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Interpolation vs. Classification Learning Nonlinear Interpolants Implementation & Evaluation Concluding Remarks

What Is Interpolation?

Interpolation /ɪntəːpəˈleɪʃ(ə)n/
MATHEMATICS

”the insertion of an intermediate value or term into a series by estimating or
calculating it from surrounding known values.”
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P ∧ Q |= ⊥ P |= R and R ∧ Q |= ⊥
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Interpolants as Loop Invariants

Example ([Sharma et al., CAV ’12])

x := 0; y := 0;

while (∗)
{x := x + 1; y := y + 1; }

while (x ̸= 0)

{x := x − 1; y := y − 1; }
if (y ̸= 0)

error ();

A =̂ x1 = 0 ∧ y1 = 0∧
ite (b,

x = x1 ∧ y = y1,

x = x1 + 1 ∧ y = y1 + 1)

B =̂ ite (x = 0,

x2 = x ∧ y2 = y,

x2 = x − 1 ∧ y2 = y − 1)∧
x2 = 0 ∧ ¬(y2 = 0)

A ∧ B |= ⊥. I(x, y) =̂ x = y s.t. A |= I and I ∧ B |= ⊥.

4 K.L. McMillan

3 Model Checking Based on Interpolation

Bounded model checking and interpolation can be combined to produce an over-
approximate image operator that can be used in symbolic model checking.

The intuition behind this is as follows. A bounded model checking problem
consists of a set of constraints – initial constraints, transition constraints, final
constraints. These constraints are translated to conjunctive normal form, and,
as appropriate, instantiated for each time frame 0 . . . k, as depicted in Figure 1.
In the figure, I represents the initial constraint, T the transition constraint, and
F the final constraint. Now suppose that we partition the clauses so that the

s0 sk

I F

s1
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Fig. 1. Bounded model checking.

initial constraint and first instance of the transition constraint are in set A, while
the final condition and the remaining instances of the transition constraint are
in set B, as depicted in Figure 2. The common variables of A and B are exactly
the variables representing state s1.

s0 sk

I FT T T T T T T

⇒p

A B

Fig. 2. Computing image by interpolation.

Using a SAT solver, we prove the clause set is unsatisfiable (i.e., there are
no counterexamples of length k). From the proof we derive an interpolant P
for (A, B). Since P is implied by the initial condition and the first transition
constraint, it follows that P is true in every state reachable from the initial
state in one step. That is, P is an over-approximation of the forward image of I.
Further, P and B are unsatisfiable, meaning that no state satisfying P can reach
a final state in k − 1 steps.

This over-approximate image operation can be iterated to compute an over-
approximation of the reachable states. Because of the approximation, we may
falsely conclude that F is reachable. However, by increasing k, we must even-
tually find a true counterexample (a path from I to F ) or prove that F is not
reachable (i.e., the property is true), as we shall see.

Figure – Bounded model checking.
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x2 = 0 ∧ ¬(y2 = 0)
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4 K.L. McMillan

3 Model Checking Based on Interpolation

Bounded model checking and interpolation can be combined to produce an over-
approximate image operator that can be used in symbolic model checking.

The intuition behind this is as follows. A bounded model checking problem
consists of a set of constraints – initial constraints, transition constraints, final
constraints. These constraints are translated to conjunctive normal form, and,
as appropriate, instantiated for each time frame 0 . . . k, as depicted in Figure 1.
In the figure, I represents the initial constraint, T the transition constraint, and
F the final constraint. Now suppose that we partition the clauses so that the
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Fig. 1. Bounded model checking.

initial constraint and first instance of the transition constraint are in set A, while
the final condition and the remaining instances of the transition constraint are
in set B, as depicted in Figure 2. The common variables of A and B are exactly
the variables representing state s1.

s0 sk

I FT T T T T T T

⇒p

A B

Fig. 2. Computing image by interpolation.

Using a SAT solver, we prove the clause set is unsatisfiable (i.e., there are
no counterexamples of length k). From the proof we derive an interpolant P
for (A, B). Since P is implied by the initial condition and the first transition
constraint, it follows that P is true in every state reachable from the initial
state in one step. That is, P is an over-approximation of the forward image of I.
Further, P and B are unsatisfiable, meaning that no state satisfying P can reach
a final state in k − 1 steps.

