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8
Graphical

Models

Probabilities play a central role in modern pattern recognition. We have seen in
Chapter 1 that probability theory can be expressed in terms of two simple equations
corresponding to the sum rule and the product rule. All of theprobabilistic infer-
ence and learning manipulations discussed in this book, no matter how complex,
amount to repeated application of these two equations. We could therefore proceed
to formulate and solve complicated probabilistic models purely by algebraic ma-
nipulation. However, we shall find it highly advantageous toaugment the analysis
using diagrammatic representations of probability distributions, calledprobabilistic
graphical models. These offer several useful properties:

1. They provide a simple way to visualize the structure of a probabilistic model
and can be used to design and motivate new models.

2. Insights into the properties of the model, including conditional independence
properties, can be obtained by inspection of the graph.
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360 8. GRAPHICAL MODELS

3. Complex computations, required to perform inference andlearning in sophis-
ticated models, can be expressed in terms of graphical manipulations, in which
underlying mathematical expressions are carried along implicitly.

A graph comprisesnodes(also calledvertices) connected bylinks (also known
asedgesor arcs). In a probabilistic graphical model, each node representsa random
variable (or group of random variables), and the links express probabilistic relation-
ships between these variables. The graph then captures the way in which the joint
distribution over all of the random variables can be decomposed into a product of
factors each depending only on a subset of the variables. We shall begin by dis-
cussingBayesian networks, also known asdirected graphical models, in which the
links of the graphs have a particular directionality indicated by arrows. The other
major class of graphical models areMarkov random fields, also known asundirected
graphical models, in which the links do not carry arrows and have no directional
significance. Directed graphs are useful for expressing causal relationships between
random variables, whereas undirected graphs are better suited to expressing soft con-
straints between random variables. For the purposes of solving inference problems,
it is often convenient to convert both directed and undirected graphs into a different
representation called afactor graph.

In this chapter, we shall focus on the key aspects of graphical models as needed
for applications in pattern recognition and machine learning. More general treat-
ments of graphical models can be found in the books by Whittaker (1990), Lauritzen
(1996), Jensen (1996), Castilloet al. (1997), Jordan (1999), Cowellet al. (1999),
and Jordan (2007).

8.1. Bayesian Networks

In order to motivate the use of directed graphs to describe probability distributions,
consider first an arbitrary joint distributionp(a, b, c) over three variablesa, b, andc.
Note that at this stage, we do not need to specify anything further about these vari-
ables, such as whether they are discrete or continuous. Indeed, one of the powerful
aspects of graphical models is that a specific graph can make probabilistic statements
for a broad class of distributions. By application of the product rule of probability
(1.11), we can write the joint distribution in the form

p(a, b, c) = p(c|a, b)p(a, b). (8.1)

A second application of the product rule, this time to the second term on the right-
hand side of (8.1), gives

p(a, b, c) = p(c|a, b)p(b|a)p(a). (8.2)

Note that this decomposition holds for any choice of the joint distribution. We now
represent the right-hand side of (8.2) in terms of a simple graphical model as follows.
First we introduce a node for each of the random variablesa, b, andc and associate
each node with the corresponding conditional distributionon the right-hand side of
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8.1. Bayesian Networks 361

Figure 8.1 A directed graphical model representing the joint probabil-
ity distribution over three variables a, b, and c, correspond-
ing to the decomposition on the right-hand side of (8.2).

a

b

c

(8.2). Then, for each conditional distribution we add directed links (arrows) to the
graph from the nodes corresponding to the variables on whichthe distribution is
conditioned. Thus for the factorp(c|a, b), there will be links from nodesa andb to
nodec, whereas for the factorp(a) there will be no incoming links. The result is
the graph shown in Figure 8.1. If there is a link going from a nodea to a nodeb,
then we say that nodea is theparentof nodeb, and we say that nodeb is thechild
of nodea. Note that we shall not make any formal distinction between anode and
the variable to which it corresponds but will simply use the same symbol to refer to
both.

An interesting point to note about (8.2) is that the left-hand side is symmetrical
with respect to the three variablesa, b, andc, whereas the right-hand side is not.
Indeed, in making the decomposition in (8.2), we have implicitly chosen a particular
ordering, namelya, b, c, and had we chosen a different ordering we would have
obtained a different decomposition and hence a different graphical representation.
We shall return to this point later.

For the moment let us extend the example of Figure 8.1 by considering the joint
distribution overK variables given byp(x1, . . . , xK). By repeated application of
the product rule of probability, this joint distribution can be written as a product of
conditional distributions, one for each of the variables

p(x1, . . . , xK) = p(xK |x1, . . . , xK−1) . . . p(x2|x1)p(x1). (8.3)

For a given choice ofK, we can again represent this as a directed graph havingK
nodes, one for each conditional distribution on the right-hand side of (8.3), with each
node having incoming links from all lower numbered nodes. Wesay that this graph
is fully connectedbecause there is a link between every pair of nodes.

So far, we have worked with completely general joint distributions, so that the
decompositions, and their representations as fully connected graphs, will be applica-
ble to any choice of distribution. As we shall see shortly, itis theabsenceof links
in the graph that conveys interesting information about theproperties of the class of
distributions that the graph represents. Consider the graph shown in Figure 8.2.
This is not a fully connected graph because, for instance, there is no link fromx1 to
x2 or fromx3 to x7.

We shall now go from this graph to the corresponding representation of the joint
probability distribution written in terms of the product ofa set of conditional dis-
tributions, one for each node in the graph. Each such conditional distribution will
be conditioned only on the parents of the corresponding nodein the graph. For in-
stance,x5 will be conditioned onx1 andx3. The joint distribution of all7 variables
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362 8. GRAPHICAL MODELS

Figure 8.2 Example of a directed acyclic graph describing the joint
distribution over variables x1, . . . , x7. The corresponding
decomposition of the joint distribution is given by (8.4).

x1

x2 x3

x4 x5

x6 x7

is therefore given by

p(x1)p(x2)p(x3)p(x4|x1, x2, x3)p(x5|x1, x3)p(x6|x4)p(x7|x4, x5). (8.4)

The reader should take a moment to study carefully the correspondence between
(8.4) and Figure 8.2.

