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Probabilities play a central role in modern pattern recogmi We have seen in
Chapter 1 that probability theory can be expressed in tefrivsmsimple equations
corresponding to the sum rule and the product rule. All ofghababilistic infer-
ence and learning manipulations discussed in this book, aitemhow complex,
amount to repeated application of these two equations. \l ¢berefore proceed
to formulate and solve complicated probabilistic modelsepuby algebraic ma-
nipulation. However, we shall find it highly advantageousitgment the analysis
using diagrammatic representations of probability disttions, callecprobabilistic
graphical modelsThese offer several useful properties:

1. They provide a simple way to visualize the structure of@bpbilistic model
and can be used to design and motivate new models.

2. Insights into the properties of the model, including dtéodal independence
properties, can be obtained by inspection of the graph.

359
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8. GRAPHICAL MODELS

8.1.

3. Complex computations, required to perform inferencelaathing in sophis-
ticated models, can be expressed in terms of graphical miatipns, in which
underlying mathematical expressions are carried alongjgitiyp

A graph comprisesodes(also calledverticeg connected byinks (also known
asedgesr arcs). In a probabilistic graphical model, each node represesdom
variable (or group of random variables), and the links egppobabilistic relation-
ships between these variables. The graph then capturesathewhich the joint
distribution over all of the random variables can be decasegddnto a product of
factors each depending only on a subset of the variables. Hak Isegin by dis-
cussingBayesian networkslso known aglirected graphical mode]sn which the
links of the graphs have a particular directionality indézhby arrows. The other
major class of graphical models aviarkov random fieldsalso known asindirected
graphical modelsin which the links do not carry arrows and have no directiona
significance. Directed graphs are useful for expressingalaalationships between
random variables, whereas undirected graphs are betted saiexpressing soft con-
straints between random variables. For the purposes ahsggailvference problems,
it is often convenient to convert both directed and undedgjraphs into a different
representation calledfactor graph

In this chapter, we shall focus on the key aspects of grapimodels as needed
for applications in pattern recognition and machine leagniMore general treat-
ments of graphical models can be found in the books by WHtték990), Lauritzen
(1996), Jensen (1996), Castikk al. (1997), Jordan (1999), Cowedt al. (1999),
and Jordan (2007).

Bayesian Networks

In order to motivate the use of directed graphs to describbability distributions,
consider first an arbitrary joint distributigr{a, b, ¢) over three variables, b, andc.
Note that at this stage, we do not need to specify anythingdéuabout these vari-
ables, such as whether they are discrete or continuousedndae of the powerful
aspects of graphical models is that a specific graph can miakalpilistic statements
for a broad class of distributions. By application of thedurct rule of probability
(1.11), we can write the joint distribution in the form

p(a,b,c) = p(cla,b)p(a,b). (8.1)

A second application of the product rule, this time to theoselcterm on the right-
hand side of (8.1), gives

p(a, b, ¢) = p(cla, b)p(bla)p(a). (8.2)

Note that this decomposition holds for any choice of thetjdistribution. We now
represent the right-hand side of (8.2) in terms of a simpdglgical model as follows.
First we introduce a node for each of the random variafJésandc and associate
each node with the corresponding conditional distributiarthe right-hand side of
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8.1. Bayesian Networks 361

Figure 8.1 A directed graphical model representing the joint probabil- &
ity distribution over three variables a, b, and ¢, correspond- b
ing to the decomposition on the right-hand side of (8.2).

(8.2). Then, for each conditional distribution we add diegiclinks (arrows) to the
graph from the nodes corresponding to the variables on wihietdistribution is
conditioned. Thus for the factgi(c|a, b), there will be links from nodes andb to
nodec, whereas for the factas(a) there will be no incoming links. The result is
the graph shown in Figure 8.1. If there is a link going from @& to a nodep,
then we say that nodeis the parentof nodeb, and we say that nodeis thechild
of nodea. Note that we shall not make any formal distinction betwee&ode and
the variable to which it corresponds but will simply use thene symbol to refer to
both.

An interesting point to note about (8.2) is that the left-thaide is symmetrical
with respect to the three variables b, andc, whereas the right-hand side is not.
Indeed, in making the decomposition in (8.2), we have inipfichosen a particular
ordering, namelys, b, ¢, and had we chosen a different ordering we would have
obtained a different decomposition and hence a differemplgcal representation.
We shall return to this point later.

For the moment let us extend the example of Figure 8.1 by derisi the joint
distribution overK variables given by(z1,...,zx). By repeated application of
the product rule of probability, this joint distributionrcde written as a product of
conditional distributions, one for each of the variables

p(z1,... xx) =p(rr|er, ..., 2x-1) ... p(x2|z1)p(21). (8.3)

For a given choice of{, we can again represent this as a directed graph having
nodes, one for each conditional distribution on the rigiutidhside of (8.3), with each
node having incoming links from all lower numbered nodes.SAfthat this graph
is fully connectedecause there is a link between every pair of nodes.

So far, we have worked with completely general joint disttibns, so that the
decompositions, and their representations as fully caedegraphs, will be applica-
ble to any choice of distribution. As we shall see shortlys theabsenceof links
in the graph that conveys interesting information aboupttoperties of the class of
distributions that the graph represents. Consider thehgsapwn in Figure 8.2.
This is not a fully connected graph because, for instanegetis no link fromz; to
9 Or fromazs to 2.

We shall now go from this graph to the corresponding repitasien of the joint
probability distribution written in terms of the product afset of conditional dis-
tributions, one for each node in the graph. Each such camditidistribution will
be conditioned only on the parents of the corresponding nottee graph. For in-
stance;s will be conditioned one; andxs. The joint distribution of all7 variables
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362 8. GRAPHICAL MODELS

Figure 8.2 Example of a directed acyclic graph describing the joint

Exercise 8.1

Exercise 8.2

distribution over variables x1,...,z7. The corresponding
decomposition of the joint distribution is given by (8.4).

is therefore given by

p(z1)p(@2)p(z3)p(wa|T1, T2, 23)P(25 |71, 23)p(26|T4) (27|74, T5). (8.4)

The reader should take a moment to study carefully the quoretence between
(8.4) and Figure 8.2.

