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Abstract. Delays in feedback control loop, as induced by networked distributed
control schemes, may have detrimental effects on control performance. This in-
duces an interest in safety verification of delay differential equations (DDEs) used
as a model of embedded control. This article explores reachable-set computation
for a class of DDEs featuring a local homeomorphism property. This topological
property facilitates construction of over- and under-approximations of their full
reachable sets by performing reachability analysis on the boundaries of their ini-
tial sets, thereby permitting an efficient lifting of reach-set computation methods
for ODEs to DDEs. Membership in this class of DDEs is determined by conduct-
ing sensitivity analysis of the solution mapping with respect to the initial states
to impose a bound constraint on the time-lag term. We then generalize boundary-
based reachability analysis to such DDEs. Our reachability algorithm is iterative
along the time axis and the computations in each iteration are performed in two
steps. The first step computes an enclosure of the set of states reachable from
the boundary of the step’s initial state set. The second step derives an over- and
under-approximations of the full reachable set by including (excluding, resp.) the
obtained boundary enclosure from certain convex combinations of points in that
boundary enclosure. Experiments on two illustrative examples demonstrate the
efficacy of our algorithm.

1 Introduction

The rapidly increasing deployment of cyber-physical systems into diverse safety-critical
application domains ranging from, among others transportation systems over chemical
processes to health-care renders safety analysis and verification for these systems so-
cietally important. Formally, the safety verification problem can often be reduced to a
problem of deciding whether the system of interest may in its evolution touch a specified
set of unsafe states [22, 24, 29]. Reachability analysis, which involves computing appro-
priate approximations of the reachable state sets, plays a fundamental role in addressing
such safety verification challenges. It usually employs either over-approximations (i.e.,
super-sets of the actual reach set) to determine whether a system starting from legal
initial states satisfies some specified safety properties, or under-approximations (i.e.,



sub-sets [12]) to detect falsification of safety properties by finding counterexamples4.
The use of such approximations instead of exact reach sets is justified by the fact that
the exact sets are generally not computable.

Ordinary differential equations (ODEs) are traditionally used for describing system
dynamics within continuous or hybrid-state feedback control loops. Consequently, sig-
nificant research has been invested in reachability analysis of such dynamical systems.
For the problem of computing over-approximations, significant advances have contin-
uously been reported in the literature over the last decades (e.g., [20, 25, 21, 9, 19, 6,
11, 18]). For computing under-approximation, methods have initially focused on lin-
ear systems (e.g., [17, 14]), but recently, approaches have been proposed to also tackle
nonlinear systems (e.g., [28, 15, 12, 8, 30]).

ODEs are, however, an idealized model of the feedback dynamics in control sys-
tems. Simply conjoining the ODEs describing the plant dynamics with the ODEs de-
scribing control laws may be misleading, as any delay introduced into the feedback loop
may induce significantly deviating dynamics. In practice, delays are involved in sensing
or actuating by physical devices, in data forwarding to or from the controller, in signal
processing in the controller, etc. An appropriate generalization of ODE able to model
the delay within the framework of differential equations is delay differential equations
(DDEs), as originally suggested by Bellman and Cooke for modeling physical, biolog-
ical, and chemical processes involving delayed dynamics [4].

DDEs are a class of differential equations where the time derivatives at the cur-
rent time depend on the solution and possibly its derivatives at previous times as well.
The presence of delayed dynamics may invalidate any stability and safety certificate
obtained on the related delay-free model, as delays may significantly alter the overall
shape of the system dynamics. This situation is illustrated through the following sim-
ple example from [16] where arbitrarily small delays have significant effect on state
dynamics: the solution of the ODE

ẋ(t) + 2ẋ(t) = −x(t) (1)

is asymptotically stable, converging to the equilibrium point x = 0 from any initial
state. However, the solution of its corresponding DDE

ẋ(t) + 2ẋ(t− τ) = −x(t) (2)

is unstable for any positive delay τ . Therefore, taking time-delay terms into account to
either verify or falsify properties of systems by performing reachability analysis is not
just desirable, but ought to be imperative for systems that are more accurately modelled
by DDEs, especially in safety-critical applications.

The problem of computing over- and/or under-approximations for the reachable
sets of DDEs obviously is more challenging than for the proper sub-class of ODEs.
Recently, a set-boundary based reachability analysis method being capable of gener-
ating over- and under-approximations of reach sets of ODEs was proposed in [30, 29]
making use of the homeomorphism property of the ODE’s solution mapping. A homeo-
morphism is a bijection ψ from a topological spaceX to a topological space Y with the

4 If the under-approximation intersects a given unsafe set, there is definitely at least one of the
trajectories entering the unsafe set, i.e., the system is definitely unsafe.



property that the pre-image ψ−1(P ) is an open subset in X if and only if P is an open
subset in Y . An important property induced by a homeomorphism from X to Y is that
the homeomorphism maps the boundary and interior points ofQ onto the boundary and
interior points of ψ(Q), respectively. In this vein, the solution mapping to initial value
problems (IVP) featuring unique solutions is a homeomorphism between the space of
initial values and that of values reached by the solution trajectory at any given time
t ≥ 0. Based on the observation that the DDE will converge to an ODE when the
time-lag term tends to zero, this motivates us to explore a class of DDEs with solutions
featuring a similar homeomorphism property and to generalize the aforementioned set-
boundary based reachability analysis method accordingly.

Membership of a given DDE in the class of DDEs exhibiting the necessary home-
omorphism property is determined by conducting a sensitivity analysis on the solu-
tion mapping. This sensitivity analysis imposes a bound on the time-lag term as the
properties of the solution change when time-lag exceeds certain bounds like the stabil-
ity border. In an engineering process, this upper bound on time-lag can be considered
as an automatically derived design space constraint, asking the development engineers
for selection of appropriate components (sensors, processors, actuators, communication
networks) guaranteeing sufficiently low latency in the feedback loop.

