Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks

Interpolation over Nonlinear Arithmetic

Towards Program Reasoning and Verification

Mingshuai Chen

🖂 chenms@cs.rwth-aachen.de 🍖 moves.rwth-aachen.de/people/chenms

—Joint work with J. Wang, B. Zhan, N. Zhan, D. Kapur, J. An, T. Gan, L. Dai, and B. Xia—

MOVES · November 2019

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks

Interpolation /intə:pə'leij(ə)n/

MATHEMATICS

"the insertion of an intermediate value or term into a series by estimating or calculating it from surrounding known values."

[OXFORD Dictionary]

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks

Interpolation /intə:pəˈleiʃ(ə)n/

MATHEMATICS

"the insertion of an intermediate value or term into a series by estimating or calculating it from surrounding known values."

[OXFORD Dictionary]

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks

Interpolation /intə:pə'leij(ə)n/

MATHEMATICS

"the insertion of an intermediate value or term into a series by estimating or calculating it from surrounding known values."

[OXFORD Dictionary]

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks

Interpolation /intə:pə'leij(ə)n/

MATHEMATICS

"the insertion of an intermediate value or term into a series by estimating or calculating it from surrounding known values."

[OXFORD Dictionary]

LOGICAL REASONING

 $P \models Q \qquad P \models R \models Q$

 $P \land Q \models \bot$ $P \models R$ and $R \land Q \models \bot$

Interpolation vs.	Classification

Learning Nonlinear Interpolants 000000 Implementation & Evaluation

Concluding Remarks

Interpolants as Loop Invariants

Example ([Sharma et al., CAV '12])

$$\begin{split} & \textbf{x} := 0; \textbf{y} := 0; \\ & \text{while } (*) \\ & \{ \textbf{x} := \textbf{x} + 1; \textbf{y} := \textbf{y} + 1; \} \\ & \text{while } (\textbf{x} \neq 0) \\ & \{ \textbf{x} := \textbf{x} - 1; \textbf{y} := \textbf{y} - 1; \} \\ & \text{if } (\textbf{y} \neq 0) \\ & \text{error ()}; \end{split}$$

Interpolation vs.	Classification

Learning Nonlinear Interpolants 000000 Implementation & Evaluation

Concluding Remarks

Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

$$\begin{aligned} & x := 0; y := 0; \\ & \text{while } (*) \\ & \{x := x + 1; y := y + 1; \} \\ & - - - - - \\ & \text{while } (x \neq 0) \\ & \{x := x - 1; y := y - 1; \} \\ & \text{if } (y \neq 0) \\ & \text{error } (); \end{aligned}$$

Interpolation	Classification

earning Nonlinear Interpolants

Implementation & Evaluation

Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

$$\begin{aligned} x &:= 0; y &:= 0; \\ \text{while } (*) \\ &\{x &:= x + 1; y &:= y + 1; \} \\ &- &- &- &- \\ \text{while } (x \neq 0) \\ &\{x &:= x - 1; y &:= y - 1; \} \\ \text{if } (y \neq 0) \\ &\text{error ()}; \end{aligned}$$

$$A \stackrel{=}{=} x_1 = 0 \land y_1 = 0 \land$$

ite (b,
 $x = x_1 \land y = y_1,$
 $x = x_1 + 1 \land y = y_1 + 1$)

Interpolation	Classification

earning Nonlinear Interpolants

Implementation & Evaluation

Concluding Remarks

Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

$$\begin{aligned} x &:= 0; y := 0; \\ \text{while } (*) \\ &\{x := x + 1; y := y + 1; \} \\ &- - - - \\ \text{while } (x \neq 0) \\ &\{x := x - 1; y := y - 1; \} \\ \text{if } (y \neq 0) \\ &\text{error ();} \end{aligned}$$

$$A \stackrel{=}{=} x_1 = 0 \land y_1 = 0 \land$$

ite (*b*,
 $x = x_1 \land y = y_1,$
 $x = x_1 + 1 \land y = y_1 + 1$)

$$B \stackrel{=}{=} ite (x = 0,$$

 $x_2 = x \land y_2 = y,$
 $x_2 = x - 1 \land y_2 = y - 1$) \land
 $x_2 = 0 \land \neg (y_2 = 0)$

Interpolation	Classification

earning Nonlinear Interpolants

Implementation & Evaluation

Concluding Remarks

Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

$$x := 0; y := 0;$$

while (*)
{ $x := x + 1; y := y + 1;$ }
while ($x \neq 0$)
{ $x := x - 1; y := y - 1;$ }
if ($y \neq 0$)
error ();

$$A \cong x_1 = 0 \land y_1 = 0 \land$$

ite (*b*,
 $x = x_1 \land y = y_1,$
 $x = x_1 + 1 \land y = y_1 + 1$)

$$B \cong ite (x = 0,$$

 $x_2 = x \land y_2 = y,$
 $x_2 = x - 1 \land y_2 = y - 1$)
 $x_2 = 0 \land \neg (y_2 = 0)$

 $A \wedge B \models \bot$. $I(x, y) \cong x = y$ s.t. $A \models I$ and $I \wedge B \models \bot$.

Interpolation	Classification

Learning Nonlinear Interpolants

Implementation & Evaluation

Interpolants as Loop Invariants

Example ([Sharma et al., CAV'12])

$$\begin{aligned} x &:= 0; y &:= 0; \\ \text{while } (*) \\ &\{x &:= x + 1; y &:= y + 1; \} \\ &- &- &- \\ \text{while } (x \neq 0) \\ &\{x &:= x - 1; y &:= y - 1; \} \\ \text{if } (y \neq 0) \\ &\text{error ()}; \end{aligned}$$

$$A \cong x_1 = 0 \land y_1 = 0 \land$$

ite (*b*,
 $x = x_1 \land y = y_1,$
 $x = x_1 + 1 \land y = y_1 + 1$)

$$B \cong ite (x = 0,$$

 $x_2 = x \land y_2 = y,$
 $x_2 = x - 1 \land y_2 = y - 1$)
 $x_2 = 0 \land \neg (y_2 = 0)$

 $A \wedge B \models \bot$. $I(x, y) \stackrel{c}{=} x = y$ s.t. $A \models I$ and $I \wedge B \models \bot$.

Figure – Bounded model checking.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks

Interpolation-based Verification

© The bottleneck of existing formal verification techniques lies in scalability.

Implementation & Evaluation

Interpolation-based Verification

© The bottleneck of existing formal verification techniques lies in scalability.