We can now state in general terms the relationship betweédnea directed
graph and the corresponding distribution over the varg@blehe joint distribution
defined by a graph is given by the product, over all of the naddke graph, of
a conditional distribution for each node conditioned onwagables corresponding
to the parents of that node in the graph. Thus, for a graph Withodes, the joint
distribution is given by

K
p(x) = [ [ p(zxlpay,) (8.5)
k=1
wherepa, denotes the set of parents of, andx = {xi,...,zx}. This key

equation expresses tfactorizationproperties of the joint distribution for a directed
graphical model. Although we have considered each nodertesmond to a single
variable, we can equally well associate sets of variablds/antor-valued variables
with the nodes of a graph. It is easy to show that the repraenton the right-
hand side of (8.5) is always correctly normalized providedihdividual conditional
distributions are normalized.

The directed graphs that we are considering are subjectitm@ortant restric-
tion namely that there must be daected cyclesin other words there are no closed
paths within the graph such that we can move from node to nlodg ¢inks follow-
ing the direction of the arrows and end up back at the stantte. Such graphs are
also calleddirected acyclic graphor DAGs This is equivalent to the statement that
there exists an ordering of the nodes such that there arenk® that go from any
node to any lower numbered node.

8.1.1 Example: Polynomial regression

As an illustration of the use of directed graphs to descritmbability distrib-
utions, we consider the Bayesian polynomial regressionahiotroduced in Sec-
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8.1. Bayesian Networks 363

Directed graphical model representing the joint
distribution (8.6) corresponding to the Bayesian
polynomial regression model introduced in Sec-
tion 1.2.6.

tion 1.2.6. The random variables in this model are the veaft@olynomial coeffi-
cientsw and the observed data= (¢,,...,ty)T. In addition, this model contains
the input datx = (zy,...,zn)", the noise variance?, and the hyperparameter
representing the precision of the Gaussian prior eweall of which are parameters
of the model rather than random variables. Focussing jush@mandom variables
for the moment, we see that the joint distribution is giventtmyproduct of the prior
p(w) and N conditional distribution(¢,,|w) forn = 1,..., N so that

N
p(t,w) = p(w) [ ] p(talw). (8.6)

This joint distribution can be represented by a graphical@ehshown in Figure 8.3.

When we start to deal with more complex models later in the&kbave shall find
it inconvenient to have to write out multiple nodes of thenfiar , . . . , ¢y explicitly as
in Figure 8.3. We therefore introduce a graphical notatiat &llows such multiple
nodes to be expressed more compactly, in which we draw aeshegresentative
nodet,, and then surround this with a box, calleglate, labelled with/V indicating
that there areV nodes of this kind. Re-writing the graph of Figure 8.3 in tivisy,
we obtain the graph shown in Figure 8.4.

We shall sometimes find it helpful to make the parameters cbdeh as well as
its stochastic variables, explicit. In this case, (8.6)diees

N
p(t, wix, o, 0%) = p(w|a) H p(tn|W, zn, 0%).

n=1

Correspondingly, we can makeanda explicit in the graphical representation. To
do this, we shall adopt the convention that random variabilkge denoted by open
circles, and deterministic parameters will be denoted bgllemsolid circles. If we
take the graph of Figure 8.4 and include the deterministiapaters, we obtain the
graph shown in Figure 8.5.

When we apply a graphical model to a problem in machine legraor pattern
recognition, we will typically set some of the random valéshto specific observed

An alternative, more compact, representation of the graph w
shown in Figure 8.3 in which we have introduced a plate

(the box labelled N) that represents N nodes of which only

a single example ¢,, is shown explicitly.
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Figure 8.5

Figure 8.6

This shows the same model as in Figure 8.4 but — z, )
with the deterministic parameters shown explicitly
by the smaller solid nodes.

ln
N

~——

values, for example the variablés, } from the training set in the case of polynomial
curve fitting. In a graphical model, we will denote swbserved variableby shad-
ing the corresponding nodes. Thus the graph correspondiRgtire 8.5 in which
the variablegt,,} are observed is shown in Figure 8.6.  Note that the value of
is not observed, and se is an example of &tentvariable, also known astadden
variable. Such variables play a crucial role in many proligtlti models and will
form the focus of Chapters 9 and 12.

Having observed the valudg,, } we can, if desired, evaluate the posterior dis-
tribution of the polynomial coefficientsr as discussed in Section 1.2.5. For the
moment, we note that this involves a straightforward apgilin of Bayes' theorem

N
p(w|T) o p(w) [ p(talw) 8.7)

where again we have omitted the deterministic parametensier to keep the nota-
tion uncluttered.

In general, model parameters suchsaare of little direct interest in themselves,
because our ultimate goal is to make predictions for newtimplues. Suppose we
are given a new input valugand we wish to find the corresponding probability dis-
tribution for¢ conditioned on the observed data. The graphical model #sdribes
this problem is shown in Figure 8.7, and the correspondiirg fistribution of all
of the random variables in this model, conditioned on theiheinistic parameters,
is then given by

N
p(i,t, W3, X, a,0%) = [Hpanm,w,a?)] p(wla)p(ilz, w,0?).  (8.8)
n=1

As in Figure 8.5 but with the nodes {¢,} shaded — z, )
to indicate that the corresponding random vari-
ables have been set to their observed (training set)
values.
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8.1. Bayesian Networks 365

Figure 8.7 The polynomial regression model, corresponding (- T ) o
to Figure 8.6, showing also a new input value b
together with the corresponding model prediction
b,
A%
128
N
—
2 A z
? t

The required predictive distribution faris then obtained, from the sum rule of
probability, by integrating out the model parameterso that

p(t|Z,x,t, a, 0?) oc/p(?,t,wﬁ,X,a,aQ)dw

where we are implicitly setting the random variableg to the specific values ob-
served in the data set. The details of this calculation wseudsed in Chapter 3.

8.1.2 Generative models

There are many situations in which we wish to draw samples i@iven prob-
ability distribution. Although we shall devote the whole©apter 11 to a detailed
discussion of sampling methods, it is instructive to oetlrere one technique, called
ancestral samplingwhich is particularly relevant to graphical models. Cdesia
joint distributionp(x1, . . ., xx ) over K variables that factorizes according to (8.5)
corresponding to a directed acyclic graph. We shall suptiegehe variables have
been ordered such that there are no links from any node tomamy humbered node,
in other words each node has a higher number than any of gnfsaiOur goal is to
draw a samplé&,, . .., Zx from the joint distribution.