The main contributions of this paper is the generalization of the set-boundary reach-
ability analysis based method for ODEs to DDEs exposing the necessary homeomor-
phism property, as detected by the sensitivity analysis. The reachability algorithm is it-
erative along the time axis and the computations in each iteration are performed in two
steps. First step computes an enclosure of the set of states reachable from the boundary
of the step’s initial state set. Second step derives an over- and under-approximations of
the full reachable set by including (excluding, resp.) the obtained boundary enclosure
from certain convex combinations of points in this boundary enclosure. We demonstrate
the efficacy of our algorithm on two illustrative examples.

Related Work

As mentioned above, the reachability analysis to dynamic systems modeled by delay
differential equations (DDEs), especially for computing under-approximations, is in its
infancy and thus provides an open area of research. functions, consequently need to be
lifted to delay differential equations.

Zou, Fränzle et al. proposed in [31] a safe enclosure method using interval-based
Taylor over-approximation to enclose a set of functions by a parametric Taylor series
with parameters in interval form. To avoid dimension explosion incurred by the ever-
growing degree of the Taylor-series along the time axis, the method depends on fixing
the degree for the Taylor series and moving higher-degree terms into the parametric
uncertainty permitted by the interval form of the Taylor coefficients, thereby being able
to provide analysis of time-unbounded solutions to DDE. In [23], Prajna et al. extended
the barrier certificate methodology for ODEs to the polynomial time-delay differential
equations setting, in which the safety verification problem is formulated as a problem of
solving sum-of-square programs. The work in [13] presents a technique for simulation-
based time-bounded invariant verification of nonlinear networked dynamical systems
with delayed interconnections by computing bounds on the sensitivity of trajectories



(or solutions) to changes in initial states and inputs of the system. A similar simulation
method integrating error analysis of the numeric solving and the sensitivity-related state
bloating algorithms was proposed in [7] to obtain safe enclosures of time-bounded reach
sets for systems modelled by DDEs. In the aforementioned work, however, the authors
focused on over-approximating reachable sets for systems modeled by DDEs with finite
or infinite time horizon, not touching on the problem of under-approximation methods
of reachable sets for DDEs as needed, e.g., in system falsification.

In this paper, we infer a class of DDEs with solution mappings featuring an appro-
priate homeomorphism property with respect to initial states, where membership in the
class can be determined by sensitivity analysis. For such a DDE, the boundary of the
reachable set is maintained under dynamic evolution, thereby enabling us to construct
over- and under-approximations of reachable sets by extending the set-boundary based
reachability analysis method for ODEs from [30, 29].
Outline. We formulate the reachability problem of interest and give a brief introduction
into nonlinear control systems in Section 2. In Section 3, we expose a class of delay dif-
ferential equations featuring a desirable homeomorphism property for its solutions and
present our boundary-based reachability analysis algorithm for computing over- and
under-approximations of reachable sets respectively. Then we illustrate our approach
on two examples as well as discuss its impact in Section 4. Finally, we conclude our
paper in Section 5.

2 Preliminaries

In this section, we formally define the dynamical systems of interest and recall the basic
notion of reachability used throughout this paper. The following conventions will be
used in the remainder of this paper: the space of continuously differentiable functions
on X is denoted by C1(X ); for a set ∆, the decorations ∆◦, ∆c and ∂∆ represent
its interior, complement, and boundary respectively; vectors in the Rn as well as of
functions are denoted by boldface letters. The set of n× n matrices over the field R of
real numbers is denoted by Rn×n.

In this paper we consider systems that can be modelled by delay differential equa-
tions (DDEs) of the form

ẋ =

{
g(x), if t ∈ [0, τ),x(0) ∈ I0
f(x,xτ ), if t ∈ [τ,Kτ ],

(3)

where x(t) = (x1(t), x2(t), . . . , xn(t))
′ ∈ X , xτ = (x1(t− τ), x2(t− τ), . . . , xn(t−

τ))
′ ∈ X , X ⊆ Rn, K ≥ 2 is a positive integer, g : X 7→ Rn describes the process

which the initial function is determined by the initial value x(0) ∈ I0, and I0 ⊂ Rn is
a simply connected compact set and f : X ×X 7→ Rn is globally Lipschitz continuous
over the variables x(t) and x(t− τ). Also, we require that g(x) ∈ C1(X ) and g : X 7→
Rn satisfies the Lipschitz continuity condition w.r.t. the variables x(t), guaranteeing
that ẋ = g(x) with initial value x(0) = x0 ∈ I0 has a unique solution on [0, τ ].
Therefore, Eq.(3) describes a deterministic process on [0,Kτ ]. Besides, we assume
that max norms ‖∂g(x)∂x ‖max, ‖∂f(x,y)∂x ‖max and ‖∂f(x,y)∂y ‖max of the matrices ‖∂g(x)∂x ‖,



‖∂f(x,y)∂x ‖ and ‖∂f(x,y)∂y ‖ are uniformly bounded for any combination of x ∈ X and
y ∈ X , i.e.,

‖∂g(x)
∂x

‖max ≤M ′, ‖
∂f(x,y)

∂x
‖max ≤M, ‖∂f(x,y)

∂y
‖max ≤ N, (4)

where M ′, M and N are positive real numbers.
Given System (3) with an initial set I0, and a finite time duration t, where 0 ≤ t ≤

Kτ and K ≥ 2 is a positive integer, the set of allowable initial functions selected by
g(x) is just a set of solutions of the ordinary differential equation (ODE) ẋ = g(x)
initialised in I0 w.r.t. the time interval [0, τ ]. The trajectory of System (3) is defined to
be φ(t;x0) = x(t), where x(t) is the solution of System (3) that satisfies the initial
condition x(0) = x0 at time instant t = 0. In addition, we define the reachable set
of a given initial set I0 for any time t ≥ 0 and its corresponding over- and under-
approximations as follows.

Definition 1. The reachable set Ω(t; I0) at time t ≥ 0 is a set of states visited by
trajectories originating from I0 at time t = 0 after time duration t, i.e.

Ω(t; I0) = {x : x = φ(t;x0),x0 ∈ I0}.

Definition 2. An over-approximation of the reachable set Ω(t; I0) is a set O(t; I0),
where Ω(t; I0) ⊆ O(t; I0). In contrast, an under-approximation U(t; I0) of the reach-
able set is a nonempty subset of the reachable set Ω(t; I0).