This over-approximate image operation can be iterated to compute an over-
approximation of the reachable states. Because of the approximation, we may
falsely conclude that F is reachable. However, by increasing k, we must even-
tually find a true counterexample (a path from I to F ) or prove that F is not
reachable (i.e., the property is true), as we shall see.

Figure – Bounded model checking.
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Interpolation-based Verification

§ The bottleneck of existing formal verification techniques lies in scalability.

© Interpolation helps in scaling these verification techniques due to its inherent
capability of local and modular reasoning :

Nelson-Oppen method : equivalently decomposing a formula of a composite
theory into formulas of its component theories ;

SMT : combining different decision procedures to verify programs with
complicated data structures ;

Bounded model-checking : generating invariants to verify infinite-state systems
due to McMillan ;

…
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Interpolation-based Verification

Interpolant synthesis plays the central role in interpolation-based techniques :

©Well-established methods to synthesize interpolants for various theories, e.g.,
decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
; McMillan, K. L. : Interpolation and SAT-based model checking. CAV ’03.

Constraint solving-based : reduce interpolation for LA to linear programming by Motzkin’s
transposition theorem.
; Rybalchenko, A., Sofronie-Stokkermans, V. : Constraint solving for interpolation. J. Symb. Comput. ’10.

§ Little work on synthesizing nonlinear ones : [Kupferschmid & Becker, FORMATS ’11], [Dai
et al., CAV ’13], [Gao & Zufferey, TACAS ’16], [Okudono et al., APLAS ’17].

Reduce interpolation for concave quadratic polynomial inequalities to semi-definite
programming. Tool : NLFIntp.
; Gan, T., Dai, L., Xia, B., Zhan, N., Kapur, D., Chen, M. : Interpolation synthesis for quadratic polynomial

inequalities and combination with EUF. IJCAR ’16.

Counterexample-guided learning of polynomial interpolants for the general quantifier-free
theory of NLA. Tool : NIL.
; Chen, M., Wang, J., An, J., Zhan, B., Kapur, D., Zhan, N. : NIL : Learning nonlinear interpolants.. CADE ’19.
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Craig Interpolation

Craig Interpolation

Craig Interpolant

Given ϕ and ψ in a theory T s.t. ϕ ∧ ψ |=T ⊥, a formula I is a (reverse) interpolant of ϕ
and ψ if (1) ϕ |=T I ; (2) I ∧ ψ |=T ⊥ ; and (3) var(I) ⊆ var(ϕ) ∩ var(ψ).

Example (over nonlinear T )

A =̂ − x12 + 4x1 + x2 − 4 ≥ 0 ∧ −x1 − x2 + 3− y2 > 0

B =̂ − 3x12 − x22 + 1 ≥ 0 ∧ x2 − z2 ≥ 0

I =̂ − 3 + 2x1 + x12 +
1

2
x22 > 0
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Binary Classification

Binary Classification

Binary Classification

Given a training dataset X = X+ ] X− of positive/negative sample points, find a
classifier C : X 7→ {>,⊥}, s.t. (1) ∀⃗x ∈ X+. C(⃗x) = > ; and (2) ∀⃗x ∈ X−. C(⃗x) = ⊥.

X+ X−

C C1C2 C

There could be (infinitely) many valid classifiers.Support Vector Machine (SVM) finds a separating hyperplane that yields the largest
distance (functional margin) to the nearest positive and negative samples (support
vectors), which boils down to convex optimizations.
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Interpolants as Classifiers

Interpolation vs. Classification

© Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV ’12] :
sampling from JϕK and JψK → building a hyperplane classifier→ refining by CEs.

§ X+ and X− might not be linearly separable (often the case when sampled from
nonlinear ϕ and ψ, resp.) :

A =̂ (x < 2.5 ⇒ y ≥ 2 sin(x))

∧(x ≥ 2.5 ∧ x < 5 ⇒ y ≥ 0.125x2 + 0.41)

∧(x ≥ 5 ∧ x ≤ 6 ⇒ y ≥ 6.04 − 0.5x)

B =̂ (x < 3 ⇒ y ≤ x cos(0.1ex) − 0.083)

∧(x ≥ 3 ∧ x ≤ 6 ⇒ y ≤ −x2 + 10x − 22.35)

© Encoding interpolants as logical combinations of linear constraints.

§ Yielding rather complex interpolants (even of an infinite length in the worst case).

© NIL : learning nonlinear interpolants.
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Fig. 4. On the left side you see two formulae A and B with the property that A ∧ B
is unsatisfiable. On the right side a CI for the formula pair (A, B) is pictured. The CI
has been computed by using iSAT.