To do this, we start with the lowest-numbered node and draawgpte from the
distributionp(z, ), which we callz;. We then work through each of the nodes in or-
der, so that for node we draw a sample from the conditional distributje(a: , |pa,, )
in which the parent variables have been set to their samplie@s. Note that at each
stage, these parent values will always be available bethegeorrespond to lower-
numbered nodes that have already been sampled. Technigyusanipling from
specific distributions will be discussed in detail in Chadté. Once we have sam-
pled from the final variable x, we will have achieved our objective of obtaining a
sample from the joint distribution. To obtain a sample frasme marginal distrib-
ution corresponding to a subset of the variables, we singg the sampled values
for the required nodes and ignore the sampled values foretihaining nodes. For
example, to draw a sample from the distributjgx,, z4), we simply sample from
the full joint distribution and then retain the valugsg z, and discard the remaining
values{Z;zs.4}.
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Figure 8.8 A graphical model representing the process by which Object Position Orientation

Section 2.4

images of objects are created, in which the identity
of an object (a discrete variable) and the position and
orientation of that object (continuous variables) have
independent prior probabilities. The image (a vector
of pixel intensities) has a probability distribution that
is dependent on the identity of the object as well as
on its position and orientation.

Image

For practical applications of probabilistic models, iti§ipically be the higher-
numbered variables corresponding to terminal nodes of tlyehgthat represent the
observations, with lower-numbered nodes correspondirigtemt variables. The
primary role of the latent variables is to allow a complichtistribution over the
observed variables to be represented in terms of a modefrootesd from simpler
(typically exponential family) conditional distributign

We can interpret such models as expressing the processdudiytive observed
data arose. For instance, consider an object recognitsiriniavhich each observed
data point corresponds to an image (comprising a vectoneal pitensities) of one
of the objects. In this case, the latent variables might lzawv@nterpretation as the
position and orientation of the object. Given a particulsserved image, our goal is
to find the posterior distribution over objects, in which weegrate over all possible
positions and orientations. We can represent this probkingua graphical model
of the form show in Figure 8.8.

The graphical model captures tbausalprocess (Pearl, 1988) by which the ob-
served data was generated. For this reason, such modelearealledgenerative
models. By contrast, the polynomial regression model dasdrby Figure 8.5 is
not generative because there is no probability distrilbugissociated with the input
variablex, and so it is not possible to generate synthetic data paios this model.
We could make it generative by introducing a suitable pristridbutionp(z), at the
expense of a more complex model.

The hidden variables in a probabilistic model need not, awnehave any ex-
plicit physical interpretation but may be introduced siynfa allow a more complex
joint distribution to be constructed from simpler compotsenin either case, the
technique of ancestral sampling applied to a generativeehmoidnics the creation
of the observed data and would therefore give rise to ‘fantieta whose probability
distribution (if the model were a perfect representatioreafity) would be the same
as that of the observed data. In practice, producing syintbbservations from a
generative model can prove informative in understandiarddhm of the probability
distribution represented by that model.

8.1.3 Discrete variables

We have discussed the importance of probability distrimgithat are members
of the exponential family, and we have seen that this fammitiudes many well-
known distributions as particular cases. Although suclkridigions are relatively
simple, they form useful building blocks for constructingma complex probability
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8.1. Bayesian Networks 367

Figure 8.9 (a) This fully-connected graph describes a general distrib- X1 X2

ution over two K-state discrete variables having a total of @) O—O
K? — 1 parameters. (b) By dropping the link between the

nodes, the number of parameters is reduced to 2(K — 1). X1 X5

distributions, and the framework of graphical models is/weseful in expressing the
way in which these building blocks are linked together.

Such models have particularly nice properties if we chobselationship be-
tween each parent-child pair in a directed graph to be catgygand we shall ex-
plore several examples of this shortly. Two cases are pdatly worthy of note,
namely when the parent and child node each correspond teetliseariables and
when they each correspond to Gaussian variables, becatisesi& two cases the
relationship can be extended hierarchically to constrehgtrarily complex directed
acyclic graphs. We begin by examining the discrete case.

The probability distributiorp(x|u) for a single discrete variablke having K
possible states (using the 1-Afrepresentation) is given by

p(x|p) = H i (8.9)

and is governed by the parametgrs= (u1,...,ux)T. Due to the constraint
> xir = 1, only K — 1 values foru, need to be specified in order to define the
distribution.

Now suppose that we have two discrete variablesandx,, each of which has
K states, and we wish to model their joint distribution. Weaterthe probability of
observing bothr,;, = 1 andxy;, = 1 by the parametet,;, wherex; denotes the
k" component ok, and similarly forz,;. The joint distribution can be written

p(x1, Xa|p) = HHMGlekxm.

Because the parametgrg are subject to the constrailt, », y; = 1, this distri-
bution is governed byK? — 1 parameters. It is easily seen that the total number of
parameters that must be specified for an arbitrary jointidigion over)/ variables

is KM — 1 and therefore grows exponentially with the numbé&of variables.

Using the product rule, we can factor the joint distributigs; , x,) in the form
p(x2]x1)p(x1), which corresponds to a two-node graph with a link going fitbim
x; hode to thex, node as shown in Figure 8.9(a). The marginal distributity )
is governed by — 1 parameters, as before, Similarly, the conditional distrin
p(x2|x1) requires the specification df — 1 parameters for each of thi€ possible
values ofx;. The total number of parameters that must be specified indiné¢ j
distribution is thereforé K — 1) + K(K — 1) = K* — 1 as before.

Now suppose that the variables andx, were independent, corresponding to
the graphical model shown in Figure 8.9(b). Each variablthén described by
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368 8. GRAPHICAL MODELS

Figure 8.10 This chain of M discrete nodes, each X1 X2 XM
having K states, requires the specification of K — 1 + Q—.O_. e 4.0
(M — 1)K(K — 1) parameters, which grows linearly

with the length M of the chain. In contrast, a fully con-

nected graph of M nodes would have K —1 parame-
ters, which grows exponentially with M.

a separate multinomial distribution, and the total numbfgpavameters would be
2(K — 1). For a distribution oved/ independent discrete variables, each having

states, the total number of parameters would/bgk — 1), which therefore grows

linearly with the number of variables. From a graphical pecdive, we have reduced
the number of parameters by dropping links in the graph,eaékpense of having a
restricted class of distributions.

More generally, if we havé/ discrete variablex,,...,x,;, we can model
the joint distribution using a directed graph with one vialéecorresponding to each
node. The conditional distribution at each node is given gtaf nonnegative para-
meters subject to the usual normalization constraint.dfghaph is fully connected
then we have a completely general distribution haviitf — 1 parameters, whereas
if there are no links in the graph the joint distribution farizes into the product of
the marginals, and the total number of parametefd {§C — 1). Graphs having in-
termediate levels of connectivity allow for more generatidbutions than the fully
factorized one while requiring fewer parameters than threeggd joint distribution.
As an illustration, consider the chain of nodes shown in FEd110. The marginal
distributionp(x;) requiresK — 1 parameters, whereas each of the— 1 condi-
tional distributionsp(x;|x;_1), fori = 2,..., M, requiresk (K — 1) parameters.
This gives a total parameter countif— 1+ (M — 1) K (K — 1), which is quadratic
in K and which grows linearly (rather than exponentially) whie tengthM of the
chain.

