities The �rst three rules describe general rules which follow directly from the
characterisation of failed in Proposition 4.1. We have commutativity of static gates, as we do not
consider ordering of the successors in the de�nitions.

Rewrite rule 1 Commutativity of static gates
A

AND ∪ OR ∪ VOT 3

Dm

. . .

D1

B C

Dm+1

. . .

Dk

A′

Tp(A)

D′
m

. . .

D′
1

C′ B′

D′
m+1

. . .

D′
k

Input: {Di 7→ D′i}ki=1 ∪ {B 7→ B′, C 7→ C′}
Output: {A 7→ A′}
Context Restriction: none

Proposition 5.20. Rewrite rule 1 is valid and symmetric.

5.4. DFT rewrite rules 143

Proof. We show the proof for the case that Tp(A) = VOT(k), this includes the proofs for AND and
OR. We use the proof obligation from Theorem 5.10. We use the notation from there.

A ∈ FailedL[f](π) ⇐⇒
|{B,C,D1, . . . , Dk} ∩ FailedL[f](π)| ≥ k ⇐⇒
|{B′, C ′, D′1, . . . , D′k} ∩ FailedR[f](π)| ≥ k ⇐⇒
A′ ∈ FailedR[f](π)

For the second part, it su�ces that {X,Y } ⊂ Vi ∪ Vo, X ./L Y and hr(X) ./R hr(Y).

The next rule corresponds to what is commonly referred to as functional congruence. That is, the
output of a (dynamic) function depends on its inputs. Put it di�erently, if all successors are equal,
two elements with the same type surely fail simultaneously.

Rewrite rule 2 Gates with identical types and successors
A1

SPARE ∪ FDEP 63
A2

Tp(A1)

B1

. . .

Bm

A′
1

Tp(A1)

. . .

B′
1 B′

m

Input: {Bi 7→ B′i}mi=1

Output: {A1 7→ A′1, A2 7→ A′1}
Context Restriction: none

Proposition 5.21. Rewrite rule 2 is valid.

The proof follows directly from the de�nition.
Gates with just a single child fail together with this child, so they can directly be eliminated.

Rewrite rule 3 Gate with only one successor
A

6∈ SPARE ∪ FDEP

B B

Input: {B 7→ B′}
Output: {A 7→ B′}
Context Restriction: none

Proposition 5.22. Rewrite rule 3 is valid.

The proof follows directly from the de�nition.
To keep other rules (especially Rewrite rule 24) more general, it is bene�cial to also de�ne a rule

which replaces a successor with an or

144 Chapter 5. Rewriting Dynamic Fault Trees

Rewrite rule 4 Add an OR in between.
A

BmBm−1

. . .

B1 Bm+1

. . .

Bk

A

Bm

C

B′m−1

. . .

B′1 B′m+1

. . .

B′k

Input: {Bi 7→ B′}ki=1

Output: {A 7→ A′}
Context Restriction: none

Proposition 5.23. Rewrite rule 4 is valid.

As we support n-ary gates, an element with a �rst successor of the same type can be merged
with that successor. For commutative gates, this would also work for arbitrary successors, but
using Rewrite rule 1, we can reorder the successors before and after to apply the rule. For the
pand-gate, it is not possible to apply this on arbitrary successors.

Rewrite rule 5 Left-�attening of and/or/pand gates
A

AND,OR, PAND 3

C1

. . .

CmB

Tp(A)

. . .

D1 Dk

A′

Tp(A)

C′
1

. . .

C′
mD′

k

. . .

D′
1

Input: {Ci 7→ C′i}mi=1 ∪ {Di 7→ D′i}ki=1

Output: {A 7→ A′}
Context Restriction: none

Proposition 5.24. Rewrite rule 5 is valid and symmetric.

Proof. We show the proof for PAND. The proofs for AND and OR are analogous (with a simpler
structure as the order does not matter).

For the validity, we use the proof obligation from Theorem 5.10. The rule does not include any
spare-gates or functional dependencies.

For the �rst part of the proof obligation, we have to show that A ∈ FailedL[f](π) ⇐⇒ A′ ∈
FailedR[f](π).

We notice that the following holds for any x ∈ PAND:

x ∈ Failed(π) =⇒ ∀π′ ∈ pre(π). FBπ′(x, σ(x)↓) ∧ FBπ′(σ(x)↓, x)

5.4. DFT rewrite rules 145

Then, we have

A′ ∈ FailedF [f](π) =⇒

C ′1, . . . , C
′
m, D

′
1, . . . , D

′
k ∈ FailedR[f](π) ∧

m−1∧
i=1

FBπ(Ci, Ci+1)

∧ FBπ(D′k,C
′
1) ∧

k−1∧
i=1

FBπ(D′i, D
′
i+1) =⇒

C1, . . . , Cm, D1, . . . , Dk ∈ FailedL[f](π) ∧
m−1∧
i=1

FBπ(Ci, Ci+1)

∧ FBπ(Dk,C1) ∧
k−1∧
i=1

FBπ(Di, Di+1) =⇒

C1, . . . , Cm, B ∈ FailedL[f](π) ∧
m−1∧
i=1

FBπ(Ci, Ci+1) ∧ FBπ(Dk,C1) =⇒

C1, . . . , Cm, B ∈ FailedL[f](π) ∧
m−1∧
i=1

FBπ(Ci, Ci+1) ∧ FBπ(B,C1) =⇒

A ∈ FailedL[f](π)

and

A ∈ FailedL[f](π) =⇒

B,C1, . . . , Cm ∈ FailedL[f](π) ∧ FBπ(B,C1) ∧
m∧
i=1

FBπ(Ci, Ci+1) =⇒

B,C1, . . . , Cm ∈ FailedL[f](π) ∧ FBπ(Dk, B) ∧ FBπ(B,C1) ∧
m−1∧
i=1

FBπ(Ci, Ci+1) =⇒

D1, . . . DK , C1, . . . , Cm ∈ FailedL[f](π) ∧ FBπ(Dk, C1)

∧
m−1∧
i=1

FBπ(Ci, Ci+1) ∧
k−1∧
i=1

FBπ(Di, Di+1) =⇒

D′1, . . . D
′
K , C

′
1, . . . , C

′
m ∈ FailedR[f](π) ∧ FBπ(D′k, C

′
1)

∧
m−1∧
i=1

FBπ(C ′i, C
′
i+1) ∧

k−1∧
i=1

FBπ(D′i, D
′
i+1) =⇒

A′ ∈ FailedR[f](π)

For the second part, we simply observe that for all {X,Y } ⊂ Vi ∪ Vo, X ./L Y and hr(X) ./R
hr(Y). This directly implies the requested property.

For symmetry, we observe that hr is injective and that we have a unrestricted context. By Propo-
sition 5.11, the rule is symmetric.

If an element does not have a predecessor, its failure is never propagated to any other elements.
Therefore, it can be removed. The element may, however, connect two otherwise unconnected
subgraphs, thereby constructing a single module. Thus, the rule can only be applied in restricted
contexts (cf. Example 5.1 on page 113).

146 Chapter 5. Rewriting Dynamic Fault Trees

Rewrite rule 6 Remove elements without a predecessor.
A1

6∈ SPARE ∪ FDEP

. . .

B1 Bm

. . .

B′
1 B′

m

Input: {Bi 7→ B′i}mi=1

Output: ∅
Context Restriction: {ActivationConnection(Bi, Bj) | 1 ≤ i < j ≤ m}.

Proposition 5.25. Rewrite rule 6 is valid.

Proof. We use the proof obligation from Theorem 5.16, as we have a context restriction. The failure
part is trivially ful�lled, as there are no output elements. The second part of the proof is trivially
ful�lled, as P(2)Vi ∪ Vo \ {Bi, Bj | 1 ≤ i < j ≤ m} = ∅.

Especially due to rewriting, a gate may have multiple successors. For AND and ORs, we can
safely remove one of them, we can safely assume that only one edge exists. For PAND gates, this
is true whenever the two successors are neighbours, i.e. no other successor is ranked in between.
We give a rule which eliminates the �rst successor if it is identical to the second one. Due to
commutativity, this yields a general rule for AND and OR. For PAND gates, this also su�ces when
used in combination with Rewrite rule 20.

Rewrite rule 7 First two successors of AND/OR/PAND identical.
A

AND,OR, PAND 3

C1

. . .

CmB

A′

AND,OR, PAND 3

C′
1

. . .

C′
mB′

Input: {Ci 7→ C′i}mi=1 ∪ {B 7→ B′}
Output: {A 7→ A′}
Context Restriction: none

Proposition 5.26. Rewrite rule 7 is valid and symmetric.

The proof follows directly from the de�nition.

Rules originating from la�ice axioms All lattice axioms (cf. Table 5.1 on page 114) can be
translated into rules for DFTs. The commutativity is already handled in Rewrite rule 1. Associa-
tivity for n-ary gates is covered by the �attening rule (Rewrite rule 5).

We present the subsumption rule used in the framework. The here presented rules are slightly
di�erent from the rule used in Example 5.1 on page 113.

5.4. DFT rewrite rules 147

Rewrite rule 8 Subsumption of or-gate by an and-gate.
A

B

C D

A′

B′

C′ D′

Input: {C → C′, D → D′}
Output: {A→ A′, B → B′}
Context Restriction: none

We de�ne the rule as presented above instead of the rule as in earlier examples as the here
presented rule is more general. It allows B to have other predecessors. In case it does have other
predecessors, only the connection is removed, thereby simplifying A, but B is not removed. In
case no other predecessors exist, B can afterwards be eliminated by Rewrite rule 6.

Proposition 5.27. Rewrite rule 8 is valid and symmetric.

The rule is presented only for the binary case, as we do repeatedly afterwards, in order to keep
the representation and the proof obligation as simple as possible. Notice that this is not a restriction.
Using the �attening, we can apply the rules also on n-ary graphs. We illustrate this interplay of
rewrite rules in the following example.

Example 5.7. We consider an extension of the DFT from Example 5.1 on page 113 in Figure 5.13a.
We want to apply the subsumption rule. As the gates are not binary, as required by the rule,
we want to make them binary. In order to do this, we want to apply de�attening. As we only
de�ned left-(de)�attening, we use commutativity (Rewrite rule 1, on B) to reorder the successors
(Figure 5.13b). We can now apply de�attening (Rewrite rule 5, on A and B both times in reverse
direction), and we obtain (Figure 5.13d). Reordering the successors of B (Rewrite rule 1) yields
Figure 5.13c). Here, we can apply the rewrite rule for subsumption. We obtain Figure 5.13e. We
restore the successors of the and-gate by �attening (Rewrite rule 5, on Z and B), which yields
Figure 5.13f. We can remove the or-gate B as it has no predecessors and the context restriction
is met (Rewrite rule 6, no spare gate) and subsequently, we can remove the or-gate Z . This yields
Figure 5.13g. We can now remove the unconnected basic events D and X , following Theorem 5.7.
We arrive at the �nal result depicted in Figure 5.13h. N

The subsumption rule for or-gates over and-gates is analogous to the rule presented above.

Rewrite rule 9 Subsumption of or-gate by an and-gate.
A

B

C D

A′

B′

C′ D′

Input: {C → C′, D → D′}
Output: {A→ A′, B → B′}
Context Restriction: none

Proposition 5.28. Rewrite rule 9 is valid.

148 Chapter 5. Rewriting Dynamic Fault Trees

A

B

Y

DC X

(a) Start DFT.

A

B

Y

DC X

(b) Reordered.

A

Z

B

Z′

Y

D

C

X

(c) De�attened.

A

Z

B

Z′

Y

D

C

X

(d) Reordered.

A

Z

B

Z′

Y

D

C

X

(e) Subsumption applied.

A

B

Y

DC X

(f) Flattened.

A

Y

DC X

(g) Remove or-gate.

A

Y

C

(h) Final result.

Figure 5.13.: Applying subsumption in a larger DFT as explained in Example 5.7 on page 147

5.4. DFT rewrite rules 149

The distribution rewrite rule directly originates from the lattice axioms. As for subsumption, we
present the rule for binary gates. Using (de)�attening, we can do this for n-ary gates.

Rewrite rule 10 Distribution of or-gates over and-gates.
A1

A2 A3

CB D

A′
1

A′
2

C′B′ D′

Input: {B 7→ B′, C 7→ C′, D 7→ D′}
Output: {A1 7→ A′1}
Context Restriction: none

Proposition 5.29. Rewrite rule 10 is valid and symmetric.

Based on the lattice axioms, we expect a number of rules to eliminate constant elements. In
fact, we have that either a constant successor can be removed, as it does not a�ect the gate (e.g.
Rewrite rule 11) or the constant element is propagated upwards, as it determines the outcome of its
predecessor gate (e.g. Rewrite rule 12). As we remove connections in the rule, we have to ensure
that the activation context remains intact.

Rewrite rule 11 Or-gate with an infallible successor.
A

C1

. . .

Cm

⊥

B

A′

C1

. . .

Cm

⊥

B

Input: {Ci 7→ C′i}mi=1

Output: {A 7→ A′, B 7→ B′}
Context Restriction: {ActivationConnection(B,A)}

Proposition 5.30. Rewrite rule 11 is valid.

Rewrite rule 12 Or-gate with a constant fault as successor.
A

C1

. . .

Cm

>

B

>

A′

. . .

C′
1 C′

m

Input: {Ci 7→ C′i}mi=1

Output: {A 7→ A′, B 7→ A′}
Context Restriction: {ActivationConnection(A,Ci) | 1 ≤ i ≤ m}

Proposition 5.31. Rewrite rule 12 is valid.

150 Chapter 5. Rewriting Dynamic Fault Trees

Rewrite rule 13 And gate with an infallible successor
A

AND, PAND 3

. . .

C1 Cm

⊥

B

⊥

A′

. . .

C′
1 C′

m

Input: {Ci 7→ C′i}mi=1

Output: {A 7→ A′, B 7→ A′}
Context Restriction: {ActivationConnection(A,Ci) | 1 ≤ i ≤ m}

Proposition 5.32. Rewrite rule 13 is valid.

Rewrite rule 14 And-gate with a constant fault as successor.
A

AND, PAND 3

C1

. . .

Cm

>

B

A′

C′
1

. . .

C′
m

>

B′

Input: {Ci 7→ C′i}mi=1

Output: {A 7→ A′, B 7→ B′}
Context Restriction: {ActivationConnection((A,B))}

Proposition 5.33. Rewrite rule 14 is valid.

Voting gate The AND and OR are both special voting gates, so we expect a rule which originates
from this. Furthermore, the voting gate can be modelled by a number of ORs and ANDs. We thus
expect a rule for the conversion to a representation of voting gates to AND and ORs.

We start with the representation of OR and AND as voting gate.

Rewrite rule 15 Voting with threshold 1 is an or-gate.

1

A

. . .

B1 Bm

A′

. . .

B′
1 B′

m

Input: {Bi 7→ B′i}mi=1

Output: {A 7→ A′}
Context Restriction: none

Proposition 5.34. Rewrite rule 15 is valid and symmetric.

5.4. DFT rewrite rules 151

Rewrite rule 16 Voting with m successors and threshold m is an and-gate.

m

A

. . .

B1 Bm

A′

. . .

B′
1 B′

m

Input: {Bi 7→ B′i}mi=1

Output: {A 7→ A′}
Context Restriction: none

Proposition 5.35. Rewrite rule 16 is valid and symmetric.

For the expansion of voting gates, we could construct a disjunctive normal form, where we
would encode all possible combinations that k out of m successors have failed. However, such
a rule would yield an extreme blow-up. Instead, we use a rule based on the Shannon expansion.
Shannon expansion is based on the following proposition in Boolean algebra, where f(x1, . . . , xn)
denots a Boolean function over the variables x1 . . . xn:

f(x, y1, . . . , yn) = x ∧ f(1, y1, . . . , yn) ∨ ¬x ∧ f(0, y1, . . . , yn).

Rewrite rule 17 Shannon expansion

k

A

2 ≤ k ≤ m

Bm

. . .

B1 C

A′

D2

k

D1

k − 1

D3

B′
m

. . .

B′
1 C′

Input: {Bi 7→ B′i}mi=1 ∪ {C 7→ C′}
Output: {A 7→ A′}
Context Restriction: none

In the given rule, the successor C corresponds to the �rst variable in the Boolean function.
Either it fails, then the output of the rule fails already with k − 1 out of the m other successors
failed. Moreover, the output element fails certainly when k out of the remaining m successors fail
- independent of the failure of C .

We can combine these rules to eliminate constant elements as successors, which we illustrate in
Figure 5.14 on page 152.

Conflicting and combined sequences We focus ourselves on PANDs. As PANDs are AND
gates which a restriction of the order of sequences, we expect some rules which allow us to combine
PANDs.

An and-gate is a pand-gate without any ordering requirements. One could express this as all
possible sequences connected by an or-gate. This is exactly what is done in the next rule, were we
express the requirement thatA andB both occur by requiring that either �rstA and thenB or �rst
B and then A occurs. From left-to-right, the rule allows us to subsequently combine pand-gates
with other pand-gates. From right-to-left, we get an obvious simpli�cation.

152 Chapter 5. Rewriting Dynamic Fault Trees

k

A

2 ≤ k ≤ m

Bm

. . .

B1

⊥

C

(a) Initial subDFT.

A′

D2

k

D1

k − 1

D3

B′
m

. . .

B′
1

⊥

C′

(b) Apply Shannon expansion
(Rewrite rule 17)

A′

⊥

D2

k

D1

k − 1

D3

. . .

B′
mB′

1

(c) Eliminate AND with a fail-safe
element (Rewrite rule 13)

A′

⊥

D2

k

D1

. . .

B′
mB′

1

(d) Remove unconnected ba-
sic event according to
Rewrite rule 6

A′

k

D1

. . .

B′
mB′

1

(e) Eliminate fail-safe element
from OR (Rewrite rule 11)

k

D1

. . .

B′
mB′

1

(f) Eliminate single child element
(Rewrite rule 3)

Figure 5.14.: Steps for rewriting VOT(k) with a fail-safe element

5.4. DFT rewrite rules 153

Rewrite rule 18 And-gate using or- and pand-gates
A

B C

A′

D′
1 D′

2

B′ C′

Input: {B 7→ B′, C 7→ C′}
Output: {A 7→ A′}
Context Restriction: none

Another particular instance is an AND gate which has two pand-gates as successors, where the
order requirements of the PANDs are in mutual con�ict. Under the assumption that the children
never fail simultaneously, it can never be true that both PANDs fail. therefore, the and-gate cannot
fail, as also discussed in Section 3.3.1 on page 34.

Notice that to prevent the simultaneous failure, we also need the event-independency for either
B or C . With commutativity, it su�ces to only present a rule with B event-independent.

Rewrite rule 19 Con�icting PANDs with independent children.
A

D1 D2

B C

⊥

A′

. . .

B′ C′

Input: {B → B′, C → C′}
Output: {A→ A′}

Context Restriction:
{IndependentInputs(B,C), EventDependentFailure(B)}
{ActivationConnection(A,B),ActivationConnection(A,C)}

Proposition 5.36. Rewrite rule 19 is valid.

Notice that we did not formally introduce any proof obligation for a combination of context
restrictions. As the e�ects are orthogonal, the combination is straightforward.

PANDs with various gates as successors We consider simpli�cation of pand-gates with a gate
as a successor.

For the static gates, we can merge the gates with any successors of the same type. This is in-
dependent of their position, as the gates are commutative. For pand-gates, this does not hold.
However, pand-gates with a pand-gate as successor can always be rewritten. We present a rule for
pand-gates whose second successor is a pand-gate. This rule can be generalised to arbitrary posi-
tions of the successor by using the left-�attening (reverse) of the pand-gate to group all successors
before the second pand-gate into a single new pand-gate.

154 Chapter 5. Rewriting Dynamic Fault Trees

X

Y Z

BA C

(a) Start DFT.