© Interpolation helps in scaling these verification techniques due to its inherent capability of local and modular reasoning :

- Nelson-Oppen method : equivalently decomposing a formula of a composite theory into formulas of its component theories;
- SMT : combining different decision procedures to verify programs with complicated data structures;
- Bounded model-checking : generating invariants to verify infinite-state systems due to McMillan;

· · · ·

Interpolation vs.	Classification

Learning Nonlinear Interpolants 000000 Implementation & Evaluation

Concluding Remarks

Interpolation-based Verification

Interpolant synthesis plays the central role in interpolation-based techniques :

Interpolation	Classification

Implementation & Evaluation

Interpolation-based Verification

Interpolant synthesis plays the central role in interpolation-based techniques :

© Well-established methods to synthesize interpolants for various theories, e.g., decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

Implementation & Evaluation

Interpolation-based Verification

Interpolant synthesis plays the central role in interpolation-based techniques :

© Well-established methods to synthesize interpolants for various theories, e.g., decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

- SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
 - ⇒ McMillan, K. L. : Interpolation and SAT-based model checking. CAV '03.

Interpolation-based Verification

Interpolant synthesis plays the central role in interpolation-based techniques :

© Well-established methods to synthesize interpolants for various theories, e.g., decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

- SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
 - ⇒ McMillan, K. L. : Interpolation and SAT-based model checking. CAV '03.
- Constraint solving-based : reduce interpolation for LA to linear programming by Motzkin's transposition theorem.
 - ⇒ Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. J. Symb. Comput. '10.

Implementation & Evaluation

Interpolation-based Verification

Interpolant synthesis plays the central role in interpolation-based techniques :

© Well-established methods to synthesize interpolants for various theories, e.g., decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

- SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
 - ⇒ McMillan, K. L. : Interpolation and SAT-based model checking. CAV '03.
- Constraint solving-based : reduce interpolation for LA to linear programming by Motzkin's transposition theorem.
 - ⇒ Rybalchenko, A., Sofronie-Stokkermans, V. : *Constraint solving for interpolation*. J. Symb. Comput. '10.

Interpolation-based Verification

Interpolant synthesis plays the central role in interpolation-based techniques :

© Well-established methods to synthesize interpolants for various theories, e.g., decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

- SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
 - ⇒ McMillan, K. L. : Interpolation and SAT-based model checking. CAV '03.
- Constraint solving-based : reduce interpolation for LA to linear programming by Motzkin's transposition theorem.
 - ⇒ Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. J. Symb. Comput. '10.

- Reduce interpolation for concave quadratic polynomial inequalities to semi-definite programming. Tool: NLFIntp.
 - ⇒ Gan, T., Dai, L., Xia, B., Zhan, N., Kapur, D., Chen, M.: Interpolation synthesis for quadratic polynomial inequalities and combination with EUF. IJCAR '16.

Implementation & Evaluation

Interpolation-based Verification

Interpolant synthesis plays the central role in interpolation-based techniques :

© Well-established methods to synthesize interpolants for various theories, e.g., decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

- SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
 - ⇒ McMillan, K. L. : Interpolation and SAT-based model checking. CAV '03.
- Constraint solving-based : reduce interpolation for LA to linear programming by Motzkin's transposition theorem.
 - ⇒ Rybalchenko, A., Sofronie-Stokkermans, V. : *Constraint solving for interpolation*. J. Symb. Comput. '10.

- Reduce interpolation for concave quadratic polynomial inequalities to semi-definite programming. Tool : NLFIntp.
 - ⇒ Gan, T., Dai, L., Xia, B., Zhan, N., Kapur, D., Chen, M.: Interpolation synthesis for quadratic polynomial inequalities and combination with EUF. IJCAR '16.
- Counterexample-guided learning of polynomial interpolants for the general quantifier-free theory of NLA. Tool: NIL.
 - ⇒ Chen, M., Wang, J., An, J., Zhan, B., Kapur, D., Zhan, N.: NIL: Learning nonlinear interpolants.. CADE '19.

Implementation & Evaluation

Interpolation-based Verification

Interpolant synthesis plays the central role in interpolation-based techniques :

© Well-established methods to synthesize interpolants for various theories, e.g., decidable fragments of FOL, LA, multi-sets, etc., and combinations thereof.

- SAT-based : generate interpolants for LA from (resolution) unsatisfiability proofs.
 - ⇒ McMillan, K. L. : Interpolation and SAT-based model checking. CAV '03.
- Constraint solving-based : reduce interpolation for LA to linear programming by Motzkin's transposition theorem.
 - ⇒ Rybalchenko, A., Sofronie-Stokkermans, V. : *Constraint solving for interpolation*. J. Symb. Comput. '10.

- Reduce interpolation for concave quadratic polynomial inequalities to semi-definite programming. Tool : NLFIntp.
 - ⇒ Gan, T., Dai, L., Xia, B., Zhan, N., Kapur, D., Chen, M.: Interpolation synthesis for quadratic polynomial inequalities and combination with EUF. IJCAR '16.
- Counterexample-guided learning of polynomial interpolants for the general quantifier-free theory of NLA. Tool: NIL.
 - ⇒ Chen, M., Wang, J., An, J., Zhan, B., Kapur, D., Zhan, N. : *NIL* : *Learning nonlinear interpolants*.. CADE '19.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks

Outline

- 1 Interpolation vs. Classification
- 2 Learning Nonlinear Interpolants
- 3 Implementation and Evaluation
- 4 Concluding Remarks

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
000			

Outline

1 Interpolation vs. Classification

- Craig Interpolation
- Binary Classification
- Interpolants as Classifiers

2 Learning Nonlinear Interpolants

- SVMs with Nonlinear Space Transformation
- The NIL Algorithm and its Variants

3 Implementation and Evaluation

- Performance over Benchmarks
- Perturbations in Parameters

4 Concluding Remarks

Summary

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Craig Interpolation			
Craig Interpolation			

Craig Interpolant

Given ϕ and ψ in a theory \mathcal{T} s.t. $\phi \land \psi \models_{\mathcal{T}} \bot$, a formula *I* is a *(reverse) interpolant* of ϕ and ψ if (1) $\phi \models_{\mathcal{T}} I$; (2) $I \land \psi \models_{\mathcal{T}} \bot$; and (3) $var(I) \subseteq var(\phi) \cap var(\psi)$.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Craig Interpolation			

Craig Interpolation

Craig Interpolant

Given ϕ and ψ in a theory \mathcal{T} s.t. $\phi \land \psi \models_{\mathcal{T}} \bot$, a formula *I* is a *(reverse) interpolant* of ϕ and ψ if (1) $\phi \models_{\mathcal{T}} I$; (2) $I \land \psi \models_{\mathcal{T}} \bot$; and (3) $var(I) \subseteq var(\phi) \cap var(\psi)$.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Binary Classification			
Binary Classificati	ion		

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Binary Classification			
Binary Classificati	ion		

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Binary Classification			
Binary Classificati	ion		

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Binary Classification			
Binary Classificat	ion		

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Binary Classification			
Binary Classificat	ion		

Given a training dataset $X = X^+ \uplus X^-$ of positive/negative sample points, find a classifier $C: X \mapsto \{\top, \bot\}$, s.t. (1) $\forall \vec{x} \in X^+$. $C(\vec{x}) = \top$; and (2) $\forall \vec{x} \in X^-$. $C(\vec{x}) = \bot$.