An alternative way to reduce the number of independent petensin a model
is by sharingparameters (also known &gng of parameters). For instance, in the
chain example of Figure 8.10, we can arrange that all of tiheitional distributions
p(x;|x;_1),fori =2,..., M, are governed by the same sefof K —1) parameters.
Together with the< — 1 parameters governing the distributionsaf, this gives a total
of K? — 1 parameters that must be specified in order to define the jitittulition.

We can turn a graph over discrete variables into a Bayesiatehry introduc-
ing Dirichlet priors for the parameters. From a graphicahpof view, each node
then acquires an additional parent representing the Daticlistribution over the pa-
rameters associated with the corresponding discrete Adde is illustrated for the
chain model in Figure 8.11. The corresponding model in whietie the parame-
ters governing the conditional distributiopgx;|x;_1), fori = 2,..., M, is shown
in Figure 8.12.

Another way of controlling the exponential growth in the raenof parameters
in models of discrete variables is to use parameterized mddethe conditional
distributions instead of complete tables of conditionallqability values. To illus-
trate this idea, consider the graph in Figure 8.13 in whitbfahe nodes represent
binary variables. Each of the parent variablgss governed by a single parame-
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Figure 8.12
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Figure 8.13
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An extension of the model of K1 o 1293
Figure 8.10 to include Dirich-

let priors over the parame-

ters governing the discrete

distributions.

X1 X2 XM

As in Figure 8.11 but with a sin-
gle set of parameters u shared
amongst all of the conditional
distributions p(x:|x:—1).

ter uu; representing the probability(z; = 1), giving M parameters in total for the
parent nodes. The conditional distributipfy|x1, . . ., 2 ), however, would require
2M parameters representing the probabilify = 1) for each of the2™ possible
settings of the parent variables. Thus in general the numibearameters required
to specify this conditional distribution will grow expontgdly with A/. We can ob-
tain a more parsimonious form for the conditional distribatby using a logistic
sigmoid function acting on a linear combination of the paremiables, giving

M

ply=1x1,...,2pm) =0 (wo + Zw1x1> =o(w'x) (8.10)

=1

whereo(a) = (1+exp(—a))~! is the logistic sigmoidx = (zg, x1, ...,z )T isan
(M + 1)-dimensional vector of parent states augmented with artiaddl variable
xo Whose value is clamped to 1, amd= (wq, w1, ..., wy )T is a vector ofM + 1
parameters. This is a more restricted form of conditiorgttiution than the general
case but is now governed by a number of parameters that grosesly with M. In
this sense, it is analogous to the choice of a restrictive fofrcovariance matrix (for
example, a diagonal matrix) in a multivariate Gaussiarridigtion. The motivation
for the logistic sigmoid representation was discussed aii@e4.2.

A graph comprising M parents z1,...,zy and a sin- T Ty
gle child y, used to illustrate the idea of parameterized
conditional distributions for discrete variables.
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8.1.4 Linear-Gaussian models

In the previous section, we saw how to construct joint prdlghlistributions
over a set of discrete variables by expressing the variadesodes in a directed
acyclic graph. Here we show how a multivariate Gaussian eaaxpressed as a
directed graph corresponding to a linear-Gaussian modsltbe component vari-
ables. This allows us to impose interesting structure ondtbtibution, with the
general Gaussian and the diagonal covariance Gaussiagsegping opposite ex-
tremes. Several widely used techniques are examples @rifBaussian models,
such as probabilistic principal component analysis, faatwlysis, and linear dy-
namical systems (Roweis and Ghahramani, 1999). We shak metensive use of
the results of this section in later chapters when we consimtae of these techniques
in detail.

Consider an arbitrary directed acyclic graph o¥ewariables in which nodeé
represents a single continuous random varialléaving a Gaussian distribution.
The mean of this distribution is taken to be a linear comliamadf the states of its
parent nodepa, of nodei

plwilpay) =N [ @i | > wia; + by, v; (8.11)
jepai
wherew;; andb; are parameters governing the mean, antg the variance of the

conditional distribution for;. The log of the joint distribution is then the log of the
product of these conditionals over all nodes in the graphhemde takes the form

D
Inp(x) = Y Inp(x|pa,) (8.12)
i=1
2

D
1
- Z_; 20; Li— Z wi;T; — b; |+ const (8.13)

jEpai

wherex = (z1,...,2p)T and ‘const’ denotes terms independenkofWe see that
this is a quadratic function of the componentxofand hence the joint distribution
p(x) is a multivariate Gaussian.

We can determine the mean and covariance of the joint disiib recursively
as follows. Each variable; has (conditional on the states of its parents) a Gaussian
distribution of the form (8.11) and so

x; = Z wi;T; + b; + \/’U—Z‘GZ‘ (814)
Jj€Epa;

wherege; is a zero mean, unit variance Gaussian random variablégagE|[e;] = 0
andE[e;e;] = I;;, wherel;; is thei, j element of the identity matrix. Taking the
expectation of (8.14), we have

Elwi] = ) wiEla;] + bi. (8.15)

J€pa;
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Figure 8.14 A directed graph over three Gaussian variables, 1 T2 T3

Section 2.3

Exercise 8.7

with one missing link. O—O—O

Thus we can find the componentsigfix] = (E[x],...,E[zp])T by starting at the
lowest numbered node and working recursively through tlaplyithere we again
assume that the nodes are numbered such that each node hagrarhimber than
its parents). Similarly, we can use (8.14) and (8.15) toiolitee 7, j element of the
covariance matrix fop(x) in the form of a recursion relation

covlzi, z;] = E[(z; — Elxi])(z; — E[z;])]

E |(z; —Elai]) § Y win(ar — Elay]) + /e,

kEpa;

= Z wjkcov(x;, x] + I;;v; (8.16)

kEpa,;

and so the covariance can similarly be evaluated recuys$tetting from the lowest
numbered node.