Notice that from Definition 2, the over-approximation O(t; I0) is an enclosure s.t.
∀x0 ∈ I0 : φ(t;x0) ∈ O(t; I0) holds, where 0 ≤ t ≤ Kτ . On the other hand, the
under-approximation U(t; I0) is a nonempty set s.t. ∀x(t) ∈ U(t; I0) : ∃x0 ∈ I0 :
x(t) = φ(t;x0).

Aiming at computing over- as well as under-approximations, we wish to extend the
set-boundary based reachability method for ODEs from [30] to DDEs. This method
relies on the fact that the solution mapping is a homeomorphism and thus preserves set
boundaries, permitting to retrieve safe over- and under-approximations from enclosures
of the dynamic images of the boundaries of the initial set. The solution mappings of
DDEs in the form of Eq.(3), however, need not be homeomorphisms. Hence, we devote
ourselves to exposing a class of systems of the form (3) with solution mappings having
that desirable property. We study, in this paper, the following problems:

Problem 1. Which class of systems characterized by Eq. (3) has solution mappings
forming a homeomorphism?

Problem 2. How can we efficiently compute over- and under-approximations of the
reachable set for the systems described in Problem 1 if the initial set I0 is a simply
connected compact set?

2.1 Nonlinear Control Systems

Nonlinear control systems are characterized by the presence of nonlinear elements in
the right-hand side of the characterizing differential equation. Such non-linearities may



stem from both the system under control (i.e., the plant) and the controller itself. Or-
dinary differential equations (ODEs) are traditionally used to model the continuous
behaviour of such systems. In general, the nonlinear control systems that are modeled
by ODEs with a control input are of the following form

ẋ(t) = h(x(t),u(t)), (5)

where x(0) ∈ X0 ⊆ Rn, u(t) ∈ U ⊆ Rm, and X0, U are both compact sets. The
equation (5) is required to be (globally) Lipschitz-continuous and the input trajectory
u(·) : R+ 7→ U is required to be piecewise continuous so that a solution is guaranteed
to exist globally in the sense for all t ≥ 0. For convenience, we denote the space of
piecewise continuous functions from R+ to U as P .

Let us denote the solution to System (5) for a given initial state and an input tra-
jectory by χ(t;x0,u(·)), where t ≥ 0, x(0) = x0 ∈ X0 and u(·) ∈ U is the input
trajectory within the time interval [0, t]. The reachable set at time t = r can be defined
for a set of initial states X0 and a set of input values U as

R(r) = {χ(r;x0,u) ∈ Rn|x0 ∈ X0,u ∈ P}.

Althoff’s approaches [3, 1] are among the many methods for computation of over-
approximations of the reachable set R(r). Such methods can also be applied to over-
approximating the reachable set for cases involving DDEs of the form (3) by regarding
the delay term xτ as the time-varying uncertainty u (cf. [13] for such an algorithm).

3 Reachable Sets Computation

This section mainly focuses on solving Problem 1 and Problem 2 as presented in Sec-
tion 2. Firstly, we address Problem 1 by conducting sensitivity analysis on the solution
mappings φ(t; ·) w.r.t. the initial states for DDEs of the form of Eq. (3). This facilitates
imposition of a bound constraint on the time-lag term such that the homeomorphism
property is guaranteed. Then, addressing Problem 2, we generalize the set-boundary
based method for reachability analysis of [29, 30] to the computation of safe approxi-
mations of reach sets for systems of the form (3). This way, we can construct over- and
under-approximations of their reachable sets.

3.1 Sensitivity Analysis Theory

For a system governed by the ODE

ẋ = g(x),

where t ∈ [0, τ ], its flow mapping φ(t;x0) as a function of x0 is differentiable w.r.t. the
initial state x0, if g ∈ C1(X ) and g is Lipschitz continuous. The sensitivity of solutions
at time t ∈ [0, τ ] to initial conditions is defined by

sx0
(t) =

∂φ(t;x0)

∂x0
, (6)



where sx0
(t) is a square matrix of order n. The (i, j)th element of sx0

basically repre-
sents the influence of variations in the ith coordinate x0,i of x0 on the jth coordinate
xj(t) of φ(t;x0). To compute the sensitivity matrix, we first apply the chain rule to get
the derivative of sx0 w.r.t. time [10], as follows:

d

dt

∂φ(t;x0)

∂x0
= Dg(φ(t;x0))

∂φ(t;x0)

∂x0
,

which yields the ODE
ṡx0

= Dgsx0

describing evolution of sensitivity over time, where Dg is the Jacobian matrix of vector
field g along the trajectory φ(t;x0). This equation is a linear time-varying ODE and
the relevant initial value sx0(0) is the identity matrix I ∈ Rn×n.

Remark 1. From the definition of the sensitivity matrix sx0
(t), we observe that sx0

(t)
is also the Jacobian matrix of the mapping φ(t; ·) : I0 7→ Ω(t; I0), where t ∈ [0, τ ].

Assume that the solution mapping φ(t;x0) of System (3) for time ranging over
t ∈ [(k−1)τ, kτ ] and the state variablex0 ∈ I0, could be equivalently reformulated as a
continuously differentiable function of the state variable x((k−1)τ) inΩ((k−1)τ ; I0)
and the time variable t ∈ [(k − 1)τ, kτ ] , i.e.,

φ(t;x0) = ψk−1(t;x((k − 1)τ), (k − 1)τ),

where k ∈ {1, . . . ,K − 1}, and x((k − 1)τ) = φ((k − 1)τ ;x0). Also assume the
determinant of the Jacobian matrix of the mapping ψk−1(t;x((k − 1)τ), (k − 1)τ)
w.r.t. any state x((k − 1)τ) ∈ Ω((k − 1)τ ; I0) is not zero for any t ∈ [(k − 1)τ, kτ ].
Then, we deduce what follows. For its proof, please refer to the Appendix.

Lemma 1. Given the above assumptions, the sensitivity matrix sx(kτ)(t) = ∂x(t)
∂x(kτ) ,

t ∈ [kτ, (k + 1)τ ], for System (3) satisfies the following linear time-varying ODE:

ṡx(kτ) =
∂f(x,xτ )

∂x
sx(kτ) +

∂f(x,xτ )

∂xτ

∂xτ
∂x(kτ)

, (7)

where ṡx(kτ) =
dsx(kτ)

dt , and sx(kτ)(kτ) = I ∈ Rn×n.