We can now state in general terms the relationship between a given directed
graph and the corresponding distribution over the variables. The joint distribution
defined by a graph is given by the product, over all of the nodesof the graph, of
a conditional distribution for each node conditioned on thevariables corresponding
to the parents of that node in the graph. Thus, for a graph withK nodes, the joint
distribution is given by

p(x) =

K∏

k=1

p(xk|pak) (8.5)

wherepak denotes the set of parents ofxk, andx = {x1, . . . , xK}. This key
equation expresses thefactorizationproperties of the joint distribution for a directed
graphical model. Although we have considered each node to correspond to a single
variable, we can equally well associate sets of variables and vector-valued variables
with the nodes of a graph. It is easy to show that the representation on the right-
hand side of (8.5) is always correctly normalized provided the individual conditional
distributions are normalized.Exercise 8.1

The directed graphs that we are considering are subject to animportant restric-
tion namely that there must be nodirected cycles, in other words there are no closed
paths within the graph such that we can move from node to node along links follow-
ing the direction of the arrows and end up back at the startingnode. Such graphs are
also calleddirected acyclic graphs, or DAGs. This is equivalent to the statement thatExercise 8.2
there exists an ordering of the nodes such that there are no links that go from any
node to any lower numbered node.

8.1.1 Example: Polynomial regression
As an illustration of the use of directed graphs to describe probability distrib-

utions, we consider the Bayesian polynomial regression model introduced in Sec-
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8.1. Bayesian Networks 363

Figure 8.3 Directed graphical model representing the joint
distribution (8.6) corresponding to the Bayesian
polynomial regression model introduced in Sec-
tion 1.2.6.

w

t1 tN

tion 1.2.6. The random variables in this model are the vectorof polynomial coeffi-
cientsw and the observed datat = (t1, . . . , tN )T. In addition, this model contains
the input datax = (x1, . . . , xN )T, the noise varianceσ2, and the hyperparameterα
representing the precision of the Gaussian prior overw, all of which are parameters
of the model rather than random variables. Focussing just onthe random variables
for the moment, we see that the joint distribution is given bythe product of the prior
p(w) andN conditional distributionsp(tn|w) for n = 1, . . . , N so that

p(t,w) = p(w)

N∏

n=1

p(tn|w). (8.6)

This joint distribution can be represented by a graphical model shown in Figure 8.3.

When we start to deal with more complex models later in the book, we shall find
it inconvenient to have to write out multiple nodes of the form t1, . . . , tN explicitly as
in Figure 8.3. We therefore introduce a graphical notation that allows such multiple
nodes to be expressed more compactly, in which we draw a single representative
nodetn and then surround this with a box, called aplate, labelled withN indicating
that there areN nodes of this kind. Re-writing the graph of Figure 8.3 in thisway,
we obtain the graph shown in Figure 8.4.

We shall sometimes find it helpful to make the parameters of a model, as well as
its stochastic variables, explicit. In this case, (8.6) becomes

p(t,w|x, α, σ2) = p(w|α)

N∏

n=1

p(tn|w, xn, σ
2).

Correspondingly, we can makex andα explicit in the graphical representation. To
do this, we shall adopt the convention that random variableswill be denoted by open
circles, and deterministic parameters will be denoted by smaller solid circles. If we
take the graph of Figure 8.4 and include the deterministic parameters, we obtain the
graph shown in Figure 8.5.

When we apply a graphical model to a problem in machine learning or pattern
recognition, we will typically set some of the random variables to specific observed

Figure 8.4 An alternative, more compact, representation of the graph
shown in Figure 8.3 in which we have introduced a plate
(the box labelledN ) that representsN nodes of which only
a single example tn is shown explicitly.

tn
N

w
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364 8. GRAPHICAL MODELS

Figure 8.5 This shows the same model as in Figure 8.4 but
with the deterministic parameters shown explicitly
by the smaller solid nodes.

tn

xn

N

w

α

σ2

values, for example the variables{tn} from the training set in the case of polynomial
curve fitting. In a graphical model, we will denote suchobserved variablesby shad-
ing the corresponding nodes. Thus the graph corresponding to Figure 8.5 in which
the variables{tn} are observed is shown in Figure 8.6. Note that the value ofw

is not observed, and sow is an example of alatentvariable, also known as ahidden
variable. Such variables play a crucial role in many probabilistic models and will
form the focus of Chapters 9 and 12.

Having observed the values{tn} we can, if desired, evaluate the posterior dis-
tribution of the polynomial coefficientsw as discussed in Section 1.2.5. For the
moment, we note that this involves a straightforward application of Bayes’ theorem

p(w|T) ∝ p(w)

N∏

n=1

p(tn|w) (8.7)

where again we have omitted the deterministic parameters inorder to keep the nota-
tion uncluttered.

In general, model parameters such asw are of little direct interest in themselves,
because our ultimate goal is to make predictions for new input values. Suppose we
are given a new input valuêx and we wish to find the corresponding probability dis-
tribution for t̂ conditioned on the observed data. The graphical model that describes
this problem is shown in Figure 8.7, and the corresponding joint distribution of all
of the random variables in this model, conditioned on the deterministic parameters,
is then given by

p(̂t, t,w|x̂, x, α, σ2) =

[
N∏

n=1

p(tn|xn,w, σ
2)

]
p(w|α)p(̂t|x̂,w, σ2). (8.8)

Figure 8.6 As in Figure 8.5 but with the nodes {tn} shaded
to indicate that the corresponding random vari-
ables have been set to their observed (training set)
values.

tn

xn

N

w

α

σ2
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8.1. Bayesian Networks 365

Figure 8.7 The polynomial regression model, corresponding
to Figure 8.6, showing also a new input value bx
together with the corresponding model prediction
bt.

tn

xn

N

w

α

t̂
σ2

x̂

The required predictive distribution for̂t is then obtained, from the sum rule of
probability, by integrating out the model parametersw so that

p(̂t|x̂, x, t, α, σ2) ∝
∫
p(̂t, t,w|x̂, x, α, σ2) dw

where we are implicitly setting the random variables int to the specific values ob-
served in the data set. The details of this calculation were discussed in Chapter 3.

8.1.2 Generative models
There are many situations in which we wish to draw samples from a given prob-

ability distribution. Although we shall devote the whole ofChapter 11 to a detailed
discussion of sampling methods, it is instructive to outline here one technique, called
ancestral sampling, which is particularly relevant to graphical models. Consider a
joint distributionp(x1, . . . , xK) overK variables that factorizes according to (8.5)
corresponding to a directed acyclic graph. We shall supposethat the variables have
been ordered such that there are no links from any node to any lower numbered node,
in other words each node has a higher number than any of its parents. Our goal is to
draw a samplêx1, . . . , x̂K from the joint distribution.