Let us consider two extreme cases. First of all, supposetieat are no links
in the graph, which therefore comprisBsisolated nodes. In this case, there are no
parametersy;; and so there are judd parameter$; and D parameters;. From
the recursion relations (8.15) and (8.16), we see that thenrép(x) is given by
(by,...,bp)T and the covariance matrix is diagonal of the fatiag(vy, ..., vp).
The joint distribution has a total &D parameters and represents a sebohde-
pendent univariate Gaussian distributions.

Now consider a fully connected graph in which each node Hdewaér num-
bered nodes as parents. The matrix then hasi — 1 entries on theé'® row and
hence is a lower triangular matrix (with no entries on thelieg diagonal). Then
the total number of parameters; is obtained by taking the numbé&?* of elements
in aD x D matrix, subtracting) to account for the absence of elements on the lead-
ing diagonal, and then dividing t®/because the matrix has elements only below the
diagonal, giving a total oD (D — 1) /2. The total number of independent parameters
{w;;} and{v;} in the covariance matrix is therefof@(D + 1)/2 corresponding to
a general symmetric covariance matrix.

Graphs having some intermediate level of complexity c@wes to joint Gaussian
distributions with partially constrained covariance ries. Consider for example
the graph shown in Figure 8.14, which has a link missing betwariables:; and
x3. Using the recursion relations (8.15) and (8.16), we setetlieamean and
covariance of the joint distribution are given by

p = (b, by 4 warby, by + wsaby + wsgwarby) " (8.17)
U1 W21 W3z2W21V1
z = Wa V1 Vo + W3 vy w3a (Ve + w3, v1) .(8.18)
W32W21V1 LU32(’U2 + wglvl) V3 + ’LU§2(’U2 + wglvl)
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We can readily extend the linear-Gaussian graphical moddle case in which
the nodes of the graph represent multivariate Gaussiaabtas. In this case, we can
write the conditional distribution for noden the form

p(xilpa;) =N [ x| Y Wix; +b;, 5, (8.19)

J€pa;

where nowW;; is a matrix (which is nonsquarexf; andx; have different dimen-
sionalities). Again it is easy to verify that the joint dibtition over all variables is
Gaussian.
Note that we have already encountered a specific example éhdrar-Gaussian
Section 2.3.6 relationship when we saw that the conjugate prior for themmeaf a Gaussian
variablex is itself a Gaussian distribution ovgar The joint distribution ovex and
w is therefore Gaussian. This corresponds to a simple twe-mgpdph in which
the node representing is the parent of the node representiagThe mean of the
distribution overu is a parameter controlling a prior, and so it can be viewed as a
hyperparameter. Because the value of this hyperparametgiteelf be unknown,
we can again treat it from a Bayesian perspective by intrindua prior over the
hyperparameter, sometimes calledyperprior, which is again given by a Gaussian
distribution. This type of construction can be extendedingiple to any level and is
an illustration of ehierarchical Bayesian modebf which we shall encounter further
examples in later chapters.

8.2. Conditional Independence

An important concept for probability distributions over hiple variables is that of
conditional independeng®awid, 1980). Consider three variablesh, and¢, and
suppose that the conditional distributionagfgivenb andc, is such that it does not
depend on the value &f so that

p(alb, c) = p(alc). (8.20)

We say that is conditionally independent dfgivenc. This can be expressed in a
slightly different way if we consider the joint distributicof « andb conditioned on
¢, which we can write in the form

pla,ble) = p(alb, c)p(blc)
= plale)p(ble). (8.21)

where we have used the product rule of probability togeth#r (8.20). Thus we
see that, conditioned an the joint distribution ofe andb factorizes into the prod-
uct of the marginal distribution of and the marginal distribution df (again both
conditioned orx). This says that the variablesandb are statistically independent,
givenc. Note that our definition of conditional independence vétjuire that (8.20),
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Figure 8.15 The first of three examples of graphs over three variables c
a, b, and ¢ used to discuss conditional independence
properties of directed graphical models.

Q
S

or equivalently (8.21), must hold for every possible valfie,@and not just for some
values. We shall sometimes use a shorthand notation foritgamal independence
(Dawid, 1979) in which

allble (8.22)

denotes that is conditionally independent éfgivenc and is equivalent to (8.20).

Conditional independence properties play an importaetirousing probabilis-
tic models for pattern recognition by simplifying both theusture of a model and
the computations needed to perform inference and learnidgnthat model. We
shall see examples of this shortly.

If we are given an expression for the joint distribution oseset of variables in
terms of a product of conditional distributions (i.e., thathematical representation
underlying a directed graph), then we could in principld tgbether any poten-
tial conditional independence property holds by repeapgdi@ation of the sum and
product rules of probability. In practice, such an approaohld be very time con-
suming. An important and elegant feature of graphical modethat conditional
independence properties of the joint distribution can lagl @irectly from the graph
without having to perform any analytical manipulations. eTdeneral framework
for achieving this is called-separationwhere the ‘d’ stands for ‘directed’ (Pearl,
1988). Here we shall motivate the concept of d-separatidrgare a general state-
ment of the d-separation criterion. A formal proof can beiiin Lauritzen (1996).

8.2.1 Three example graphs

We begin our discussion of the conditional independencpsgties of directed
graphs by considering three simple examples each involyiaghs having just three
nodes. Together, these will motivate and illustrate thedancepts of d-separation.
The first of the three examples is shown in Figure 8.15, anddiné distribution
corresponding to this graph is easily written down usinggaeeral result (8.5) to
give

p(a, b, c) = p(ale)p(blc)p(c). (8.23)
If none of the variables are observed, then we can investightthern andb are
independent by marginalizing both sides of (8.23) with ee$poc to give

p(a,b) = plale)p(ble)p(c). (8.24)

In general, this does not factorize into the produet)p(b), and so
all b|0 (8.25)
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Figure 8.16 As in Figure 8.15 but where we have conditioned on the ¢

Figure 8.17

value of variable c.

Q
S

where() denotes the empty set, and the symbiiomeans that the conditional inde-
pendence property does not hold in general. Of course, itho&/for a particular
distribution by virtue of the specific numerical values asated with the various
conditional probabilities, but it does not follow in geneiram the structure of the
graph.

Now suppose we condition on the varialsleas represented by the graph of
Figure 8.16. From (8.23), we can easily write down the coowét! distribution of
a andb, giveng, in the form

p(a,b,c)
p(c)
= p(alc)p(blc)

pla;ble) =

and so we obtain the conditional independence property
allb|ec.