X

Y

A B

C

(b) Applying Rewrite rule 20
from right to left.

X

B CA

(c) After �attening.

Figure 5.15.: Rewriting a chain of PANDs.

Rewrite rule 20 Pand-gate with a pand-gate as successor
A

C

C1 C2

B

opt.

D1

. . .

Dk

C′

A′
1 A′

2

C′
2B′C′

1 D′
1

. . .

D′
k

Input: {B 7→ B′, C1 7→ C′1, C2 7→ C′2} ∪ {Di 7→ D′i}ki=1

Output: {A 7→ C′}
Context Restriction: none

Proposition 5.37. Rewrite rule 20 is valid and symmetric.

Notice that the rule from right-to-left has great practical relevance. It allows, together with the
de�attening, to rewrite pand-chains, as found in, e.g. the sensor-�lter case study (Figure 3.41 on
page 62). We illustrate this in Figure 5.15.

For an or-gate as a non-�rst successor, we cannot �nd a general rule which removes the or-gates
from the subtree of a pand-gate. This follows directly from Proposition 5.2, and was also illustrated
in Section 3.3.4.1 on page 40. We can, however, lift an or-gate which is the �rst successor of a pand-
gate.

Rewrite rule 21 Pand-gate with an or-gate as �rst successor
A

C

Ca Cb

D1

. . .

Dk

C′

A′
1 A′

2

C′
bC′

a D′
1

. . .

D′
k

Input: {B1 7→ B′1, C2 7→ C′2} ∪ {Di 7→ D′i}ki=1

Output: {A 7→ C′}
Context Restriction: none

Proposition 5.38. Rewrite rule 21 is valid and symmetric.

5.4. DFT rewrite rules 155

Notice that for special cases, there are useful rules to eliminate ORs which are non-�rst succes-
sors of PANDs. As an example, we give the following rule, which also allows rewriting and-gates
below an pand-gate.

Rewrite rule 22 Pand-gate with an or-gate as successor (special case)
A

C
B

Ca Cb

Xa Xb

D1

. . .

Dk

C′

A′
1 A′

2

C′
bC′

aB D′
1

. . .

D′
k

Input: {B 7→ B′, Ca 7→ C′a, Cb 7→ C′b} ∪ {Di 7→ D′i}ki=1

Output: {A 7→ C′}
Context Restriction: none

Proposition 5.39. Rewrite rule 22 is valid and symmetric.

We already introduced the elimination of constant elements as �rst (last) successor of a PAND
in Rewrite rule 14 and Rewrite rule 13. We need another rule for non-�rst successors encoding
a given failure, as such an element means that the ordering-condition of the pand is violated if
the previous successors have not failed at initialization. We ensure this via the event dependent
context.

Rewrite rule 23 Pand gate with a constant fault as non-�rst successor
A

>

C
Bm

. . .

B1 Bm+1

. . .

Bk

| · | ≥ 1

⊥

A′

>

C′

B′
m

. . .

B′
1

B′
m+1

. . .

B′
k

Input: {Bi 7→ B′i}ki=1

Output: {A 7→ A′, C 7→ C′}

Context Restriction:

{ActivationConnection(X,Bi) | 1 ≤ i ≤ k ∧X ∈ {A,C}}∪
{ActivationConnection(Bi, Bj) | 1 ≤ i < j ≤ k}∪
{ActivationConnection(A,C)}∪
{EventDependentFailure(Bi) | 1 ≤ i ≤ k}

Proposition 5.40. Rewrite rule 22 is valid.

We can rewrite many other combinations of PANDs by the combination of the given rules. We
give example of another combination of rewrite rules in Figure 5.16 on page 156

5.4.2. Rewrite rules with functional dependencies
In the following section, we present a selection of rewrite rules for functional dependencies. Rewrit-
ing functional dependencies is usually heavily context-sensitive, both from a syntactic as from a

156 Chapter 5. Rewriting Dynamic Fault Trees

A

B C

(a) Initial subDFT.

A

D1

B C

(b) After application
of �attening, in
inverse direction
(Rewrite rule 5).

A

D2 D3

B C

(c) Using Rewrite rule 20

⊥

A

B C

(d) Assuming A,B in-
dependent, apply
Rewrite rule 19.

Figure 5.16.: Steps for rewriting PAND with a duplicate child

semantical point of view.
We discussed earlier that in the context of static fault trees, functional dependencies are syntactic

sugar. We thus want a rewrite rule which indeed eliminates functional dependencies. A single
rewrite rule is su�cient for this. It is the analogous rewrite rule to the method described by Merle
et al. in [MRL10]. It rewrites an functional-dependency into a an or-gate. The rule is neither
component- nor hierarchy conservative, so context restrictions due to well-formedness criteria
apply. Due to the simple structure we impose on input- and output- interface, the rule is slightly
more verbose than one might expect, by the added or-gate which has but one successor.

Rewrite rule 24 Eliminating FDEPs by the introduction of a or-gate

A
B

C

A′
B′

C′

Input: {A 7→ A′, B 7→ B′}
Output: {C 7→ C′}

Context Restriction:

{Preferential(B),

δ-Independent(A,B),

NoOtherPreds(B),

TopConnected(A),TopConnected(C)}

Proposition 5.41. Rewrite rule 24 is valid.

Proof sketch. We proof this by using Theorem 5.19.
Let f be an arbitrary oracle. We only discuss a subset of the oracles here, which is easily gen-

eralised to a complete proof. We therefore assume π ∈ B′� \ {ε} and π′ ∈ pre(π) ∪ {π} \ {ε}
arbitrary sequences such that f(π′) 6= f(π′|−1, f(π) 6= f(π|−1) and ∀π̂π ∈ pre(π̂)f(π̂) = f(π).

The �rst scenario is: f(ε) = ∅, f(π′) = {A}, f(π) = {A,B}. We have to show that
• C ∈ FailedL[f](ε) ⇐⇒ C ′ ∈ FailedR[f](ε).

We have f(ε) = ∅ and thus C 6∈ FailedL[f](ε). Furthermore, hr(f(ε)) = ∅, and thus
C ′ 6∈ FailedR[f](ε).

• C ∈ FailedL[f ′](π′) ⇐⇒ C ′ ∈ FailedR[f ′](π′).
It holds that f ′(π′) = {A,B} and thus C ∈ FailedL[f ′](π′). Likewise, we have that
hr(f

′(π′)) = {A′, B′} and thus C ′ ∈ FailedR[f ′](π′).
• C ∈ FailedL[f ′](π) ⇐⇒ C ′ ∈ FailedR[f ′](π).

As above, both C ∈ FailedL[f ′](π) and C ′ ∈ FailedR[f ′](π).
The second scenario, f(ε) = ∅ and f(π′) = f(π) = {A,B} is analogous to the third case above.

5.4. DFT rewrite rules 157

A B

C

X

D

Y

(a) Start DFT.

A B

C

X

C′ D′

D

Y

(b) Add or-gates with sin-
gle successor.

A B

C

X

C′

D

Y

(c) Merge or-gates with
equal successors.

A B

C

X

C′

D

Y

(d) Rewrite FDEP.

Figure 5.17.: Circumventing the NoOtherPreds({B}) context restriction
.

The third and last scenario we consider is f(ε) = {B} and f(π′) = f(π) = {A,B}. We show
that C ∈ FailedL[f](ε) ⇐⇒ C ′ ∈ FailedR[f](ε). The rest follows by the coherency of failing.
We have f(ε) = {B} and thus C ∈ FailedL[f](ε), and analogously C ′ ∈ FailedR[f](ε).

The restriction of no other predecessors ensures that all triggered failures are covered by the
or-gate. This is not a restriction in the original sense, i.e. on each DFT on which the rule could
be applied without the restriction, the rule can be applied by �rst modifying the DFT and then
applying this rule. We illustrate this in Figure 5.17 on page 157.

We present some other rules for eliminating dispensable functional dependencies. Notice that in
the remainder of this section, we do not aim for completeness, as the number of rules becomes too
large. The presented rules serve as an overview of ideas for further rules which are not necessarily
captured yet by a more general approach, as done for Rewrite rule 24.

Rewrite rule 25 Super�uous FDEPs from AND to a successor.
A

. . .

B1
Bm

A′

. . .

B′
1

B′
m

Input: {Bi 7→ B′i}mi=1

Output: {A 7→ A′}
Context Restriction: none

Proposition 5.42. Rewrite rule 25 is valid.

Proof. We use the proof obligation from Theorem 5.17. Let f be an oracle and π be an event trace.

A ∈ FailedL[f](π) ⇐⇒ {B1, . . . Bm} ⊆ FailedL[f](π) ⇐⇒
{B′1, . . . , B′m} ⊆ FailedR[f](π) ⇐⇒ A′ ∈ FailedR[f](π)

Furthermore, ∆Lab(π) = ∅ = ∆R(π) (the trigger A of the FDEP on the lhs fails only if the de-
pendent event has failed before). Furthermore, we have that A ./L B ./R C and A′ ./R B′ ./R
C ′.

We notice that functional dependencies are anonymous, and we cannot distinguish multiple
functional dependencies with the same dependent event. The elimination of the following func-
tional dependency is therefore another example where the set of dependent events is untouched.

158 Chapter 5. Rewriting Dynamic Fault Trees

Rewrite rule 26 Super�uous FDEP from OR to successor.
A

B
C

A′

B′
C′

Input: {B 7→ B′, C 7→ C′}
Output: {A 7→ A′}
Context Restriction: none

Proposition 5.43. Rewrite rule 26 is valid.

Some functional dependencies are dispensable when their predecessors overlap, we give two
common examples. Notice that, in general, the nodes could have multiple overlapping predeces-
sors, which is not directly supported by these rules, but can be mimicked as in Figure 5.17. As the
functional dependency potentially causes the failure of (input) interface elements, another proof
obligation is required for the correctness proofs of the next few rules.

The next rule might seem as being easily simulated with the help of Rewrite rules 3 and 24.
However, the restrictions from Rewrite rule 24 are strong and might prevent the rules from being
applied in the scenario below.

Rewrite rule 27 Removing FDEP between successors of an OR.
A′

. . .

B′
1 B′

m

A′

. . .

B′
1 B′

m

Input: {Bi 7→ B′i}mi=1

Output: {A 7→ A′}
Context Restriction: NoOtherPreds({Bm})

Proposition 5.44. Rewrite rule 27 is valid.

Proof. We use the proof obligation from Theorem 5.18. Let f be an oracle and π be an event trace.

A ∈ FailedL[f](π) ⇐⇒ {B1, . . . Bm} ∩ FailedL[f](π) 6= ∅ ⇐⇒
{B′1, . . . , B′m} ∩ FailedR[f](π) 6= ∅ ⇐⇒ A′ ∈ FailedR[f](π)

Furthermore, B1 ∈ Failed(π) =⇒ ∆L[f](π) ∈ {∅, {Bm}} and ∆R[f](π) = ∅.
• For ∆L[f](π ·ε) = ∅we we �rst notice thatBi ∈ FailedL[f](π ·ε) =⇒ A ∈ FailedL[f](π ·ε)

and furthermore that Bi ∈ FailedL[f](π · ε) =⇒ B′i ∈ FailedR[f](π · ε) =⇒ A′ ∈
FailedR[f](π · ε). Furthermore, we have that for all 1 ≤ i < m, Bi ∈ FailedL[f](π · ε) ⇐⇒
Bi ∈ FailedR[f](π · ε).

• For ∆L[f](π) = {Bm}, the obligatons for π · ε are analogous to the case above. With
coherency, we getA ∈ FailedL[f](π ·Bm). By the structure ofL, it holds that for 1 ≤ i < m,
Bi ∈ FailedL[f](π ·Bm) ⇐⇒ Bi ∈ FailedL[f](π) and thus Bi ∈ FailedL[f](π ·Bm) ⇐⇒
Bi ∈ FailedR[f](π · ε).

The following rule is another example of a functional dependency without e�ect. When the
trigger fails, either the dependent event has already failed, which makes the FDEP super�uous.
Otherwise, the PAND is rendered infallible. The subsequent failure of the dependent event does
not change this. The failure of the FDEP has no other e�ect.

5.4. DFT rewrite rules 159

Rewrite rule 28 Removing FDEP between successor and a previous successor of an PAND.
A

. . .

B1 Bm

A′

. . .

B′
1 B′

m

Input: {Bi 7→ B′i}mi=1

Output: {A 7→ A′}
Context Restriction: NoOtherPreds({B1})

Proposition 5.45. Rewrite rule 28 is valid.

Sometimes, we can redirect the functional dependencies by the introduction of a dummy event.
These dummy events can often be eliminated later.

Rewrite rule 29 Simplifying FDEPs in context of an AND.
A

. . .

B1 Bm
C

A′

D

X

. . .

B1 Bm

C

Input: {Bi 7→ B′i}mi=1 ∪ {C 7→ C′}
Output: {A 7→ A′}
Context Restriction: NoOtherPreds({Bi}mi=1)

Proposition 5.46. Rewrite rule 29 is valid.

We stop here with the presentation of rules. We notice that we did not include any rules to
eliminate or create spare gates, as, due to the activation propagation and claiming behaviour, such
rules are far from trivial and their correctness seems to require a tremendous e�ort. While most
rules for static gates are straightforward, the context restrictions due to the activation context
require great care. The internal state of PANDs already yields trouble for �nding a general normal
form, as was illustrated by the example of a por-gate representation. However, especially functional
dependencies can occur in many di�erent contexts. The rules presented here merely give an idea of
elimination in case the ordering is una�ected or the dependent events have no e�ect if the trigger
has already failed. We excluded all kind of combinations of FDEPs here. Furthermore, we notice
that functional dependencies have a major in�uence on keeping modules independent.

6. Experiments

This chapter presents the set-up for the experiments we use to assess the practical relevance of the
rewriting procedure. In Section 6.1 on page 161, we give an overview over the implementation of
the rewrite rules in Groove. In Section 6.2 on page 163, we brie�y present the tool-chain around
Groove, used to transform back and forth from DFTs to their graph representation. Section 6.3 on
page 165 compares the performance of DFTCalc on several benchmark sets. To this end, it contains
a description of the used instances, an detailed analysis of the performance of DFTCalc on these
sets and a comparison of the rewritten instances with the original instances.

6.1. Groove grammar for DFTs
We implement the graph rewriting of DFTs within Groove, described in Section 2.3.2 on page 19.
We stress that we cannot one-to-one transform our rewrite rule families to Groove:

• Context restrictions have to be handled di�erently.

• Families cannot be coded as presented in Section 5.4 on page 141, neither is symmetry sup-
ported.

• Groove does not use DPO rewriting, therefore, we have to encode the interface di�erently.

Notice that Groove allows the use of quanti�ers, which notably simpli�es the encoding of some
rules. We �rst present the way we encode some of the rules. We then consider in which combina-
tion the rules should be applied in order to yield a simpli�cation.
Remark 36. The full set of rewrite rules, together with the control program, can be found at http:
//moves.rwth-aachen.de/ft-diet/.

6.1.1. Concrete grammar
Like the graph representation of DFTs, we use some auxiliary nodes in addition to nodes encoding
elements. As Groove has native supports for types, we use these types to encode the element type.
We use the type-graph as depicted in Figure 6.1. Here, elements are a hierarchy. That is, an element
in a DFT is, from the perspective of Groove, either a constant element or a basic event, or a static
gate, or a dynamic gate. Static gates, such as AND and OR, have elements as successors. Notice
that these successors are unordered. In contrast, dynamic gates, such as here the PAND and SPARE
(WSp for warm spare), have auxiliary ordering-nodes, which each have a single element as a child.
The ordering nodes under a dynamic gate are connected via a chain of next-edges, which encode
the ordering. The top-level element is a special element, which has exactly one child. Furthermore,
functional dependencies are encoded by specially labelled edges. In Figure 6.2 we depict a DFT
and its Groove representation. We see that the AND, OR and PAND gate, as well as the three basic
elements directly correspond to nodes in the Grooverepresentation. An additional node with one
child marks the top-level and the children of the dynamic gate are ordered with the help of auxiliary
nodes.

We present four rewrite rules here. We stress that due to the encoding, we do not need rules
such as commutativity.

The encoding of Rewrite rule 8 in Groove, depicted in Figure 6.3 seems straightforward. How-
ever, the represented rule is more general than the original counterpart, as both the AND and
the OR are allowed to have additional children, which we explicitly prohibit for the original DFT
rewrite rules. The encoding of Rewrite rule 5, depicted for or-gates in Figure 6.4, shows a way to
explicitely encode a family, as the rule accepts an arbitrary number of successors for both or-gates.
The encoding of Rewrite rule 15 (Figure 6.5) shows the explicit encoding of an interface. Here, all

http://moves.rwth-aachen.de/ft-diet/
http://moves.rwth-aachen.de/ft-diet/

162 Chapter 6. Experiments

Value
val: bool

WSp

Voting
threshold: intOr

And

StatGate

DynGate

Gate

BE
dormancyFactor: real

failureRate: real
Element

name: string

Ord

PAnd
InnerNode

TLE

fdep

next

child
first
last

child

Figure 6.1.: Groove type-graph for DFTs.

X

Y Z

BA C

(a) Example DFT.

TLE

PAnd

And

Or

Ord Ord

BE BE BE

child

child child

child
first

child
last

next

child child

child child

(b) Representation in Groove.

Figure 6.2.: Representing a DFT in Groove.

And

Or

Element Element

child

child child

child

Figure 6.3.: Subsumption of
an OR.

Or

Or

Element∀

child

@

child

child

Figure 6.4.: Flattening an
OR.

InnerNode∀

Or

∀ Element

x : Voting
threshold == 1 BE

∀

child

fdep

child

fdep

@

child

child

@

@

Figure 6.5.: VOT(1) equals OR.

6.2. Implementation details 163

And

PAnd PAnd

Ord Ord Ord Ord

Element Element

Value
val = false

Value
val == true

WSp

next+

child child

child

child

child

child*.(−child)*

child

next+

child

child

child

child

child

child+

Figure 6.6.: Groove rule for con�icting PANDs.

edges to predecessors of the voting gate (including all functional dependencies) are replaced with
edges from the predecessor to the new or-gate.

For Rewrite rule 19 a signi�cant extension in the representation is required. The Groove rep-
resentation is encoded in Figure 6.6 on page 163. We see that the independence criterion is easily
expressed by stating that there is not a path from the one to the other element in the output inter-
face such that it �rst goes down an failure-cause path and then (in reverse direction) goes up the
failure-cause path again. Furthermore, the event-dependency is encoded by requiring one of the
elements to not have an given-failure element in the successor-closure. The activation-connection
is a much more di�cult criterion to encode. We further restrict the rule here to be only applied if
there is no spare-gate in the DFT, which certainly is a stronger restriction than required. To handle
such larger context-restrictions, it is advisable to use a three-step procedure, in which a �rst rule
adds information about contexts to the graph, the second performs the actual rewriting while con-
sidering the context restrictions now explicitly present in the DFT, and the third cleans up artefacts
of the added information.

6.1.2. Control
Until now, we did not really discuss what rules, and what order of rules, leads to a simpli�cation
of the DFT. For this thesis, we restrict ourselves to a fairly simple approach, in which a priority is
assigned to each rule. In each step, the rule with the highest priority is selected, until we �nd a
state in which no further rule is applicable anymore.

The priority we assign to the rules is driven by a partitioning of the existing rules into cleaning,
reduction and transformation rules. Some rules throw away dispensable elements without a�ecting
the remainder of the DFT (cleaning rules). Such rules should always be applied directly, as they
also prune the search space for other rule. Moreover, a large group of rules, such as rules for
subsumption, seemingly reduce the size of the DFT directly. When no cleaning rules are available,
we apply one of these reduction rules. When no other rules are applicable, we try rules such as
the Shannon expansion for voting gates (transformation rules), as they might lead to subsequent
reductions. Notice that the rules as used in the control program are con�uent, that is, the control
program always terminates at some point.