To do this, we start with the lowest-numbered node and draw a sample from the
distributionp(x1), which we call̂x1. We then work through each of the nodes in or-
der, so that for nodenwe draw a sample from the conditional distributionp(xn|pan)
in which the parent variables have been set to their sampled values. Note that at each
stage, these parent values will always be available becausethey correspond to lower-
numbered nodes that have already been sampled. Techniques for sampling from
specific distributions will be discussed in detail in Chapter 11. Once we have sam-
pled from the final variablexK , we will have achieved our objective of obtaining a
sample from the joint distribution. To obtain a sample from some marginal distrib-
ution corresponding to a subset of the variables, we simply take the sampled values
for the required nodes and ignore the sampled values for the remaining nodes. For
example, to draw a sample from the distributionp(x2, x4), we simply sample from
the full joint distribution and then retain the valuesx̂2, x̂4 and discard the remaining
values{x̂j 6=2,4}.
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366 8. GRAPHICAL MODELS

Figure 8.8 A graphical model representing the process by which
images of objects are created, in which the identity
of an object (a discrete variable) and the position and
orientation of that object (continuous variables) have
independent prior probabilities. The image (a vector
of pixel intensities) has a probability distribution that
is dependent on the identity of the object as well as
on its position and orientation.

Image

Object OrientationPosition

For practical applications of probabilistic models, it will typically be the higher-
numbered variables corresponding to terminal nodes of the graph that represent the
observations, with lower-numbered nodes corresponding tolatent variables. The
primary role of the latent variables is to allow a complicated distribution over the
observed variables to be represented in terms of a model constructed from simpler
(typically exponential family) conditional distributions.

We can interpret such models as expressing the processes by which the observed
data arose. For instance, consider an object recognition task in which each observed
data point corresponds to an image (comprising a vector of pixel intensities) of one
of the objects. In this case, the latent variables might havean interpretation as the
position and orientation of the object. Given a particular observed image, our goal is
to find the posterior distribution over objects, in which we integrate over all possible
positions and orientations. We can represent this problem using a graphical model
of the form show in Figure 8.8.

The graphical model captures thecausalprocess (Pearl, 1988) by which the ob-
served data was generated. For this reason, such models are often calledgenerative
models. By contrast, the polynomial regression model described by Figure 8.5 is
not generative because there is no probability distribution associated with the input
variablex, and so it is not possible to generate synthetic data points from this model.
We could make it generative by introducing a suitable prior distributionp(x), at the
expense of a more complex model.

The hidden variables in a probabilistic model need not, however, have any ex-
plicit physical interpretation but may be introduced simply to allow a more complex
joint distribution to be constructed from simpler components. In either case, the
technique of ancestral sampling applied to a generative model mimics the creation
of the observed data and would therefore give rise to ‘fantasy’ data whose probability
distribution (if the model were a perfect representation ofreality) would be the same
as that of the observed data. In practice, producing synthetic observations from a
generative model can prove informative in understanding the form of the probability
distribution represented by that model.

8.1.3 Discrete variables
We have discussed the importance of probability distributions that are members

of the exponential family, and we have seen that this family includes many well-Section 2.4
known distributions as particular cases. Although such distributions are relatively
simple, they form useful building blocks for constructing more complex probability

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML



8.1. Bayesian Networks 367

Figure 8.9 (a) This fully-connected graph describes a general distrib-
ution over two K-state discrete variables having a total of
K2 − 1 parameters. (b) By dropping the link between the
nodes, the number of parameters is reduced to 2(K − 1).

(a)
x1 x2

(b)
x1 x2

distributions, and the framework of graphical models is very useful in expressing the
way in which these building blocks are linked together.

Such models have particularly nice properties if we choose the relationship be-
tween each parent-child pair in a directed graph to be conjugate, and we shall ex-
plore several examples of this shortly. Two cases are particularly worthy of note,
namely when the parent and child node each correspond to discrete variables and
when they each correspond to Gaussian variables, because inthese two cases the
relationship can be extended hierarchically to construct arbitrarily complex directed
acyclic graphs. We begin by examining the discrete case.

The probability distributionp(x|µ) for a single discrete variablex havingK
possible states (using the 1-of-K representation) is given by

p(x|µ) =

K∏

k=1

µxk

k (8.9)

and is governed by the parametersµ = (µ1, . . . , µK)T. Due to the constraint∑
k µk = 1, onlyK − 1 values forµk need to be specified in order to define the

distribution.
Now suppose that we have two discrete variables,x1 andx2, each of which has

K states, and we wish to model their joint distribution. We denote the probability of
observing bothx1k = 1 andx2l = 1 by the parameterµkl, wherex1k denotes the
kth component ofx1, and similarly forx2l. The joint distribution can be written

p(x1,x2|µ) =

K∏

k=1

K∏

l=1

µx1kx2l

kl .

Because the parametersµkl are subject to the constraint
∑

k

∑
l µkl = 1, this distri-

bution is governed byK2 − 1 parameters. It is easily seen that the total number of
parameters that must be specified for an arbitrary joint distribution overM variables
isKM − 1 and therefore grows exponentially with the numberM of variables.

Using the product rule, we can factor the joint distributionp(x1,x2) in the form
p(x2|x1)p(x1), which corresponds to a two-node graph with a link going fromthe
x1 node to thex2 node as shown in Figure 8.9(a). The marginal distributionp(x1)
is governed byK − 1 parameters, as before, Similarly, the conditional distribution
p(x2|x1) requires the specification ofK − 1 parameters for each of theK possible
values ofx1. The total number of parameters that must be specified in the joint
distribution is therefore(K − 1) +K(K − 1) = K2 − 1 as before.

Now suppose that the variablesx1 andx2 were independent, corresponding to
the graphical model shown in Figure 8.9(b). Each variable isthen described by
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368 8. GRAPHICAL MODELS

Figure 8.10 This chain of M discrete nodes, each
having K states, requires the specification of K − 1 +
(M − 1)K(K − 1) parameters, which grows linearly
with the length M of the chain. In contrast, a fully con-
nected graph of M nodes would haveKM −1 parame-
ters, which grows exponentially with M .

x1 x2 xM

a separate multinomial distribution, and the total number of parameters would be
2(K − 1). For a distribution overM independent discrete variables, each havingK
states, the total number of parameters would beM (K − 1), which therefore grows
linearly with the number of variables. From a graphical perspective, we have reduced
the number of parameters by dropping links in the graph, at the expense of having a
restricted class of distributions.

More generally, if we haveM discrete variablesx1, . . . ,xM , we can model
the joint distribution using a directed graph with one variable corresponding to each
node. The conditional distribution at each node is given by aset of nonnegative para-
meters subject to the usual normalization constraint. If the graph is fully connected
then we have a completely general distribution havingKM − 1 parameters, whereas
if there are no links in the graph the joint distribution factorizes into the product of
the marginals, and the total number of parameters isM (K − 1). Graphs having in-
termediate levels of connectivity allow for more general distributions than the fully
factorized one while requiring fewer parameters than the general joint distribution.
As an illustration, consider the chain of nodes shown in Figure 8.10. The marginal
distributionp(x1) requiresK − 1 parameters, whereas each of theM − 1 condi-
tional distributionsp(xi|xi−1), for i = 2, . . . ,M , requiresK(K − 1) parameters.
This gives a total parameter count ofK−1+(M−1)K(K−1), which is quadratic
in K and which grows linearly (rather than exponentially) with the lengthM of the
chain.