There could be (infinitely) many valid classifiers.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Binary Classification			
Binary Classificat	ion		

Given a training dataset $X = X^+ \uplus X^-$ of positive/negative sample points, find a classifier $C: X \mapsto \{\top, \bot\}$, s.t. (1) $\forall \vec{x} \in X^+$. $C(\vec{x}) = \top$; and (2) $\forall \vec{x} \in X^-$. $C(\vec{x}) = \bot$.

Support Vector Machine (SVM) finds a separating hyperplane that yields the largest distance (functional margin) to the nearest positive and negative samples (support vectors), which boils down to convex optimizations.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Interpolants as Classifiers			

 \odot Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV '12] : sampling from $[\![\phi]\!]$ and $[\![\psi]\!] \rightarrow$ building a hyperplane classifier \rightarrow refining by CEs.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Interpolants as Classifiers			

 \odot Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12] : sampling from $[\![\phi]\!]$ and $[\![\psi]\!] \rightarrow$ building a hyperplane classifier \rightarrow refining by CEs.

 \bigcirc X⁺ and X⁻ might not be linearly separable (often the case when sampled from nonlinear ϕ and ψ , resp.):

$$A \stackrel{\widehat{=}}{=} (x < 2.5 \Rightarrow y \ge 2\sin(x))$$

$$\wedge (x \ge 2.5 \land x < 5 \Rightarrow y \ge 0.125x^2 + 0.41)$$

$$\wedge (x \ge 5 \land x \le 6 \Rightarrow y \ge 6.04 - 0.5x)$$

$$B \quad \widehat{=} \quad (\mathbf{x} < 3 \Rightarrow \mathbf{y} \le \mathbf{x} \cos(0.1 e^{\mathbf{x}}) - 0.083)$$
$$\wedge (\mathbf{x} \ge 3 \land \mathbf{x} \le 6 \Rightarrow \mathbf{y} \le -\mathbf{x}^2 + 10\mathbf{x} - 22.35)$$

©Kupferschmid & Becker, FORMATS '11

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Interpolants as Classifiers			

 \odot Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12] : sampling from $[\![\phi]\!]$ and $[\![\psi]\!] \rightarrow$ building a hyperplane classifier \rightarrow refining by CEs.

 \bigcirc X⁺ and X⁻ might not be linearly separable (often the case when sampled from nonlinear ϕ and ψ , resp.):

$$A \quad \widehat{=} \quad (\mathbf{x} < 2.5 \Rightarrow \mathbf{y} \ge 2\sin(\mathbf{x}))$$
$$\wedge (\mathbf{x} \ge 2.5 \land \mathbf{x} < 5 \Rightarrow \mathbf{y} \ge 0.125\mathbf{x}^2 + 0.41)$$
$$\wedge (\mathbf{x} \ge 5 \land \mathbf{x} \le 6 \Rightarrow \mathbf{y} \ge 6.04 - 0.5\mathbf{x})$$

$$B \quad \widehat{=} \quad (\mathbf{x} < 3 \Rightarrow \mathbf{y} \le \mathbf{x} \cos(0.1 \mathrm{e}^{\mathbf{x}}) - 0.083)$$
$$\wedge (\mathbf{x} \ge 3 \land \mathbf{x} \le 6 \Rightarrow \mathbf{y} \le -\mathbf{x}^2 + 10\mathbf{x} - 22.35)$$

[©]Kupferschmid & Becker, FORMATS '11

© Encoding interpolants as logical combinations of linear constraints.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Interpolants as Classifiers			

 \odot Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12] : sampling from $[\![\phi]\!]$ and $[\![\psi]\!] \rightarrow$ building a hyperplane classifier \rightarrow refining by CEs.

 \bigcirc X⁺ and X⁻ might not be linearly separable (often the case when sampled from nonlinear ϕ and ψ , resp.):

$$A \quad \widehat{=} \quad (\mathbf{x} < 2.5 \Rightarrow \mathbf{y} \ge 2\sin(\mathbf{x}))$$
$$\wedge (\mathbf{x} \ge 2.5 \land \mathbf{x} < 5 \Rightarrow \mathbf{y} \ge 0.125\mathbf{x}^2 + 0.41)$$
$$\wedge (\mathbf{x} \ge 5 \land \mathbf{x} \le 6 \Rightarrow \mathbf{y} \ge 6.04 - 0.5\mathbf{x})$$

$$B \quad \widehat{=} \quad (\mathbf{x} < 3 \Rightarrow \mathbf{y} \le \mathbf{x} \cos(0.1 e^{\mathbf{x}}) - 0.083)$$
$$\wedge (\mathbf{x} \ge 3 \land \mathbf{x} \le 6 \Rightarrow \mathbf{y} \le -\mathbf{x}^2 + 10\mathbf{x} - 22.35)$$

[©]Kupferschmid & Becker, FORMATS '11

© Encoding interpolants as logical combinations of linear constraints.

© Yielding rather complex interpolants (even of an infinite length in the worst case).

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000			
Interpolants as Classifiers			

 \odot Linear interpolants can be viewed as hyperplane classifiers, [Sharma et al., CAV'12] : sampling from $[\![\phi]\!]$ and $[\![\psi]\!] \rightarrow$ building a hyperplane classifier \rightarrow refining by CEs.

 \odot X⁺ and X⁻ might not be linearly separable (often the case when sampled from nonlinear ϕ and ψ , resp.):

$$A \stackrel{\widehat{=}}{=} (x < 2.5 \Rightarrow y \ge 2\sin(x))$$

$$\wedge (x \ge 2.5 \land x < 5 \Rightarrow y \ge 0.125x^2 + 0.41)$$

$$\wedge (x \ge 5 \land x \le 6 \Rightarrow y \ge 6.04 - 0.5x)$$

$$B \quad \widehat{=} \quad (\mathbf{x} < 3 \Rightarrow \mathbf{y} \le \mathbf{x} \cos(0.1 \mathrm{e}^{\mathbf{x}}) - 0.083)$$
$$\wedge (\mathbf{x} \ge 3 \land \mathbf{x} \le 6 \Rightarrow \mathbf{y} \le -\mathbf{x}^2 + 10\mathbf{x} - 22.35)$$

[©]Chen et al., CADE'19

© Encoding interpolants as logical combinations of linear constraints.