During the development, we tried out some more exotic constructs of DFTs, which indeed re-
quired more complex control programs to yield performance boosts. Moreover, we discovered that
this control program is also not optimal for the given benchmark set, that is, by manually applying
rules, we were able improve the performance on some instances.

6.2. Implementation details
We embedded Groove in a tool chain to allow simple usage of the rewrite framework1.

1Available at http://moves.rwth-aachen.de/ft-diet/.

http://moves.rwth-aachen.de/ft-diet/

164 Chapter 6. Experiments

File format Common tools described in literature use the Galileo format (GalileoDFT, *.dft) as
�le format for the speci�cation of DFTs. We slightly extended upon this format to support the full
syntax as described in Chapter 4 on page 71. Please notice that our extension is fully backward
compatible.

GroovyDFT As discussed in Section 6.1, we use Groove for the actual rewriting of DFTs. Groove
uses the GXL [HSSW06] format as a disk format for storing graphs. Moreover, as discussed in
Section 6.1 on page 161, the graph representation of DFTs used within Groove (GrooveDFT) is
slightly di�erent from the DFT graph. As the goal of utilising Groove is to support automatic
rewriting of DFTs, we also need a tool for converting GalileoDFT (as *.dft) to GrooveDFT (as *.gst)
and vice versa. We provide this functionality in the tool GroovyDFT.
GroovyDFT is implemented using Scala, and can thus be run from the Java runtime, like Groove.

It consists of a total of about 800 lines of code, excluding comments. GroovyDFT provides data
structures for GalileoDFT and GrooveDFT representation, as well as transformation code and mar-
shalling/unmarshalling of these data structures. Moreover, it is able to export di�erent metrics of
a given fault tree, the most simple being the number of elements. We depict the components of
GroovyDFT in Figure 6.7.

We brie�y discuss two features. First of all, GalileoDFT does not support encoding evidence (or
any constant elements at all). DFTCalc uses a separate �ag to list basic events which are constantly
failed, and infallible elements are simply encoded as dummy events. GroovyDFT therefore also ac-
cepts a separate list of evidence. Such basic elements are then replaced by constant failure elements
before transformation to a graph-like structure. Equivalently, constant elements occurring in the
GrooveDFT are substituted by basic events and a separate list with evidence is exported. Second,
while producing GalileoDFT �les, we normalise the �le. That is, we list gates before basic events
and all gates occur topologically sorted. For static gates, we order all successors based on, amongst
others, the number of basic events in the subtree.

Remark 37. Another functionality is an elementary export of Tikz, which was used to draw the
DFTs in this thesis.

Groove DFT DFT
GalileoDFT

&
evidence

Groove DFT GXL

Stats (|V |, |FBE|, . . .)

encode

decode

marshall

unmarshall

parse

export

export

Figure 6.7.: Architecture of GroovyDFT.

Pu�ing it together We wrapped the necessary tools in a little tool chain called aDFTpub1, writ-
ten in Python 3.

The tool takes an input DFT in GalileoDFT format and a measure (e.g. min |V |) and produces an
output DFT in GalileoDFT format. We depict the process in Figure 6.8. The tool chain transforms
the input to GrooveDFT format by callingGroovyDFT, additionally storing some statistics exported
by the tool. After the transformation by Groove with a given (set of) control programs, all the
resulting graphs are transformed back to GalileoDFT format, again collecting statistics as outputted
by GroovyDFT. Then, all DFTs are compared against the given entry for the statistics, and the
DFT scoring best on the given measure is selected and exported by aDFTpub, while the others are
discarded. Please notice that in some cases, the tool chain may export the input DFT as output
DFT, if none of the rewritten DFTs score better on the selected measure.

Remark 38. In the experiments discussed next, we always use the (only) DFT which is returned by
Groove.

1Another DFT by PUsh Button

6.3. Experimental results 165

DFT
�

GROOVE
Groove

DFT
�

GROOVE
DFT

measure

DFT

Figure 6.8.: Architecture of aDFTpub.

6.3. Experimental results

In this section, we report on the e�ects of rewriting DFTs on the performance of DFTCalc. To be
more precise, we selected di�erent benchmark sets from the literature. The performance of DFT-
Calcwas tested by lettingDFTCalc assess the reliability for a single mission time. This performance
was compared against the performance of the tool chain, rewriting the DFT and only then feed the
resulting DFT to DFTCalc to assess the reliability. Before we present the results, we �rst introduce
the selected benchmark sets in greater detail1 and discuss the performance measures we used.

6.3.1. Benchmarks for rewriting

We selected some of the case studies from Section 3.4 on page 55 as benchmarks. We wanted to
include some of the most-used benchmarks, as well as the industrial ones. Furthermore, the DFTs
should follow the standards in the hierarchical way they represent the system behaviour. As we
did not consider por-gates for rewriting, those case studies were not suitable. As we want to show
the scalability of the approach, it was important that we would have su�ciently large models.

We choose to use HECS, RC, MCS and SF as scalable benchmarks for which we write generators.
The choice is mainly inspired by the availability of multiple sizes of these benchmarks and the
straightforward scaling. Furthermore, we include HCAS (commonly used) and SAP (industrial +
evidence required), as well as some con�dential fault trees from Movares (partially described in
[GKSL+14]).

HECS For this benchmark describing a computer system no scaled variants have been presented
in literature. We consider a system which consists of multiple (m) (identical) computer systems of
which k are required to be operational in order for the system to be operational. As the memory-
interface structure with two interfaces is a bit complex, we also de�ne systems with only one
memory interface (all memory components in a computer fail if the interface fails) and a system
where we do not consider the memory interface. We use i = 0 . . . 2 to denote the number of
interfaces. Furthermore, we consider two types of power supply (ps). The DFTs either do not
consider the failure of a power supply (np). Alternatively, we consider DFTs where all computers
have a power supply (part of the interface) which is functionally dependent on the power grid (up).
We denote an instance of the benchmark as h-m-k-i-ps.

Please notice that we never produce gates with just one successor. Moreover, voting gates which
correspond to an AND or an OR are replaced by those gates.

RC For this benchmark of a railroad crossing, we are not aware of any scaled variants. We
consider a railroad crossing consisting not of just one barrier and one set of sensors. Instead, we
generalise the concept such that a railroad crossing fails whenever any of the sensor-sets fail, or
any of the barriers fail, or the controller fails. We then consider scalable versions with b identical
barriers and s sets of sensors (each with their own cable which can cause a disconnect). Moreover,
we consider a variant for the controller (ct). Either the controller failure is represented by a single
basic event (sc) or by a computer described as in HECS (h-1-1-2-np, hc). We denote an instance
of the benchmark as rc-s-b-ct.

1All used instances — including information about the used failure rates — are available from http://moves.
rwth-aachen.de/ft-diet/

http://moves.rwth-aachen.de/ft-diet/
http://moves.rwth-aachen.de/ft-diet/

166 Chapter 6. Experiments

We notice that the generated benchmarks are, like the original benchmark, not compatible with
the syntactic restrictions we use. As the interpretation of the semantics for this case in unambigu-
ous, we ignore this issue. Again, no gates with only one successor is used.

MCS The MCS benchmark set has been scaled in literature to change the number of modules to
four. We extend this scaling to higher numbers and in other dimensions.

As with the HECS computer system, we consider a farm of m computing systems where k are
required to be operational. Each computing system contains imodules. A spare memory module is
shared amongst two computing modules. If i is uneven, then one memory module is shared among
three computing modules. All computing modules within a system share the same power supply
(cps), which is either represented via an or-gate (x) or via FDEPs (f). In this thesis, we only included
the variant with the or-gates. The power supply (pss) is either a single basic event (sp) or consists
of two redundant power supplies (two basic events as successors of an AND, dp). We denote an
instance of the benchmark set with cm-m-k-i-pss-cps.

As for HECS, gates with a single successor are eliminated and voting gates corresponding to
AND or OR are converted

SF The sensor-�lter is scalable benchmark for the Compass project. We could only recover single
instances, and constructed a new benchmark set from it. We consider the combination ofm �lters.
Any �lter failing causes the top-level to fail. In each �lter, we scale the number of steps k through
the degraded states that have to be taken in order to cause a failure (in Figure 3.41 on page 62, we
see three basic events with two PANDs). We denote an instance of the benchmark with sf-m-k.

HCAS We use the benchmark HCAS and CAS as presented in the literature. We included some
varieties in the number of pumps.

SAP We use the benchmark as presented in the literature. We consider the four combinations of
give failures and fail-safe elements for (BE1) and (BE3).

Movares The benchmark set contains a set of con�dential fault trees representing pars of a rail-
road network. Some information is available from [GKSL+14]. The instances generally contain a
large number of or-gates which are subject to be �attened. Dynamic elements are found in the
lower levels of the fault tree to describe spare elements for speci�c components.

6.3.2. Performance of DFTCalc
Before we discuss the actual e�ect of the rewriting on the performance of DFTCalc, we discuss
some observations we made in both during preparation and executing the benchmarks. These
observations are important to understand the e�ect of rewriting on the performance of DFTCalc.

Reviewing the DFTCalc algorithm Let us �rst brie�y discuss the internal algorithm used by
DFTCalc. We recall from Section 3.5.5 on page 69 that each element is represented by an IMC. The
underlying model used for the stochastic analysis is a larger IMC which is obtained by the parallel
composition of the of IMCs corresponding to the single elements. As this parallel composition
grows exponentially, a method called smart reduction is applied. That is,

• after (roughly) each composition, reduction techniques (e.g. constructing the bisimulation
quotient) are applied.

• the order in which we apply the parallel composition is guided by a heuristic which aims to
keep the bisimulation quotient small.

This yields a series of models. In Table 6.1 we give some key information about such a series of
models.

We see that the model sizes alternate between growing and shrinking in most step. Growing
models correspond to the application of composition, while shrinking models are obtained by
reducing them. If the model size shrinks after a step where composition is expected, then two
di�erent IMCs were composed, yielding a separate IMC which might be smaller than the earlier

6.3. Experimental results 167

states # transitions memory size (KB)
24 55 3.0
5 8 3.0

19 41 3.0
4 6 3.0

752 9360 20.5
440 4992 13.4
23 66 3.1
16 44 3.2
73 257 3.4
10 26 3.1
12 24 3.0
6 10 3.0

60 267 3.5
12 49 3.2
47 161 3.4
17 57 3.3

7058 77334 151.0
3724 38115 85.0
4924 43268 83.1
1476 12324 29.4
2952 18826 37.3
1727 11042 27.8
2354 12711 26.4
942 5131 14.7

1704 5750 12.7
79 283 4.0

Table 6.1.: The size of the intermediate models.

constructed IMC. The shown list shares some characteristics with many other computations of
DFTCalc. First of all, the peak size is often not at the very end, but closer to the middle. Further-
more, this peak size is a true peak, i.e. most models are signi�cantly smaller.

The last model obtained is used for the calculation of the requested stochastic measures on DFTs
by executing either IMCA1 or MRMC2.

The vast majority of the computation resources are spent in the model construction, rather than
in one of the model checkers, as the resulting models are mostly comparably small. The proposed
rewriting mainly targets improving the overhead of the construction of the model. However, we
execute all benchmarks by giving a DFT and a mission time, and requiring the reliability of the
described system. This involves a single call to MRMC. We think that this is a better comparison,
as it shows the timing di�erences for the most common use case. In some use cases, the user might
be interested in a series of mission times, which yields a larger share of the computation time for
MRMC.

Interpretation of the tables We present all our benchmarks in a table with the same columns,
to ease the navigation through the table. We explain the entries of the table using two entries from
the HECS benchmark, given in Table 6.2 on page 168.

Beginning in the second row, we see HECS indicating the name of the benchmark collection.
Below, we see two rows starting with h-1-1-1-np and h-1-1-1-up, respectively. These are
the names of instances in the benchmark collection. The entries in those rows re�ect the perfor-
mance on the baseline instances. The rows under the baseline start with slightly indented entries,
printed in italic font. These rows re�ect the names of the variants we created for the instance.
Here, simpli�ed re�ects the name of the rewrite control program we used to rewrite the original

1Interactive Markov Chain Analyzer[GHHK+13]
2Markov Reward Model Checker[KZHH+11]

168 Chapter 6. Experiments

instances. The next two columns give the number of elements in the DFT (|V |) and the number of
basic elements |FBE|. The next three columns represent the intermediate model with the highest
number of states (given in maxi |Si|) and their memory footprint (Mem, in kilobytes). In (Membs

rw
),

we show for each of the variants the relative memory footprint with respect to the baseline. The
next two entries represent the �nal model size. We give the number of states (|Sn|) and the relative
size of the variants with respect to the baseline (|Sn|bs

|Sn|rw
). The last three columns show the time

consumption. We give the time consumed by DFTCalc to construct the model and to calculate the
reliability for a �xed mission time (tD , in seconds) and the time consumption of Groove to rewrite
the DFT from the baseline into the given variant (tG, in seconds). The last column (tbs

trw
) represents

the speed-up relative to the baseline. It corresponds to the fraction of the time required to compute
reliability on the baseline divided by the total time required to rewrite the baseline to the variant
and compute the reliability on the variant (tD + tG). The peak memory consumption during the
model creation is closely related to the memory footprint of the largest intermediate model.

All experiments are executed with a 2 hour timeout and a memory limit of 8 gigabytes. Compu-
tations which were cancelled due to these limits are marked with TO or MO, respectively. Details
of the platform we used for the benchmarks can be found in Appendix B on page 197.

|V | |FBE| maxi |Si| Mem Membs
Memrw

|Sn| |Sn|bs
|Sn|rw

tD tG
tbs
trw

HECS
h-1-1-1-np 21 13 7058 151 79 75
simpli�ed 13 9 123 37.2 2.5 12 6.6 22 9 2.5

h-1-1-1-up 24 15 831 20 18 84
simpli�ed 13 9 123 4 5 5 3.6 5 9 5.8

Table 6.2.: Fraction of benchmark results.

Before we start with the actually used benchmarks, we show some variables for the DFTCalc
heuristic which we have to be aware of, as well as the overhead of many small reductions, illustrated
by comparing the seqand-gate with the spare-gate, and a case of a time/memory trade-o� in the
illustrated by �nding the best representation of large static gates.

Encoding of the input In Section 6.2 on page 164, we described that during the export of the
�les, we also reorder the list of elements. While this is not de�nable on the syntax of DFTs, the
heuristic within DFTCalc depends on it, as shown by shu�ing the entries of the rewritten version
of (see Table 6.3).

|V | |FBE| maxi |Si| Mem Membs
Memrw

|Sn| |Sn|bs
|Sn|rw

tD tG
tbs
trw

cm-1-1-3-sp 29 15 1042 13.2 79 61
shu�ed 29 15 2050 24 0.6 12 15.2 61 1

Table 6.3.: The e�ect of reordering the list of elements.

As we aim not to measure these e�ects but just the rewriting of the fault tree, we normalise all
encodings. Please notice that ordering obtained by the normalisation is not necessarily unique,
i.e. equivalent trees may be encoded (slightly) di�erently, however, we did not experience any
performance di�erences between the normalised �les. Furthermore, the goal of this normalisation
is not to improve the performance, in fact, the ordering is not necessarily optimal. Instead, by
enforcing the use of the same encoding for the baseline as well as for the simpli�ed DFTs, we
prevent structural bad or good encodings after generation or rewriting. With the large number of
encodings, we achieve a high con�dence that the trend shown in this benchmarks is indeed due
to the e�ect of rewriting the DFT and not due to the di�erence in structure of the generated and
rewritten DFTs.

Order and static gates We recall that the static gates are all commutative. Nevertheless, the
order of the successors does in�uence the performance of DFTCalc, as shown in Table 6.4.

6.3. Experimental results 169

|V | |FBE| maxi |Si| Mem Membs
Memrw

|Sn| |Sn|bs
|Sn|rw

tD tG
tbs
trw

h-1-1-1-np 21 13 7058 151 79 75
shu�ed 21 13 10124 217 0.7 81 1 79 1

Table 6.4.: The e�ect of the order of successors of a static gate.

A

. . .

B1 B8

(a) Baseline

A

. . .

A1

B1 B4

. . .

B5 B8

(b) Variant B

A

A1

A2

. . .

B1 B4

. . .

B5 B8

(c) Variant C

Figure 6.9.: Three variants of an or-gate with eight BEs.

We recall that the successors of a static gate are unordered in Groove. Therefore, the rewriting
process does not allow to optimise the order. To clean the experiments from the e�ect of this
ordering, we normalise the order for all DFTs (also the baseline) using GroovyDFT.

For both the order of the encoding and the order of static gate successors, we experienced major
impact on the peak sizes, but not on the time consumption.

Seqand-gates and the overhead of many small compositions In Section 4.2.9 on page 98
we discussed that seqand-gates are special cases of spare-gates. In fact, the IMC representation of
seqand-gates can be simpler as it is not necessary to communicate the availability between di�erent
spare-gates. Therefore, we expect better improvements if all cold spare-gates with unshared spare
components are rewritten to seqand-gates.

However, we see a signi�cant performance drop when using seqand-gates (Table 6.5). To un-
derstand why, we regard the intermediate model sizes given in Table 6.6. The DFT contains 4
binary spare-gates or seqand-gates, respectively. For the spare-gates, we see exactly this number
of compositions yielding 9 states and reductions to 5 states. These intermediate models corre-
spond to the composition of the spare-gate with the two successors and the reduced model. For
the seqand-gates, we see that we start with 8 steps, but DFTCalc uses twice as many compositions
(and reductions). In both cases, only after the composition of all spare/seqand-gates, we compose
them via the top-level or-gate. The signi�cant rise in time consumption is thus due to the high
overhead of these initial steps.

|V | |FBE| maxi |Si| Mem Membs
Memrw

|Sn| |Sn|bs
|Sn|rw

tD tG
tbs
trw

rc-rewr-wsp 14 9 185 4.7 12 32
rc-rewr-seqand 14 9 185 4.7 1 12 1 52 0.6

Table 6.5.: DFTCalc performance - spare-gates versus seqand-gates.

N-ary gates and time/memory trade-o�s First, we notice that the memory consumption of
intermediate models is noticeably larger for or-gates with many inputs. If we aim solely for a
memory reduction, it thus makes sense to use Rewrite rule 5 in the reverse direction to split large
or-gates in small or-gates. In Figure 6.9, we show three di�erent, equivalent fault trees, consisting
of eight basic events and one, two or three or-gates, respectively. We assume that all basic events
have the same failure rate of 0.1.

170 Chapter 6. Experiments

states # transitions memory size (KB)
9 16 3.0
5 8 3.0
9 16 3.0
5 8 3.0
9 16 3.0
5 8 3.0
9 16 3.0
5 8 3.0

185 869 4.7
18 76 3.3

141 390 3.8
12 34 3.4

(a) Using spare-gates.

states # transitions memory size (KB)
8 13 3.0
7 11 3.1
8 13 3.0
5 8 3.0
8 13 3.0
7 11 3.1
8 13 3.0
5 8 3.0
8 13 3.0
7 11 3.1
8 13 3.0
5 8 3.0
8 13 3.0
7 11 3.1
8 13 3.0
5 8 3.0

185 869 4.7
18 76 3.3

141 390 3.8
12 34 3.4

(b) Using seqand-gates.

Table 6.6.: The size of the intermediate models.

|V | |FBE| maxi |Si| Mem Membs
Memrw

|Sn| |Sn|bs
|Sn|rw

tD tG
tbs
trw

or-8be 9 8 109 4.7 4 17
variant B 10 8 93 3.8 1.2 4 1 21 0.81
variant C 11 8 67 3.4 1.4 4 1 30 0.56

or-16be 9 16 153 7.9 4 45
variant B 10 16 113 5 1.6 4 1 36 1.25
variant C 11 15 87 4.3 1.8 4 1 45 1

Table 6.7.: Results of splitting an or-gate with 8/16 BEs as successors in di�erent ways.