Using the initial bounds x ∈ [0, 6] and y ∈ [−2, 4], the problem can be visualized
on the left hand side of Fig. 4. In this figure, the region where the formula A (B)
is satisfied is labeled with A (B). It is quite obvious that A ∧ B is unsatisfiable
as the intersection of the two regions is empty, and iSAT is easily able to find an
AB-refutation. A CI which is generated on-the-fly can be seen on the right hand
side of Fig. 4. The CI ci covers the region of A and is thus implied by A. As ci
has an empty intersection with B it directly follows that ci ∧B is unsatisfiable.
The shape of the interpolant is a combination of boxes. This is explained by the
construction rules and the fact that iSAT only performs resolution on clauses
containing simple bounds as literals.

To show the usefulness of the CIs that iSAT can produce, we studied six differ-
ent BMC benchmarks together with some valid safety properties. The transition
relations of these benchmarks contain non-linear and linear equations. Of course,
even our approach is not designed for pure linear systems, it should in principle
work for such systems. To show this, we modeled two linear systems presented
by Alur et al. in [16]. The first system describes a thermostat and the second
one is a version of a leaking gas burner.

The first non-linear problem is called the logistic map [17] and is a polynomial
mapping of degree 2. Mathematically, the logistic map is written as xn+1 =
r · xn(1 − xn) where xn is a number between zero and one. This map illustrates
chaotic behaviour, but can exhibit periodic behavior by setting r = 3.2. When
r = 3.2, the logistic map oscillates between two values, and we defined the safety
regions to be (0.78 ≤ x ∧ x ≤ 0.82)∨(0.48 ≤ x ∧ x ≤ 0.52) (approx. 0.8 and 0.5).

The next example is the Hènon map [18], a chaotic map introduced by Michel
Hènon and mathematically defined as xn+1 = yn +1−ax2

n and yn+1 = bxn. The
map depends on two parameters a and b. Setting a = 1.25 and b = 0.3 makes the
Hènon map oscillating between seven different values. The safety properties for
these maps are the disjunction of small intervals containing the periodic values
in a similar fashion to the logistic map case.
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© Encoding interpolants as logical combinations of linear constraints.

§ Yielding rather complex interpolants (even of an infinite length in the worst case).

© NIL : learning nonlinear interpolants.
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Nonlinear SVMs

Space Transformation & Kernel Trick

Φ

Figure – 2-dimensional input space

7→ 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier I :

∑n
i=1 αiκ(⃗xi,x) = Φ(⃗xi)TΦ(x) = (βx⃗T

i x + θ)m = 0

kernel function

support vectors polynomial degree describing
complexity of the monomial space
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The NIL Algorithm & its Variants

The NIL Algorithm

1 Given mutually contradictory nonlinear ϕ and ψ over common variables x.
2 Generate sample points by, e.g., (uniformly) scattering random points.

3 Find a classifier by SVMs (with kernel-degreem) as a candidate interpolant.

4 Refine the candidate by CEs till it being verified as a true interpolant.

JϕK JψK

© Sound, and complete when JϕK and JψK are bounded sets with positive functional margin.

§ Quantifier Elimination (QE) is involved in checking interpolants and generating CEs 1.

§ May not terminate in cases with zero functional margin.
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1. SMT-solving techniques over nonlinear arithmetic do not suffice.
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The NIL Algorithm & its Variants

Comparison with Naïve QE-Based Method

QE-based method NIL

Logical strength
strongest :ZZ∃y. ϕ(x,y)

medium⇒ robust
weakest :ZZ∀z. ¬ψ(x, z)

Complexity of I direct projection⇒ complex single polynomial⇒ simple

Efficiency doubly exponential n× doubly exponential

QE + template? ; Too many unknown parameters.
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The NIL Algorithm & its Variants

NILδ : For Cases with Zero Functional Margin

JϕK JψK

δ

© δ-sound, and δ-complete if JϕK and JψK are bounded sets even with zero functional margin.

§ May not converge to an actual interpolant when JϕK or JψK is unbounded.
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The NIL Algorithm & its Variants

NIL∗δ,B : For Unbounded Cases with Varying Tolerance

JϕK JψK

δ

B

δ
2

2B

© The sequence of candidate interpolants converges to an actual interpolant.