An alternative way to reduce the number of independent parameters in a model
is by sharingparameters (also known astying of parameters). For instance, in the
chain example of Figure 8.10, we can arrange that all of the conditional distributions
p(xi|xi−1), for i = 2, . . . ,M , are governed by the same set ofK(K−1) parameters.
Together with theK−1 parameters governing the distribution ofx1, this gives a total
of K2 − 1 parameters that must be specified in order to define the joint distribution.

We can turn a graph over discrete variables into a Bayesian model by introduc-
ing Dirichlet priors for the parameters. From a graphical point of view, each node
then acquires an additional parent representing the Dirichlet distribution over the pa-
rameters associated with the corresponding discrete node.This is illustrated for the
chain model in Figure 8.11. The corresponding model in whichwe tie the parame-
ters governing the conditional distributionsp(xi|xi−1), for i = 2, . . . ,M , is shown
in Figure 8.12.

Another way of controlling the exponential growth in the number of parameters
in models of discrete variables is to use parameterized models for the conditional
distributions instead of complete tables of conditional probability values. To illus-
trate this idea, consider the graph in Figure 8.13 in which all of the nodes represent
binary variables. Each of the parent variablesxi is governed by a single parame-
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8.1. Bayesian Networks 369

Figure 8.11 An extension of the model of
Figure 8.10 to include Dirich-
let priors over the parame-
ters governing the discrete
distributions.

x1 x2 xM

µ1 µ2 µM

Figure 8.12 As in Figure 8.11 but with a sin-
gle set of parameters µ shared
amongst all of the conditional
distributions p(xi|xi−1).

x1 x2 xM

µ1 µ

ter µi representing the probabilityp(xi = 1), givingM parameters in total for the
parent nodes. The conditional distributionp(y|x1, . . . , xM ), however, would require
2M parameters representing the probabilityp(y = 1) for each of the2M possible
settings of the parent variables. Thus in general the numberof parameters required
to specify this conditional distribution will grow exponentially with M . We can ob-
tain a more parsimonious form for the conditional distribution by using a logistic
sigmoid function acting on a linear combination of the parent variables, givingSection 2.4

p(y = 1|x1, . . . , xM ) = σ

(
w0 +

M∑

i=1

wixi

)
= σ(wTx) (8.10)

whereσ(a) = (1+exp(−a))−1 is the logistic sigmoid,x = (x0, x1, . . . , xM )T is an
(M + 1)-dimensional vector of parent states augmented with an additional variable
x0 whose value is clamped to 1, andw = (w0, w1, . . . , wM )T is a vector ofM + 1
parameters. This is a more restricted form of conditional distribution than the general
case but is now governed by a number of parameters that grows linearly withM . In
this sense, it is analogous to the choice of a restrictive form of covariance matrix (for
example, a diagonal matrix) in a multivariate Gaussian distribution. The motivation
for the logistic sigmoid representation was discussed in Section 4.2.

Figure 8.13 A graph comprising M parents x1, . . . , xM and a sin-
gle child y, used to illustrate the idea of parameterized
conditional distributions for discrete variables.

y

x1 xM
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8.1.4 Linear-Gaussian models
In the previous section, we saw how to construct joint probability distributions

over a set of discrete variables by expressing the variablesas nodes in a directed
acyclic graph. Here we show how a multivariate Gaussian can be expressed as a
directed graph corresponding to a linear-Gaussian model over the component vari-
ables. This allows us to impose interesting structure on thedistribution, with the
general Gaussian and the diagonal covariance Gaussian representing opposite ex-
tremes. Several widely used techniques are examples of linear-Gaussian models,
such as probabilistic principal component analysis, factor analysis, and linear dy-
namical systems (Roweis and Ghahramani, 1999). We shall make extensive use of
the results of this section in later chapters when we consider some of these techniques
in detail.

Consider an arbitrary directed acyclic graph overD variables in which nodei
represents a single continuous random variablexi having a Gaussian distribution.
The mean of this distribution is taken to be a linear combination of the states of its
parent nodespai of nodei

p(xi|pai) = N


xi

∣∣∣∣∣∣

∑

j∈pai

wijxj + bi, vi


 (8.11)

wherewij andbi are parameters governing the mean, andvi is the variance of the
conditional distribution forxi. The log of the joint distribution is then the log of the
product of these conditionals over all nodes in the graph andhence takes the form

ln p(x) =

D∑

i=1

ln p(xi|pai) (8.12)

= −
D∑

i=1

1

2vi


xi −

∑

j∈pai

wijxj − bi




2

+ const (8.13)

wherex = (x1, . . . , xD)T and ‘const’ denotes terms independent ofx. We see that
this is a quadratic function of the components ofx, and hence the joint distribution
p(x) is a multivariate Gaussian.

We can determine the mean and covariance of the joint distribution recursively
as follows. Each variablexi has (conditional on the states of its parents) a Gaussian
distribution of the form (8.11) and so

xi =
∑

j∈pai

wijxj + bi +
√
viεi (8.14)

whereεi is a zero mean, unit variance Gaussian random variable satisfying E[εi] = 0
andE[εiεj ] = Iij, whereIij is thei, j element of the identity matrix. Taking the
expectation of (8.14), we have

E[xi] =
∑

j∈pai

wijE[xj ] + bi. (8.15)
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Figure 8.14 A directed graph over three Gaussian variables,
with one missing link.

x1 x2 x3

Thus we can find the components ofE[x] = (E[x1], . . . ,E[xD])T by starting at the
lowest numbered node and working recursively through the graph (here we again
assume that the nodes are numbered such that each node has a higher number than
its parents). Similarly, we can use (8.14) and (8.15) to obtain thei, j element of the
covariance matrix forp(x) in the form of a recursion relation

cov[xi, xj] = E [(xi − E[xi])(xj − E[xj])]

= E


(xi − E[xi])




∑

k∈paj

wjk(xk − E[xk]) +
√
vjεj








=
∑

k∈paj

wjkcov[xi, xk] + Iijvj (8.16)

and so the covariance can similarly be evaluated recursively starting from the lowest
numbered node.

Let us consider two extreme cases. First of all, suppose thatthere are no links
in the graph, which therefore comprisesD isolated nodes. In this case, there are no
parameterswij and so there are justD parametersbi andD parametersvi. From
the recursion relations (8.15) and (8.16), we see that the mean ofp(x) is given by
(b1, . . . , bD)T and the covariance matrix is diagonal of the formdiag(v1, . . . , vD).
The joint distribution has a total of2D parameters and represents a set ofD inde-
pendent univariate Gaussian distributions.