From the definition of the sensitivity matrix sx(kτ)(t) = ∂x(t)
∂x(kτ) together with the

fact that its determinant is not equal to zero, the solution mapping φ(t; ·) : I0 7→
Ω(t; I0) for t ∈ [kτ, (k + 1)τ ] could be formulated equivalently as a continuously
differentiable function of the state variable x(kτ) ∈ Ω(kτ ; I0) for any fixed t ∈
[kτ, (k + 1)τ ], and this mapping from Ω(kτ ; I0) to Ω(t; I0) for t ∈ [kτ, (k + 1)τ ] is a
continuously differentiable homeomorphism between two topological spacesΩ(kτ ; I0)
and Ω(t; I0). This assertion is formalized in Corollary 1.

Corollary 1. If the determinant of the sensitivity matrix sx(kτ)(t) w.r.t. any statex(kτ) ∈
Ω(kτ ; I0) at time kτ is not zero for any t ∈ [kτ, (k + 1)τ ], then φ(t;x0) for x0 ∈ I0
and t ∈ [kτ, (k + 1)τ ] could be equivalently reformulated as a continuously dif-
ferentiable function of the state variable x(kτ) ∈ Ω(kτ ; I0) and the time variable
t ∈ [kτ, (k + 1)τ ], and the state x(t) = φ(t;x0) is uniquely determined by the state
x(kτ) for any fixed t ∈ [kτ, (k + 1)τ ], where x(kτ) = φ(kτ ;x0).



3.2 Generating a Constraint Bounding the Time-Lag Term

According to what we discussed above, here, we will infer a class of DDEs of the form
(3), where the determinant of the corresponding sensitivity matrix sx(kτ)(t) w.r.t. the
state variable x(kτ) ∈ Ω(kτ ; I0) at time kτ is not zero for t ∈ [kτ, (k + 1)τ ], and
k = 0, . . . ,K − 1. Such a class of equations is derived by appropriately confining the
time-lag term of the DDE (3), i.e., τ . In what follows, first, we review the classical result
about diagonally dominant matrices from Varah [27].

If a matrix A ∈ Rn×n is strictly diagonally dominant, i.e.,

∆i(A) = |Aii| −
∑
j 6=i

|Aij | > 0, with 1 ≤ i ≤ n,

where Aij is the entry in the ith row and jth column of the matrix A, then the inverse
of the matrix A satisfies the bound

‖A−1‖∞ ≤ max
1≤i≤n

1

∆i(A)
.

Note that, by convention, ‖ · ‖∞ is the maximum absolute row sum of a matrix. Based
on this classical result, we derive a constraint on the time-lag term τ in System (3)
rendering the sensitivity matrix mentioned in Lemma 1 strictly diagonally dominant.
We begin with the time interval [0, τ ].

Lemma 2. There exist R > 1 and ε > 1 s.t. if

τ ≤ min

{
ε− 1

εn2M ′R
,

lnR

2
√
nnM ′

}
,

the matrix sx0
(t) in Eq. (6) is diagonally dominant and satisfies ‖sx0

(t)‖max ≤ R and
max1≤i≤n

1
∆i(sx0 (t))

≤ ε for t ∈ [0, τ ] and x0 ∈ I0, where M ′ is presented in (4).

Proof. Since the sensitivity matrix sx(0)(t) for t ∈ [0, τ ] w.r.t. the state x(0) satisfies
the sensitivity equation

ṡx(0) =
∂g(x)

∂x
sx(0), with sx(0)(0) = I. (8)

In the following, we employ the comparison principle for ODEs to derive a bound
on the solution to Eq. (8).

Let
Md = max

0≤t≤τ
2
√
nn‖A(t)‖max,

whereA(t) = ∂g(x)
∂x . It is obvious that Md ≤ 2

√
nnM ′.

We take the jth column of the sensitivity matrix sx(0)(t) and the matrix b(t) as a
vector y(t) and bj(t), where j ∈ {1, . . . , n}. Let u(t) = ‖y(t)‖22 = 〈y(t),y(t)〉 with
u(0) = 1, where ‖y(t)‖2 is the 2-norm for y and 〈·, ·〉 is an inner product in Rn.



Based on Cauchy-Schwarz inequality and the fact that 2‖y‖2 ≤ ‖y‖22 + 1 as well
as ‖A(t)y‖2 ≤ ‖A(t)‖F ‖y‖2 ≤

√
n‖A(t)‖2‖y‖2, where ‖A(t)‖F is the Frobenius

norm of the matrixA(t), we obtain

u̇ = 2〈y, ẏ〉 ≤ 2‖y‖2‖ẏ‖2 = 2‖y‖2‖A(t)y‖2 ≤ 2
√
n‖y‖22‖A(t)‖2

≤ 2
√
n‖A(t)‖2‖y‖22 ≤Md‖y‖22 = Mdu. (9)

Applying Gronwall’s inequality [5] to Eq. (13), we deduce that

u(t) ≤ u0eMdt = u0e
Mdt ≤ Rd

for 0 ≤ t ≤ τ , where u0 = u(0) = 1, and

Rd = eMdτ .

Therefore, ‖y(t)‖22 ≤ Rd for 0 ≤ t ≤ τ . By solving the inequality Rd ≤ R2, we
conclude that ‖sx(0)(t)‖max ≤ R for t ∈ [0, τ ] holds if

τ ≤ lnR

2
√
nnM ′

.