We can provide a simple graphical interpretation of thisiltelsy considering
the path from node to nodeb via c. The nodec is said to betail-to-tail with re-
spect to this path because the node is connected to the ttalile two arrows, and
the presence of such a path connecting nedasdb causes these nodes to be de-
pendent. However, when we condition on nedas in Figure 8.16, the conditioned
node ‘blocks’ the path froma to b and causes andb to become (conditionally)
independent.

We can similarly consider the graph shown in Figure 8.17. johe distribu-
tion corresponding to this graph is again obtained from @uregal formula (8.5) to
give

p(a,b,c) = p(a)p(cla)p(blc). (8.26)

First of all, suppose that none of the variables are obsergdin, we can test to
see ifa andb are independent by marginalizing oveto give

pa,b) = p(a) Y plcla)p(ble) = p(a)p(bla).

The second of our three examples of 3-node a c b

graphs used to motivate the conditional indepen- < ) ,< ) ,< )
dence framework for directed graphical models.
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Figure 8.18 As in Figure 8.17 but now conditioningon nodec. a c b

Figure 8.19

O—@—0O

which in general does not factorize ini¢a)p(b), and so
all b|0 (8.27)

as before.
Now suppose we condition on nodgeas shown in Figure 8.18. Using Bayes’
theorem, together with (8.26), we obtain

pla;ble) =

p(a)p(cla)p(ble)
p(c)
= p(ale)p(blc)

and so again we obtain the conditional independence propert
allbd]|e

As before, we can interpret these results graphically. Tdaen is said to be
head-to-tailwith respect to the path from nodeto nodeb. Such a path connects
nodese andb and renders them dependent. If we now obsenas in Figure 8.18,
then this observation ‘blocks’ the path framto b and so we obtain the conditional
independence property L b | c.

Finally, we consider the third of our 3-node examples, shbwyithe graph in
Figure 8.19. As we shall see, this has a more subtle behathaur the two
previous graphs.

The joint distribution can again be written down using oung&l result (8.5) to
give

p(a, b, ¢) = p(a)p(b)p(cla, b). (8.28)

Consider first the case where none of the variables are adaseMarginalizing both
sides of (8.28) over we obtain

p(a,b) = p(a)p(b)

The last of our three examples of 3-node graphs usedto ¢ b
explore conditional independence properties in graphi-

cal models. This graph has rather different properties

from the two previous examples.
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Figure 8.20 As in Figure 8.19 but conditioning on the value of node ¢ b

Exercise 8.10

c. In this graph, the act of conditioning induces a depen-
dence between a and b.

and soa andb are independent with no variables observed, in contrastadwo
previous examples. We can write this result as

allb|0. (8.29)

Now suppose we condition of) as indicated in Figure 8.20. The conditional
distribution ofa andb is then given by

p(a, b, c)
p(c)
p(a)p(b)p(cla, b)
p(c)

p(a,ble) =

which in general does not factorize into the produ(t)p(b), and so

all b]ec.

Thus our third example has the opposite behaviour from thetfiro. Graphically,
we say that node is head-to-headwvith respect to the path from to b because it
connects to the heads of the two arrows. When nodeunobserved, it ‘blocks’
the path, and the variablesandb are independent. However, conditioning on
‘unblocks’ the path and rendessandb dependent.

There is one more subtlety associated with this third exartit we need to
consider. First we introduce some more terminology. We bayodey is ade-
scendanf nodex if there is a path fromx to y in which each step of the path
follows the directions of the arrows. Then it can be shown #hlaead-to-head path
will become unblocked if either the nodar, any of its descendants observed.

In summary, a tail-to-tail node or a head-to-tail node Isaagyath unblocked
unless it is observed in which case it blocks the path. Byreshta head-to-head
node blocks a path if it is unobserved, but once the nodepaatiieast one of its
descendants, is observed the path becomes unblocked.

Itis worth spending a moment to understand further the uaddsehaviour of the
graph of Figure 8.20. Consider a particular instance of sughaph corresponding
to a problem with three binary random variables relatindieftiel system on a car,
as shown in Figure 8.21.  The variables are calledepresenting the state of a
battery that is either charged (= 1) or flat (B = 0), F' representing the state of
the fuel tank that is either full of fuel{ = 1) or empty ¢ = 0), andG, which is
the state of an electric fuel gauge and which indicates efthe( G = 1) or empty
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B F B F B F

G G G

Figure 8.21 An example of a 3-node graph used to illustrate the phenomenon of ‘explaining away’. The three
nodes represent the state of the battery (B), the state of the fuel tank (F) and the reading on the electric fuel
gauge (G). See the text for details.

(G = 0). The battery is either charged or flat, and independendyfilel tank is
either full or empty, with prior probabilities

p(B=1) = 0.9
p(F=1) = 009.

Given the state of the fuel tank and the battery, the fuel gaagds full with proba-
bilities given by

p(G=1B=1,F=1) = 0.8
p(G=1B=1,F=0) = 0.2
p(G=1B=0,F=1) = 0.2
p(G=1B=0,F=0) = 0.1

so this is a rather unreliable fuel gauge! All remaining [abilities are determined
by the requirement that probabilities sum to one, and so we a@omplete specifi-
cation of the probabilistic model.

Before we observe any data, the prior probability of the faak being empty
isp(F = 0) = 0.1. Now suppose that we observe the fuel gauge and discover that
it reads empty, i.e.(7 = 0, corresponding to the middle graph in Figure 8.21. We
can use Bayes’ theorem to evaluate the posterior probabflithe fuel tank being
empty. First we evaluate the denominator for Bayes’ theggien by

> > p(G=0[B,F)p(B)p(F) = 0.315 (8.30)
Be{0,1} Fe{0,1}
and similarly we evaluate
p(G=0F=0)= > p(G=0B,F=0)p(B) =081 (8.31)
Be{0,1}
and using these results we have

p(G =0|F = 0)p(F =0)
p(G =0)

p(F =0|G=0)= ~ 0.257 (8.32)
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and sop(F = 0|G = 0) > p(F = 0). Thus observing that the gauge reads empty
makes it more likely that the tank is indeed empty, as we wntldgtively expect.
Next suppose that we also check the state of the battery ashdhiat it is flat, i.e.,