Now consider a fully connected graph in which each node has all lower num-
bered nodes as parents. The matrixwij then hasi − 1 entries on theith row and
hence is a lower triangular matrix (with no entries on the leading diagonal). Then
the total number of parameterswij is obtained by taking the numberD2 of elements
in aD×D matrix, subtractingD to account for the absence of elements on the lead-
ing diagonal, and then dividing by2 because the matrix has elements only below the
diagonal, giving a total ofD(D−1)/2. The total number of independent parameters
{wij} and{vi} in the covariance matrix is thereforeD(D + 1)/2 corresponding to
a general symmetric covariance matrix.Section 2.3

Graphs having some intermediate level of complexity correspond to joint Gaussian
distributions with partially constrained covariance matrices. Consider for example
the graph shown in Figure 8.14, which has a link missing between variablesx1 and
x3. Using the recursion relations (8.15) and (8.16), we see that the mean and
covariance of the joint distribution are given byExercise 8.7

µ = (b1, b2 + w21b1, b3 + w32b2 + w32w21b1)
T (8.17)

Σ =

(
v1 w21v1 w32w21v1

w21v1 v2 + w2
21v1 w32(v2 + w2

21v1)
w32w21v1 w32(v2 + w2

21v1) v3 + w2
32(v2 + w2

21v1)

)
. (8.18)
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We can readily extend the linear-Gaussian graphical model to the case in which
the nodes of the graph represent multivariate Gaussian variables. In this case, we can
write the conditional distribution for nodei in the form

p(xi|pai) = N


xi

∣∣∣∣∣∣

∑

j∈pai

Wijxj + bi,Σi


 (8.19)

where nowWij is a matrix (which is nonsquare ifxi andxj have different dimen-
sionalities). Again it is easy to verify that the joint distribution over all variables is
Gaussian.

Note that we have already encountered a specific example of the linear-Gaussian
relationship when we saw that the conjugate prior for the mean µ of a GaussianSection 2.3.6
variablex is itself a Gaussian distribution overµ. The joint distribution overx and
µ is therefore Gaussian. This corresponds to a simple two-node graph in which
the node representingµ is the parent of the node representingx. The mean of the
distribution overµ is a parameter controlling a prior, and so it can be viewed as a
hyperparameter. Because the value of this hyperparameter may itself be unknown,
we can again treat it from a Bayesian perspective by introducing a prior over the
hyperparameter, sometimes called ahyperprior, which is again given by a Gaussian
distribution. This type of construction can be extended in principle to any level and is
an illustration of ahierarchical Bayesian model, of which we shall encounter further
examples in later chapters.

8.2. Conditional Independence

An important concept for probability distributions over multiple variables is that of
conditional independence(Dawid, 1980). Consider three variablesa, b, andc, and
suppose that the conditional distribution ofa, givenb andc, is such that it does not
depend on the value ofb, so that

p(a|b, c) = p(a|c). (8.20)

We say thata is conditionally independent ofb givenc. This can be expressed in a
slightly different way if we consider the joint distribution of a andb conditioned on
c, which we can write in the form

p(a, b|c) = p(a|b, c)p(b|c)
= p(a|c)p(b|c). (8.21)

where we have used the product rule of probability together with (8.20). Thus we
see that, conditioned onc, the joint distribution ofa andb factorizes into the prod-
uct of the marginal distribution ofa and the marginal distribution ofb (again both
conditioned onc). This says that the variablesa andb are statistically independent,
givenc. Note that our definition of conditional independence will require that (8.20),
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Figure 8.15 The first of three examples of graphs over three variables
a, b, and c used to discuss conditional independence
properties of directed graphical models.

c

a b

or equivalently (8.21), must hold for every possible value of c, and not just for some
values. We shall sometimes use a shorthand notation for conditional independence
(Dawid, 1979) in which

a ⊥⊥ b | c (8.22)

denotes thata is conditionally independent ofb givenc and is equivalent to (8.20).
Conditional independence properties play an important role in using probabilis-

tic models for pattern recognition by simplifying both the structure of a model and
the computations needed to perform inference and learning under that model. We
shall see examples of this shortly.

If we are given an expression for the joint distribution overa set of variables in
terms of a product of conditional distributions (i.e., the mathematical representation
underlying a directed graph), then we could in principle test whether any poten-
tial conditional independence property holds by repeated application of the sum and
product rules of probability. In practice, such an approachwould be very time con-
suming. An important and elegant feature of graphical models is that conditional
independence properties of the joint distribution can be read directly from the graph
without having to perform any analytical manipulations. The general framework
for achieving this is calledd-separation, where the ‘d’ stands for ‘directed’ (Pearl,
1988). Here we shall motivate the concept of d-separation and give a general state-
ment of the d-separation criterion. A formal proof can be found in Lauritzen (1996).

8.2.1 Three example graphs
We begin our discussion of the conditional independence properties of directed

graphs by considering three simple examples each involvinggraphs having just three
nodes. Together, these will motivate and illustrate the keyconcepts of d-separation.
The first of the three examples is shown in Figure 8.15, and thejoint distribution
corresponding to this graph is easily written down using thegeneral result (8.5) to
give

p(a, b, c) = p(a|c)p(b|c)p(c). (8.23)

If none of the variables are observed, then we can investigate whethera andb are
independent by marginalizing both sides of (8.23) with respect toc to give

p(a, b) =
∑

c

p(a|c)p(b|c)p(c). (8.24)

In general, this does not factorize into the productp(a)p(b), and so

a 6⊥⊥ b | ∅ (8.25)
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Figure 8.16 As in Figure 8.15 but where we have conditioned on the
value of variable c.

c

a b

where∅ denotes the empty set, and the symbol6⊥⊥ means that the conditional inde-
pendence property does not hold in general. Of course, it mayhold for a particular
distribution by virtue of the specific numerical values associated with the various
conditional probabilities, but it does not follow in general from the structure of the
graph.

Now suppose we condition on the variablec, as represented by the graph of
Figure 8.16. From (8.23), we can easily write down the conditional distribution of
a andb, givenc, in the form

p(a, b|c) =
p(a, b, c)

p(c)

= p(a|c)p(b|c)

and so we obtain the conditional independence property

a ⊥⊥ b | c.

We can provide a simple graphical interpretation of this result by considering
the path from nodea to nodeb via c. The nodec is said to betail-to-tail with re-
spect to this path because the node is connected to the tails of the two arrows, and
the presence of such a path connecting nodesa andb causes these nodes to be de-
pendent. However, when we condition on nodec, as in Figure 8.16, the conditioned
node ‘blocks’ the path froma to b and causesa and b to become (conditionally)
independent.