For the sensitivity matrix sx(0)(t) with t ranging in the interval [0, τ ], the diagonal
element in the i-th row of the matrix sx(0)(t) is equal to

1 +

[
∂gi(x)

∂x

∂x

∂x0,i

]
t=ξi

t,

the element in the ith row and jth column is equal to[
∂gi(x)

∂x

∂x

∂x0,j

]
t=ξj

t,

where j ∈ {1, . . . , n} \ {i} and ξl, for l = 1, . . . , n, is some value in (0, τ).
Thus ∆i(sx(0)(t)) is larger than

1− τ
n∑
j=1

∣∣∣∣∂gi(x∂x

∂x

∂x0,j

∣∣∣∣
t=ξj

,

which in turn is larger than 1− n2M ′Rτ .
By solving the inequality 1

1−n2M ′Rτ ≤ ε, we obtain that τ ≤ ε−1
εn2M ′R . Therefore, if

τ ≤ min

{
ε− 1

εn2M ′R
,

lnR

2
√
nnM ′

}
,

then ‖sx(0)(t)‖max ≤ R and max1≤i≤n
1

∆i(sx(0)(t))
≤ ε hold, and sx(0)(t) is also

diagonally dominant for t ∈ [0, τ ] since τ ≤ ε−1
εn2M ′R , 1− n2M ′Rτ > 0 holds. ut



Assume that the sensitivity matrix sx((k−1)τ)(t) is strictly diagonally dominant s.t.

‖sx((k−1)τ)(t)‖max ≤ R, (10)

max
1≤i≤n

1

∆i(sx((k−1)τ)(t))
≤ ε, (11)

for any t ∈ [(k − 1)τ, kτ ], where k ∈ {1, . . . ,K − 1}, ε > 1, and R > 1. Then, we
construct the bound constraint on the time-lag term τ as follows.

Lemma 3. Based on Eq. (10) and (11), if the time-lag term is

τ ≤ min

{
ε− 1

ε(n2MR+ n2NRε)
,

ln R2+1
2√

n(2nM + n2NRε)

}
,

where M and N are presented in Constraint (4), then sx(kτ)(t) for t ∈ [kτ, (k +
1)τ ] is strictly diagonally dominant with the property of ‖sx(kτ)(t)‖max ≤ R and
max1≤i≤n

1
∆i(sx(kτ)(t))

≤ ε .

Proof. Since the sensitivity matrix sx((k−1)τ)(t) is strictly diagonally dominant and Eq.
(11) holds, the inequality

‖s−1x((k−1)τ)(t)‖∞ ≤ ε,

also holds, where t ∈ [(k− 1)τ, kτ ] and k ∈ {1, . . . ,K− 1}. Accordingly, this implies
that ‖s−1x((k−1)τ)(t)‖max ≤ ε. This way, according to Lemma 1, the sensitivity matrix
sx(kτ)(t) for t ∈ [kτ, (k + 1)τ ] w.r.t. the state x(kτ) satisfies the sensitivity equation

ṡx(kτ) =
∂f(x,xτ )

∂x
sx(kτ) +

∂f(x,xτ )

∂xτ

∂xτ
∂x(kτ)

, with sx(kτ)(kτ) = I. (12)

In the following, we employ the comparison principle for ODEs to derive a bound
on the solution to Eq. (12).

Let
Md = max

kτ≤t≤(k+1)τ

√
n(2n‖A(t)‖max + ‖b(t)‖max),

Nd = max
kτ≤t≤(k+1)τ

√
n‖b(t)‖max,

where A(t) = ∂f(x,xτ )
∂x and b(t) = ∂f(x,xτ )

∂xτ
∂xτ

∂x((k−1)τ)
∂x((k−1)τ)
∂x(kτ) . It is obvious that

Md ≤
√
n(2nM + n2NRε) and Nd ≤

√
nn2NRε.

We take the jth column of the sensitivity matrix sx(kτ)(t) and the matrix b(t) as a
vector y(t) and bj(t), where j ∈ {1, . . . , n}. Let u(t) = ‖y(t)‖22 = 〈y(t),y(t)〉 with
u(kτ) = 1, where ‖y(t)‖2 is the 2-norm for y and 〈·, ·〉 is an inner product in Rn.

Based on Cauchy-Schwarz inequality and the fact that 2‖y‖2 ≤ ‖y‖22 + 1 as well
as ‖A(t)y‖2 ≤ ‖A(t)‖F ‖y‖2 ≤

√
n‖A(t)‖2‖y‖2, where ‖A(t)‖F is the Frobenius

norm of the matrixA(t), we obtain

u̇ = 2〈y, ẏ〉 ≤ 2‖y‖2‖ẏ‖2 = 2‖y‖2‖A(t)y + bj(t)‖2 ≤ 2
√
n‖y‖22‖A(t)‖2 + 2‖y‖2‖bj(t)‖2

≤ 2
√
n‖A(t)‖2‖y‖22 + ‖bj(t)‖2(‖y‖22 + 1) ≤Md‖y‖22 +Nd = Mdu+Nd. (13)



Applying Gronwall’s inequality [5] to Eq. (13), we deduce that

u(t) ≤ u0eMd(t−kτ)+

∫ t

kτ

Nde
Md(t−s)ds = u0e

Md(t−kτ)+
Nd
Md

eMd(t−kτ)−Nd
Md
≤ Rd

for kτ ≤ t ≤ (k + 1)τ , where u0 = u(kτ) = 1, and

Rd =

(
1 +

Nd
Md

)
eMdτ − Nd

Md
.

Therefore, ‖y(t)‖22 ≤ Rd for kτ ≤ t ≤ (k + 1)τ . By solving the inequality Rd ≤
R2, we conclude that ‖sx(kτ)(t)‖max ≤ R for t ∈ [kτ, (k + 1)τ ] holds if

τ ≤
ln R2+1

2√
n(2nM + n2NRε)

,

where the right side of this inequality could be gained when Md = Nd.
For the sensitivity matrix sx(kτ)(t) with t ranging in the interval [kτ, (k+ 1)τ ], the

diagonal element in the i-th row of the matrix sx(kτ)(t) is equal to

1 +

[
∂fi(x,xτ )

∂x

∂x

∂xkτ,i
+
∂fi(x,xτ )

∂xτ

∂xτ
∂xkτ,i

]
t=ξi

(t− kτ),

the element in the ith row and jth column is equal to[
∂fi(x,xτ )

∂x

∂x

∂xkτ,j
+
∂fk(x,xτ )

∂xτ

∂xτ
∂xkτ,j

]
t=ξj

(t− kτ),

where j ∈ {1, . . . , n} \ {i} and ξl, for l = 1, . . . , n, is some value in (kτ, (k + 1)τ).
Thus ∆i(sx(kτ)(t)) is larger than

1− τ
n∑
j=1

∣∣∣∣∂fi(x,xτ )∂x

∂x

∂xkτ,j
+
∂fi(x,xτ )

∂xτ

∂xτ
∂xkτ,j

∣∣∣∣
t=ξj

,

which in turn is larger than 1− (n2MR+ n2NRε)τ .
By solving the inequality 1

1−(n2MR+n2NRε)τ ≤ ε,we obtain that τ ≤ ε−1
ε(n2MR+n2NRε) .