We use the single or-gate as baseline and compare the computation of the reliability with mission
time 1 by DFTCalc. The results are depicted in the topmost entries in Table 6.7. We again use
the standard table with the same entries as before. We observe that the peak model size is indeed
considerably (almost a factor two) larger in the baseline. However, the baseline model is synthesised
much faster. We can explain this by the reduced number of composition- and minimisation steps
executed, while the overall models are in all variants small enough to �t in processor-near cache
memory.

We also see this behaviour when replacing all or-gates by and-gates (Table 6.8). We observe that
the intermediate models become somewhat larger, which is easily explained by the fact that the
failure of a successor is not longer enough to cause a top-level failure. This is also re�ected by the
fact that the resulting models for and-gates are signi�cantly larger.

The used model is very simple, amongst others because all successors are basic events and the
intermediate models keep so small. We therefore replace the basic events by:

• or-8and2be: And-gates with two isolated basic events as successors.

• or-8and4be: And-gates with four isolated basic events as successors.

• or-8and2and4be: And-gates with two isolated and-gates with four isolated basic events
as successors.

6.3. Experimental results 171

|V | |FBE| maxi |Si| Mem Membs
Memrw

|Sn| |Sn|bs
|Sn|rw

tD tG
tbs
trw

and-8be 9 8 3856 60.7 11 17
variant B 10 8 362 6.2 10 11 1 21 0.81
variant C 11 8 157 4 15 11 1 30 0.56

Table 6.8.: Results of splitting and and-gate with 8 BEs as successor in di�erent ways

|V | |FBE| maxi |Si| Mem Membs
Memrw

|Sn| |Sn|bs
|Sn|rw

tD tG
tbs
trw

or-8and2be 17 16 770 9.9 12 68
variant B 18 16 273 5.5 1.8 12 1 77 0.9
variant C 19 16 213 4.3 2.3 12 1 83 0.8

or-8and4be 34 32 6888 51.1 168 145
variant B 34 32 2666 23.2 2.2 168 1 148 1
variant C 35 32 3961 28.2 1.8 168 1 155 1

or-8and2and4be 89 64 317344 2364.3 6438 620
variant B 90 64 219786 1973.8 1.2 6438 1 611 1
variant C 91 64 329346 2402.8 1 6438 1 625 1

Table 6.9.: Results of splitting an or-gate with 8 subtrees in di�erent ways.

The obtained results are displayed in Table 6.9. For smaller subtrees, the results are as before.
We notice that especially variant C scales much better when we increase the size of the subtrees.
With about eight basic events which have to fail in the subtree, the memory consumption of the
�attened or surpasses the variants. Furthermore, for large fault trees, the time spent in the top
gate(s) has relatively minor impact, and the speed up drops with the higher memory consumption
for constructing the IMC for the or-gate with 8 children. It is important to notice that here, the
subtrees are all symmetric, which has a substantial in�uence on the e�ect of the intermediate
reductions, which increases the performance of DFTCalc on variants B and C.

We conclude that it may be bene�cial for memory consumption to avoid gates with a high num-
ber of successors — but that this may come at potentially high computation time costs. Among
others, it crucially depends on the size of the subtrees. It seems bene�cial to always split gates
with a very high number of successors. Based on the e�ects earlier, it is important to take the
structure of the successors into account when applying the split — although we did not discuss
exactly how. Furthermore, we did not discuss the e�ect of di�erent subtrees, nor the e�ect of ele-
ments shared among di�erent successors. Quick tests indicate that these all in�uence the choices
of the underlying heuristic.

DFTCalc benchmark performance As it is hard to �nd general advise for good rewriting mea-
sures that improve the performance of DFTCalc, we take a closer look at the obtained baseline
results for di�erent benchmark instances from the generated sets. We recall that tables with the
full results are given in Appendix A on page 189. Here, we discuss the observations for two bench-
mark sets. For the other benchmark sets, results are either as expected and/or in line with the here
presented e�ects.

HECS.

We consider eight di�erent families (three binary variables, all combinations) and show the perfor-
mance for each number of computers in the system. The �rst variable is whether the overall system
fails only if all computers fail (and) or already with the �rst failure (or). This re�ects whether the
top-level element is an AND or an OR. For just one computer system, these variables coincide.

The second variable re�ects whether we consider the single-memory interface whose failure causes
a failure of all memory elements (1), or if we consider the full memory interface speci�cation with
two interfaces (2). The third variable re�ects whether we use the shared power (up) or not use it
(np).

172 Chapter 6. Experiments

We regard the running time as depicted in Figure 6.10a on page 173. The number of elements and
basic events in the DFT are a constant factor of the number of systems, yet the runtime in each
subfamily grows exponentially. Whether the top-level is an AND or an OR does not in�uence the
model construction time. Whereas the e�ect for smaller models is neglectable, for larger models
we see a signi�cant in�uence of the shared power source, which prevents early pruning of the
intermediate models. The complex memory interface has a large impact on the construction time,
more than what is directly justi�ed by the number of elements.
We also regard the �nal model size, depicted in Figure 6.10b. We notice that the �nal model sizes of
the or-variants is mostly larger than the and-variant, which does not agree with theoretical bounds.
The e�ect can however be explained by what seems a more radical reduction of the state space in
the and-case. We furthermore notice the higher numbers of the and/2/np combination and the
remarkable �gures for the single system case.
The intermediate model size (Figure 6.10c) roughly correspond to the �nal model sizes, being an
order of magnitude larger. These models are constructed near the end of the composition, when
the subtrees are handled. For small systems, the overhead is signi�cantly larger.
We do not depict the e�ect of di�erent voting gates as top-level elements. From the data in Ap-
pendix A on page 189 we deduce that the larger (theoretical) model size of higher thresholds, com-
bined with a less aggressive reduction yields slightly longer running times and model sizes.

RC.
For the RC benchmark set, we start with the simple controller and scale the number of sensors and
barriers. We depict the DFTCalc performance in three groups of three graphs. Each group depicts
(from left to right) the run time, the maximal intermediate model size and the �nal model size.
In the �rst group, with the performance depicted in Figure 6.11 on page 174, we took as many
sensors as barriers (n = 1 to n = 5). The number of elements and basic events is now roughly a
constant factor of the number of sensors and barriers. The running time roughly scales with the
number of elements (to be precise, doubling the number of elements causes tripling the running
time). The intermediate model size starts growing exponentially, but soon the heuristic takes an
order which yields a tremendously smaller memory footprint. The �nal model size grows roughly
quadratic, which corresponds to the growth of the theoretical bounds.
In Figure 6.12 on page 174, we examine the e�ect of a higher number of sensors (red, squares) versus
a higher number of barriers (blue, circles) by using only one barrier or sensor, respectively. While
the sensors add more elements and basic events to the DFT, the more complex barrier subtrees
yield a higher running time. The higher number of basic events seems to cause a slightly larger
�nal model size (although aggressive reductions should yield equivalent model sizes.) The e�ect
is more dramatic for the intermediate sizes. As for the combined scaling, the intermediate sizes
drop after 4 sensors or barriers, respectively, although the top-level or-gate has more children with
three barriers and sensors than with one sensor (barrier) and three barriers (sensors).
In Figure 6.13 on page 174, we examine what happens if we replace the controller by a HECS DFT.
We consider again an identical number of sensors and barriers. The running time rises slightly
slower, which is not surprising as the e�ect of the sensors and barriers is initially quite small.
Interestingly, we see that also the �nal model size drops sharply, before rising again. The interme-
diate model size has its peak earlier than with the simple controller. For larger models, we then
have a largest intermediate model which corresponds to the original �nal model.

6.3.3. The e�ect of rewriting
We start this by giving an overall impression, after which we continue with more details.

Summary We present a graphical overview of the results in Figure 6.14 on page 175. In Fig-
ure 6.14d on page 175 we list the seven benchmark sets, each in a row. Between parentheses, the
size of the instances we used is given. The second and third columns give the number of computed
instances within time and memory limits, for the baseline and the rewritten version, respectively.
Columns four and six give the total time required to solve the baseline and the rewritten instances,
respectively. Column �ve gives the time required to compute the results for the instances that

6.3. Experimental results 173

0 500 1,000 1,500 2,000 2,500 3,000 3,500

1

2

3

4

75

201

404

782

75

220

403

778

91

415

769

2,343

91

407

771

2,296

84

224

487

1,041

84

224

488

1,042

102

417

1,006

3,236

102

400

1,009

3,293

time

#
sy
st
em

s

(a) running time in seconds.

101 102 103 104 105 106

1

2

3

4

4.37

5.26

7.19

9.65

4.37

5.15

6.61

8.83

3.5

7.94

8.6

11.34

3.5

7.4

8.1

10.77

2.89

5.61

7.49

11.14

2.89

5.49

8.36

11.24

2.89

7.23

8.53

12.3

2.89

7.71

9.81

13

states

#
sy
st
em

s

(b) �nal # states.

103 104 105 106

1

2

3

4

8.86

6.72

9.99

12.29

8.86

11.47

8.34

10.29

8.28

12.84

11.44

14.21

8.28

12.21

10.17

12.27

6.72

7.63

9.67

12.34

6.72

7.34

9.14

11.99

8.09

12.1

11.24

14.04

8.09

11.97

11

13.88

states

#
sy
st
em

s

and/1/np or/1/np and/2/np or/2/np and/1/up or/1/up and/2/up or/2/up

(c) maximal # states

Figure 6.10.: DFTCalc performance on baseline HECS.

174 Chapter 6. Experiments

1 2 3 4 5

200

400

n

ti
m
e

1 2 3 4 5

1,000

2,000

3,000

4,000

n

#
st
at
es

1 2 3 4 5

10

20

30

40

n

#
st
at
es

fin
al

Figure 6.11.: DFTCalc performance on baseline RC/sc.

1 2 3 4

8

10

12

14

16

n

ti
m
e

1 2 3 4

500

1,000

1,500

2,000

n

#s
ta
te
s

1 2 3 4

100

150

n

#
st
at
es

(f
in
al
)

Figure 6.12.: DFTCalc performance on baseline RC/sc - e�ect of sensors versus barriers.

could also be solved on the baseline input. The last column (seven) gives the ratio of the number of
elements in the original and the rewritten instances. We see that out of 183 instances we used for
benchmarking, 174 could be solved after rewriting. Without rewriting, only 125 could be solved.
While we can eliminate about 30 % of the elements with the rewrite procedure, the average speed-
up for the instances which could already be solved is a factor 3. In particular, using rewriting, we
can solve the 49 additional (hard) benchmarks while using less time than the original baseline. We
depict the single instances from the scalable benchmark sets in three scatter plots.

In Figure 6.14a on page 175, the run time of DFTCalc is plotted. A dot in the scatter plot corre-
sponds to an instance of either the HECS, RC, MCS or SF benchmark set. The value along the x-axis
gives the run time of DFTCalc without rewriting. Along the y-axis, the run time after rewriting
is given. For both axes, we use a log-scale. At the upper and right end of the axes, entries corre-
sponding to a timeout (2 hours) or memory-out (8 GB) are given. Any dot above the diagonal thus
corresponds to an improved run time. A point above the dashed line corresponds to speed-up of
more than a factor 10. We see that for these benchmarks, we almost always get speed-ups. Overall,
these speed-ups become bigger on larger instances.

In Figure 6.14b, the memory footprint of the intermediate models is plotted. We use again a
log-log scale. Here, any dot above the diagonal corresponds to an instance where the memory
consumption is reduced. Above the dashed line, the memory consumption is reduced by more
than a factor 10. Some small RC instances as well as various SF instances yield a higher memory
consumption, however, for the majority of instances, the memory consumption is reduced, even up
to a factor 1000. The memory consumption is one of the major bottlenecks. Therefore, a reduction
here has a lot of impact.

In Figure 6.14c, the �nal model size of the instances is plotted (on a log-log scale). Any dot above
the diagonal corresponds to an instance where rewriting yields a reduced �nal model size. Any
dot above the dashed line corresponds to a reduction of more than a factor 10. While for most
instances, the �nal model size is not much reduced by rewriting, the �nal model size is drastically
reduced for most instances of HECS and some of SF. This smaller �nal model size causes speed-ups
in the computation of quantitative measures, which becomes important if more and more complex
quantitative analyses are requested.

1 2 3 4 5

200

400

600

800

1,000

n

ti
m
e

1 2 3 4 5

0.2

0.4

0.6

0.8

1
·105

n

#
st
at
es

1 2 3 4 5

400

600

n

#
st
at
es

(f
in
al
)

Figure 6.13.: DFTCalc performance on baseline RC/hc.

6.3. Experimental results 175

60 600

3600

7200

60

600

3600

7200

TO M
O

TO
MO

with rewriting

w
it
ho

ut
re
w
ri
ti
ng

RC
MCS
HECS
SF

(a) Run time

1 100

500

1

100

500
TO M
O

TO
MO

with rewriting

w
it
ho

ut
re
w
ri
ti
ng

RC
MCS
HECS
SF

(b) Memory footprint

1
0
3

1
0
4

1
0
6

103

104

106

TO M
O

TO
MO

with rewriting

w
it
ho

ut
re
w
ri
ti
ng

RC
MCS
HECS
SF

(c) Final memory size

solved Σ time (h) red.
bs rw bs rw(1) rw(2) |V |rw

|V |bs

HECS(44) 34 43 11.8 3.3 9.1 1.4
MCS(44) 30 43 9.3 3.7 8.2 1.1
RC(36) 15 31 7.3 5.1 9.3 2.1
SF(39) 31 38 10.1 5.3 7.1 1.5
MOV(8) 3 7 2.3 0.6 0.7 3.4
HCAS(8) 8 8 0.4 0.3 0.3 1.2
SAP(4) 4 4 0.1 0.1 0.1 1.7
total(183) 125 174 41.3 18.4 34.8 1.6

(1) time on instances solved by all.
(2) time on all instances solved.

(d) summary.

Figure 6.14.: Overview of the experimental results on four di�erent benchmark sets.

HECS We show the scaling behaviour of HECS for a growing number of systems and for di�erent
con�gurations in Figures 6.15 to 6.18 on page 176 and on page 177. For each con�guration, we give
a series of three plots. All x-axes are labelled with the scaled variable. The �rst plot presents the run
time (on the y-axis). The second plot gives the memory footprint in KB of the largest intermediate
model along the y-axis. The last plot gives the number of states in the �nal model. In each plot,
4 data sets are plotted. Blue circles and a dashed line correspond to the baseline of the standard
variant, purple rectangles an a dashed line correspond to the baseline of an alternative variant. The
rewritten instances are displayed by a brown circle and a solid line for the standard variant and a
red diamond with a solid line for the alternative variant.
Remark 39. The following plots are all much alike. The discussion given above holds analogously
for all further plots constructed.

In Figure 6.15, we consider a con�guration where one computer system su�ces to keep the
the overall system operational. Each computer system has a single memory unit interface. The
standard variant does not contain a failable power-unit while the alternative does. We see that the
in�uence of the power-unit is marginal. For the rewritten instances, the extra power unit actually
improves performance as the heuristic performs better with the power unit.

In Figure 6.16, we change the con�guration by adding the second memory unit interface. This
extra memory interface improves performance for both the base and the rewritten instances. The
model size of the rewritten version scales well, which yields a good improvement in terms of com-
putation size and intermediate model size.

In Figure 6.17 and Figure 6.18 on page 177, the con�gurations above are changed by letting the
system fail as soon as the �rst subsystem fails. The heuristic for one memory interface in the
standard variant performs worse on the rewritten version, which is likely due to the large number

176 Chapter 6. Experiments

1 2 3 4 5 6 7 8

600

3600

n
tim

e
1 2 3 4 5 6 7 8

102

103

104

105

106

n

m
em

or
y

1 2 3 4 5 6 7 8

102

103

104

105

106

n

#
st
at
es

np base up base np rewr. up rewr.

Figure 6.15.: E�ect of rewriting on HECS (top ∈ AND, 1 MUI,n = # systems, np/up = no/use power).

1 2 3 4 5 6 7 8

60

600

3600

n

tim
e

1 2 3 4 5 6 7 8

101

102

103

104

105

106

n

m
em

or
y

1 2 3 4 5 6 7 8

101

102

103

104

105

106

n

#
st
at
es

np base up base np rewr. up rewr.

Figure 6.16.: E�ect of rewriting on HECS (top ∈ AND, 2 MUIs, n = # systems, np/up = no/use
power).

of successors of the top-level element. On the other instances, rewriting works out good, especially
with two memory interfaces.

MCS In Figure 6.19 on page 177, we display the performance for MCS for a growing number of
computing modules in a system. We depict two variants, one with the single power supply, one
with double power. First of all, the intermediate model size grows exponential, as expected. The
double power variant has a — constant — larger state space (theoretically twice as big). Rewriting
does not a�ect this, it is not able to remove many states. The drop at n = 8 remains unexplained.
While the exponential growth of the run time is initially governed by the same rate, we see that
for each variant, at some point the run time rises sharply. For the double power, this point is
reached very early. Here, the internal heuristic copes with large intermediate models early on. For
slightly larger systems, also the single-power variant runs into time outs, which is mainly due to
the massive memory consumption. Rewriting reduces the memory consumption drastically, and
as the heuristics for the rewritten variants of single and double power seem to agree, also the
performance is almost equivalent. The oscillating memory footprint is easily explained by the way
uneven computing modules share spare components.

RC For RC, we consider two sets of con�gurations. In Figure 6.20 we have a single sensor unit
and a variable number of barriers, while in Figure 6.21 on page 178, there is one barrier and a vari-
able number of sensor units. For both sets, we consider a standard variant with a simple controller
and an alternative with the hecs-system as a controller. We see a perfect exponential blow-up in
run-time. Before rewriting, increasing the number of sensors has a larger e�ect than increasing the
number of barriers. After rewriting, both variables have approximately the same e�ect. Interme-
diate and �nal model size are chaotic, which indicates that the heuristic could be improved here.

1 2 3 4 5 6 7 8

600

3600

n

tim
e

1 2 3 4 5 6 7 8

102

103

104

105

106

n

m
em

or
y

1 2 3 4 5 6 7 8

102

103

104

105

106

n

#
st
at
es

np base up base np rewr. up rewr.

Figure 6.17.: E�ect of rewriting on HECS (top ∈ OR, 1 MUI, n = # systems, np/up = no/use power).

6.3. Experimental results 177

1 2 3 4 5 6 7 8

60

600

3600

n
tim

e
1 2 3 4 5 6 7 8

101

102

103

104

105

106

n

m
em

or
y

1 2 3 4 5 6 7 8

101

102

103

104

105

106

n

#
st
at
es

np base up base np rewr. up rewr.

Figure 6.18.: E�ect of rewriting on HECS (top ∈ OR, 2 MUIs, n = # systems, np/up = no/use power).

2 4 6 8 10 12

600

3600

n

tim
e

2 4 6 8 10 12

101

102

103

104

105

n

m
em

or
y

2 4 6 8 10 12

102

103

104

105

106

n

#
st
at
es

sp base dp base sp rewr. dp rewr.

Figure 6.19.: E�ect of rewriting on MCS (n = # CMs, sp/dp = single/double power).

SF In Figure 6.22 on page 178, we show the DFTCalc performance for a growing number of �lters
in the system. Rewriting these instances has only a minor e�ect. For the memory consumption,
the gates with the increased number of elements even cause a penalty. In Figure 6.23, we show the
DFTCalc performance for a growing number of sensors in the system. For only one �lter, the e�ect
of rewriting is huge, as we reduce n gates to 1 gate with n children, thereby drastically reducing
the number of gates that have to be composed. For two �lters, this e�ect is not as large, as the
state space explosion kicks in (due to the combination of degraded states of the sensors), and the
memory consumption for the overall system has a larger impact on the performance.

SAP For the SAP benchmark, we see that the instances only di�er in the which elements are
a constant failure and which are fail-safe. For the original input, this yields four times the same
performance, as the model construction is identical up to a last small step. With preprocessing,
we see major speed-ups as large parts of the DFT can be eliminated by propagating the constant
failures.