We can similarly consider the graph shown in Figure 8.17. Thejoint distribu-
tion corresponding to this graph is again obtained from our general formula (8.5) to
give

p(a, b, c) = p(a)p(c|a)p(b|c). (8.26)

First of all, suppose that none of the variables are observed. Again, we can test to
see ifa andb are independent by marginalizing overc to give

p(a, b) = p(a)
∑

c

p(c|a)p(b|c) = p(a)p(b|a).

Figure 8.17 The second of our three examples of 3-node
graphs used to motivate the conditional indepen-
dence framework for directed graphical models.

a c b
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Figure 8.18 As in Figure 8.17 but now conditioning on node c. a c b

which in general does not factorize intop(a)p(b), and so

a 6⊥⊥ b | ∅ (8.27)

as before.
Now suppose we condition on nodec, as shown in Figure 8.18. Using Bayes’

theorem, together with (8.26), we obtain

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(c|a)p(b|c)

p(c)

= p(a|c)p(b|c)

and so again we obtain the conditional independence property

a ⊥⊥ b | c.

As before, we can interpret these results graphically. The nodec is said to be
head-to-tailwith respect to the path from nodea to nodeb. Such a path connects
nodesa andb and renders them dependent. If we now observec, as in Figure 8.18,
then this observation ‘blocks’ the path froma to b and so we obtain the conditional
independence propertya ⊥⊥ b | c.

Finally, we consider the third of our 3-node examples, shownby the graph in
Figure 8.19. As we shall see, this has a more subtle behaviourthan the two
previous graphs.

The joint distribution can again be written down using our general result (8.5) to
give

p(a, b, c) = p(a)p(b)p(c|a, b). (8.28)

Consider first the case where none of the variables are observed. Marginalizing both
sides of (8.28) overc we obtain

p(a, b) = p(a)p(b)

Figure 8.19 The last of our three examples of 3-node graphs used to
explore conditional independence properties in graphi-
cal models. This graph has rather different properties
from the two previous examples.

c

a b
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Figure 8.20 As in Figure 8.19 but conditioning on the value of node
c. In this graph, the act of conditioning induces a depen-
dence between a and b.

c

a b

and soa andb are independent with no variables observed, in contrast to the two
previous examples. We can write this result as

a ⊥⊥ b | ∅. (8.29)

Now suppose we condition onc, as indicated in Figure 8.20. The conditional
distribution ofa andb is then given by

p(a, b|c) =
p(a, b, c)

p(c)

=
p(a)p(b)p(c|a, b)

p(c)

which in general does not factorize into the productp(a)p(b), and so

a 6⊥⊥ b | c.

Thus our third example has the opposite behaviour from the first two. Graphically,
we say that nodec is head-to-headwith respect to the path froma to b because it
connects to the heads of the two arrows. When nodec is unobserved, it ‘blocks’
the path, and the variablesa and b are independent. However, conditioning onc
‘unblocks’ the path and rendersa andb dependent.

There is one more subtlety associated with this third example that we need to
consider. First we introduce some more terminology. We say that nodey is a de-
scendantof nodex if there is a path fromx to y in which each step of the path
follows the directions of the arrows. Then it can be shown that a head-to-head path
will become unblocked if either the node,or any of its descendants, is observed.Exercise 8.10

In summary, a tail-to-tail node or a head-to-tail node leaves a path unblocked
unless it is observed in which case it blocks the path. By contrast, a head-to-head
node blocks a path if it is unobserved, but once the node, and/or at least one of its
descendants, is observed the path becomes unblocked.

It is worth spending a moment to understand further the unusual behaviour of the
graph of Figure 8.20. Consider a particular instance of sucha graph corresponding
to a problem with three binary random variables relating to the fuel system on a car,
as shown in Figure 8.21. The variables are calledB, representing the state of a
battery that is either charged (B = 1) or flat (B = 0), F representing the state of
the fuel tank that is either full of fuel (F = 1) or empty (F = 0), andG, which is
the state of an electric fuel gauge and which indicates either full (G = 1) or empty
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G

B F

G

B F

G

B F

Figure 8.21 An example of a 3-node graph used to illustrate the phenomenon of ‘explaining away’. The three
nodes represent the state of the battery (B), the state of the fuel tank (F ) and the reading on the electric fuel
gauge (G). See the text for details.

(G = 0). The battery is either charged or flat, and independently the fuel tank is
either full or empty, with prior probabilities

p(B = 1) = 0.9

p(F = 1) = 0.9.

Given the state of the fuel tank and the battery, the fuel gauge reads full with proba-
bilities given by

p(G = 1|B = 1, F = 1) = 0.8

p(G = 1|B = 1, F = 0) = 0.2

p(G = 1|B = 0, F = 1) = 0.2

p(G = 1|B = 0, F = 0) = 0.1

so this is a rather unreliable fuel gauge! All remaining probabilities are determined
by the requirement that probabilities sum to one, and so we have a complete specifi-
cation of the probabilistic model.

Before we observe any data, the prior probability of the fueltank being empty
is p(F = 0) = 0.1. Now suppose that we observe the fuel gauge and discover that
it reads empty, i.e.,G = 0, corresponding to the middle graph in Figure 8.21. We
can use Bayes’ theorem to evaluate the posterior probability of the fuel tank being
empty. First we evaluate the denominator for Bayes’ theoremgiven by

p(G = 0) =
∑

B∈{0,1}

∑

F∈{0,1}

p(G = 0|B,F )p(B)p(F ) = 0.315 (8.30)

and similarly we evaluate

p(G = 0|F = 0) =
∑

B∈{0,1}

p(G = 0|B,F = 0)p(B) = 0.81 (8.31)

and using these results we have

p(F = 0|G = 0) =
p(G = 0|F = 0)p(F = 0)

p(G = 0)
' 0.257 (8.32)
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and sop(F = 0|G = 0) > p(F = 0). Thus observing that the gauge reads empty
makes it more likely that the tank is indeed empty, as we wouldintuitively expect.
Next suppose that we also check the state of the battery and find that it is flat, i.e.,
B = 0. We have now observed the states of both the fuel gauge and thebattery, as
shown by the right-hand graph in Figure 8.21. The posterior probability that the fuel
tank is empty given the observations of both the fuel gauge and the battery state is
then given by

p(F = 0|G = 0, B = 0) =
p(G = 0|B = 0, F = 0)p(F = 0)∑

F∈{0,1} p(G = 0|B = 0, F )p(F )
' 0.111 (8.33)

where the prior probabilityp(B = 0) has cancelled between numerator and denom-
inator. Thus the probability that the tank is empty hasdecreased(from 0.257 to
0.111) as a result of the observation of the state of the battery. This accords with our
intuition that finding out that the battery is flatexplains awaythe observation that the
fuel gauge reads empty. We see that the state of the fuel tank and that of the battery
have indeed become dependent on each other as a result of observing the reading
on the fuel gauge. In fact, this would also be the case if, instead of observing the
fuel gauge directly, we observed the state of some descendant of G. Note that the
probabilityp(F = 0|G = 0, B = 0) ' 0.111 is greater than the prior probability
p(F = 0) = 0.1 because the observation that the fuel gauge reads zero stillprovides
some evidence in favour of an empty fuel tank.