Therefore, if

τ ≤ min

{
ε− 1

ε(n2MR+ n2NRε)
,

ln R2+1
2√

n(2nM + n2NRε)

}
,

then ‖sx(kτ)(t)‖max ≤ R and max1≤i≤n
1

∆i(sx(kτ)(t))
≤ ε hold, and sx(kτ)(t) is also

diagonally dominant for t ∈ [kτ, (k + 1)τ ] since τ ≤ ε−1
ε(n2MR+n2NRε) , 1− (n2MR+

n2NRε)τ > 0 holds. ut

Combining Lemma 2 and Lemma 3, we deduce the following theorem.



Theorem 1. If the time-lag term of DDE (3) is

τ ≤ min

{
ε− 1

εn2M ′R
,

lnR

2
√
nnM ′

,
ε− 1

ε(n2MR+ n2NRε)
,

ln R2+1
2√

n(2nM + n2NRε)

}
,

then the solution mapping φ(t; ·) : I0 7→ Ω(t; I0) to System (3) is a homeomorphism
between two topological spaces I0 and Ω(t; I0) for any t ∈ [0,Kτ ].

When the time-lag τ satisfies the condition presented in Theorem 1, the homeomor-
phism property in Theorem 1 implies that the solution mapping φ(t; ·) : I0 7→ Ω(t; I0)
to System (3), where t ∈ [0,Kτ ], maps the boundary and interior points of the initial set
I0 onto the boundary and interior points of the set Ω(t; I0) respectively. Therefore, the
full reachable set induced by the initial set of System (3) could be retrieved by comput-
ing the reachable set just of the initial set’s boundary. We illustrate Theorem 1 through
the following example involving a delay τ that could be caused by sensor circuitry.
Determining a bound on that delay could thus help facilitate the choice of appropriate
sensors such that the delay τ incurred satisfies the conditions of Theorem 1.

Example 1. Consider a modified model of an electromechanical oscillation of a syn-
chronous machine,

ẋ =

{
g(x), if t ∈ [0, τ),x(0) ∈ I0
f(x,xτ ), if t ∈ [τ,Kτ ],

(14)

with x = (δ, w)′, xτ = (δτ , wτ ), g(x) = (g1(x), g2(x))
′ = (0, 0)′, f(x,xτ ) =

(f1(x,xτ ), f2(x,xτ ))
′ = (w, 0.2 − 0.7sinδτ − 0.05wτ )

′, and I0 = [−0.5, 0.5] ×
[2.5, 3.5], K = 60 and X = [−100, 100] × [−100, 100]. Through simple calculations,
we obtain that M ′ = 0,M = 1, N = 0.7, R = 2.5 and ε = 2.5, thus any τ ≤ 0.0218
satisfies the condition in Theorem 1. In our experiments, we set τ = 0.02.

From the result illustrated in Fig. 1, we conclude that the corresponding solution
mapping φ(6; ·) : I0 7→ Ω(6; I0) maps the boundary and interior points of the initial
set I0 onto the boundary and interior points of the set Ω(6; I0) respectively, as the
homeomorphism property suggests.

3.3 Constructing Reachable Sets

We in this section extend the set-boundary based reachability analysis method of [29,
30] for nonlinear control systems to reachability computations of System (3) with a
time-lag τ satisfying the conditions of Theorem 1. The reduction is based on regarding
the delayed state variable xτ in System (3) as a control input u(t), and the confinement
to set boundaries adds considerably to precision as it significantly reduces the volume
of the tube containing all such input trajectories xτ . In our algorithm we obviously
restrict the initial set I0 to a specific family of computer-representable sets in the Rn
such as polytopes.

Assume that the initial set’s boundary can be represented as an union of m subsets
from the respective family, that is, ∂I0 = ∪mi=1I0,i. For t ∈ [0, τ ], the system is gov-
erned by ODE ẋ = g(x). Therefore, we can apply any existing reachability analysis
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Fig. 1: An illustration of the reachable set for Example 1 at time t = 6.0 using simulation methods, (red, green, blue
and yellow points – the approximate sampling states reachable from the boundary subsets [−0.5,−0.5] × [2.5, 3.5],
[0.5, 0.5]×[2.5, 3.5], [−0.5, 0.5]×[2.5, 2.5] and [−0.5, 0.5]×[3.5, 3.5] respectively; black points – the approximate
sampling states reachable from the entire initial set).

technique for ODEs that is able to deal with reachability computations with initial sets
of forms such as polytopes, to the computation of an enclosure B0,t of the reachable
set for the initial set’s boundary ∂I0 at time t ∈ [0, τ ], where B0,t = ∪mi=1B0,i(t) and
B0,i(t) is an over-approximation of the reachable set at time t ∈ [0, τ ] starting from
the set I0,i, for i = 1, . . . ,m. The corresponding over-and under-approximations of the
reachable set at time t could be constructed by including (excluding, resp.) the set B0,t
from the set obtained from convex combinations of points in B0,i(t), according to [30].

Based on these computations for the initial trajectory segment up to time τ , for
t ∈ [kτ, (k + 1)τ ], k = 1, . . . ,K − 1, the following steps are used to compute its
corresponding over- and under-approximations of the reachable set respectively.

1. Firstly, we compute an enclosureBk,i(t), for t ∈ [kτ, (k+1)τ ], of the reachable set
Ω(t; I0,i) for System (3) with the initial set Bk−1,i(kτ) and xτ ∈ Bk−1,i(t − τ).
This enclosure can be computed by employing reachability analysis methods for
nonlinear control systems of the form (5) with a time-varying input u(t) = xτ ∈
Bk−1,i(t − τ). Therefore, Bk,t = ∪mi=1Bk,i(t) is an enclosure of the reachable set
for the initial set’s boundary ∂I0 at time t ∈ [kτ, (k + 1)τ ].