B = 0. We have now observed the states of both the fuel gauge arivhttezy, as
shown by the right-hand graph in Figure 8.21. The posteriobability that the fuel
tank is empty given the observations of both the fuel gaugktaa battery state is
then given by

p(G=0|B=0,F =0)p(F =0)
ZFG{O,l} p(G =0|B=0,F)p(F)

where the prior probability(B = 0) has cancelled between numerator and denom-
inator. Thus the probability that the tank is empty liesreasedfrom 0.257 to
0.111) as a result of the observation of the state of the batterg ddctords with our
intuition that finding out that the battery is flatplains awayhe observation that the
fuel gauge reads empty. We see that the state of the fuel tahthat of the battery
have indeed become dependent on each other as a result ofinhgbe reading
on the fuel gauge. In fact, this would also be the case ifgabtof observing the
fuel gauge directly, we observed the state of some descentléh Note that the
probabilityp(F = 0|G = 0, B = 0) ~ 0.111 is greater than the prior probability
p(F' = 0) = 0.1 because the observation that the fuel gauge reads zenrstildes
some evidence in favour of an empty fuel tank.

p(F=0/G=0,B=0)= ~0.111 (8.33)

8.2.2 D-separation

We now give a general statement of the d-separation profieeigrl, 1988) for
directed graphs. Consider a general directed graph in whijch, andC are arbi-
trary nonintersecting sets of nodes (whose union may belanthén the complete
set of nodes in the graph). We wish to ascertain whether é&pkait conditional
independence statemefitll. B | C'is implied by a given directed acyclic graph. To
do so, we consider all possible paths from any nod# in any node inB. Any such
path is said to bélockedif it includes a node such that either

(a) the arrows on the path meet either head-to-tail or taibtbat the node, and the
node is in the sef’, or

(b) the arrows meet head-to-head at the node, and neither thee nodany of its
descendants, is in the g€t

If all paths are blocked, theA is said to be d-separated fraBby C, and the joint
distribution over all of the variables in the graph will sfi§iA 1l B | C.

The concept of d-separation is illustrated in Figure 8.22graph (a), the path
from a to b is not blocked by nod¢g because it is a tail-to-tail node for this path
and is not observed, nor is it blocked by nadbecause, although the latter is a
head-to-head node, it has a descenddntcause is in the conditioning set. Thus
the conditional independence statement. b | ¢ doesnot follow from this graph.

In graph (b), the path from to b is blocked by nod¢g because this is a tail-to-tail
node that is observed, and so the conditional independenperttya 1L b | f will
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Figure 8.22 lllustration of the con-
cept of d-separation. See the text for

details.

Section 2.3

Figure 8.23

(a) (b)

be satisfied by any distribution that factorizes accordintipis graph. Note that this
path is also blocked by nodebecause is a head-to-head node and neither it nor its
descendant are in the conditioning set.

For the purposes of d-separation, parameters suchasd o2 in Figure 8.5,
indicated by small filled circles, behave in the same was asmkd nodes. How-
ever, there are no marginal distributions associated witth $iodes. Consequently
parameter nodes never themselves have parents and sdaltipaiugh these nodes
will always be tail-to-tail and hence blocked. Consequettiey play no role in
d-separation.

Another example of conditional independence and d-separit provided by
the concept of i.i.d. (independent identically distrili)telata introduced in Sec-
tion 1.2.4. Consider the problem of finding the posteriotridigtion for the mean
of a univariate Gaussian distribution. This can be represtoy the directed graph
shown in Figure 8.23 in which the joint distribution is definey a priorp(u) to-
gether with a set of conditional distributiopér,, |;1) forn = 1,..., N. In practice,
we observeD = {z,,..., 2y} and our goal is to infer. Suppose, for a moment,
that we condition o and consider the joint distribution of the observationsngs
d-separation, we note that there is a unique path fromwang any others;.; and
that this path is tail-to-tail with respect to the observed&u.. Every such path is
blocked and so the observatiobs= {z1, ..., zy} are independent given so that

N
p(Dlu) = ] plaalp). (8:34)

n=1

(@) Directed graph corre- H
sponding to the problem
of inferring the mean p of
a univariate Gaussian dis-
tribution from observations
Z1,...,xn. (b) The same
graph drawn using the plate
notation.

(b)
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Figure 8.24 A graphical representation of the ‘naive Bayes’

Section 3.3

8. GRAPHICAL MODELS

model for classification.  Conditioned on the
class label z, the components of the observed
vector x = (z1,...,zp)T are assumed to be
independent.

However, if we integrate over, the observations are in general no longer indepen-
dent

0 N
p(D) = / p(Dl)p() d £ [ plan). (5.35)

n=1

Herep is a latent variable, because its value is not observed.

Another example of a model representing i.i.d. data is tla@lgin Figure 8.7
corresponding to Bayesian polynomial regression. Heratibehastic nodes corre-
spond to{t, }, w andz. We see that the node fev is tail-to-tail with respect to
the path fron¥ to any one of the nodes and so we have the following conditional
independence property

T t, | w. (8.36)

Thus, conditioned on the polynomial coefficierts the predictive distribution for
1is independent of the training dafa,, ...,tx}. We can therefore first use the
training data to determine the posterior distribution ahercoefficientsy and then
we can discard the training data and use the posterioritivh for w to make
predictions oft for new input observations.

A related graphical structure arises in an approach to ifilzst#on called the
naive Bayesnodel, in which we use conditional independence assungptmseim-
plify the model structure. Suppose our observed variabigists of aD-dimensional
vectorx = (z1,...,2p)T, and we wish to assign observed values @b one of K
classes. Using the 1-df- encoding scheme, we can represent these classe&by a
dimensional binary vectar. We can then define a generative model by introducing
a multinomial priorp(z|u) over the class labels, where thé componeni;, of
is the prior probability of clas€§y, together with a conditional distribution(x|z)
for the observed vectat. The key assumption of the naive Bayes model is that,
conditioned on the class the distributions of the input variables, . . ., zp are in-
dependent. The graphical representation of this modebwslin Figure 8.24. We
see that observation afblocks the path betweern andz; for j # i (because such
paths are tail-to-tail at the nodg and sox; andx; are conditionally independent
givenz. If, however, we marginalize out (so thatz is unobserved) the tail-to-tail
path fromz; to x; is no longer blocked. This tells us that in general the maigin
densityp(x) will not factorize with respect to the componentsofWe encountered
a simple application of the naive Bayes model in the contéxXtising data from
different sources for medical diagnosis in Section 1.5.

If we are given a labelled training set, comprising inpiss, . . ., xy } together
with their class labels, then we can fit the naive Bayes manéhe training data
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using maximum likelihood assuming that the data are drawlependently from

the model. The solution is obtained by fitting the model fochealass separately
using the correspondingly labelled data. As an examplg@smthat the probability
density within each class is chosen to be Gaussian. In tlsis, ¢he naive Bayes
assumption then implies that the covariance matrix for €aahssian is diagonal,
and the contours of constant density within each class witbhis-aligned ellipsoids.
The marginal density, however, is given by a superpositiodiagonal Gaussians
(with weighting coefficients given by the class priors) andwll no longer factorize

with respect to its components.