8.2.2 D-separation
We now give a general statement of the d-separation property(Pearl, 1988) for

directed graphs. Consider a general directed graph in whichA, B, andC are arbi-
trary nonintersecting sets of nodes (whose union may be smaller than the complete
set of nodes in the graph). We wish to ascertain whether a particular conditional
independence statementA ⊥⊥ B | C is implied by a given directed acyclic graph. To
do so, we consider all possible paths from any node inA to any node inB. Any such
path is said to beblockedif it includes a node such that either

(a) the arrows on the path meet either head-to-tail or tail-to-tail at the node, and the
node is in the setC, or

(b) the arrows meet head-to-head at the node, and neither the node, nor any of its
descendants, is in the setC.

If all paths are blocked, thenA is said to be d-separated fromB byC, and the joint
distribution over all of the variables in the graph will satisfyA ⊥⊥ B | C.

The concept of d-separation is illustrated in Figure 8.22. In graph (a), the path
from a to b is not blocked by nodef because it is a tail-to-tail node for this path
and is not observed, nor is it blocked by nodee because, although the latter is a
head-to-head node, it has a descendantc because is in the conditioning set. Thus
the conditional independence statementa ⊥⊥ b | c doesnot follow from this graph.
In graph (b), the path froma to b is blocked by nodef because this is a tail-to-tail
node that is observed, and so the conditional independence propertya ⊥⊥ b | f will
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Figure 8.22 Illustration of the con-
cept of d-separation. See the text for
details.

f

e b

a

c

(a)

f

e b

a

c

(b)

be satisfied by any distribution that factorizes according to this graph. Note that this
path is also blocked by nodee becausee is a head-to-head node and neither it nor its
descendant are in the conditioning set.

For the purposes of d-separation, parameters such asα andσ2 in Figure 8.5,
indicated by small filled circles, behave in the same was as observed nodes. How-
ever, there are no marginal distributions associated with such nodes. Consequently
parameter nodes never themselves have parents and so all paths through these nodes
will always be tail-to-tail and hence blocked. Consequently they play no role in
d-separation.

Another example of conditional independence and d-separation is provided by
the concept of i.i.d. (independent identically distributed) data introduced in Sec-
tion 1.2.4. Consider the problem of finding the posterior distribution for the mean
of a univariate Gaussian distribution. This can be represented by the directed graphSection 2.3
shown in Figure 8.23 in which the joint distribution is defined by a priorp(µ) to-
gether with a set of conditional distributionsp(xn|µ) for n = 1, . . . , N . In practice,
we observeD = {x1, . . . , xN} and our goal is to inferµ. Suppose, for a moment,
that we condition onµ and consider the joint distribution of the observations. Using
d-separation, we note that there is a unique path from anyxi to any otherxj 6=i and
that this path is tail-to-tail with respect to the observed nodeµ. Every such path is
blocked and so the observationsD = {x1, . . . , xN} are independent givenµ, so that

p(D|µ) =

N∏

n=1

p(xn|µ). (8.34)

Figure 8.23 (a) Directed graph corre-
sponding to the problem
of inferring the mean µ of
a univariate Gaussian dis-
tribution from observations
x1, . . . , xN . (b) The same
graph drawn using the plate
notation.

µ

x1 xN

(a)

xn

N

N

µ

(b)
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Figure 8.24 A graphical representation of the ‘naive Bayes’
model for classification. Conditioned on the
class label z, the components of the observed
vector x = (x1, . . . , xD)T are assumed to be
independent.

z

x1 xD

However, if we integrate overµ, the observations are in general no longer indepen-
dent

p(D) =

∫ ∞

0

p(D|µ)p(µ) dµ 6=
N∏

n=1

p(xn). (8.35)

Hereµ is a latent variable, because its value is not observed.
Another example of a model representing i.i.d. data is the graph in Figure 8.7

corresponding to Bayesian polynomial regression. Here thestochastic nodes corre-
spond to{tn}, w and t̂. We see that the node forw is tail-to-tail with respect to
the path from̂t to any one of the nodestn and so we have the following conditional
independence property

t̂ ⊥⊥ tn | w. (8.36)

Thus, conditioned on the polynomial coefficientsw, the predictive distribution for
t̂ is independent of the training data{t1, . . . , tN}. We can therefore first use the
training data to determine the posterior distribution overthe coefficientsw and then
we can discard the training data and use the posterior distribution for w to make
predictions of̂t for new input observationŝx.Section 3.3

A related graphical structure arises in an approach to classification called the
naive Bayesmodel, in which we use conditional independence assumptions to sim-
plify the model structure. Suppose our observed variable consists of aD-dimensional
vectorx = (x1, . . . , xD)T, and we wish to assign observed values ofx to one ofK
classes. Using the 1-of-K encoding scheme, we can represent these classes by aK-
dimensional binary vectorz. We can then define a generative model by introducing
a multinomial priorp(z|µ) over the class labels, where thekth componentµk of µ

is the prior probability of classCk, together with a conditional distributionp(x|z)
for the observed vectorx. The key assumption of the naive Bayes model is that,
conditioned on the classz, the distributions of the input variablesx1, . . . , xD are in-
dependent. The graphical representation of this model is shown in Figure 8.24. We
see that observation ofz blocks the path betweenxi andxj for j 6= i (because such
paths are tail-to-tail at the nodez) and soxi andxj are conditionally independent
givenz. If, however, we marginalize outz (so thatz is unobserved) the tail-to-tail
path fromxi to xj is no longer blocked. This tells us that in general the marginal
densityp(x) will not factorize with respect to the components ofx. We encountered
a simple application of the naive Bayes model in the context of fusing data from
different sources for medical diagnosis in Section 1.5.

If we are given a labelled training set, comprising inputs{x1, . . . ,xN} together
with their class labels, then we can fit the naive Bayes model to the training data
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using maximum likelihood assuming that the data are drawn independently from
the model. The solution is obtained by fitting the model for each class separately
using the correspondingly labelled data. As an example, suppose that the probability
density within each class is chosen to be Gaussian. In this case, the naive Bayes
assumption then implies that the covariance matrix for eachGaussian is diagonal,
and the contours of constant density within each class will be axis-aligned ellipsoids.
The marginal density, however, is given by a superposition of diagonal Gaussians
(with weighting coefficients given by the class priors) and so will no longer factorize
with respect to its components.