Mingshuai Chen · i2, RWTH Aachen Univ. Interpolation over Nonlinear Arithmetic MOVES Seminar · Aachen · 2019 16 / 25



Interpolation vs. Classification Learning Nonlinear Interpolants Implementation & Evaluation Concluding Remarks

The NIL Algorithm & its Variants

NIL∗δ,B : For Unbounded Cases with Varying Tolerance

JϕK JψK

δ

B

δ
2

2B

© The sequence of candidate interpolants converges to an actual interpolant.

Mingshuai Chen · i2, RWTH Aachen Univ. Interpolation over Nonlinear Arithmetic MOVES Seminar · Aachen · 2019 16 / 25



Interpolation vs. Classification Learning Nonlinear Interpolants Implementation & Evaluation Concluding Remarks

The NIL Algorithm & its Variants

NIL∗δ,B : For Unbounded Cases with Varying Tolerance

JϕK JψK

δ

B

δ
2

2B

© The sequence of candidate interpolants converges to an actual interpolant.

Mingshuai Chen · i2, RWTH Aachen Univ. Interpolation over Nonlinear Arithmetic MOVES Seminar · Aachen · 2019 16 / 25



Interpolation vs. Classification Learning Nonlinear Interpolants Implementation & Evaluation Concluding Remarks

The NIL Algorithm & its Variants

NIL∗δ,B : For Unbounded Cases with Varying Tolerance

JϕK JψK

δ

B

δ
2

2B

© The sequence of candidate interpolants converges to an actual interpolant.

Mingshuai Chen · i2, RWTH Aachen Univ. Interpolation over Nonlinear Arithmetic MOVES Seminar · Aachen · 2019 16 / 25



Interpolation vs. Classification Learning Nonlinear Interpolants Implementation & Evaluation Concluding Remarks

The NIL Algorithm & its Variants

NIL∗δ,B : For Unbounded Cases with Varying Tolerance

JϕK JψK

δ

B

δ
2

2B

© The sequence of candidate interpolants converges to an actual interpolant.

Mingshuai Chen · i2, RWTH Aachen Univ. Interpolation over Nonlinear Arithmetic MOVES Seminar · Aachen · 2019 16 / 25



Interpolation vs. Classification Learning Nonlinear Interpolants Implementation & Evaluation Concluding Remarks

The NIL Algorithm & its Variants

NIL∗δ,B : For Unbounded Cases with Varying Tolerance

JϕK JψK

δ

B

δ
2

2B

© The sequence of candidate interpolants converges to an actual interpolant.

Mingshuai Chen · i2, RWTH Aachen Univ. Interpolation over Nonlinear Arithmetic MOVES Seminar · Aachen · 2019 16 / 25



Interpolation vs. Classification Learning Nonlinear Interpolants Implementation & Evaluation Concluding Remarks

The NIL Algorithm & its Variants

NIL∗δ,B : For Unbounded Cases with Varying Tolerance

JϕK JψK

δ

B

δ
2

2B

© The sequence of candidate interpolants converges to an actual interpolant.

Mingshuai Chen · i2, RWTH Aachen Univ. Interpolation over Nonlinear Arithmetic MOVES Seminar · Aachen · 2019 16 / 25



Interpolation vs. Classification Learning Nonlinear Interpolants Implementation & Evaluation Concluding Remarks

The NIL Algorithm & its Variants

NIL∗δ,B : For Unbounded Cases with Varying Tolerance

JϕK JψK

δ

B

δ
2

2B

© The sequence of candidate interpolants converges to an actual interpolant.

Mingshuai Chen · i2, RWTH Aachen Univ. Interpolation over Nonlinear Arithmetic MOVES Seminar · Aachen · 2019 16 / 25



Interpolation vs. Classification Learning Nonlinear Interpolants Implementation & Evaluation Concluding Remarks

Outline

1 Interpolation vs. Classification
Craig Interpolation
Binary Classification
Interpolants as Classifiers

2 Learning Nonlinear Interpolants
SVMs with Nonlinear Space Transformation
The NIL Algorithm and its Variants

3 Implementation and Evaluation
Performance over Benchmarks
Perturbations in Parameters

4 Concluding Remarks
Summary
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Performance over Benchmarks

Implementation Issues

NIL : an open-source tool in Wolfram Mathematica.

LIBSVM : SVM classifications ;

Reduce 2 : verification of candidate interpolants ;

FindInstance : generation of counterexamples ;

Rational recovery : rounding off floating-point
computations [Lang, Springer NY ’12].