© Yielding rather complex interpolants (even of an infinite length in the worst case).

© NIL : learning nonlinear interpolants.

Mingshuai Chen · i2, RWTH Aachen Univ.

Interpolation over Nonlinear Arithmetic
Interpolation vs.	Classification

Implementation & Evaluation

Outline

1 Interpolation vs. Classification

- Craig Interpolation
- Binary Classification
- Interpolants as Classifiers

2 Learning Nonlinear Interpolants

- SVMs with Nonlinear Space Transformation
- The NIL Algorithm and its Variants

3 Implementation and Evaluation

- Performance over Benchmarks
- Perturbations in Parameters

4 Concluding Remarks

Summary

Interpolation vs. Classification

Learning Nonlinear Interpolants

Implementation & Evaluation

Concluding Remarks

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure – 2-dimensional input space

Interpolation vs. Classification

Learning Nonlinear Interpolants

Implementation & Evaluation

Concluding Remarks

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure – 2-dimensional input space

Interpolation vs.	Classification

Implementation & Evaluation

Concluding Remarks

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure – 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Interpolation	Classification

Implementation & Evaluation

Concluding Remarks

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure – 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Interpolation	Classification

Implementation & Evaluation

Concluding Remarks

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure – 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

$$\sum_{i=1}^{n} \alpha_{i} \kappa(\vec{\mathbf{x}}_{i}, \mathbf{x}) = 0$$

Interpolation vs.	Classification

Implementation & Evaluation

Concluding Remarks

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure – 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

= 0

Interpolation vs.	Classification

Implementation & Evaluation

Concluding Remarks

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure – 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

$$\sum_{i=1}^{n} \alpha_{i} \kappa(\vec{\mathbf{x}}_{i}, \mathbf{x}) = \Phi(\vec{\mathbf{x}}_{i})^{\mathrm{T}} \Phi(\mathbf{x}) = 0$$
support vectors

Interpolation	Classification

Implementation & Evaluation

Concluding Remarks

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure – 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

 $\sum_{i=1}^{n} \alpha_i \kappa(\vec{\mathbf{x}}_i, \mathbf{x}) = \Phi(\vec{\mathbf{x}}_i)^{\mathrm{T}} \Phi(\mathbf{x}) = (\beta \vec{\mathbf{x}}_i^{\mathrm{T}} \mathbf{x} + \theta)^m = 0$ support vectors

Interpolation	Classification

Implementation & Evaluation

Concluding Remarks

Nonlinear SVMs

Space Transformation & Kernel Trick

Figure – 2-dimensional input space \mapsto 3-dimensional feature (monomial) space with linear separation.

Optimal-margin classifier /:

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
The NIL Algorithm & its Variants			
The NIL Algorithm			

- I Given mutually contradictory nonlinear ϕ and ψ over common variables x.
- Generate sample points by, e.g., (uniformly) scattering random points.
- Find a classifier by SVMs (with kernel-degree *m*) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
The NIL Algorithm & its Variants			
The NIL Algorithm			

- **1** Given mutually contradictory nonlinear ϕ and ψ over common variables **x**.
- **2** Generate sample points by, e.g., (uniformly) scattering random points.
- Find a classifier by SVMs (with kernel-degree *m*) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
The NIL Algorithm & its Variants			
The NIL Algorithm			

- **1** Given mutually contradictory nonlinear ϕ and ψ over common variables \mathbf{x} .
- **2** Generate sample points by, e.g., (uniformly) scattering random points.
- **I** Find a classifier by SVMs (with kernel-degree *m*) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
The NIL Algorithm & its Variants			
The NIL Algorithm	1		

- **1** Given mutually contradictory nonlinear ϕ and ψ over common variables \mathbf{x} .
- **2** Generate sample points by, e.g., (uniformly) scattering random points.
- **I** Find a classifier by SVMs (with kernel-degree *m*) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
The NIL Algorithm & its Variants			
The NIL Algorithm	1		

- **1** Given mutually contradictory nonlinear ϕ and ψ over common variables \mathbf{x} .
- **2** Generate sample points by, e.g., (uniformly) scattering random points.
- **I** Find a classifier by SVMs (with kernel-degree *m*) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.

 \odot Sound, and complete when $[\![\phi]\!]$ and $[\![\psi]\!]$ are bounded sets with positive functional margin.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000	00000	000000	000
The NIL Algorithm & its Variants			
	_		
The NIL Algorithm	n		

- **1** Given mutually contradictory nonlinear ϕ and ψ over common variables \mathbf{x} .
- **2** Generate sample points by, e.g., (uniformly) scattering random points.
- **I** Find a classifier by SVMs (with kernel-degree *m*) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.

 \odot Sound, and complete when $[\![\phi]\!]$ and $[\![\psi]\!]$ are bounded sets with positive functional margin.

© Quantifier Elimination (QE) is involved in checking interpolants and generating CEs¹.

^{1.} SMT-solving techniques over nonlinear arithmetic do not suffice.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
The NIL Algorithm & its Variants			
The NIL Algorithm			

- **1** Given mutually contradictory nonlinear ϕ and ψ over common variables \mathbf{x} .
- **2** Generate sample points by, e.g., (uniformly) scattering random points.
- **I** Find a classifier by SVMs (with kernel-degree *m*) as a candidate interpolant.
- Refine the candidate by CEs till it being verified as a true interpolant.

- \odot Sound, and complete when $[\![\phi]\!]$ and $[\![\psi]\!]$ are bounded sets with positive functional margin.
- © Quantifier Elimination (QE) is involved in checking interpolants and generating CEs¹.
- © May not terminate in cases with zero functional margin.