HCAS The HCAS benchmark instances are too small to really learn lessons from. As the structure
is very similar to HECS and RC, we get equivalent results.

Movares The Movares benchmarks are largely static, with often large sets of basic events be-
neath an or-gate, which can be e�ectively reduced. In some of the instances the dynamic part is big
enough to dominate the memory footprint - on those instances, the e�ect of rewriting is smaller.

1 5 10 15 20 25 30

60

600

3600

n

tim
e

1 5 10 15 20 25 30

101

102

103

104

n

m
em

or
y

1 5 10 15 20 25 30

101

102

103

104

n

#
st
at
es

sc base hc base sc rewr. hc rewr.

Figure 6.20.: E�ect of rewriting on RC with 1 sensor (n = # barriers, sc/hc = single/HECS contr.).

178 Chapter 6. Experiments

1 5 10 15 20 25 30

60

600

3600

n

tim
e

1 5 10 15 20 25 30

101

102

103

104

n

m
em

or
y

1 5 10 15 20 25 30

101

102

103

104

n

#
st
at
es

sp base dp base sp rewr. dp rewr.

Figure 6.21.: E�ect of rewriting on RC with 1 barrier (n = # sensors, sc/hc = single/HECS contr.).

1 2 3 4 5 6 7 8 9

60

600

3600

n

tim
e

1 2 3 4 5 6 7 8 9

101

102

103

104

105

106

n

m
em

or
y

1 2 3 4 5 6 7 8 9

101

102

103

104

105

106

n

#
st
at
es

2s/f base 4s/f base 2s/f rewr. 4/sf rewr.

Figure 6.22.: E�ect of rewriting on SF (n = # �lters s/f = sensors per �lter).

2 4 6 8 10 12 14 16 18

60

600

3600

n

tim
e

2 4 6 8 10 12 14 16 18

101

102

103

104

105

106

n

m
em

or
y

2 4 6 8 10 12 14 16 18

102

103

104

105

106

n

#
st
at
es

1f base 2f base 1f rewr. 2f rewr.

Figure 6.23.: E�ect of rewriting on SF (n = # sensors/�lter, f = �lters).

7. Conclusion

7.1. Summary
In the thesis, we presented a framework to simplify DFTs, driven by the idea that simpler DFTs
can be analysed faster. We transform a DFT into another “simpli�ed” DFT by using graph rewrit-
ing. As the analysis of DFTs su�ers from the omni-present state-space explosion problem and the
time to analyse grows exponential with the size (or complexity) of the DFT, a marginally ”simpler”
(smaller) DFT may be analysed orders of magnitude faster. In order to bene�t from this simpli�ca-
tion, analysis of a “simpli�ed” DFT has to yield the same results as analysis of the original DFT. To
this end, a notion of equivalence and a way of proving two DFTs equivalent was required. In fact,
we searched for simple characterisations of the behaviour of a DFT to cater for easy-to-understand
proofs.

This quest led us to several intricacies of the existing DFT semantics, presented in Chapter 3 on
page 27. With these intricacies in mind, a new DFT semantics was de�ned along with several char-
acterisations, presented in Chapter 4 on page 71. The rewrite framework as presented in Chapter 5
on page 113 then reduced DFT rewriting to simple graph rewriting. The full complexity of the proof
obligations is hidden in the framework, many rewrite rules can be proven by merely showing that
they ful�l intuitive criteria. We found that with the developed framework, many case studies can
be reduced and that this has a major in�uence on the analysis time, as discussed in Chapter 6 on
page 161.

In conclusion, while the many semantic intricacies make correctness proofs a tedious task, the
outcome — major speedups and signi�cantly larger DFTs within time and memory limits can be
analysed after graph rewriting — supports our initial hypothesis.

Contribution We list the main contributions of the thesis in order of appearance:

• We give a comprehensive overview on Dynamic Fault Trees, with a focus on their semantics.
Based on the discussion of several intricacies, we characterise - to the best of our knowledge
- all DFT semantics from the literature.

• We present an extensive literature review regarding existing case studies. We provide a
benchmark suite based on seven di�erent existing case studies. Four families are generated
by a script and allow for arbitrary scaling the benchmarks along several dimensions.

• We introduce a new semantics de�ned on a non-restrictive syntax for DFTs and include
several characterisations thereof, thereby showing that it captures the intuition of the DFT
semantics. We show that the semantics are suitable to de�ne advanced concepts such as
partial order reduction.

• We present a framework for rewriting DFTs - based on the reduction of DFTs to ordinary
graphs. We show that, due to the context sensitivity, rewriting DFTs is non-trivial. We
present theorems which uncover local criteria on rewrite rules which su�ce to show that
the application of such a rule preserves the measures-of-interest. With these theorems, cor-
rectness of rewrite rules is easily deduced. We illustrate this on a total of 28 rewrite rules.

• We implemented prototypical tool-support build around Groove yielding a fully automatised
tool-chain for rewriting DFTs.

• We show the practical relevance of the rewriting procedure on over 200 benchmark instances
by comparing the analysis in DFTCalc of the original and the corresponding simpli�ed DFT.
In almost all cases, rewriting yields a speed-up, on several cases this speed-up is more than
a factor 10. The memory reduction is drastically reduced for most benchmark instances - up
to three orders of magnitude. The state space of the underlying Markov chain is reduced in

180 Chapter 7. Conclusion

most cases. Based on the scalable benchmarks, we show that rewriting has a super-linear
e�ect on the performance of DFTCalc. The detailed results from the experiments helped the
developers of DFTCalc to drastically improve its performance.

7.2. Discussion and Future Work

We see future work in three more-or-less orthogonal directions, namely DFT extensions, state-space
generation, and proof and rewrite automatisation. Besides these DFT-related challenges, we are
interested to widen the approach also to attack trees [MO06] and other (graphical) formalisms.

DFT extensions DFT extension entails extension of the supported gate types as discussed in
Section 4.5 on page 110. It also entails more liberal forms of sharing (items can be claimed by up
to n spare gates) and dedicated gates for activation throughput (as discussed in Section 3.3.4 on
page 40). Although such extensions make the semantics more complex, they reduce the number of
“hacks” that have to be applied in order to faithfully model speci�c behaviour. We conjecture that
this mostly requires work regarding the rewrite framework and correctness thereof - the impact
on the semantics itself should be minor.

In another direction, it may be worthwhile to replace some existing gates by some other au-
tomaton and consider the Cartesian product of a (static) fault tree and such an automaton (which
may encode activation and/or sequence enforcing), to prevent the considerable amount of hacks
already present in DFTs.

Furthermore, it would be interesting to add repairs and non-coherent gates to the semantics.
This however, requires thoroughly rethinking some of the assumptions we made in this thesis -
many proofs rely on the monotonicity of the various mechanisms (failure, claiming, etc.). One
approach would be extending the event traces to include failure and repair events.

Another direction is the consider more general properties and whether they are conserved by
the rewriting. One of the eminent reasons to use Bayesian networks as underlying model seems
the native support of those networks to a number of interesting properties. We believe that many
interesting properties (e.g., probability that the system fails without occurrence of a speci�c ba-
sic event, mean time between the �rst component failure and a system failure) can be expressed
elegantly using the underlying Markov automaton.

Using Markov chains furthermore calls for embracing recent results where failure rates are rep-
resented by intervals or symbolically. This seems natural in the context of DFTs, where failure
rates are inherently inexact and can, during design time, be varied (re�ecting the reliability levels
of available components), and would ultimately allow us to synthesise cost-minimal combinations
of components which meet the required system reliability levels. Construction and analysis of
these models is more expansive, which makes e�ective preprocessing even more valuable than in
the current setting.

State-space generation Future work in state space generation is largely motivated by the obser-
vations in Chapter 6 on page 161. While the IOIMC semantics scales well, we see some problems
with its implementation DFTCalc. First, some gates have IMC representations which are larger
than expected. Second, the creation and composition of the IMCs causes much overhead, which
yields a slow state-space generation for small models. We see two major points here. First, state
space generation in DFTCalc can be improved much based on the characterisations given in this
thesis, such as failure paths and partial order reduction. Second, the denotational semantics in
Chapter 4 on page 71 can be used to generate the underlying Markov automaton directly. With
the help of the partial order reduction (which can be extended to other forms of symmetry) and
some of the available characterisations, the underlying MA can be kept smaller than the IOIMC
counterpart. Another bene�t of this is that such a tool would yield a Markov automaton which
re�ects the — in our opinion — easier to understand semantics. We do not think that there is a
silver bullet here - therefore, a hybrid approach in which IMCs for subDFTs are generated with the
denotational semantics and then combined by the IOIMC semantics may be worth the e�ort. Fur-
thermore, the state space generation would bene�t from tailored heuristics in the rewriting process
to fully unfold the potential simpli�cation, especially if combined with some dedicated gates (like

7.2. Discussion and Future Work 181

the sequantial-and). Moreover, using GSPNs with their native support for true concurrency as the
underlying stochastic model seems a promising alternative to the usage of Markov chains.

Automatised proofs and rewrite rules While many rewrite rules are easy and straightfor-
ward to prove, de�ning the context restrictions to be as permissive as possible is a tedious and
error-prone task. The help of (semi)-automated theorem provers could considerably improve the
theory. Likewise, the translation of the rules to Groove is tedious and error-prone, and a tool to
automatically translate the DFT rules into a Groove grammar would be of great value.

Bibliography

[IEC60050] “Fault tree analysis (FTA)”. Norm IEC 60050:2006. 2007 (cited on pages 37, 48).
[ABBG+13] F. Arnold, A. Belinfante, F. van der Berg, D. Guck, and M. Stoelinga. “DFTCalc:

A Tool for E�cient Fault Tree Analysis”. Proc. of SAFECOMP. Volume 8153. LNCS.
Springer, 2013, pages 293–301 (cited on pages 3, 57, 69).

[AD00] R. B. Ash and C. Doléans-Dade. “Probability and Measure Theory”. Academic
Press, 2000 (cited on pages 7, 9, 12).

[AD94] R. Alur and D. L. Dill. “A theory of timed automata”. Theoretical Computer Science
126.2 (1994), pages 183–235 (cited on page 2).

[AEHH+99] M. Andries, G. Engels, A. Habel, B. Ho�mann, H.-J. Kreowski, S. Kuske, D. Plump,
A. Schürr, and G. Taentzer. “Graph transformation for speci�cation and program-
ming”. Science of Computer Programming 34.1 (1999), pages 1–54 (cited on page 3).

[Apo67] Apollo 204 Review Board. “Apollo 204 Review Board: Final Report”. 1967 (cited on
page 1).

[Bal07] G. Balbo. “Introduction to Generalized Stochastic Petri Nets”. Formal Methods for
Performance Evaluation. Volume 4486. LNCS. Springer, 2007, pages 83–131 (cited
on page 69).

[BB96] N. Balakrishnan and A. P. Basu. “Exponential Distribution: Theory, Methods and
Applications”. CRC Press, 1996 (cited on pages 8, 9).

[BC04] A. Bobbio and D. Codetta-Raiteri. “Parametric fault trees with dynamic gates and
repair boxes”. Proc. of RAMS. 2004, pages 459–465 (cited on pages 4, 68).

[BCCK+10] M. Bozzano, R. Cavada, A. Cimatti, J.-P. Katoen, V. Y. Nguyen, T. Noll, and X.
Olive. “Formal veri�cation and validation of AADL models”. Proc. of ERTS. 2010
(cited on pages 2, 60).

[BCKN+09] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen, T. Noll, and M. Roveri. “The
COMPASS Approach: Correctness, Modelling and Performability of Aerospace Sys-
tems”. Proc. of SAFECOMP. Volume 5775. LNCS. Springer, 2009, pages 173–186
(cited on page 60).

[BCS07a] H. Boudali, P. Crouzen, and M. Stoelinga. “A Compositional Semantics for Dy-
namic Fault Trees in Terms of Interactive Markov Chains”. Proc. of ATVA. Vol-
ume 4762. LNCS. Springer, 2007, pages 441–456 (cited on pages 58, 60, 69).

[BCS07b] H. Boudali, P. Crouzen, and M. Stoelinga. “CORAL - a tool for compositional reli-
ability and availability analysis”. Proc. of ARTIST. 2007 (cited on page 69).

[BCS07c] H. Boudali, P. Crouzen, and M. Stoelinga. “Dynamic Fault Tree Analysis Using
Input/Output Interactive Markov Chains”. Proc. of DSN. IEEE Computer Society,
2007, pages 708–717 (cited on pages 4, 40, 69, 113).

[BCS10] H. Boudali, P. Crouzen, and M. Stoelinga. “ARigorous, Compositional, and Extensi-
ble Framework for Dynamic Fault Tree Analysis”. IEEE Transactions on Dependable
Secure Computing 7.2 (2010), pages 128–143 (cited on pages 36, 50, 69).

[BD05a] H. Boudali and J. B. Dugan. “A new Bayesian network approach to solve dynamic
fault trees”. Proc. of RAMS. 2005, pages 451–456 (cited on pages 4, 60).

[BD05b] H. Boudali and J. B. Dugan. “A discrete-time Bayesian network reliability model-
ing and analysis framework”. Reliability Engineering & System Safety 87 (2005),
pages 337–349 (cited on pages 4, 56, 58, 67, 68).

184 Bibliography

[BD06] H. Boudali and J. B. Dugan. “A continuous-time Bayesian network reliability
modeling and analysis framework”. IEEE Transactions on Reliability 55.1 (2006),
pages 86–97 (cited on pages 4, 67, 68).

[BFGP03] A. Bobbio, G. Franceschinis, R. Gaeta, and L. Portinale. “Parametric fault tree for
the dependability analysis of redundant systems and its high-level Petri net seman-
tics”. IEEE Transactions on Software Engineering 29.3 (2003), pages 270–287 (cited
on pages 33, 68).

[BHHK03] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. “Model-checking algo-
rithms for continuous-time Markov chains”. IEEE Transactions on Software Engi-
neering 29.6 (2003), pages 524–541 (cited on page 13).

[BK08] C. Baier and J.-P. Katoen. “Principles of Model Checking”. The MIT Press, 2008
(cited on pages 7, 9, 13, 14, 77, 102, 103, 108).

[BKKM14] C. Baier, J. Klein, S. Klüppelholz, and S. Märcker. “Computing Conditional Prob-
abilities in Markovian Models E�ciently”. Proc. of TACAS. Volume 8413. LNCS.
Springer, 2014, pages 515–530 (cited on page 15).

[BNS09] H. Boudali, A. Nijmeijer, and M. Stoelinga. “DFTSim: A Simulation Tool for Ex-
tended Dynamic Fault Trees”. Proc. of ANSS. Society for Modeling and Simulation
International, 2009, page 31 (cited on page 67).

[CA80] T. Chu and G. Apostolakis. “Methods for Probabilistic Analysis of Noncoherent
Fault Trees”. IEEE Transactions on Reliability R-29.5 (1980), pages 354–360 (cited
on page 33).

[CCDM+11a] F. Chiacchio, L. Compagno, D. D’Urso, G. Manno, and N. Trapani. “An open-source
application to model and solve dynamic fault tree of real industrial systems”. Proc.
of SKIMA. IEEE India, 2011, pages 1–8 (cited on page 67).

[CCDM+11b] F. Chiacchio, L. Compagno, D. D’Urso, G. Manno, and N. Trapani. “Dynamic
fault trees resolution: A conscious trade-o� between analytical and simulative ap-
proaches”. Reliability Engineering & System Safety 96.11 (2011), pages 1515–1526
(cited on page 62).

[CCR08] S. Contini, G. Cojazzi, and G. Renda. “On the use of non-coherent fault trees
in safety and security studies”. Proc. of ESREL. Volume 93. 12. Elsevier, 2008,
pages 1886–1895 (cited on page 33).

[CDFH93] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. “Stochastic Well-Formed
Colored Nets and Symmetric Modeling Applications”. Transactions on Computing
42.11 (1993), pages 1343–1360 (cited on page 68).

[CE82] E. M. Clarke and E. A. Emerson. “Design and synthesis of synchronization skele-
tons using branching time temporal logic”. Logics of Programs. Volume 131. LNCS.
Springer, 1982, pages 52–71 (cited on page 2).

[CH05] L. Cloth and B. R. Haverkort. “Model checking for survivability!” Proc. of QEST.
2005, pages 145–154 (cited on page 55).

[CHM07] S. Chen, T. Ho, and B. Mao. “Reliability evaluations of railway power supplies
by fault-tree analysis”. Electric Power Applications, IET 1.2 (2007), pages 161–172
(cited on page 1).

[Cod05] D. Codetta-Raiteri. “The Conversion of Dynamic Fault Trees to Stochastic Petri Nets,
as a case of Graph Transformation”. Proc. of PNGT. Volume 127. 2. 2005, pages 45–
60 (cited on pages 4, 57, 69).

[Col03] Columbia Accident Investigation Board. “Columbia Accident Investigation Board:
Report Volume I”. 2003 (cited on page 1).

[Cro06] P. Crouzen. “Compositional Analysis of Dynamic Fault Trees using IOIMCs”. Mas-
ter’s thesis. University of Twente, 2006 (cited on page 57).

[CSD00] D. Coppit, K. J. Sullivan, and J. B. Dugan. “Formal semantics of models for com-
putational engineering: a case study on Dynamic Fault Trees”. Proc. of ISSRE. IEEE
Computer Society, 2000, pages 270–282 (cited on pages 4, 40, 44, 67, 71).

Bibliography 185

[CY95] C. Courcoubetis and M. Yannakakis. “The Complexity of Probabilistic Veri�cation”.
Journal of the ACM 42.4 (1995), pages 857–907 (cited on page 2).

[DBB90] J. B. Dugan, S. J. Bavuso, and M. Boyd. “Fault trees and sequence dependencies”.
Proc. of RAMS. 1990, pages 286–293 (cited on page 34).

[DBB92] J. B. Dugan, S. J. Bavuso, and M. A. Boyd. “Dynamic fault-tree models for
fault-tolerant computer systems”. IEEE Transactions on Reliability 41.3 (1992),
pages 363–377 (cited on pages 56, 58, 59).

[DKH97] F. Drewes, H.-J. Kreowski, and A. Habel. “Handbook of Graph Grammars and
Computing by Graph Transformation”. World Scienti�c Publishing, 1997. Chap-
ter Hyperedge Replacement Graph Grammars, pages 95–162 (cited on page 17).

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. “Fundamentals of Algebraic Graph
Transformation (Monographs in Theoretical Computer Science. An EATCS Series)”.
Springer, 2006 (cited on page 17).

[EFT96] H. Ebbinghaus, J. Flum, and W. Thomas. “Mathematical Logic”. Undergraduate
Texts in Mathematics. Springer, 1996 (cited on page 7).

[Ehr79] H. Ehrig. “Introduction to the algebraic theory of graph grammars (a survey)”.
Graph-Grammars and Their Application to Computer Science and Biology. Vol-
ume 73. LNCS. Springer, 1979, pages 1–69 (cited on pages 3, 17–20).

[EHZ10a] C. Eisentraut, H. Hermanns, and L. Zhang. “On Probabilistic Automata in Contin-
uous Time”. Proc. of LICS. IEEE Computer Society, 2010, pages 342–351 (cited on
page 9).

[EHZ10b] C. Eisentraut, H. Hermanns, and L. Zhang. “Concurrency and Composition in
a Stochastic World”. CONCUR 2010 - Concurrency Theory. Volume 6269. LNCS.
Springer, 2010, pages 21–39 (cited on page 9).

[Eri99] C. A. Ericson II. “Fault Tree Analysis - A History”. Proc. of ISSC. 1999 (cited on
pages 1, 28).