©NIL, 2019

2. CAD implementation for quantifier-free fragment of a first-order theory of polynomials over the reals and its
appropriate extension to transcendental functions [Strzeboński, J. Symb. Comput. ’11].
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Performance over Benchmarks

Benchmark Examples

Category ID Name ϕ ψ I Time/s

with/without
rounding

1 Dummy x < −1 x ≥ 1 x < 0 0.11
2 Necklace y − x2 − 1 = 0 y + x2 + 1 = 0 −y < 0 0.21

3 Face
(x + 4)

2
+ y2 − 1 ≤ 0∨

(x − 4)
2

+ y2 − 1 ≤ 0

x2 + y2 − 64 ≤ 0∧

(x + 4)
2

+ y2 − 9 ≥ 0∧

(x − 4)
2

+ y2 − 9 ≥ 0

x4

223
−

x3y

356
+ x2(

y2

45
−

y

170
−

2

9
)+

x(
y3

89
+

y2

68
−

y

74
−

1

55
) +

y4

146
+

y3

95
+

y2

37
+

y

366
+ 1 < 0

0.33

4 Twisted

x2 − 2xy2 + 3xz − y2

− yz + z2 − 1 ≥ 0∧

1

120

(
−x6 − y6

)
+ x2z2−

x2 +
1

6

(
x4 + 2x2y2 + y4

)
+

y2z2 − y2 − 4 ≤ 0

w2
+ 4(x − y)4 + (x + y)2 − 80 ≤ 0∧

− w2
(x − y)4 + 100(x + y)2 − 3000 ≥ 0

−
x4

160
+ x3

( y

170
−

1

113

)
+ x2

−
y2

225
+

y

76
+

2

27

+

x

 y3

259
+

y2

63
+

5y

51
−

1

316

 −
y4

183
−

y3

94
+

y2

14
+

y

255
− 1 < 0

140.62

5 Ultimate

(x2 + y2 − 3.8025 ≤ 0 ∧ y ≥ 0∨

(x − 1)
2

+ y2 − 0.9025 ≤ 0)∧

(x − 1)
2

+ y2 − 0.09 > 0∧

(x + 1)
2

+ y2 − 1.1025 ≥ 0∨

(x + 1)
2

+ y2 −
1

25
≤ 0

(−3.8025 + x2 + y2 ≤ 0 ∧ −y ≥ 0∨

− 0.9025 + (−1 − x)2 + y2 ≤ 0)∧

− 0.09 + (−1 − x)2 + y2 > 0∧

− 1.1025 + (1 − x)2 + y2 ≥ 0∨

−
1

25
+ (1 − x)2 + y2 ≤ 0

x7

27
+ x6(−

y

5
−

1

96
) + x5(

2y2

9
−

y

32
−

1

2
)+

x4(−
2y3

9
+

y

3
+

1

31
) + x3(

y4

11
+

y3

10
−

10y2

13
+

y

18
+

15

16
)+

x2(−
y5

25
−

y4

18
−

y3

3
+

y2

10
−

1

32
)+

x

 y6

71
+

2y4

11
−

y3

25
− y2 −

y

45
−

3

8

+

y6

48
−

y5

7
+

y4

6
−

y3

2
−

y2

6
−

y

59
+

1

85
< 0

48.82

6 IJCAR16-1
− x21 + 4x1 + x2 − 4 ≥ 0∧

− x1 − x2 + 3 − y2 > 0

−3x21 − x22 + 1 ≥ 0 ∧ x2 − z2 ≥ 0 1 − 3x1
4

− x2
2
< 0 0.16

7 CAV13-1
1 − a2 − b2 > 0 ∧ a2 + b − 1 − x = 0∧

b + bx + 1 − y = 0
x2 − 2y2 − 4 > 0 −1 + x2

2
− y

3
+

xy
3

− y2

4
< 0 3.25

8 CAV13-2
x2 + y2 + z2 − 2 ≥ 0∧

1.2x2 + y2 + xz = 0

20 − 3x2 − 4y3 − 10z2 ≥ 0∧

x2 + y2 − z − 1 = 0

105x4 + x2(140y2 + 24y(5z + 7) + 35z(3z + 8))+

2(70y3z + 5y2(12z2 + 21z + 28) − 14y(6z3 + 5z2+

10) − 35(3z4 + 8z2 + 4z − 9)) < 14x(20x2(z + 1)+

10y2(z + 2) − 3y(4z2 − 5z + 4) − 20z(z2 + 2))