^{1.} SMT-solving techniques over nonlinear arithmetic do not suffice.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		
The NIL Algorithm & its Variants			

	QE-based method	NIL
Logical strength	strongest : $\exists \mathbf{y}, \phi(\mathbf{x}, \mathbf{y})$ weakest : $\forall \mathbf{x}, \neg \psi(\mathbf{x}, \mathbf{z})$	$medium \Rightarrow robust$
Complexity of I	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	n × doubly exponential

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		
The NIL Algorithm & its Variants			

	QE-based method	NIL
Logical strength	strongest : $\exists \mathbf{y}, \phi(\mathbf{x}, \mathbf{y})$ weakest : $\forall \mathbf{z}, \neg \psi(\mathbf{x}, \mathbf{z})$	$medium \Rightarrow robust$
Complexity of I	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	<i>n</i> × doubly exponential

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		
The NIL Algorithm & its Variants			

	QE-based method	NIL
Logical strength	strongest : $\exists \mathbf{y}. \ \phi(\mathbf{x}, \mathbf{y})$ weakest : $\forall \mathbf{z}. \ \neg \psi(\mathbf{x}, \mathbf{z})$	$medium \Rightarrow robust$
Complexity of <i>I</i>	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	n imes doubly exponential

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		
The NIL Algorithm & its Variants			

	QE-based method	NIL
Logical strength	strongest : $\exists \mathbf{y}, \phi(\mathbf{x}, \mathbf{y})$ weakest : $\forall \mathbf{z}, \neg \psi(\mathbf{x}, \mathbf{z})$	$medium \Rightarrow robust$
Complexity of <i>I</i>	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	<i>n</i> × doubly exponential

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000	000000	000000	000
The NIL Algorithm & its Variants			

	QE-based method	NIL
Logical strength	strongest : $\exists \mathbf{y}, \phi(\mathbf{x}, \mathbf{y})$ weakest : $\forall \mathbf{z}, \neg \psi(\mathbf{x}, \mathbf{z})$	$medium \Rightarrow robust$
Complexity of <i>I</i>	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	<i>n</i> × doubly exponential

QE + template?

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		
The NIL Algorithm & its Variants			

	QE-based method	NIL
Logical strength	strongest : $\exists \mathbf{y}, \phi(\mathbf{x}, \mathbf{y})$ weakest : $\forall \mathbf{z}, \neg \psi(\mathbf{x}, \mathbf{z})$	$medium \Rightarrow robust$
Complexity of I	direct projection \Rightarrow complex	single polynomial \Rightarrow simple
Efficiency	doubly exponential	<i>n</i> × doubly exponential

QE + template? ⇒ Too many unknown parameters.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		
The NIL Algorithm & its Variants			

NIL_{δ} : For Cases with Zero Functional Margin

 \odot δ -sound, and δ -complete if $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket$ are bounded sets even with zero functional margin.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		
The NIL Algorithm & its Variants			

- \odot δ -sound, and δ -complete if $\llbracket \phi \rrbracket$ and $\llbracket \psi \rrbracket$ are bounded sets even with zero functional margin.
- $\ \odot$ May not converge to an actual interpolant when $[\![\phi]\!]$ or $[\![\psi]\!]$ is unbounded.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	00000		
The NIL Algerithm & its Variants			

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	00000		
The NIL Algerithm & its Variants			

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	00000		
The NIL Algorithm & its Variants			

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	00000		
The NUL Algorithm & its Vasiants			

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	00000		
The NIL Algorithm 8 its Variants			

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	00000		
The NIL Algorithm 8 its Variants			

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	00000		
The NIL Algorithm 8 its Variants			

$NIL^*_{\delta,B}$: For Unbounded Cases with Varying Tolerance

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
	000000		
The NUL Algorithm 8 its Variants			

$NIL_{\delta B}^{*}$: For Unbounded Cases with Varying Tolerance

© The sequence of candidate interpolants converges to an actual interpolant.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
		00000	

Outline

1 Interpolation vs. Classification

- Craig Interpolation
- Binary Classification
- Interpolants as Classifiers

2 Learning Nonlinear Interpolants

- SVMs with Nonlinear Space Transformation
- The NIL Algorithm and its Variants

3 Implementation and Evaluation

- Performance over Benchmarks
- Perturbations in Parameters

4 Concluding Remarks

Summary

Performance over Benchmarks

Implementation Issues

NIL : an open-source tool in Wolfram Mathematica.

- LIBSVM : SVM classifications;
- Reduce²: verification of candidate interpolants;
- FindInstance : generation of counterexamples;
- Rational recovery : rounding off floating-point computations [Lang, Springer NY '12].

III · learnin	g poplinear interpolant
ne. rearran	g noninieur interpolarie
The loof AIL is dedicated to onlineatic. It takes as input of (1), p = / and (1), y = / and namely in each iteration it is counter-examples as new r interpotent, USSVM is interp	sprehecting contribute Javanesa Conje interpolarita to the quantifier here through at markness a part is a valid marking contradictory transition was a more an equipment in an interpolar if the javanesa histopharite an classifier and activity part of the sample quantity quantity quantity philosophy. The law was a transition of complex points in an elevation of the sample quantity quanti
Current version: +1.0 Validated on platform: Math Latest modification: on Nex	ematica 13, 5456-Uburto-Desktop-15,34-Windows-10 15, 2019, by Mincalvasi Chen, 592, 25-192,45
Corresponding e-mail: shee List of contributions: Mingsh	nns (Bies an in) ad Chen, Jain Tilang, Jie An, Bohsa Zhan, Deepat Kapar, and Najan Zhan
Comments and bug-reports 0 2019 MIC, State Key Lab	are high appreciated. of Computer Science, ISCAS: All rights reserved.
ource code	
main(consthing event	ni, degree, dellisellenge, re
Module((varathi, v	wrefel, vareComnos, uniquarefhi, uniquarefei, pointe, pointei,
paintal, pointal	hi, paintalai, polyi, conal, normall, recenternal, recentpolyl,
precision, sample	es, samplestet, countermanules, countermanulesthi.
counterExamples	Pai, k, end, emittede, codafile, acclile, accuracy, rounded],
rounded, time, t	6
Intlinentary [Bets	dental francisco (1) (
If (1 typeCheck (co	aribi, consist, depres, initializaça), Batara(]];
k = 91	
Line = TimeDeed[]	
varsful (Tariable)	
varefhi - beleteb	plicates # CasesiconsHif, Symbol, Infinity);
versited a Deletely	plicates # Cases [conslut, _Symbol, Infinity];
VALUECOBBOD + DOCK	resolion typestic, versite 1
uniqueralhi - Com	[ament[varalhi, varaCommon];
salotarerel + Com	alement/varafal, varafumments
varelhi - Join(va	reference, unigEarsHhila
varažni s dožajva	esCommon, uniquaradei);
If () washing ()	andhi, canalui, deim[varalamaa, uniqfaralhi, uniqfaralui]], Hetare([]);
Terrar Information	initial constants and

^{2.} CAD implementation for quantifier-free fragment of a first-order theory of polynomials over the reals and its appropriate extension to transcendental functions [Strzeboński, J. Symb. Comput. '11].