The naive Bayes assumption is helpful when the dimensign&liof the input
space is high, making density estimation in the fifdimensional space more chal-
lenging. It is also useful if the input vector contains botbcdete and continuous
variables, since each can be represented separately ygingpsiate models (e.g.,
Bernoulli distributions for binary observations or Gaass for real-valued vari-
ables). The conditional independence assumption of thigetrie clearly a strong
one that may lead to rather poor representations of the-ctasditional densities.
Nevertheless, even if this assumption is not preciselygfiadi, the model may still
give good classification performance in practice becalsdeleision boundaries can
be insensitive to some of the details in the class-conditidensities, as illustrated
in Figure 1.27.

We have seen that a particular directed graph represen¢sisplecomposition
of a joint probability distribution into a product of conidibal probabilities. The
graph also expresses a set of conditional independeneengtats obtained through
the d-separation criterion, and the d-separation thecsegaily an expression of the
equivalence of these two properties. In order to make tleiarclt is helpful to think
of a directed graph as a filter. Suppose we consider a patigoiht probability
distributionp(x) over the variables corresponding to the (nonobserved) nodes of
the graph. The filter will allow this distribution to passdiigh if, and only if, it can
be expressed in terms of the factorization (8.5) impliedhgygraph. If we present to
the filter the set of all possible distributiopéx) over the set of variables, then the
subset of distributions that are passed by the filter will eeadedDF, for directed
factorization This is illustrated in Figure 8.25.  Alternatively, we caseuthe
graph as a different kind of filter by first listing all of thereditional independence
properties obtained by applying the d-separation criteta the graph, and then
allowing a distribution to pass only if it satisfies all of #eeproperties. If we present
all possible distributiong(x) to this second kind of filter, then the d-separation
theorem tells us that the set of distributions that will Hevaéd through is precisely
the setDF.

It should be emphasized that the conditional independeragepties obtained
from d-separation apply to any probabilistic model desmtiby that particular di-
rected graph. This will be true, for instance, whether thieabdes are discrete or
continuous or a combination of these. Again, we see thatticpkar graph is de-
scribing a whole family of probability distributions.

At one extreme we have a fully connected graph that exhilbitsomditional in-
dependence properties at all, and which can represent asybejoint probability
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8. GRAPHICAL MODELS

Figure 8.25 We can view a graphical model (in this case a directed graph) as a filter in which a prob-

ability distribution p(x) is allowed through the filter if, and only if, it satisfies the directed
factorization property (8.5). The set of all possible probability distributions p(x) that pass
through the filter is denoted DF. We can alternatively use the graph to filter distributions
according to whether they respect all of the conditional independencies implied by the
d-separation properties of the graph. The d-separation theorem says that it is the same
set of distributions DF that will be allowed through this second kind of filter.

distribution over the given variables. The g&F will contain all possible distrib-
utionsp(x). At the other extreme, we have the fully disconnected graph,one
having no links at all. This corresponds to joint distriloms which factorize into the
product of the marginal distributions over the variablesipasing the nodes of the
graph.

Note that for any given graph, the set of distributidng will include any dis-
tributions that have additional independence properte®bd those described by
the graph. For instance, a fully factorized distributiotl aiways be passed through
the filter implied by any graph over the corresponding setaoiables.

We end our discussion of conditional independence pragsebly exploring the
concept of aMarkov blanketor Markov boundary Consider a joint distribution
p(x1,...,xp) represented by a directed graph haviighodes, and consider the
conditional distribution of a particular node with variabk; conditioned on all of
the remaining variables;_;. Using the factorization property (8.5), we can express
this conditional distribution in the form

p(X1,...,Xp)
P(Xz‘\x{j#}) -
/p(xl, .o, xp)dx;
T »(xeloae)
k

[ T ptxelpa)
k

in which the integral is replaced by a summation in the caslsofete variables. We
now observe that any factp(xy|pa;, ) that does not have any functional dependence
on x; can be taken outside the integral owgr and will therefore cancel between
numerator and denominator. The only factors that remaihbeilthe conditional
distributionp(x;|pa;) for nodex; itself, together with the conditional distributions
for any nodes;, such that node; is in the conditioning set gf(xx|pa; ), in other
words for whichx; is a parent okj. The conditionap(x;|pa;) will depend on the
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Figure 8.26 The Markov blanket of a node x; comprises the set

8.3.

of parents, children and co-parents of the node. It
has the property that the conditional distribution of
x;, conditioned on all the remaining variables in the
graph, is dependent only on the variables in the

Markov blanket. Li

parents of node;, whereas the conditionajgx|pa;,) will depend on the children

of x; as well as on theo-parentsin other words variables corresponding to parents
of nodex;, other than nodg;. The set of nodes comprising the parents, the children
and the co-parents is called the Markov blanket and is itist! in Figure 8.26. We
can think of the Markov blanket of a nodg as being the minimal set of nodes that
isolatesx; from the rest of the graph. Note that it is not sufficient tduie only the
parents and children of nodg because the phenomenon of explaining away means
that observations of the child nodes will not block paths®do-parents. We must
therefore observe the co-parent nodes also.

Markov Random Fields

Section 8.2

We have seen that directed graphical models specify a faatmm of the joint dis-
tribution over a set of variables into a product of local atindal distributions. They
also define a set of conditional independence properti¢sthst be satisfied by any
distribution that factorizes according to the graph. We toow to the second ma-
jor class of graphical models that are described by undicegtaphs and that again
specify both a factorization and a set of conditional indefsnce relations.

A Markov random fieldalso known as aarkov networkor an undirected
graphical modelKindermann and Snell, 1980), has a set of nodes each of which
corresponds to a variable or group of variables, as well ast @fslinks each of
which connects a pair of nodes. The links are undirected,ishthey do not carry
arrows. In the case of undirected graphs, it is conveniebéegpn with a discussion
of conditional independence properties.

8.3.1 Conditional independence properties

In the case of directed graphs, we saw that it was possibéstavhether a par-
ticular conditional independence property holds by apgya graphical test called
d-separation. This involved testing whether or not the patinnecting two sets of
nodes were ‘blocked’. The definition of blocked, howeverswsamewhat subtle
due to the presence of paths having head-to-head nodes. gt ask whether it
is possible to define an alternative graphical semanticpriaipability distributions
such that conditional independence is determined by sigwaleh separation. This
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