3857.89

9 CAV13-3

vc < 49.61 ∧ fa = 0.5418vc2∧

fr = 1000 − fa ∧ ac = 0.0005fr∧

vc1 = vc + ac

vc1 ≥ 49.61 −1 +
2vc1
99

< 0 40.63

with
rounding

10 Parallel parabola y − x2 − 1 ≥ 0 y − x2 < 0 1
2

+ x2 < y 4.50
11 Parallel halfplane y − x − 1 ≥ 0 y − x + 1 < 0 x < y 2.46
12 Sharper-1 y + 1 < 0 x2 + y2 − 1 ≤ 0 2 + y < y2 2.19
13 Sharper-2 y − x > 0 ∧ x + y > 0 y + x2 <= 0 y > 0 2.38
14 Coincident x + y > 0 ∨ x + y < 0 x + y = 0 (x + y)2 > 0 0.18
15 Adjacent y − x2 > 0 y − x2 <= 0 x2 < y 0.25

16 IJCAR16-2

− y1 + x1 − 2 ≥ 0 ∧ 2x2 − x1 − 1 > 0∧

− y21 − x21 + 2x1y1 − 2y1 + 2x1 ≥ 0∧

− y22 − y21 − x22 − 4y1 + 2x2 − 4 ≥ 0

− z1 + 2x2 + 1 ≥ 0 ∧ 2x1 − x2 − 1 > 0∧

− z21 − 4x22 + 4x2z1 + 3z1 − 6x2 − 2 ≥ 0∧

− z22 − x21 − x22 + 2x1 + z1 − 2x2 − 1 ≥ 0

x1 < x2 12.33

17 CAV13-4

xa1 + 2ya1 ≥ 0 ∧ xa1 + 2ya1 − x1 = 0∧

− 2xa1 + ya1 − y1 = 0 ∧ x − x1 − 1 = 0∧

y = y1 + x ∧ xa = x − 2y ∧ ya = 2x + y

xa + 2ya < 0 2xa + 4ya > 5 3.10

beyond
polynomials

18 TACAS16 y − x2 ≥ 0 y + cos x − 0.8 ≤ 0 15x2 < 4 + 20y 12.71
19 Transcendental sin x ≥ 0.6 sin x ≤ 0.4 SVM failed –

unbalanced 20 Unbalanced x > 0 ∨ x < 0 x = 0 x2 > 0 0.11
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Performance over Benchmarks

Visualizations in NIL

Beyond the scope of concave quadratic formulas as required in [Gan et al., IJCAR ’16] :
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Performance over Benchmarks

Visualizations in NIL

Adjacent and sharper cases as in [Okudono et al., APLAS ’17] :
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Performance over Benchmarks

Visualizations in NIL

Formulas sharing parallel or coincident boundaries :
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Performance over Benchmarks

Visualizations in NIL

Transcendental cases from [Gao & Zufferey, TACAS ’16] and [Kupferschmid & Becker,
FORMATS ’11], yet with simpler interpolants :
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Performance over Benchmarks

Visualizations in NIL

Three-dimensional case from [Dai et al., CAV ’13], yet with simpler interpolants :
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Performance over Benchmarks

Interpolants of Simpler Forms

Name Interpolants by NIL Interpolants from the sources

IJCAR16-1 1 − 3x1
4

− x2
2
< 0 −3 + 2x1 + x21 + 1

2
x22 > 0

CAV13-1 −1 + x2
2

− y
3

+
xy
3

− y2

4
< 0 436.45(x2 − 2y2 − 4) + 1

2
≤ 0

CAV13-2

105x4 + x2(140y2 + 24y(5z + 7) + 35z(3z + 8))+

2(70y3z + 5y2(12z2 + 21z + 28) − 14y(6z3 + 5z2+

10) − 35(3z4 + 8z2 + 4z − 9)) < 14x(20x2(z + 1)+

10y2(z + 2) − 3y(4z2 − 5z + 4) − 20z(z2 + 2))