Interpolation vs. Cla 0000			Learning Nonlinea 000000	r Interpolants	Implementation & Evaluation ○○●○○○	Concluding Remarks
Performance over B	encl	nmarks				
Benchma	гk	: Exa	mples			
Category	ID	Name	¢	ψ.	I.	Time/s
	2	Necklace	x < -1 $y - x^2 - 1 = 0$	$x \ge 1$ $y + x^2 + 1 = 0$	x < 0 -x < 0	0.11 0.21
	3	Taca	$\begin{aligned} &(x+4)^2+y^2-1 \leq 0 \vee \\ &(x-4)^2+y^2-1 \leq 0 \end{aligned}$	$\begin{array}{l} x^2 + y^2 - 64 \leq 0 \wedge \\ (x+4)^2 + y^2 - 9 \geq 0 \wedge \\ (x-4)^2 + y^2 - 9 \geq 0 \end{array}$	$\frac{x}{233} - \frac{255}{356} + x^2 \left(\frac{y}{49} - \frac{y}{170} - \frac{1}{9}\right) +$ $x \left(\frac{y}{39} + \frac{y^2}{68} - \frac{y}{74} - \frac{1}{55}\right) + \frac{y^4}{146} +$ $\frac{y^3}{29} + \frac{y^2}{74} + \frac{y}{146} + 1 < 0$	0.33
	4	Twisted	$x^2 - 2x\theta^2 + 3ar - y^2$ $-yr + x^2 - 1 \ge 0 \land$ $\frac{1}{120}(-x^6 - y^6) + x^2x^2 -$ $x^2 + \frac{1}{6}(x^4 + x^2y^2 + y^4) +$ $y^2x^2 - y^2 - 4 \le 0$	$\begin{split} & w^2 + 4(x-y)^4 + (x+y)^2 - 80 \leq 0 \wedge \\ & - w^2(x-y)^4 + 100(x+y)^2 - 3000 \geq 0 \end{split}$	$\begin{aligned} & x^{2} - \frac{x^{2}}{160} + x^{2} \left(\frac{y}{170} - \frac{1}{113} \right) + x^{2} \left(-\frac{y^{2}}{222} + \frac{y}{70} + \frac{2}{27} \right) + \\ & x \left(\frac{y^{2}}{220} + \frac{y^{2}}{63} + \frac{5y}{51} - \frac{1}{316} \right) - \frac{y^{4}}{183} - \frac{y^{3}}{94} + \frac{y^{2}}{14} + \frac{y}{255} - 1 < \xi \end{aligned}$	140.62
with/without rounding	5	Ubimate	$ \begin{aligned} (x^2 + y^2 - 3.025 \le 0 \land y \ge 0 \lor \\ (x - 1)^2 + y^2 - 0.0025 \le 0 \land \land \\ (x - 1)^2 + y^2 - 0.09 \ge 0 \land \\ (x - 1)^2 + y^2 - 0.09 \ge 0 \land \\ (x + 1)^2 + y^2 - 1.1022 \ge 0 \lor \\ (x + 1)^2 + y^2 - \frac{1}{25} \le 0 \end{aligned} $	$\begin{array}{l} (-3.8025+x^2+y^2\leq 0 \wedge -y\geq 0 \vee \\ -0.9025+(-1-x)^2+y^2\leq 0) \wedge \\ -0.08+(-1-x)^2+y^2> 0 \wedge \\ -1.1025+(1-y)^2+y^2\geq 0 \vee \\ -\frac{1}{25}+(1-y)^2+y^2\leq 0 \end{array}$	$\begin{split} & \frac{\tau}{2\tau} + \delta^2 (\frac{\tau}{2} - \frac{1}{2m}) + \delta^2 (\frac{2\pi^2}{2} - \frac{\tau}{2}) - \frac{1}{2}) + \\ & \delta^2 (\frac{2\pi^2}{2} + \frac{\tau}{2} + \frac{1}{2m}) + \delta^2 (\frac{2\pi^2}{2} - \frac{\pi^2}{2m}) - \frac{1}{2m} + \frac{\tau}{2m} + \frac{1}{2m}) + \\ & \delta^2 (\frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m}) + \\ & \delta (\frac{\delta^2}{2m} + \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} + \frac{\pi^2}{2m}) + \\ & \delta (\frac{\delta^2}{2m} + \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m}) + \\ & \delta (\frac{\delta^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m}) + \\ & \delta (\frac{\delta^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} - \frac{\pi^2}{2m} + \frac{\pi^2}{2m} - \frac{\pi^2}{2m} + \pi^$	48.82
	6	UCAR16-1	$-x_1^2 + 4x_1 + x_2 - 4 \ge 0 \land$	$-3x_1^2 - x_2^2 + 1 \ge 0 \land x_2 - x^2 \ge 0$	48 7 6 2 6 59 85 $1 - \frac{3y}{24} - \frac{x_2}{2} < 0$	0.16
	7	CAV13-1	$\begin{array}{l} -x_1 - x_2 + 3 - y^a > 0 \\ 1 - a^2 - b^2 > 0 \wedge a^2 + b - 1 - x \equiv 0 \wedge \\ b + bx + 1 - y \equiv 0 \end{array}$	$x^2 - 2y^2 - 4 > 0$	$-1 + \frac{x^2}{2} - \frac{y}{3} + \frac{xy}{3} - \frac{y^2}{4} < 0$ $105t^4 + x^2(140t^2 + 24y(5t+7) + 35t(3t+8)) +$	125

 $20 - 3x^2 - 4y^3 - 10x^2 \ge 0 \land$

 $x^2 + y^2 - z - 1 = 0$

 $w_1 \ge 49.61$

y - x < 0 y - x + 1 < 0 $x^{2} + y^{2} - 1 \le 0$ $y + x^{2} <= 0$

x + y = 0 $y - x^2 <= 0$

 $-y_1 + x_1 - 2 \ge 0 \land 2x_2 - x_1 - 1 > 0 \land$ $-z_1 + 2z_2 + 1 \ge 0 \land 2z_1 - z_2 - 1 > 0 \land$ rounding 16 LICAR16-2 $-y_1^2 - s_1^2 + 2s_1y_1 - 2y_1 + 2s_1 \ge 0 \land$ $-x_1^2 - 4x_2^2 + 4x_2x_1 + 3x_1 - 6x_2 - 2 \ge 0 \wedge$ $x_1 < x_2$ $\begin{array}{l} -y_2^2-y_1^2-x_2^2-4y_1+2s_2-4\geq 0\\ se_1+2ye_1\geq 0 \wedge se_1+2ye_1-s_1\equiv 0 \wedge \end{array}$ $-z_{1}^{2} - z_{1}^{2} - z_{1}^{2} - z_{2}^{2} + 2z_{1} + z_{1} - 2z_{2} - 1 \ge 0$ 17 CAV13-4 $-2xa_1 + ya_1 - y_1 = 0 \land x - x_1 - 1 = 0 \land$ xx + 2yx < 02xx + 4yx > 5 $y = y_1 + x \wedge x_2 = x - 2y \wedge y_2 = 2x + y_1$ $y - x^2 \ge 0$ sin $x \ge 0.6$ $15x^2 < 4 + 20y$ SVM failed TACAS16 beyond polynomials 12 Transcendental unbalanced 20 Unbalanced Mingshuai Chen · i2, RWTH Aachen Univ. Interpolation over Nonlinear Arithmetic