[EWG12] E. Edifor, M. Walker, and N. Gordon. “Quanti�cation of Priority-OR Gates in
Temporal Fault Trees”. Proc. of SAFECOMP. Volume 7612. LNCS. Springer, 2012,
pages 99–110 (cited on pages 35, 64).

[FGH06] P. H. Feiler, D. P. Gluch, and J. J. Hudak. “The Architecture Analysis & Design Lan-
guage (AADL): An Introduction”. Technical report CMU/SEI-2006-TN-011. Soft-
ware Engineering Institute, Carnegie Mellon University, 2006 (cited on page 60).

[GdRZ+12] A. H. Ghamarian, M. J. de Mol, A. Rensink, E. Zambon, and M. V. Zimakova. “Mod-
elling and analysis using GROOVE”. Int’l Journal on Software Tools for Technology
Transfer 14 (2012), pages 15–40 (cited on pages 3, 19).

[Gha98] Z. Ghahramani. “Learning dynamic Bayesian networks”. Adaptive Processing of
Sequences and Data Structures. Springer, 1998, pages 168–197 (cited on page 67).

[GHHK+13] D. Guck, H. Hate�, H. Hermanns, J.-P. Katoen, and M. Timmer. “Modelling, Re-
duction and Analysis of Markov Automata”. Proc. of QEST. Volume 8054. LNCS.
Springer, 2013, pages 55–71 (cited on pages 11, 14, 167).

[GKSL+14] D. Guck, J.-P. Katoen, M. Stoelinga, T. Luiten, and J. Romijn. “Smart railroad
maintenance engineering with stochastic model checking”. Proc. of RAILWAYS. Vol-
ume 104. Civil-Comp Proceedings. Civil-Comp Press, 2014, page 299 (cited on
pages 1, 56, 57, 65, 165, 166).

[GMKA14] A. N. Gharahasanlou, A. Mokhtarei, A. Khodayarei, and M. Ataei. “Fault tree anal-
ysis of failure cause of crushing plant and mixing bed hall at Khoy cement factory
in Iran”. Case Studies in Engineering Failure Analysis 2.1 (2014), pages 33–38 (cited
on page 1).

[Goo88] G. V. Goodman. “An assessment of coal mine escapeway reliability using fault
tree analysis”. Mining Science and Technology 7.2 (1988), pages 205–215 (cited on
page 1).

186 Bibliography

[Guc12] D. Guck. “Quantitative analysis of Markov automata”. Master’s thesis. RTWH
Aachen University, 2012 (cited on pages 11, 15).

[Hal60] P. Halmos. “Naive Set Theory”. Undergraduate Texts in Mathematics. Springer,
1960 (cited on page 7).

[Hav14] B. R. Haverkort. “Model Checking for Survivability Evaluation Critical Infrastruc-
tures”. Presentation slides. 2014 (cited on page 55).

[Her02] H. Hermanns. “Interactive Markov Chains: And the Quest for Quanti�ed Quality”.
LNCS (2002) (cited on pages 13, 16).

[HH12] H. Hafeti and H. Hermanns. “Model checking algorithms for Markov automata”.
Proc. of AVOCS. Volume 53. Electronic communications of the EASST. 2012 (cited
on page 14).

[HK10] H. Hermanns and J.-P. Katoen. “The how and why of interactive Markov chains”.
Formal Methods for Components and Objects. Volume 6286. LNCS. Springer, 2010,
pages 311–337 (cited on page 16).

[HMU06] J. E. Hopcroft, R. Motwani, and J. D. Ullman. “Introduction to Automata The-
ory, Languages, and Computation (3rd Edition)”. Addison-Wesley, 2006 (cited on
page 7).

[HSSW06] R. C. Holt, A. Schürr, S. E. Sim, and A. Winter. “GXL: A graph-based standard
exchange format for reengineering”. Science of Computer Programming 60.2 (2006),
pages 149–170 (cited on page 164).

[IEC60050-191] “International Electrotechnical Vocabulary. Chapter 191: Dependability and quality
of service”. Norm IEC 60050-191. 1990 (cited on pages 1, 30).

[ISO 24765] “Systems and software engineering - Vocabulary”. Norm ISO/IEC/IEEE 24765. 2010
(cited on pages 27, 29).

[JBWD+14] E. Jakumeit, S. Buchwald, D. Wagelaar, L. Dan, Hegedüs, M. Herrmannsdörfer,
T. Horn, E. Kalnina, C. Krause, K. Lano, M. Lepper, A. Rensink, L. M. Rose, S.
Wätzoldt, and S. Mazanek. Science of Computer Programming 85 (2014), pages 41–
99 (cited on page 16).

[KZHH+11] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. “The ins
and outs of the probabilistic model checker {MRMC}”. Performance Evaluation 68.2
(2011), pages 90–104 (cited on page 167).

[Lam04] H. Lambert. “Use of Fault Tree Analysis for Automotive Reliability and Safety Anal-
ysis”. Technical report. 2004 (cited on page 1).

[LXZL+07] D. Liu, W. Xing, C. Zhang, R. Li, and H. Li. “Cut Sequence Set Generation for Fault
Tree Analysis”. Embedded Software and Systems. Volume 4523. LNCS. Springer,
2007, pages 592–603 (cited on pages 40, 67).

[MBCD+94] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. “Modelling
with Generalized Stochastic Petri Nets”. 1st. Wiley, 1994 (cited on page 69).

[MCSD99] R. Manian, D. W. Coppit, K. J. Sullivan, and J. B. Dugan. “Bridging the gap between
systems and dynamic fault tree models”. Proc. of RAMS. 1999, pages 105–111 (cited
on page 67).

[Meu95] J. van der Meulen. “De�nitions for hardware/software reliability engineers”.
Simtech B.V., 1995 (cited on page 27).

[MO06] S. Mauw and M. Oostdijk. “Foundations of Attack Trees”. Proc. of ICISC. Vol-
ume 3935. LNCS. Springer, 2006, pages 186–198 (cited on page 180).

[MPBC06] S. Montani, L. Portinale, A. Bobbio, and D. Codetta-Raiteri. “Automatically trans-
lating dynamic fault trees into dynamic Bayesian networks by means of a software
tool”. Proc. of ARES. 2006, pages 804–810 (cited on pages 38, 57, 67, 68).

[MPBC08] S. Montani, L. Portinale, A. Bobbio, and D. Codetta-Raiteri. “Radyban: A tool for re-
liability analysis of dynamic fault trees through conversion into dynamic Bayesian
networks”. Reliability Engineering & System Safety 93.7 (2008), pages 922–932
(cited on pages 38, 67, 68).

Bibliography 187

[MPBV+06] S. Montani, L. Portinale, A. Bobbio, M. Varesio, and D. Codetta-Raiteri. “A tool
for automatically translating dynamic fault trees into dynamic bayesian networks”.
Proc. of RAMS. 2006, pages 434–441 (cited on pages 4, 38, 50, 67).

[MRL10] G. Merle, J.-M. Roussel, and J.-J. Lesage. “Improving the E�ciency of Dynamic
Fault Tree Analysis by Considering Gate FDEP as Static”. Proc. of ESREL. 2010,
pages 845–851 (cited on pages 4, 156).

[MRL14] G. Merle, J.-M. Roussel, and J.-J. Lesage. “Quantitative Analysis of Dynamic Fault
Trees Based on the Structure Function”. Quality and Reliability Engineering Inter-
national 30.1 (2014), pages 143–156 (cited on page 69).

[MRLB10] G. Merle, J.-M. Roussel, J.-J. Lesage, and A. Bobbio. “Probabilistic Algebraic Anal-
ysis of Fault Trees With Priority Dynamic Gates and Repeated Events”. IEEE Trans-
actions on Reliability 59.1 (2010), pages 250–261 (cited on pages 4, 43, 69).

[MRLV10] G. Merle, J.-M. Roussel, J.-J. Lesage, and N. Vayatis. “Analytical Calculation of
Failure Probabilities in Dynamic Fault Trees including Spare Gates”. Proc. of ESREL.
2010, pages 794–801 (cited on page 69).

[MT95] M. Malhotra and K. Trivedi. “Dependabilitymodeling using Petri-nets”. IEEE Trans-
actions on Reliability 44.3 (1995), pages 428–440 (cited on page 57).

[Nat00] National Transportation Safety Board. “Aircraft Accident Report: In-�ight Breakup
Over The Atlantic Ocean Trans World Airlines Flight 800”. 2000 (cited on page 1).

[Neu10] M. R. Neuhäußer. “Model Checking Nondeterministic and Randomly Timed Sys-
tems”. PhD thesis. RWTH Aachen University, University of Twente, 2010 (cited
on page 13).

[Nor98] J. R. Norris. “Markov chains”. 2008. Cambridge university press, 1998 (cited on
page 13).

[NSK09] M. R. Neuhäußer, M. Stoelinga, and J.-P. Katoen. “Delayed Nondeterminism in
Continuous-Time Markov Decision Processes”. Proc. of FOSSACS. Volume 5504.
LNCS. Springer, 2009, pages 364–379 (cited on pages 12, 14).

[Pea88] J. Pearl. “Probabilistic Reasoning in Intelligent Systems: Networks of Plausible In-
ference”. Morgan Kaufmann Publishers Inc., 1988 (cited on page 67).

[PH08] R. Pulungan and H. Hermanns. “E�ective Minimization of Acyclic Phase-Type Rep-
resentations”.Analytical and StochasticModeling Techniques andApplications. Vol-
ume 5055. LNCS. Springer, 2008, pages 128–143 (cited on page 33).

[Pie02] B. C. Pierce. “Types and Programming Languages”. MIT Press, 2002 (cited on
page 20).

[Plu02] D. Plump. “Essentials of Term Graph Rewriting”. Electronic Notes in Theoretical
Computer Science 51 (2002), pages 277–289 (cited on page 17).

[QS82] J.-P. Queille and J. Sifakis. “Speci�cation and veri�cation of concurrent systems in
CESAR”. International Symposium on Programming. Volume 137. LNCS. Springer,
1982, pages 337–351 (cited on page 2).

[RBKS12] A. Rensink, I. Boneva, H. Kastenberg, and T. Staijen. “User Manual for the
GROOVE Tool Set”. Technical report. 2012 (cited on pages 19, 21, 24).

[RH04] M. Rausand and A. Høyland. “System Reliability Theory: Models, Statistical Meth-
ods, and Applications”. Wiley Series in Probability and Statistics - Applied Prob-
ability and Statistics Section. Wiley, 2004 (cited on page 1).

[Ros10] S. M. Ross. “Introduction to Probability Models (Tenth Edition)”. Tenth Edition.
Academic Press, 2010 (cited on page 7).

[Roz97] G. Rozenberg, editor. “Handbook of Graph Grammars and Computing by Graph
Transformation: Volume I. Foundations”. World Scienti�c Publishing, 1997 (cited
on page 16).

[RS14] E. Ruijters and M. Stoelinga. “Fault Tree Analysis: A survey of the state-of-the-art
in modeling, analysis and tools”. Technical Report TR-CTIT-14-14. University of
Twente, 2014 (cited on pages 4, 30, 33, 67).

188 Bibliography

[Saz14] S. Sazonov. “Property preservation under bisimulations onMarkov automata”. Mas-
ter’s thesis. RWTH Aachen University, 2014 (cited on pages 10, 13, 15, 16).

[Sch09] S. Schilling. “Beitrag zur dynamischen Fehlerbaumanalyse ohne Modulbildung und
zustandsbasierte Erweiterungen”. PhD thesis. Universität Wuppertal, 2009 (cited
on pages 1, 2, 56, 65, 69).

[SDC99] K. Sullivan, J. B. Dugan, and D. Coppit. “The Galileo fault tree analysis tool”. Proc.
of FTCS. 1999, pages 232–235 (cited on page 67).

[Spi92] J. M. Spivey. “The Z Notation: A Reference Manual”. Prentice Hall International
(UK) Ltd., 1992 (cited on page 67).

[Sta03] D. Stamatis. “Failure Mode and E�ect Analysis: FMEA from Theory to Execution”.
ASQ Quality Press, 2003 (cited on page 1).

[Sto02] M. Stoelinga. “Alea jacta est: Veri�cation of Probabilistic, Real-time and Parametric
Systems”. PhD thesis. University of Nijmegen, 2002 (cited on page 13).

[TD04] Z. Tang and J. B. Dugan. “Minimal cut set/sequence generation for dynamic fault
trees”. Proc. of RAMS. Jan. 2004, pages 207–213 (cited on pages 40, 56, 65, 67).

[The79] The President’s Commision on the Accident at Three Mile Island. “The Accident
at Three Mile Island. The Need For Change: The Legacy of TMI”. 1979 (cited on
page 1).

[The86] The Presidential Commision on the Space Shuttle Challenger Accident. “Report of
the Presidential Commision on the Space Shuttle Challenger Accident”. 1986 (cited
on page 1).

[Tho90] W. Thomas. “Automata on In�nite Objects”. Handbook of Theoretical Computer
Science (Vol. B). MIT Press, 1990, pages 133–191 (cited on page 7).

[Tim13] M. Timmer. “E�cient Modelling, Generation and Analysis of Markov Automata”.
PhD thesis. University of Twente, 2013 (cited on pages 7, 9, 10, 13, 15, 16).

[VCM09] A. Volkanovski, M. Cepin, and B. Mavko. “Application of the fault tree analysis for
assessment of power system reliability”. Reliability Engineering & System Safety
94.6 (2009), pages 1116–1127 (cited on page 1).

[VDS99] K. Vemuri, J. B. Dugan, and K. Sullivan. “Automatic synthesis of fault trees for
computer-based systems”. IEEE Transactions on Reliability 48.4 (1999), pages 394–
402 (cited on pages 57, 58, 60).

[VS02] W. Vesely and M. Stamatelatos. “Fault Tree Handbook with Aerospace Applica-
tions”. Technical report. NASA Headquarters, Washington D.C., USA, 2002 (cited
on pages 1, 2, 4, 27, 32, 33, 38, 44, 48, 55, 56, 65, 113, 142).

[Wal09] M. D. Walker. “Pandora: a logic for the qualitative analysis of temporal fault trees”.
PhD thesis. University of Hull, 2009 (cited on pages 4, 69).

[WP09] M. Walker and Y. Papadopoulos. “Qualitative temporal analysis: Towards a full
implementation of the Fault Tree Handbook”. Control Engineering Practice 17.10
(2009), pages 1115–1125 (cited on page 35).

[WP10] M. Walker and Y. Papadopoulos. “A Hierarchical Method for the Reduction of Tem-
poral Expressions in Pandora”. Proc. of DYADEM-FTS. ACM Press, 2010, pages 7–
12 (cited on pages 34, 35, 52, 53, 63, 69).

[XMTY+13] J. Xiang, F. Machida, K. Tadano, K. Yanoo, W. Sun, and Y. Maeno. “AStatic Analysis
of Dynamic Fault Trees with Priority-AND Gates”. Proc. of LADC. IEEE Computer
Society, 2013, pages 58–67 (cited on pages 34, 59).

[YY08] T. Yuge and S. Yanagi. “Quantitative analysis of a fault tree with priority AND
gates”. Reliability Engineering & System Safety 93.11 (2008), pages 1577–1583
(cited on pages 34, 56).

[Zam13] E. Zambon. “Abstract Graph Transformation - Theory and Practice”. PhD thesis.
University of Twente, 2013 (cited on pages 16, 19).

[ZN10] L. Zhang and M. R. Neuhüßer. “Model Checking Interactive Markov Chains”. Proc.
of TACAS. Volume 6015. LNCS. Springer, 2010, pages 53–68 (cited on page 13).

A. Overview of Results
An asterisk behind the name indicates that the benchmark is included in the scatter plots.

|V | |FBE| maxi |Si| Mem Membs
trw

|Sn| |Sn|bs
|Sn|rw

tD tG
tbs
trw

HECS

h-1-1-1-np∗ 21 13 7058 151 79 75
simpli�ed 13 9 123 3 40.8 12 6.6 22 10 2.4

h-1-1-1-up∗ 24 15 831 20 18 84
simpli�ed 13 9 123 3 5.5 5 3.6 5 10 5.4

h-1-1-2-np∗ 25 14 3948 58 33 91
simpli�ed 23 13 5477 71 0.8 33 1.0 71 9 1.1

h-1-1-2-up∗ 28 16 3265 58 18 102
simpli�ed 23 13 5469 71 0.8 18 1.0 69 10 1.3

h-2-1-1-np∗ 43 26 831 20 192 201
simpli�ed 27 18 340 5 3.8 57 3.4 53 12 3.1

h-2-1-1-up∗ 47 29 2053 19 272 224
simpli�ed 29 19 489 6 3.2 57 4.8 64 12 2.9

h-2-1-2-np∗ 51 28 378805 6779 2816 415
simpli�ed 47 26 5477 71 95.1 498 5.7 252 11 1.6

h-2-1-2-up∗ 55 31 179133 3080 1378 417
simpli�ed 49 27 5477 71 43.1 138 10.0 261 11 1.5

h-2-2-1-np∗ 43 26 95637 1779 172 220
simpli�ed 24 17 1707 12 147.0 198 0.9 56 11 3.3

h-2-2-1-up∗ 47 29 1537 19 243 224
simpli�ed 24 17 888 8 2.4 111 2.2 63 14 2.9

h-2-2-2-np∗ 51 28 201009 3601 1631 407
simpli�ed 44 25 5469 71 50.2 273 6.0 218 11 1.8

h-2-2-2-up∗ 55 31 157786 2777 2238 400
simpli�ed 44 25 5477 71 39.0 317 7.1 219 12 1.7

h-3-1-1-np∗ 64 39 21850 199 1332 403
simpli�ed 40 27 3355 29 6.8 222 6.0 121 11 3.0

h-3-1-1-up∗ 69 43 15881 157 1798 487
simpli�ed 42 28 6800 47 3.3 222 8.1 138 15 3.2

h-3-1-2-np∗ 76 42 92752 1004 5458 769
simpli�ed 70 39 92752 1004 1.0 5458 1.0 518 12 1.4

h-3-1-2-up∗ 81 46 76307 932 5042 1006
simpli�ed 72 40 26489 195 4.8 818 6.2 549 12 1.8

h-3-2-1-np 64 39 21750 199 1552 404
simpli�ed 40 27 3327 29 6.9 204 7.6 122 12 3.0

h-3-2-1-up 69 43 18001 180 6069 489
simpli�ed 41 28 12726 78 2.3 968 6.3 133 12 3.4

h-3-2-2-np 76 42 92507 1004 7244 772
simpli�ed 70 39 92507 1004 1.0 7244 1.0 521 12 1.4

h-3-2-2-up 81 46 83473 1012 25908 1008
simpli�ed 71 40 21626 189 5.4 4092 6.3 573 16 1.7

h-3-3-1-np∗ 64 39 4182 44 745 404
simpli�ed 35 25 11607 67 0.7 461 1.6 94 12 3.8

h-3-3-1-up∗ 69 43 9316 110 4281 488
simpli�ed 35 25 6904 52 2.1 531 8.1 102 12 4.3

h-3-3-2-np∗ 76 42 26103 244 3279 771
simpli�ed 65 37 27894 232 1.1 2645 1.2 465 11 1.6

h-3-3-2-up∗ 81 46 60114 651 18258 1009
simpli�ed 65 37 30939 258 2.5 3431 5.3 465 13 2.1

h-4-1-1-np∗ 85 52 218389 2368 15467 782
simpli�ed 53 36 18478 166 14.2 717 21.6 179 12 4.1

h-4-1-1-up∗ 91 57 229290 2919 68608 1041
simpli�ed 55 37 36881 263 11.1 717 95.7 205 16 4.7

h-4-1-2-np∗ 101 56 1482857 21487 84025 2343
simpli�ed 93 52 1482857 21508 1.0 46378 1.8 997 12 2.3

h-4-1-2-up∗ 107 61 1256734 21699 220656 3236
simpli�ed 95 53 223639 1911 11.4 3878 56.9 1020 13 3.1

h-4-2-1-np 85 52 247426 2809 20098 787
simpli�ed 53 36 18450 166 16.9 699 28.8 180 16 4.0