− 14629.26 + 2983.44x3 + 10972.97x23+

297.62x2 + 297.64x2x3 + 0.02x2x23 + 9625.61x22−

1161.80x22x3 + 0.01x22x23 + 811.93x32+

2745.14x42 − 10648.11x1 + 3101.42x1x3+

8646.17x1x23 + 511.84x1x2 − 1034x1x2x3+

0.02x1x2x23 + 9233.66x1x22 + 1342.55x1x22x3−

138.70x1x32 + 11476.61x21 − 3737.70x21x3+

4071.65x21x23 − 2153.00x12x2 + 373.14x21x2x3+

7616.18x21x22 + 8950.77x31 + 1937.92x31x3−

64.07x31x2 + 4827.25x41 > 0

CAV13-3 −1 +
2vc1
99

< 0 −1.3983vc1 + 69.358 > 0

Sharper-1 2 + y < y2 34y2 − 68y − 102 ≥ 0

Sharper-2 y > 0 8y + 4x2 > 0

IJCAR16-2 x1 < x2 −x1 + x2 > 0

CAV13-4 2xa + 4ya > 5

716.77 + 1326.74(ya) + 1.33(ya)2 + 433.90(ya)3+

668.16(xa) − 155.86(xa)(ya) + 317.29(xa)(ya)2+

222.00(xa)2 + 592.39(xa)2(ya) + 271.11(xa)3 > 0

TACAS16 15x2 < 4 + 20y

y > 1.8 ∨ (0.59 ≤ y ≤ 1.8 ∧ −1.35 ≤ x ≤ 1.35)∨

(0.09 ≤ y < 0.59 ∧ −0.77 ≤ x ≤ 0.77)∨

(y ≥ 0 ∧ −0.3 ≤ x ≤ 0.3)
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Perturbations in Parameters

Perturbation-Resilient Interpolants
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ϵ

ϵ
ϵ

(a) ϵ-perturbations in the radii
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-5

0

5

x

y

(b) Interpolant resilient to ϵ-perturbations

Figure – Introducing ϵ-perturbations (saywith ϵ up to0.5) inϕ andψ. The synthesized interpolant is hence resilient
to any ϵ-perturbation in the radii satisfying−0.5 ≤ ϵ ≤ 0.5.
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Outline

1 Interpolation vs. Classification
Craig Interpolation
Binary Classification
Interpolants as Classifiers

2 Learning Nonlinear Interpolants
SVMs with Nonlinear Space Transformation
The NIL Algorithm and its Variants
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Summary
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Summary

Concluding Remarks

Problem : We face that

polynomial constraints have been shown useful to express invariant properties for
programs and hybrid systems,
little work on synthesizing nonlinear interpolants, which either restricts the input
formulae or yields complex results.

Status : We present

a unified, counterexample-guided method for generating polynomial interpolants over
the general quantifier-free theory of nonlinear arithmetic,
soundness of NIL, and sufficient conditions for its completeness and convergence,
Experimental results indicating that our method suffices to address more
interpolation tasks, including those with perturbations in parameters, and in many
cases synthesizes simpler interpolants.

Future Work : We plan to

improve the efficiency of NIL by substituting the general purpose QE procedure with
alternative methods,
combine nonlinear arithmetic with EUFs, by resorting to, e.g., predicate-abstraction
techniques,
investigate the performance of NIL over different classification techniques, e.g., the
widespread regression-based methods.
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programs and hybrid systems,
little work on synthesizing nonlinear interpolants, which either restricts the input
formulae or yields complex results.

Status : We present

a unified, counterexample-guided method for generating polynomial interpolants over
the general quantifier-free theory of nonlinear arithmetic,
soundness of NIL, and sufficient conditions for its completeness and convergence,
Experimental results indicating that our method suffices to address more
interpolation tasks, including those with perturbations in parameters, and in many
cases synthesizes simpler interpolants.

Future Work : We plan to

improve the efficiency of NIL by substituting the general purpose QE procedure with
alternative methods,
combine nonlinear arithmetic with EUFs, by resorting to, e.g., predicate-abstraction
techniques,
investigate the performance of NIL over different classification techniques, e.g., the
widespread regression-based methods.
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Probabilistic Craig Interpolants?

Generalized Craig Interpolation for stochastic-SAT : resolution-based BMC of MDPs.
; Teige, T., Fränzle, M. : Generalized Craig Interpolation for Stochastic Boolean Satisf. Prob.. TACAS ’11.

Generalized Craig Interpolation for stochastic-SMT : resolution-based UMC of PHA.
; Mahdi, A., Fränzle, M. : Generalized Craig Interpolation for Stochastic Satisf. Modulo Theory Prob.. RP ’14.
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