 $x^2+y^2+z^2-2\geq 0\wedge$

 $vc < 49.61 \land fg = 0.5418 vc^2 \land$

 $fr \equiv 1000 - fa \wedge ac \equiv 0.0005 fr \wedge$ $vc_1 = vc + ac$

 $1.2x^2 + y^2 + xt = 0$

 $y - x^2 - 1 \ge 0$

 $x + y > 0 \lor x + y < 0$ $y - x^2 > 0$

y + 1 < 0

CAV13-3

Sharper-2

Parallel halfplane

10 Parallel parabola

12 Sharper-1

13

14 Coincident

15 Adjacent

with

40.63

4.50

2.46

2.19

2.35

0.25

12.33

3.10

12.71

0.11

 $2(70y^3x + 5y^2(12x^2 + 21x + 28) - 14y(6x^3 + 5x^2 +$

 $10) - 35(3x^4 + 8x^2 + 4x - 9)) < 14x(20x^2(x+1) +$ $10y^2(x+2) - 3y(4x^2 - 5x + 4) - 20x(x^2 + 2))$

 $-1 + \frac{2w_1}{99} < 0$

 $\frac{\frac{1}{2} + x^2}{x < y} < y$

y > 0 $(x + y)^2 > 0$ $x^2 < y$

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
Performance over Benchmarks			
Visualizations in <i>i</i>	NIL		

Beyond the scope of concave quadratic formulas as required in [Gan et al., IJCAR '16] :

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
		000000	
Performance over Benchmarks			
Visualizations in <i>J</i>	NII		

Adjacent and sharper cases as in [Okudono et al., APLAS'17]:

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
Performance over Benchmarks			
Visualizations in <i>J</i>	NIL		

Formulas sharing parallel or coincident boundaries :

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000	000000	000000	000
Performance over Benchmarks			
Visualizations in A	///		

Transcendental cases from [Gao & Zufferey, TACAS '16] and [Kupferschmid & Becker, FORMATS '11], yet with simpler interpolants :

Interpolation vs. Classification	Learning Nonlinear Interpolants 000000	Implementation & Evaluation	Concluding Remarks
Performance over Benchmarks			
Visualizations in <i>I</i>	NIL		

Three-dimensional case from [Dai et al., CAV'13], yet with simpler interpolants :

Interpolation vs.	Classification
0000	

Learning Nonlinear Interpolants

Implementation & Evaluation

Concluding Remarks

Performance over Benchmarks

Interpolants of Simpler Forms

Name	Interpolants by NIL	Interpolants from the sources
IJCAR16-1	$1 - \frac{3x_1}{4} - \frac{x_2}{2} < 0$	$-3 + 2x_1 + x_1^2 + \frac{1}{2}x_2^2 > 0$
CAV13-1	$-1 + \frac{x^2}{2} - \frac{y}{3} + \frac{xy}{3} - \frac{y^2}{4} < 0$	$436.45(x^2 - 2y^2 - 4) + \frac{1}{2} \le 0$
CAV13-2	$\begin{split} &105x^4+x^2\left(140y^2+24y(5z+7)+35z(3z+8)\right)+\\ &2(70y^3z+5y^2(12z^2+21z+28)-14y(6z^3+5z^2+\\ &10)-35(3z^4+8z^2+4z-9)\right)<14x(20x^2(z+1)+\\ &10y^2(z+2)-3y(4z^2-5z+4)-20z(z^2+2)) \end{split}$	$\begin{array}{l} -14629.26+2983.44x_3+10972.97x_3^2+\\ 297.62x_2+297.64x_2x_3+0.02x_2x_3^2+9625.61x_2^2-\\ 1161.80x_2^2x_3+0.01x_2^2x_3^2+811.93x_2^3+\\ 2745.14x_3^2-10648.11x_1+3101.42x_1x_3+\\ 8646.17x_1x_3^2+511.84x_1x_2-1034x_1x_2x_3+\\ 0.02x_1x_2x_3^2+9233.66x_1x_2^2+1342.55x_1x_2^2x_3-\\ 138.70x_1x_2^2+11476.61x_1^2-3737.70x_1^2x_3+\\ 4071.66x_1^2x_3^2-2153.00x_12x_2+373.14x_1^2x_2x_3+\\ 7616.18x_1^2x_2^2+8950.77x_1^3+1937.92x_1^3x_3-\\ 64.07x_1^3x_2+4827.25x_1^4>0\end{array}$
CAV13-3	$-1 + \frac{2vc_1}{99} < 0$	$-1.3983 vc_1 + 69.358 > 0$
Sharper-1	$2 + y < y^2$	$34y^2 - 68y - 102 \ge 0$
Sharper-2	y > 0	$8y + 4x^2 > 0$
IJCAR16-2	$x_1 < x_2$	$-x_1 + x_2 > 0$
CAV13-4	$2x\sigma + 4y\sigma > 5$	$\begin{split} & 716.77 + 1326.74(\textit{ya}) + 1.33(\textit{ya})^2 + 433.90(\textit{ya})^3 + \\ & 668.16(\textit{xa}) - 155.86(\textit{xa})(\textit{ya}) + 317.29(\textit{xa})(\textit{ya})^2 + \\ & 222.00(\textit{xa})^2 + 592.39(\textit{xa})^2(\textit{ya}) + 271.11(\textit{xa})^3 > 0 \end{split}$
TACAS16	$15x^2 < 4 + 20y$	$y > 1.8 \lor (0.59 \le y \le 1.8 \land -1.35 \le x \le 1.35) \lor (0.09 \le y < 0.59 \land -0.77 \le x \le 0.77) \lor (y \ge 0 \land -0.3 \le x \le 0.3)$

Mingshuai Chen · i2, RWTH Aachen Univ.