2. Secondly, we construct a simply connected compact polytope Ok,t such that it cov-
ers Bk,t. The setOk,t is an over-approximation of the reachable setΩ(t; I0) at time
t ∈ [kτ, (k + 1)τ ] according to Lemma 1 in [30].

3. Thirdly, we construct a simply connected polytope Uk,t that satisfies two condi-
tions: 1) the enclosure of the reachable set from the boundary of the initial set,
i.e., Bk,t, is obtained to be a subset of the enclosure of its complement, and 2)
it intersects the interior of the reachable set Ω(t; I0). Then, according to Lemma



2 in [30], Uk,t is an under-approximation of the reachable set Ω(t; I0) at time
t ∈ [kτ, (k + 1)τ ].

4 Examples and Discussions

In this section, we test our method on two examples of a two-dimensional system and a
seven-dimensional system. Our implementation is based on Althoff’s continuous reach-
ability analyzer (CORA) [2], which is a MATLAB toolbox for prototype design of al-
gorithms for reachability analysis. All computations are carried out on an i5-3337U
1.8GHz CPU with 4GB running Ubuntu Linux 13.10.

Example 2. Consider a modified Lotka-Volterra two-variables system with a delay τ ,
given by

ẋ =

{
g(x), if t ∈ [0, τ),x(0) ∈ I0
f(x,xτ ), if t ∈ [τ,Kτ ]

(15)

with x = (x, y)′, xτ = (xτ , yτ )
′, g(x) = (g1(x), g2(x))

′ = (y,−0.2x + y −
0.2x2y)′, f(x,xτ ) = (f1(x,xτ ), f2(x,xτ ))

′ = (y,−0.2xτ + y − 0.2x2y)′, I0 =
[0.9, 1.1] × [0.9, 1.1] with ∂I0 = ∪4i=1I0,i and X = [0.5, 3.5] × [0.2, 1.5], where
I0,1 = [0.9, 0.9]× [0.9, 1.1], I0,2 = [1.1, 1.1]× [0.9, 1.1], I0,3 = [0.9, 1.1]× [0.9, 0.9]
and I0,4 = [0.9, 1.1]× [1.1, 1.1].

In this example, the valuations M ′ = 2.3,M = 2.10, N = 0.2, R = 2 and ε = 2
fulfill the condition in Lemma 3. Through simple calculations, τ = 0.01 satisfies the
requirement in Theorem 1. Also, K is assigned to 100, i.e. the entire time interval is
[0, 1.0]. The over- and under-approximation of the reachable set illustrated in Fig. 2
and 3 are represented by polytopes. The computation time for computing over- and
under-approximations is 111.56 seconds.
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Fig. 2: An illustration of the reachable set of the initial set’s boundary for Example 2 at time t = 1.0, (red curve –
∂O(1.0; I0,1); blue curve – ∂O(1.0; I0,2); green curve – ∂O(1.0; I0,3); yellow curve– ∂O(1.0; I0,4); black points
– the approximate sampling states reachable from the initial set I0 after time duration of 1.0, which are computed using
simulation methods).
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Fig. 3: An illustration of the reachable set of initial set’s boundary for Example 2 at time t = 1.0, (red curve –
∂O(1.0; I0,1); blue curve – ∂O(1.0; I0,2); green curve – ∂O(1.0; I0,3); yellow curve – ∂O(1.0; I0,4); black curve
– boundary ∂O(1.0; I0) of the over-approximation obtained by our boundary method; black dash curve – boundary
∂U(1.0; I0) of the under-approximation obtained by our boundary method; purple curve – boundary ∂O(1.0; I0) of
less tight over-approximation obtained by extrapolating the entire initial set rather than its boundaries).

Example 3. Consider a seven-dimensional system with a delay τ 5,

ẋ =

{
g(x), if t ∈ [0, τ),x(0) ∈ I0
f(x,xτ ), if t ∈ [τ,Kτ ]

(16)

with x = (x1, . . . , x7)
′, xτ = (x1,τ , . . . , x7,τ )

′, g(x) = 0, f(x,xτ ) = (1.4x3 −
0.9x1,τ , 2.5x5 − 1.5x2, 0.6x7 − 0.8x3x2, 2.0 − 1.3x4x3, 0.7x1 − 1.0x4x5, 0.3x1 −
3.1x6, 1.8x6 − 1.5x7x2)

′, I0 = [1.1, 1.3] × [0.95, 1.15] × [1.4, 1.6] × [2.3, 2.5] ×
[0.9, 1.1]×[0.0, 0.2]×[0.35, 0.55] andX = [0.5, 1.5]×[0.5, 1.5]×[1.0, 2.0]×[2.0, 3.0]×
[0.5, 1.5, ]× [0.0, 0.5]× [0.0, 1.0].

The valuations M ′ = 0,M = 3.9, N = 0.9, R = 2 and ε = 3 fulfill the condition
in Lemma 3. Thus, τ ≤ 0.001 satisfies the requirement in Theorem 1. Also, τ and K
are assigned to 0.001 and 30 respectively, i.e., the entire time interval is [0, 0.03].

The computed over-approximation at time instant 0.03 isO(0.03; I0) = [1.121, 1.336]×
[0.971, 1.178] × [1.368, 1.575] × [2.221, 2.430] × [0.859, 1.057] × [0.009, 0.194] ×
[0.332, 0.538]. The computed under-approximation at time instant 0.1 is U(0.03; I0) =
[1.141, 1.317] × [0.991, 1.159] × [1.387, 1.555] × [2.241, 2.411] × [0.878, 1.037] ×
[0.028, 0.175] × [0.351, 0.519]. The computation time for both is 900.23 seconds. The
projections for over-and under-approximations at time instants t = 0.01, 0.02, 0.03 on
the x1 − x2 space are illustrated in Fig. 4.