The naive Bayes assumption is helpful when the dimensionality D of the input
space is high, making density estimation in the fullD-dimensional space more chal-
lenging. It is also useful if the input vector contains both discrete and continuous
variables, since each can be represented separately using appropriate models (e.g.,
Bernoulli distributions for binary observations or Gaussians for real-valued vari-
ables). The conditional independence assumption of this model is clearly a strong
one that may lead to rather poor representations of the class-conditional densities.
Nevertheless, even if this assumption is not precisely satisfied, the model may still
give good classification performance in practice because the decision boundaries can
be insensitive to some of the details in the class-conditional densities, as illustrated
in Figure 1.27.

We have seen that a particular directed graph represents a specific decomposition
of a joint probability distribution into a product of conditional probabilities. The
graph also expresses a set of conditional independence statements obtained through
the d-separation criterion, and the d-separation theorem is really an expression of the
equivalence of these two properties. In order to make this clear, it is helpful to think
of a directed graph as a filter. Suppose we consider a particular joint probability
distributionp(x) over the variablesx corresponding to the (nonobserved) nodes of
the graph. The filter will allow this distribution to pass through if, and only if, it can
be expressed in terms of the factorization (8.5) implied by the graph. If we present to
the filter the set of all possible distributionsp(x) over the set of variablesx, then the
subset of distributions that are passed by the filter will be denotedDF , for directed
factorization. This is illustrated in Figure 8.25. Alternatively, we can use the
graph as a different kind of filter by first listing all of the conditional independence
properties obtained by applying the d-separation criterion to the graph, and then
allowing a distribution to pass only if it satisfies all of these properties. If we present
all possible distributionsp(x) to this second kind of filter, then the d-separation
theorem tells us that the set of distributions that will be allowed through is precisely
the setDF .

It should be emphasized that the conditional independence properties obtained
from d-separation apply to any probabilistic model described by that particular di-
rected graph. This will be true, for instance, whether the variables are discrete or
continuous or a combination of these. Again, we see that a particular graph is de-
scribing a whole family of probability distributions.

At one extreme we have a fully connected graph that exhibits no conditional in-
dependence properties at all, and which can represent any possible joint probability
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p(x) DF

Figure 8.25 We can view a graphical model (in this case a directed graph) as a filter in which a prob-
ability distribution p(x) is allowed through the filter if, and only if, it satisfies the directed
factorization property (8.5). The set of all possible probability distributions p(x) that pass
through the filter is denoted DF . We can alternatively use the graph to filter distributions
according to whether they respect all of the conditional independencies implied by the
d-separation properties of the graph. The d-separation theorem says that it is the same
set of distributions DF that will be allowed through this second kind of filter.

distribution over the given variables. The setDF will contain all possible distrib-
utionsp(x). At the other extreme, we have the fully disconnected graph,i.e., one
having no links at all. This corresponds to joint distributions which factorize into the
product of the marginal distributions over the variables comprising the nodes of the
graph.

Note that for any given graph, the set of distributionsDF will include any dis-
tributions that have additional independence properties beyond those described by
the graph. For instance, a fully factorized distribution will always be passed through
the filter implied by any graph over the corresponding set of variables.

We end our discussion of conditional independence properties by exploring the
concept of aMarkov blanketor Markov boundary. Consider a joint distribution
p(x1, . . . ,xD) represented by a directed graph havingD nodes, and consider the
conditional distribution of a particular node with variablesxi conditioned on all of
the remaining variablesxj 6=i. Using the factorization property (8.5), we can express
this conditional distribution in the form

p(xi|x{j 6=i}) =
p(x1, . . . ,xD)∫
p(x1, . . . ,xD) dxi

=

∏

k

p(xk|pak)

∫ ∏

k

p(xk|pak) dxi

in which the integral is replaced by a summation in the case ofdiscrete variables. We
now observe that any factorp(xk|pak) that does not have any functional dependence
on xi can be taken outside the integral overxi, and will therefore cancel between
numerator and denominator. The only factors that remain will be the conditional
distributionp(xi|pai) for nodexi itself, together with the conditional distributions
for any nodesxk such that nodexi is in the conditioning set ofp(xk|pak), in other
words for whichxi is a parent ofxk. The conditionalp(xi|pai) will depend on the

c© Christopher M. Bishop (2002–2006). Springer, 2006. First printing.
Further information available athttp://research.microsoft.com/∼cmbishop/PRML



8.3. Markov Random Fields 383

Figure 8.26 The Markov blanket of a node xi comprises the set
of parents, children and co-parents of the node. It
has the property that the conditional distribution of
xi, conditioned on all the remaining variables in the
graph, is dependent only on the variables in the
Markov blanket. xi

parents of nodexi, whereas the conditionalsp(xk|pak) will depend on the children
of xi as well as on theco-parents, in other words variables corresponding to parents
of nodexk other than nodexi. The set of nodes comprising the parents, the children
and the co-parents is called the Markov blanket and is illustrated in Figure 8.26. We
can think of the Markov blanket of a nodexi as being the minimal set of nodes that
isolatesxi from the rest of the graph. Note that it is not sufficient to include only the
parents and children of nodexi because the phenomenon of explaining away means
that observations of the child nodes will not block paths to the co-parents. We must
therefore observe the co-parent nodes also.

8.3. Markov Random Fields

We have seen that directed graphical models specify a factorization of the joint dis-
tribution over a set of variables into a product of local conditional distributions. They
also define a set of conditional independence properties that must be satisfied by any
distribution that factorizes according to the graph. We turn now to the second ma-
jor class of graphical models that are described by undirected graphs and that again
specify both a factorization and a set of conditional independence relations.

A Markov random field, also known as aMarkov networkor an undirected
graphical model(Kindermann and Snell, 1980), has a set of nodes each of which
corresponds to a variable or group of variables, as well as a set of links each of
which connects a pair of nodes. The links are undirected, that is they do not carry
arrows. In the case of undirected graphs, it is convenient tobegin with a discussion
of conditional independence properties.

8.3.1 Conditional independence properties

In the case of directed graphs, we saw that it was possible to test whether a par-Section 8.2
ticular conditional independence property holds by applying a graphical test called
d-separation. This involved testing whether or not the paths connecting two sets of
nodes were ‘blocked’. The definition of blocked, however, was somewhat subtle
due to the presence of paths having head-to-head nodes. We might ask whether it
is possible to define an alternative graphical semantics forprobability distributions
such that conditional independence is determined by simplegraph separation. This
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