190 Appendix A. Overview of Results

h-4-2-1-up 91 57 333800 4257 116284 1065
simpli�ed 54 37 160813 1042 4.1 6661 17.5 213 13 4.7

h-4-2-2-np 101 56 1749092 26680 141532 2416
simpli�ed 93 52 1749092 26695 1.0 110566 1.3 1021 12 2.3

h-4-2-2-up 107 61 2557673 43937 839744 3599
simpli�ed 94 53 437426 4248 10.3 66876 12.6 1197 13 3.0

h-4-3-1-np 85 52 334620 3873 41213 831
simpli�ed 53 36 15460 143 27.0 598 68.9 180 14 4.3

h-4-3-1-up 91 57 312886 3961 102362 1103
simpli�ed 54 37 113912 1140 3.5 3719 27.5 211 15 4.9

h-4-3-2-np 101 56 2405020 37411 293300 2459
simpli�ed 93 52 2383829 37058 1.0 262898 1.1 1112 13 2.2

h-4-3-2-up 107 61 2485130 42706 798504 3575
simpli�ed 94 53 395887 3773 11.3 56830 14.1 1192 13 3.0

h-4-4-1-np∗ 85 52 29490 323 6819 778
simpli�ed 46 33 49051 351 0.9 2093 3.3 154 13 4.7

h-4-4-1-up∗ 91 57 161582 2196 75980 1042
simpli�ed 46 33 58771 417 5.3 3005 25.3 163 15 5.9

h-4-4-2-np∗ 101 56 213220 3340 47745 2296
simpli�ed 86 49 182899 1383 2.4 16340 2.9 950 13 2.4

h-4-4-2-up∗ 107 61 1070002 19979 441985 3293
simpli�ed 86 49 152799 1145 17.4 12366 35.7 945 13 3.4

h-5-1-1-np∗ 106 65 1950564 27563 235390 1611
simpli�ed 66 45 74143 737 37.4 2004 117.5 263 15 5.8

h-5-1-1-up∗ 113 71 4297963 74634 1415747 3297
simpli�ed 68 46 147716 1119 66.6 2004 706.5 294 15 10.7

h-5-1-2-np∗ 126 70 TO
simpli�ed 116 65 16311707 326493 324634 2366 14

h-5-1-2-up∗ 133 76 TO
simpli�ed 118 66 1343179 13239 15506 1823 14

h-5-5-1-np∗ 106 65 401718 3804 46346 1509
simpli�ed 57 41 343891 2548 1.5 5882 7.9 253 17 5.6

h-5-5-1-up∗ 113 71 2324276 37556 933524 2697
simpli�ed 57 41 258355 1875 20.0 4640 201.2 252 14 10.1

h-5-5-2-np∗ 126 70 4264578 58404 648894 7059
simpli�ed 107 61 458365 4561 12.8 35639 18.2 1933 13 3.6

h-5-5-2-up∗ 133 76 TO
simpli�ed 107 61 601267 6013 63101 1957 14

h-6-1-1-np∗ 127 78 TO
simpli�ed 79 54 241750 2607 5007 372 15

h-6-1-1-up∗ 135 85 TO
simpli�ed 81 55 481643 3905 5007 418 16

h-6-1-2-np∗ 151 84 TO
simpli�ed 139 78 TO 16

h-6-1-2-up∗ 159 91 MO
simpli�ed 141 79 6391567 72893 54266 3314 17

h-6-6-1-np∗ 127 78 3097533 32860 644092 3198
simpli�ed 68 49 1832644 14540 2.3 10167 63.4 471 14 6.6

h-6-6-1-up∗ 135 85 TO
simpli�ed 68 49 2230219 17081 13316 492 15

h-6-6-2-np∗ 151 84 TO
simpli�ed 128 73 6818683 96757 326943 5361 14

h-6-6-2-up∗ 159 91 MO
simpli�ed 128 73 4710191 57250 400970 4867 15

h-7-1-1-np 148 91 TO
simpli�ed 92 63 678967 7932 11442 569 17

h-7-1-1-up 157 99 TO
simpli�ed 94 64 1353074 11787 11442 660 16

h-7-1-2-np 176 98 MO
simpli�ed 162 91 TO 16

h-7-1-2-up 185 106 MO
simpli�ed 164 92 25612855 338843 170546 6534 18

h-7-7-1-np 148 91 TO
simpli�ed 79 57 5035735 41776 27898 1058 15

h-7-7-1-up 157 99 TO
simpli�ed 79 57 3957139 47334 45452 1033 18

h-7-7-2-np 176 98 MO
simpli�ed 149 85 TO 14

h-7-7-2-up 185 106 MO
simpli�ed 149 85 TO 15

h-8-1-1-np 169 104 TO
simpli�ed 105 72 1702132 21516 24312 850 16

191

h-8-1-1-up 179 113 TO
simpli�ed 107 73 3392969 33615 24312 1077 18

h-8-1-2-np 201 112 MO
simpli�ed 185 104 MO 15

h-8-1-2-up 211 121 MO
simpli�ed 187 105 TO 16

h-8-8-1-np 169 104 TO
simpli�ed 90 65 8694964 71121 103105 2003 17

h-8-8-1-up 179 113 TO
simpli�ed 90 65 9702307 74744 29575 2086 19

h-8-8-2-np 201 112 MO
simpli�ed 170 97 TO 15

h-8-8-2-up 211 121 MO
simpli�ed 170 97 TO 20

CM

simpli�ed 108 64 TO 12
c-1-1-2-dp∗ 23 12 10682 91 28 83
simpli�ed 21 12 297 6 15.2 28 1.0 68 10 1.1

c-1-1-2-sp∗ 21 11 6438 56 18 75
simpli�ed 18 10 1042 13 4.3 18 1.0 61 11 1.0

c-1-1-3-dp∗ 31 16 64134 919 46 140
simpli�ed 28 16 6546 54 17.0 46 1.0 93 11 1.3

c-1-1-3-sp∗ 29 15 78662 1132 28 132
simpli�ed 25 14 6357 53 21.4 28 1.0 85 10 1.4

c-1-1-4-dp∗ 40 21 61924 890 140 193
simpli�ed 36 21 5697 33 27.0 140 1.0 132 12 1.3

c-1-1-4-sp∗ 38 20 132893 1552 81 174
simpli�ed 33 19 5697 33 47.0 81 1.0 122 10 1.3

c-1-1-5-dp∗ 48 25 1279080 34019 382 650
simpli�ed 43 25 69997 559 60.9 418 0.9 175 12 3.5

c-1-1-5-sp∗ 46 24 1140848 15420 213 281
simpli�ed 40 23 70237 563 27.4 231 0.9 164 10 1.6

c-1-1-6-dp∗ 57 30 15107242 442479 835 4709
simpli�ed 51 30 19029 135 3277.6 506 1.7 224 11 20.1

c-1-1-6-sp∗ 55 29 933104 14506 368 353
simpli�ed 48 28 19029 135 107.5 279 1.3 211 11 1.6

c-1-1-7-dp∗ 65 34 MO
simpli�ed 58 34 486969 2760 2816 288 11

c-1-1-7-sp∗ 63 33 4329730 58326 1332 835
simpli�ed 55 32 484857 2728 21.4 1514 0.9 271 13 2.9

c-1-1-8-dp∗ 74 39 MO
simpli�ed 66 39 588461 3663 1485 363 12

c-1-1-8-sp∗ 72 38 21137311 399353 8220 2808
simpli�ed 63 37 588461 3661 109.1 796 10.3 350 10 7.8

c-1-1-9-dp∗ 82 43 TO
simpli�ed 73 43 329404 3113 27196 467 12

c-1-1-9-sp∗ 80 42 TO
simpli�ed 70 41 657362 6226 10983 452 14

c-1-1-10-dp∗ 91 48 TO
simpli�ed 81 48 2814489 27695 43154 663 11

c-1-1-10-sp∗ 89 47 TO
simpli�ed 78 46 2825753 27889 22598 648 14

c-1-1-11-dp∗ 99 52 TO
simpli�ed 88 52 9303636 67587 150570 1075 12

c-1-1-11-sp∗ 97 51 TO
simpli�ed 85 50 9303636 67586 78206 1005 11

c-1-1-12-dp∗ 108 57 TO
simpli�ed 96 57 23908239 192709 249672 2364 12

c-1-1-12-sp∗ 106 56 TO
simpli�ed 93 55 13187345 180848 4 1497 12

c-1-1-13-sp∗ 114 60 TO
simpli�ed 100 59 44683774 490519 1111109 6310 12

c-1-1-14-sp∗ 123 65 TO
c-2-1-2-dp 47 24 359352 3328 380 258
simpli�ed 43 24 1477 15 221.9 253 1.5 179 11 1.4

c-2-1-2-sp 43 22 113123 1040 131 226
simpli�ed 37 20 1022 13 80.0 88 1.5 158 11 1.3

c-2-1-3-dp 63 32 4434806 52692 1428 709
simpli�ed 57 32 533064 10534 5.0 740 1.9 306 11 2.2

c-2-1-3-sp 59 30 2338496 28618 431 562
simpli�ed 51 28 870532 14131 2.0 397 1.1 310 11 1.7

192 Appendix A. Overview of Results

c-2-1-4-dp 81 42 1042324 20791 7414 894
simpli�ed 73 42 167252 1652 12.6 8769 0.8 404 11 2.2

c-2-1-4-sp 77 40 131727 1533 2079 575
simpli�ed 67 38 60687 544 2.8 2607 0.8 359 12 1.6

c-2-2-2-dp 47 24 543036 8704 371 269
simpli�ed 40 23 1116 12 725.3 185 2.0 157 11 1.6

c-2-2-2-sp 43 22 324955 5171 117 231
simpli�ed 34 19 456 6 861.8 77 1.5 133 13 1.6

c-2-2-3-dp 63 32 3571206 26363 9451 634
simpli�ed 54 31 6357 53 497.4 548 17.2 239 11 2.5

c-2-2-3-sp 59 30 1986404 15369 487 496
simpli�ed 48 27 6546 54 284.6 208 2.3 207 14 2.2

c-2-2-4-dp 81 42 1197420 21574 10286 928
simpli�ed 70 41 58575 659 32.7 6651 1.5 372 12 2.4

c-2-2-4-sp 77 40 131727 1533 2054 576
simpli�ed 64 37 14692 194 7.9 2547 0.8 322 12 1.7

c-3-1-2-dp∗ 70 36 29767 332 1828 441
simpli�ed 64 36 29767 332 1.0 1828 1.0 326 11 1.3

c-3-1-2-sp∗ 64 33 6344 56 343 384
simpli�ed 55 30 4852 47 1.2 343 1.0 283 11 1.3

c-3-1-3-dp∗ 94 48 TO
simpli�ed 85 48 157791 2012 9260 545 12

c-3-1-3-sp∗ 88 45 21067228 165210 5011 3027
simpli�ed 76 42 22872 248 666.2 1451 3.5 465 12 6.3

c-3-1-4-dp∗ 121 63 8671123 205172 310132 2166
simpli�ed 109 63 11465000 196120 1.0 797950 0.4 1847 15 1.2

c-3-1-4-sp∗ 115 60 1707356 24957 82413 1487
simpli�ed 100 57 2096338 28742 0.9 98569 0.8 858 15 1.7

c-3-2-2-dp∗ 70 36 29678 332 2991 443
simpli�ed 64 36 29678 332 1.0 2991 1.0 327 14 1.3

c-3-2-2-sp∗ 64 33 6344 56 332 385
simpli�ed 55 30 4830 47 1.2 332 1.0 284 12 1.3

c-3-2-3-dp∗ 94 48 TO
simpli�ed 85 48 157562 2010 15863 546 12

c-3-2-3-sp∗ 88 45 20855116 163589 4978 3086
simpli�ed 76 42 22834 248 659.6 1432 3.5 465 12 6.5

c-3-2-4-dp∗ 121 63 8745830 207517 703963 2373
simpli�ed 109 63 17402416 298823 0.7 984545 0.7 2414 12 1.0

c-3-2-4-sp∗ 115 60 1709142 24175 84922 1543
simpli�ed 100 57 2064924 27077 0.9 128294 0.7 864 12 1.8

c-3-3-2-dp∗ 70 36 10521 92 2935 473
simpli�ed 59 34 15634 137 0.7 2170 1.4 284 13 1.6

c-3-3-2-sp∗ 64 33 6344 56 546 411
simpli�ed 50 28 3321 30 1.9 553 1.0 227 14 1.7

c-3-3-3-dp∗ 94 48 10759574 117530 24181 1625
simpli�ed 80 46 53460 689 170.6 11828 2.0 494 15 3.2

c-3-3-3-sp∗ 88 45 6048731 67634 3754 1386
simpli�ed 71 40 14130 166 407.4 2888 1.3 393 12 3.4

c-3-3-4-dp∗ 121 63 5917902 128447 720129 2363
simpli�ed 104 61 4670873 83248 1.5 473260 1.5 1184 12 2.0

c-3-3-4-sp∗ 115 60 769756 11080 112343 1444
simpli�ed 95 55 825088 17702 0.6 122436 0.9 723 12 2.0

RC

rc-01-01-hc∗ 35 21 47400 1034 328 170
simpli�ed 19 13 207 5 198.9 48 6.8 54 11 2.6

rc-01-01-sc∗ 15 9 452 8 8 54
simpli�ed 8 5 106 4 2.1 7 1.1 16 9 2.1

rc-01-02-hc 42 24 68470 1494 571 222
simpli�ed 22 15 618 7 219.7 111 5.1 55 11 3.4

rc-01-02-sc 22 12 790 12 11 92
simpli�ed 11 7 172 4 2.8 9 1.2 26 11 2.5

rc-01-03-hc 48 27 89540 1954 687 271
simpli�ed 25 17 708 8 241.2 129 5.3 64 11 3.6

rc-01-03-sc 28 15 980 14 14 118
simpli�ed 14 9 184 5 3.0 11 1.3 33 10 2.8

rc-01-04-hc 54 30 17929 396 387 321
simpli�ed 28 19 2436 16 25.1 219 1.8 82 11 3.4

rc-01-04-sc 34 18 314 6 17 162
simpli�ed 17 11 199 5 1.1 13 1.3 49 11 2.7

rc-01-05-hc∗ 60 33 17929 394 448 381
simpli�ed 31 21 2482 21 18.9 282 1.6 81 11 4.1

193

rc-01-05-sc∗ 40 21 324 6 20 202
simpli�ed 20 13 493 7 0.9 15 1.3 47 10 3.5

rc-01-10-hc∗ 90 48 17929 394 891 890
simpli�ed 46 31 17724 97 4.1 926 1.0 191 12 4.4

rc-01-10-sc∗ 70 36 1124 18 35 537
simpli�ed 35 23 1177 18 1.0 25 1.4 119 11 4.1

rc-01-15-hc∗ 120 63 89034 1355 1727 2201
simpli�ed 61 41 15680 145 9.4 723 2.4 368 12 5.8

rc-01-15-sc∗ 100 51 4904 131 50 1379
simpli�ed 50 33 3437 55 2.4 35 1.4 228 12 5.7

rc-01-20-hc∗ 150 78 189166 3783 1982 5332
simpli�ed 76 51 49523 368 10.3 3801 0.5 759 14 6.9

rc-01-20-sc∗ 130 66 12232 327 65 3575
simpli�ed 65 43 3135 79 4.1 45 1.4 460 12 7.6

rc-01-25-hc∗ 180 93 TO
simpli�ed 91 61 37848 293 1879 1605 15

rc-01-25-sc∗ 160 81 TO
simpli�ed 80 53 8110 244 55 990 13

rc-01-30-hc∗ 210 108 TO
simpli�ed 106 71 29315 1172 777 3306 18

rc-01-30-sc∗ 190 96 TO
simpli�ed 95 63 11166 385 65 2054 13

rc-02-01-hc 43 26 68424 1493 526 225
simpli�ed 22 15 348 6 257.4 57 9.2 55 11 3.4

rc-02-01-sc 23 14 1598 27 10 110
simpli�ed 11 7 172 4 6.4 9 1.1 26 10 3.0

rc-02-02-hc 50 29 100006 2222 749 294
simpli�ed 25 17 483 7 317.4 84 8.9 64 11 3.9

rc-02-02-sc 30 17 2204 36 14 150
simpli�ed 14 9 184 5 7.8 12 1.2 33 10 3.5

rc-02-03-hc 56 32 131588 2882 885 358
simpli�ed 28 19 3060 19 150.1 280 3.2 74 13 4.1

rc-02-03-sc 36 20 3725 60 18 188
simpli�ed 17 11 464 5 11.1 15 1.2 40 12 3.6

rc-02-04-hc 62 35 831 20 277 402
simpli�ed 31 21 2483 21 0.9 327 0.8 100 12 3.6

rc-02-04-sc 42 23 1745 32 22 229
simpli�ed 20 13 592 7 4.4 18 1.2 60 11 3.2

rc-03-01-hc 50 31 1388 20 152 282
simpli�ed 25 17 440 7 2.8 75 2.0 71 14 3.3

rc-03-01-sc 30 19 2348 36 12 148
simpli�ed 14 9 186 5 7.6 11 1.1 33 10 3.5

rc-03-02-hc 57 34 831 20 221 356
simpli�ed 28 19 2748 18 1.1 255 0.9 74 12 4.1

rc-03-02-sc 37 22 3110 50 17 194
simpli�ed 17 11 384 5 9.5 15 1.1 41 11 3.8

rc-03-03-hc 63 37 831 20 294 428
simpli�ed 31 21 1503 14 1.4 147 2.0 91 11 4.2

rc-03-03-sc 43 25 4570 63 22 235
simpli�ed 20 13 593 7 8.7 19 1.2 53 11 3.7

rc-03-04-hc 69 40 898 20 352 515
simpli�ed 34 23 3678 26 0.8 597 0.6 116 12 4.0

rc-03-04-sc 49 28 315 6 27 282
simpli�ed 23 15 681 9 0.6 23 1.2 69 11 3.5

rc-04-01-hc 57 36 831 20 139 370
simpli�ed 28 19 2748 18 1.1 165 0.8 82 11 4.0

rc-04-01-sc 37 24 315 6 14 182
simpli�ed 17 11 384 5 1.1 13 1.1 40 11 3.6

rc-04-02-hc 64 39 831 20 225 464
simpli�ed 31 21 3042 25 0.8 498 0.5 92 12 4.5

rc-04-02-sc 44 27 315 6 20 237
simpli�ed 20 13 593 7 0.8 18 1.1 53 11 3.7

rc-04-03-hc 70 42 831 20 291 554
simpli�ed 34 23 1878 18 1.1 354 0.8 117 12 4.3

rc-04-03-sc 50 30 315 6 26 293
simpli�ed 23 15 770 10 0.6 23 1.1 61 11 4.0

rc-04-04-hc 76 45 1114 20 447 667
simpli�ed 37 25 12576 71 0.3 1104 0.4 137 12 4.5

rc-04-04-sc 56 33 334 7 32 368
simpli�ed 26 17 1352 12 0.6 28 1.1 76 14 4.1

rc-05-01-hc∗ 64 41 3228 28 166 510
simpli�ed 31 21 1643 15 1.9 219 0.8 101 12 4.5