From Fig. 2 that presents the approximation of the reachable set’s boundary ob-
tained by applying numerical simulation methods along with the set-boundary based
method to Example 2, it is further confirmed that the set-boundary based method is
able to produce a valid over-approximation of the reachable set’s boundary when the
delay-lag term τ satisfies the conditions in Theorem 1. Furthermore, it is concluded
from Fig. 3 that the set-boundary based method as in Subsection 3.3 is able to output
validated over- and under-approximations of the reachable sets. Also, the results in Fig.
3 demonstrate convincingly that the set-boundary based method induces a smaller wrap-
ping effect in performing reachability analysis compared with extrapolating the entire
initial set, since the boundaries of the initial set definitely have much smaller volume

5 The delay-free system could be found in the Package CORA.
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Fig. 4: An illustration of the reachable set on the x1 − x2 space for Example 3 at times t = 0.01, 0.02, 0.03, (red, blue
and black solid lines – the boundaries of over-approximations on the x1 − x2 space at time instants t = 0.01, 0.02, 0.03
respectively; red, blue and black dashed lines – the boundaries of under-approximations on the x1−x2 space at time instants
t = 0.01, 0.02, 0.03 respectively).

than the entire initial set. For Example 3, the approximations of the interval form as
illustrated in Fig. 4 are computed for the sake of reducing computational burden. Note
that the bound imposed for maintaining homeomorphism property applies to the time-
lag in the DDE only and is not a bound on the temporal horizon coverable by reach-set
computation, which can be arbitrarily larger if only the time-lag suits the condition.
The relatively small horizons in these examples are due to the wrapping effect in the
underlying reachability techniques, not the method itself, as discussed below.

Next, we should point out that the positive aspect induced by this kind of represen-
tation, is that they enable the analysis of some properties such as safety and reliability
by reasoning in the theory of linear arithmetic. On the other side, they might not be
the best representations of the reachable sets for nonlinear systems since the reachable
sets of nonlinear systems modeled by ODEs and DDEs may be far from being convex
as demonstrated in Fig. 1, thereby generating poor results when employing polytopes
to characterize the reachable sets. In order to remedy this shortcoming of conservative-
ness induced by polytopes, we will struggle to employ representations of more complex
shapes such as semi-algebraic sets in the construction of the reachable sets at the ex-
pense of computational efficiency. Another undesirable feature might be in our imple-
mentation, is due to the excessive use of previous state information to compute the set
of current reachable states from the boundaries of the initial set. In a sense, while com-
puting the set of reachable states at time t ∈ [kτ, (k + 1)τ ], the entire reachable set of
the past states within the time interval [(k−1)τ, kτ ] is used for the computations rather
than the set of reachable states at just time instant t − τ . Therefore, a large amount of
spurious states not actually reachable at previous time from the boundaries of the initial
set might be introduced, significantly increase the wrapping effect. Due to constructing
over- and under-approximations by including (excluding, resp.) the obtained boundary



enclosure from certain convex combination of points, a pessimistic over-approximation
of the reachable sets from the boundaries of the initial set may reduce the tightness of
computed results accordingly. In order to circumvent this issue, we will extend Taylor-
model based reachability analysis for ODEs to the proposed class of DDEs in the future
work. Since Taylor models are functions being explicitly dependent on time and state
variables, this dependence enables the use of an over-approximation associated with
the reachable sets of the boundaries of the initial set at previous time t − τ rather than
within the time interval [(k − 1)τ, kτ ] to over-approximate the set of states reachable
from the boundaries of the initial set at current time t ∈ [kτ, (k+1)τ ], thereby resulting
in a significant reduction in the wrapping effect.

Finally, we should point out that our method, in this paper, is suitable for systems
modeled by DDEs of the form (3) with solutions having homeomorphism property.
But, it is restricted to a class of DDEs with time-lag term τ satisfying the conditions in
Theorem 1. As a future work, we will expand such class of systems by loosing bound
constraints on τ . Also, in order to measure the conservativeness on such bounds, we
plan to deduce constraints on τ such that the solution to the associated system does not
equip with homeomorphism property. Besides, if such homeomorphism property fails,
one feasible solution to compute its over- and under-approximations of reachable sets
is first to reformulate the associated DDE as an ODE via the method of steps in [26]
and then apply the set-boundary based reachability analysis method of [29, 30] to the
obtained ODE. However, the formulated ODE suffers an increase of space dimension
over reachability time of interest. We will investigate more about this in future work.

5 Conclusion

In this paper, we have exposed a class of delay differential equations (DDEs) exhibiting
homeomorphic dependency on initial conditions. Membership in this class is deter-
mined by conducting sensitivity analysis of the solution mapping with respect to the
initial states, therefrom deriving an upper bound on the time-lag term of the DDE thus
ensures homeomorphic dependency. One of the primary benefits of the existence of
a corresponding homeomorphism is that state extrapolation can be pursued from the
boundaries of the initial set only, rather than the full initial set, as the homeomorphism
preserves boundaries and interiors of sets. As (appropriate enclosures of) the boundaries
of the initial set have much smaller volume, such an approach tremendously reduces the
wrapping effect incurred when using set-based state extrapolation on ODE with inputs
as a means for enclosing solutions to the DDE. Furthermore, it allows us to construct an
over- and under-approximations of the full reachable set by including (excluding, resp.)
the obtained boundary enclosure from certain convex combinations of points in that
boundary enclosure. We have illustrated the efficiency of our method on two examples
of dimension 2 and 7.
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Appendix

The proof of Lemma 1:

Proof. Since the determinant of the Jacobian matrix of the mappingx(t) = ψk−1(t;x((k−
1)τ, (k − 1)τ) w.r.t. any state x((k − 1)τ) ∈ Ω((k − 1)τ ; I0) is not zero for t ∈
[(k − 1)τ, kτ ], then for any fixed t ∈ [(k − 1)τ, kτ ], the mapping

x(t) = ψk−1(t; · , (k − 1)τ) : Ω((k − 1)τ ; I0) 7−→ Ω(t; I0)

is a bijection and its inverse mapping from Ω(t; I0) to Ω((k− 1)τ ; I0) is continuously
differentiable. Thus, the sensitivity matrix sx(kτ)(t) for t ∈ [kτ, (k + 1)τ ] satisfies the
sensitivity equation:

ṡx(kτ) =
∂f(x,xτ )

∂x
sx(kτ) +

∂f(x,xτ )

∂xτ

∂xτ
∂x(kτ)

,

with sx(kτ)(kτ) = I ∈ Rn×n. ut