Interpolation vs.	Classification
0000	

Learning Nonlinear Interpolants

Implementation & Evaluation

Concluding Remarks

Performance over Benchmarks

Interpolants of Simpler Forms

Name	Interpolants by NIL	Interpolants from the sources
IJCAR16-1	$1 - \frac{3x_1}{4} - \frac{x_2}{2} < 0$	$-3 + 2x_1 + x_1^2 + \frac{1}{2}x_2^2 > 0$
CAV13-1	$-1 + \frac{x^2}{2} - \frac{y}{3} + \frac{xy}{3} - \frac{y^2}{4} < 0$	$436.45(x^2 - 2y^2 - 4) + \frac{1}{2} \le 0$
CAV13-2	$\begin{array}{l} 105x^4+x^2(140y^2+24y(5z+7)+35z(3z+8))+\\ 2(70y^3z+5y^2(12z^2+21z+28)-14y(6z^3+5z^2+\\ 10)-35(3z^4+8z^2+4z-9))<14x(20x^2(z+1)+\\ 10y^2(z+2)-3y(4z^2-5z+4)-20z(z^2+2)) \end{array}$	$\begin{array}{l} -14629.26+2983.44x_3+10972.97x_3^2+\\ 297.62x_2+297.64x_2x_3+0.02x_2x_3^2+9625.61x_2^2-\\ 1161.80x_2^2x_3+0.01x_2^2x_3^2+811.93x_2^2+\\ 2745.14x_3^2-10648.11x_1+3101.42x_1x_3+\\ 8646.17x_1x_3^2+511.84x_1x_2-1034x_1x_2x_3+\\ 0.02x_1x_2x_3^2+9223.66x_1x_2^2+1342.55x_1x_2^2x_3-\\ 138.70x_1x_3^2+11476.61x_1^2-3737.70x_1^2x_3+\\ 4071.66x_1^2x_2^2-2153.00x_1x_2+373.14x_1^2x_2x_3+\\ 7616.18x_1^2x_2^2+8950.77x_1^3+1937.92x_1^3x_3-\\ 64.07x_1^2x_2+4827.25x_1^4>0\end{array}$
CAV13-3	$-1 + \frac{2vc_1}{99} < 0$	$-1.3983 \mathrm{vc}_1 + 69.358 > 0$
Sharper-1	$2 + y < y^2$	$34y^2 - 68y - 102 \ge 0$
Sharper-2	y > 0	$8y + 4x^2 > 0$
IJCAR16-2	$x_1 < x_2$	$-x_1 + x_2 > 0$
CAV13-4	$2x\sigma + 4y\sigma > 5$	$\begin{split} & 716.77 + 1326.74(\texttt{ya}) + 1.33(\texttt{ya})^2 + 433.90(\texttt{ya})^3 + \\ & 668.16(\texttt{xa}) - 155.86(\texttt{xa})(\texttt{ya}) + 317.29(\texttt{xa})(\texttt{ya})^2 + \\ & 222.00(\texttt{xa})^2 + 592.39(\texttt{xa})^2(\texttt{ya}) + 271.11(\texttt{xa})^3 > 0 \end{split}$
TACAS16	$15x^2 < 4 + 20y$	$\begin{array}{l} y > 1.8 \lor (0.59 \le y \le 1.8 \land -1.35 \le x \le 1.35) \lor \\ (0.09 \le y < 0.59 \land -0.77 \le x \le 0.77) \lor \\ (y \ge 0 \land -0.3 \le x \le 0.3) \end{array}$

Mingshuai Chen · i2, RWTH Aachen Univ.

Interpolation over Nonlinear Arithmetic

Interpolation vs.	Classification
0000	

Learning Nonlinear Interpolants

Implementation & Evaluation

Concluding Remarks

Perturbations in Parameters

Perturbation-Resilient Interpolants

Figure – Introducing ϵ -perturbations (say with ϵ up to 0.5) in ϕ and ψ . The synthesized interpolant is hence resilient to any ϵ -perturbation in the radii satisfying $-0.5 \le \epsilon \le 0.5$.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
			000

Outline

1 Interpolation vs. Classification

- Craig Interpolation
- Binary Classification
- Interpolants as Classifiers

2 Learning Nonlinear Interpolants

- SVMs with Nonlinear Space Transformation
- The NIL Algorithm and its Variants

3 Implementation and Evaluation

- Performance over Benchmarks
- Perturbations in Parameters

4 Concluding RemarksSummary

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
0000	000000	000000	000
Summary			

Concluding Remarks

Problem : We face that

- polynomial constraints have been shown useful to express invariant properties for programs and hybrid systems,
- little work on synthesizing nonlinear interpolants, which either restricts the input formulae or yields complex results.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
			000
Summary			

Concluding Remarks

Problem : We face that

- polynomial constraints have been shown useful to express invariant properties for programs and hybrid systems,
- little work on synthesizing nonlinear interpolants, which either restricts the input formulae or yields complex results.

Status: We present

- a unified, counterexample-guided method for generating polynomial interpolants over the general quantifier-free theory of nonlinear arithmetic,
- soundness of NIL, and sufficient conditions for its completeness and convergence,
- Experimental results indicating that our method suffices to address more interpolation tasks, including those with perturbations in parameters, and in many cases synthesizes simpler interpolants.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
			000
Summary			

Concluding Remarks

Problem : We face that

- polynomial constraints have been shown useful to express invariant properties for programs and hybrid systems,
- little work on synthesizing nonlinear interpolants, which either restricts the input formulae or yields complex results.

Status: We present

- a unified, counterexample-guided method for generating polynomial interpolants over the general quantifier-free theory of nonlinear arithmetic,
- soundness of NIL, and sufficient conditions for its completeness and convergence,
- Experimental results indicating that our method suffices to address more interpolation tasks, including those with perturbations in parameters, and in many cases synthesizes simpler interpolants.

Future Work : We plan to

- improve the efficiency of NIL by substituting the general purpose QE procedure with alternative methods,
- combine nonlinear arithmetic with EUFs, by resorting to, e.g., predicate-abstraction techniques,
- investigate the performance of NIL over different classification techniques, e.g., the widespread regression-based methods.

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
			000

Probabilistic Craig Interpolants?

Interpolation vs. Classification	Learning Nonlinear Interpolants	Implementation & Evaluation	Concluding Remarks
			000

Probabilistic Craig Interpolants?

Generalized Craig Interpolation for stochastic-SAT : resolution-based BMC of MDPs.

- ⇒ Teige, T., Fränzle, M.: Generalized Craig Interpolation for Stochastic Boolean Satisf. Prob.. TACAS '11.
- Generalized Craig Interpolation for stochastic-SMT : resolution-based UMC of PHA.
 - ⇒ Mahdi, A., Fränzle, M.: Generalized Craig Interpolation for Stochastic Satisf. Modulo Theory Prob.. RP '14.