194 Appendix A. Overview of Results

rc-05-01-sc∗ 44 29 315 6 16 250
simpli�ed 20 13 493 7 0.9 15 1.1 46 11 4.4

rc-05-05-hc∗ 89 53 1552 21 656 1036
simpli�ed 43 29 11958 79 0.3 1119 0.6 173 13 5.6

rc-05-05-sc∗ 69 41 652 10 44 577
simpli�ed 32 21 1890 20 0.5 39 1.1 107 12 4.9

rc-10-01-hc∗ 99 66 17514 244 432 2712
simpli�ed 46 31 13668 76 3.2 475 0.9 175 13 14.4

rc-10-01-sc∗ 79 54 1514 26 26 1357
simpli�ed 35 23 1819 23 1.1 25 1.0 119 13 10.3

rc-10-10-hc∗ 154 93 TO
simpli�ed 73 49 108984 1052 1805 673 16

rc-10-10-sc∗ 134 81 11062 150 134 5636
simpli�ed 62 41 9819 158 0.9 124 1.1 403 17 13.4

rc-15-01-hc∗ 134 91 TO
simpli�ed 61 41 4578 93 363 355 15

rc-15-01-sc∗ 114 79 TO
simpli�ed 50 33 3437 65 35 221 14

rc-15-15-hc∗ 219 133 TO
simpli�ed 103 69 148217 1960 2469 2945 18

rc-15-15-sc∗ 199 121 TO
simpli�ed 92 61 29055 681 259 1802 17

rc-20-01-hc∗ 169 116 TO
simpli�ed 76 51 13682 110 435 752 16

rc-20-01-sc∗ 149 104 TO
simpli�ed 65 43 4281 77 45 452 16

rc-20-20-hc∗ 284 173 TO
simpli�ed 133 89 TO 24

rc-20-20-sc∗ 264 161 TO
simpli�ed 122 81 63011 1984 444 7145 22

rc-25-01-hc∗ 204 141 TO
simpli�ed 91 61 27810 938 583 1597 18

rc-25-01-sc∗ 184 129 TO
simpli�ed 80 53 4164 137 55 956 17

rc-25-25-hc∗ 349 213 TO
simpli�ed 163 109 MO 27

rc-25-25-sc∗ 329 201 TO
simpli�ed 152 101 MO 26

rc-30-01-hc∗ 239 166 TO
simpli�ed 106 71 12547 507 579 3291 21

rc-30-01-sc∗ 219 154 TO
simpli�ed 95 63 10664 231 65 2031 18

rc-30-30-hc∗ 414 253 TO
simpli�ed 193 129 MO 38

rc-30-30-sc∗ 394 241 TO
simpli�ed 182 121 MO 36

SF

sf-01-02∗ 13 7 205 4 18 46
simpli�ed 11 7 177 4 1.0 16 1.1 35 8 1.1

sf-01-04∗ 17 9 3533 34 30 60
simpli�ed 13 9 1482 20 1.7 22 1.4 38 9 1.3

sf-01-06∗ 21 11 15012 167 42 82
simpli�ed 15 11 2070 24 7.0 28 1.5 50 9 1.4

sf-01-08∗ 25 13 363360 6274 54 166
simpli�ed 17 13 2964 41 152.3 34 1.6 58 10 2.5

sf-01-10∗ 29 15 4575848 85478 66 665
simpli�ed 19 15 6850 85 1003.3 40 1.7 66 10 8.8

sf-01-12∗ 33 17 5996166 129484 78 706
simpli�ed 21 17 9386 148 874.9 46 1.7 84 12 7.4

sf-01-14∗ 37 19 TO
simpli�ed 23 19 11236 206 52 92 11

sf-01-16∗ 41 21 MO
simpli�ed 25 21 13346 283 58 110 13

sf-01-18∗ 45 23 MO
simpli�ed 27 23 16702 379 64 120 11

sf-02-02∗ 27 14 546 8 75 119
simpli�ed 20 13 902 13 0.6 63 1.2 73 11 1.4

sf-02-04∗ 35 18 3533 34 243 159
simpli�ed 24 17 994 11 3.1 129 1.9 93 10 1.5

sf-02-06∗ 43 22 15012 167 507 228
simpli�ed 28 21 37591 404 0.4 219 2.3 127 11 1.7

195

sf-02-08∗ 51 26 363360 6305 867 404
simpli�ed 32 25 1530202 39666 0.2 333 2.6 384 11 1.0

sf-02-10∗ 59 30 4559930 84839 1323 1110
simpli�ed 36 29 245790 6078 14.0 471 2.8 178 11 5.9

sf-02-12∗ 67 34 5996166 129405 1875 1655
simpli�ed 40 33 359896 10347 12.5 633 3.0 256 12 6.2

sf-02-14∗ 75 38 TO
simpli�ed 44 37 254262 4829 819 309 12

sf-02-16∗ 83 42 MO
simpli�ed 48 41 368304 8393 1029 449 11

sf-02-18∗ 91 46 MO
simpli�ed 52 45 513782 12201 1263 654 11

sf-03-02∗ 40 21 2370 27 223 202
simpli�ed 29 19 8276 119 0.2 183 1.2 115 10 1.6

sf-03-04∗ 52 27 20301 199 1275 295
simpli�ed 35 25 11409 68 2.9 521 2.4 152 11 1.8

sf-03-06∗ 64 33 60681 690 3799 457
simpli�ed 41 31 23829 144 4.8 1131 3.4 174 11 2.5

sf-04-02∗ 53 28 10641 95 528 307
simpli�ed 38 25 9553 197 0.5 428 1.2 183 12 1.6

sf-04-04∗ 69 36 106989 1199 4953 490
simpli�ed 46 33 32639 579 2.1 1613 3.1 245 12 1.9

sf-04-06∗ 85 44 455721 6488 20478 841
simpli�ed 54 41 101034 1548 4.2 4353 4.7 313 12 2.6

sf-05-02∗ 66 35 25281 232 1074 444
simpli�ed 47 31 29469 412 0.6 864 1.2 271 11 1.6

sf-05-04∗ 86 45 415941 5321 15645 782
simpli�ed 57 41 136149 1971 2.7 4161 3.8 388 12 2.0

sf-05-06∗ 106 55 2457201 43147 87636 1526
simpli�ed 67 51 435669 6753 6.4 13665 6.4 552 12 2.7

sf-06-02∗ 79 42 51489 486 1963 621
simpli�ed 56 37 196729 3761 0.1 1571 1.2 412 12 1.5

sf-06-04∗ 103 54 876066 16618 42507 1222
simpli�ed 68 49 1335824 26021 0.6 9411 4.5 670 12 1.8

sf-06-06∗ 127 66 7010802 202277 315955 2842
simpli�ed 80 61 1306869 11628 17.4 36963 8.5 976 13 2.9

sf-07-02∗ 92 49 112126 1519 3315 854
simpli�ed 65 43 222482 5650 0.3 2643 1.3 652 11 1.3

sf-07-04∗ 120 63 2380338 50393 102963 1910
simpli�ed 79 57 1796599 43956 1.1 19275 5.3 1147 13 1.6

sf-07-06∗ 148 77 25276322 845946 997155 6751
simpli�ed 93 71 7784118 183272 4.6 89235 11.2 2330 13 2.9

sf-08-02∗ 105 56 671117 8582 5268 1170
simpli�ed 74 49 428050 8654 1.0 4188 1.3 1031 15 1.1

sf-08-04∗ 137 72 8648781 147752 227802 3115
simpli�ed 90 65 3336275 60763 2.4 36534 6.2 1981 13 1.6

sf-08-06∗ 169 88 TO
simpli�ed 106 81 16679889 267579 196914 4753 14

sf-09-02∗ 118 63 805218 11320 7978 1601
simpli�ed 83 55 1076857 27247 0.4 6328 1.3 1709 13 0.9

sf-09-04∗ 154 81 19135257 352555 468328 5283
simpli�ed 101 73 15760349 401191 0.9 65068 7.2 4315 15 1.2

sf-09-06∗ 190 99 TO
simpli�ed 119 91 TO 16

MOVARES

cat2-spare1 120 102 TO
simpli�ed 19 12 282 6 14 64 9

cat2-spare2 126 105 TO
simpli�ed 27 17 802 8 38 101 9

cat2-spare3 114 99 TO
simpli�ed 10 6 73 3 8 34 9

fa-rk-bb-sh-spare 118 88 416976 10720 16655 1900
simpli�ed 96 68 416976 10498 1.0 16655 1 1122 8 1.7

fa-rk-bb-spare 118 88 14596 128 2527 1479
simpli�ed 96 68 14596 128 1.0 2527 1 858 8 1.7

ge-aut-sh-spare 113 93 MO
simpli�ed 32 17 MO 9

ge-aut-spare 125 105 1832 36 32 4752
simpli�ed 44 29 2224 36 1.0 32 1 192 9 23.6

to-act-ovw-spare 390 367 MO
simpli�ed 32 21 1889 19 93 104 248

196 Appendix A. Overview of Results

HCAS

cas-hecs 41 25 12928 221 122 189
simpli�ed 26 15 860 16 13.6 34 3.6 97 7 1.8

cas 16 11 89 3 6 44
simpli�ed 5 3 33 3 1.1 6 1.0 10 6 2.8

hcas-M1o3-PMPP 37 18 12557 165 56 180
simpli�ed 34 17 424 6 26.8 158 0.4 154 7 1.1

hcas-M1o3 33 16 190 4 56 145
simpli�ed 28 15 190 4 1.0 56 1.0 109 6 1.3

hcas-M2o3-PMPP 37 18 9937 131 46 181
simpli�ed 34 17 412 6 20.9 160 0.3 144 7 1.2

hcas-M2o3 33 16 180 4 46 145
simpli�ed 28 15 180 4 1.0 46 1.0 109 6 1.3

hcas-M3o3-PMPP 37 18 6007 80 28 181
simpli�ed 30 17 1603 21 3.8 70 0.4 133 7 1.3

hcas-M3o3 33 16 214 4 28 140
simpli�ed 24 15 1492 19 0.2 28 1.0 101 6 1.3

hcas 20 10 84 3 16 72
simpli�ed 14 9 108 3 1.0 16 1.0 47 6 1.4

SAP

sap-sc00 22 12 1796 26 26 83
simpli�ed 10 6 132 4 6.8 26 1.0 33 10 1.9

sap-sc01 22 12 704 12 8 95
simpli�ed 7 4 55 3 3.6 8 1.0 15 10 3.9

sap-sc10 22 12 72 4 1 95
simpli�ed 22 12 33 3 1.3 1 1.0 14 10 4.0

sap-sc11 22 12 252 6 3 87
simpli�ed 1 1 4 3 2.0 4 0.8 5 10 6.0

B. Detailed environment information
.

All experiments were executed on a PC with the following key characteristics
• CPU: Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz
(L2 cache: 256K L3 cache: 8192K)

• RAM: 8GB DDR3 @ 1333MHz

• OS: Debian GNU/Linux 8.0 (jessie) Kernel(Linux 3.16.0-4)

We used the following software and versions:
• With regard to DFTCalc:

c++-compiler gcc 4.9.1

CADP VERSION 2014-j "Amsterdam"

DFTCalc commit fc21b7c006

MRMC version 1.5

as well as some other packages in their latest stable release (as of 01-01-2015).
• With regard to Groove, GroovyDFT and aDFTpub:

Java OpenJDK Runtime Environment (IcedTea 2.5.3) (7u71-2.5.3-2)

Groove version 5.4.0 precompiled.

Scalaversion 2.10

sbt[Scala build tool] verion 0.13-7

Python 3version 3.4.2

No other software is necessary to execute all experiments described in the paper. The developed tools are available for
download via http://moves.rwth-aachen.de/ft-diet/.

http://moves.rwth-aachen.de/ft-diet/

List of Symbols
General

1s The Dirac distribution with support {s}. 8
Distr(S) The set of all distributions over S. 8
E(X) The expected value X evaluates to. 8
µ discrete probability distribution. 8
P(K) Power set of K . 7
u(x) The heavyside function. 7
0 The zero function. 7

Markov Automata

≈s Weak bisimimulation. 16
≈w Weak bisimimulation. 16
PrMS (s,3≤tG) Time-bounded reachability probability to reach G from s within t. 14

ETMS (s,3G) Expected time to reach G from s within t. 15
PrMS (s,3G) Unbounded reachability probability to reach G from s. 14

DFTs

Active(π) Active elements after occurence of π. 95
Activated(π) Active components after occurence of π. 95
αω Dormancy factor of component ω. 74
Available(π, v) Set of elements that can be claimed by v after π. 78
ClaimedBy(π, v) Set of spare-gates which claimed π after v. 77
Ω Set of component failures. 73
CF Computation tree of F . 96
C∗F Computation tree of F with only top as label.. 96
C(s) Con�guration of a state from the computation tree. 96
∆(π) Events which are triggered after π. 92
E(σ) Edges implicetely de�ned by a successor function σ. 73
≺ element hierarchy relation. 73
EMr Extended module represented by r. 74
Failable(π) Set of PANDS which can still fail after π. 84
Failed(π) Set of failed elements after occurence of π. 77
FBπ(x, y) Statement that y did not fail after x at π. 78
Failed[f](π) Set of failed elements after occurence of π, considering an oracle f . 133
R(ω) Failure rate of component ω. 74
ifcp(x) Set of paths along which a failure can propage to x. 89
JustFailed(π) Set of elements which failed after π, but not earlier. 84
LastClaimed(π, v) Last claimed element by v. 87
./ element module relation. 74
MTTFF MTTF of F . 100
π Event trace. 75
Pol Policy on a DFT. 97
Pol∅ Policy on a DFT without any restrictions. 97
θ(s) Predecessor of an element s. 73
θ∗(s) Predecessor closure of an element s. 73
PrFF Probability of failure of F . 100
w↓ Last element of word w. 75

200 List of Symbols

pre(w) Set of pre�xes of w. 75
Rely(t)F Reliability of F with mission time t. 100
ρ Failure trace. 75
Σ� Word over Σ without repetitions. 75
σ∗(v) successor closure of an element v. 73
spmp(a, b) Set of paths from a to b which do not cross modules. 73
≡ strong equivalence of DFTs. 101
TF Functional transducer of F . 92
FX Elements in DFT F of type X . 73
u weak equivalence of DFTs. 102

Rewriting

C Context restriction of a DFT rewrite rule. 119
η Mapping from result subDFT to result DFT. 122
hr Mapping from Vi ∪ Vo to R. 119
InV(v) Vertices connected by an incoming edge to v. 18
κ Mapping from L to host DFT. 121
L Left-hand side of a DFT rewrite rule. 119
le(e) edge labels for e. 18
lv(v) vertex labels for v. 18
ν Mapping from κ(Vi ∪ Vo) to host DFT. 122
ν′ Mapping from κ(Vi ∪ Vo) to result DFT. 122
OutV(v) Vertices connected by an outgoing edge from v. 18
R Right-hand side of a DFT rewrite rule. 119
r DFT rewrite rule. 120
Vi Input interface of a DFT rewrite rule. 119
Vo Output interface of a DFT rewrite rule. 119

Index

action-deterministic, 11
activation propagation, 39, 93
and-gate, 29
attachment function, 73

basic event, 28, 72

claiming, 39
closed world assumption, 11
coherent, 33
commutativity, 107
component failure, 72
computation tree, 96
con�guration-equivalent, 101
con�ict-free, 103, 107
constant element, 28
constant failure, 72
constant-fault, 28
context restriction

event-dependent, 137
independent inputs, 136

context-free, 113
control program, 24
CTMC, 13
cumulative distribution function, 8

δ-independence, 109
density, see probability density function
dependent events, 38
Dirac-distribution, 8
discrete probability distribution, 7
distribution, see discrete probability distribution
dormancy factor, 73
DPO, 19
dummy events, 74
dynamic fault tree, 34, 73, well-formed74

con�guration, 96
internal state, 91

element hierarchy, 73
event trace, 75
evidence, see cnstant fault28
expected time, 15
expected value, 8
exponential distribution, 8

fail-safe, 28, 72
failure combination, 39
failure forwarding, 39
failure propagation, 39
failure rate, 31
failure state, 100
failure trace, 75
functional dependency, 38, 72, 98
functional transducer, 92

given-failure, see cnstant fault28
graph morphism, 18

IMC, 13
input-oracle, 133
internal state, 91

IOIMC semantics, 69, 109

labelled graph, 17
LTS, 13

MA, 9
Markov automaton, see MA
match, 121

successful, 121
maximal progress assumption, 11
mean time to failure, 30, 100

conditional, 40, 100
memoryless distribution, 9
minimal cut sequence, 40, 41
module, 35, 74
module path, 73
module relation, 74
module representative, 73
MTTF, see man time to failure30
mutual con�ct, 107
mutual con�ict

activation sensitive, 107
naive, 103

new elements, 122

old elements, 122
or-gate, 29
original elements, 122

PA, 13
pand-gate, see piority-and gate34
partial order reduction, 102
policy, 97
por-gate, see piority-or gate35, 99
predecessor, 73
preferential, 109
prevention, 39
primary module, 74
priority-and gate, 34, 72
priority-or gate, 35
probabilistic dependency, 38, 110
probability density function, 8
probability of failure, 40, 100
pushout, 18

random variable, 7
rate, 9
redundancy, 31
reliability, 29, 100
rewrite rule, 19, 119

hierarchy conserative, 121
module conservative, 121
symmetric, 136
valid, 128

rewrite step, 121

scheduler, 12
seqand-gate, 99
sequence enforcer, 37, 111
spare gate, 72
spare-gate, 35

202 Index

spare-race, 41
standby, see rdundancy31
strong bisimulation, 15
strongly equivalent, 101
subDFT, 118

wellformed, 119
successors, 73

time-bounded reachability, 14
top-level element, 28, 73
transducer, see fnctional transducer92
trigger, 38
type-graph, 20, 161

unbounded reachability, 14
underlying MA, see cmputation tree96

voting, 72
voting-gate, 29

weak bisimulation, 16
weakly equivalent, 102

Zeno, 12

	Abstract
	Preface
	Contents
	Introduction
	Motivation
	Objective
	Related work
	Outline of the thesis

	Preliminaries
	Stochastics
	Markov automata
	Model definition
	Quantitative objectives
	Equivalence relations

	Graph Rewriting
	Theory
	Groove

	On Fault Trees
	Fault tree analysis
	Static fault trees
	Static elements
	Quantitative properties of a fault tree
	Deficiencies of static fault trees

	Dynamic fault trees
	Dynamic elements
	Mechanisms in DFTs
	Quantitative analysis of DFTs
	Semantic intricacies of DFTs

	Case studies using DFTs
	Hypothetical Example Computer System
	Railroad crossing
	Multiprocessor Computing System
	Cardiac Assist System
	Fault Tolerant Parallel Processor cluster
	Mission Avionics System
	Active Heat Rejection System
	Non-deterministic water pump
	Sensor-filter
	Section of an alkylate plant
	Simple Standby System
	Fuel Distribution System
	A brief discussion of the benchmark collection

	Formalising DFTs
	Fault tree automaton construction
	Reduction to Bayesian Networks
	Reduction to Stochastic Well-formed Petri Nets
	Reduction to GSPN
	Reduction to a set of IOIMCs
	Algebraic encoding

	Semantics for Dynamic Fault Trees
	Rationale
	New Semantics for Dynamic Fault Trees
	DFT syntax
	Failure and event traces
	Introducing the running examples
	State of a DFT
	Towards functional-complete event chains
	Activation
	From qualitative to quantitative
	Policies on DFTs
	Syntactic sugar

	Equivalences
	Quantitative measures on DFTs
	Equivalence classes

	Partial order reduction for DFTs
	Extensions for future work

	Rewriting Dynamic Fault Trees
	DFTs and normal forms
	Rewriting DFTs
	Graph encoding of DFTs
	Defining rewriting on DFTs
	Preserving syntax
	Preserving semantics

	Correctness of rewrite rules
	Validity of rules without FDEPs and SPAREs
	Adding FDEPs

	DFT rewrite rules
	Static elements and the pand-gate
	Rewrite rules with functional dependencies

	Experiments
	Groove grammar for DFTs
	Concrete grammar
	Control

	Implementation details
	Experimental results
	Benchmarks for rewriting
	Performance of DFTCalc
	The effect of rewriting

	Conclusion
	Summary
	Discussion and Future Work

	Bibliography
	Overview of Results
	Detailed environment information
	List of Symbols
	Index

