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Abstract. The possible interactions between a controller and its environment can
naturally be modelled as the arena of a two-player game, and adding an appropri-
ate winning condition permits to specify desirable behavior. The classical model
here is the positional game, where both players can (fully or partially) observe
the current position in the game graph, which in turn is indicative of their mutual
current states. In practice, neither sensing or actuating the environment through
physical devices nor data forwarding to and signal processing in the controller are
instantaneous. The resultant delays force the controller to draw decisions before
being aware of the recent history of a play. It is known that existence of a win-
ning strategy for the controller in games with such delays is decidable over finite
game graphs and with respect to ω-regular objectives. The underlying reduction,
however, is impractical for non-trivial delays as it incurs a blow-up of the game
graph which is exponential in the magnitude of the delay. For safety objectives,
we propose a more practical incremental algorithm synthesizing a series of con-
trollers handling increasing delays and reducing game-graph size in between. It
is demonstrated using benchmark examples that even a simplistic explicit-state
implementation of this algorithm outperforms state-of-the-art symbolic synthe-
sis algorithms as soon as non-trivial delays have to be handled. We furthermore
shed some light on the practically relevant case of non-order-preserving delays,
as arising in actual networked control, thereby considerably extending the scope
of regular game theory under delay pioneered by Klein and Zimmermann.

Keywords: Safety games · Control under delay · Efficient algorithmic synthesis

1 Introduction

Algorithmic game theory is an established approach to the synthesis of correct-by-
construction reactive controllers [12,15]. A finite game graph is used to formalize the
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possible actions of the players; it is complemented by a winning condition specifying
desirable properties of infinite paths by means of an acceptance condition or a speci-
fication in temporal logic. Frequently, the game is played on a finite graph alternating
moves by two players; the first player is the controller (sometimes called “ego” player)
and the second player is its environment (“alter”), which may be uncooperative, erratic,
or even malicious. Correct controllers thus have to be able to counteract any environ-
mental actions, i.e., they need a sure winning strategy in the game. Controller synthesis
can thus be understood as search for a winning strategy for ego. In this paper, we are
interested in the synthesis problem when the interaction of a controller and its envi-
ronment is described by a safety game [12], i.e., an infinite two-player game on finite
graphs comprising “unsafe” states that the controller should avoid visiting.

These safety games have traditionally been investigated in a setting where the cur-
rent position in the game is either fully known (“perfect information”) or known up to
certain observability constraints (“imperfect/incomplete information”). In this article,
we address the problem of control under delays in perception and action. This can be
understood as a form of imperfect information, as decisions by the controller have to
be drawn based on delayed state observation —i.e., with the recent game history be-
ing opaque to the controller— and in advance —i.e., well before the actual situation
where the action takes effect is fully determined. Such games have numerous practical
applications, especially in networked control settings like cooperative driving, where
observation of and influence on other cars’ states are delayed by communication pro-
tocols severely restricting frequency of certain message types in order to keep overall
channel usage sustainable under the pertinent severe bandwidth constraints.

It is intuitively obvious that such delay renders control harder: the controller has
to decide in advance and based on dated information, which may no longer be fully
indicative of the current situation. The existence of a winning strategy for the controller
under such delays is decidable over finite game graphs and with respect to ω-regular
objectives [9,10]. The underlying reduction to delay-free games, however, is imprac-
tical for non-trivial delays as it incurs a blow-up of the game graph which is strictly
exponential in the magnitude of the delay, as also observed by Tripakis [19].

In this article, we follow Tripakis’ quest for more efficient algorithms. For safety
objectives, we propose a more practical incremental algorithm synthesizing a series of
controllers handling increasing delays and reducing game-graph size in between. We
demonstrate on benchmark examples that even a simplistic explicit-state implemen-
tation of this algorithm outperforms state-of-the-art symbolic synthesis algorithms as
soon as non-trivial delays have to be handled. We furthermore shed some light on the
practically relevant case of non-order-preserving delays, as arising in actual networked
control, thereby considerably extending the scope of regular game theory under de-
lay/lookahead pioneered by Klein and Zimmermann in [9,10,21] and explained below.

Related work. In the literature on games, constraints on observation and interaction
are reflected by corresponding restrictions on the information frames available to the
players. The majority of the results about two-player games played on graphs adopt the
hypothesis of perfect information, where fixed-point algorithms for the computation of
winning strategies exist [6,5,15]. In this case, the controller is aware of the exact cur-
rent (and past) state of its environment when selecting its next control action. Reif [16]
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has studied games of incomplete information and Kupferman and Vardi in [11] have
extended the work of Pnueli and Rosner [14] about the synthesis of reactive modules
to consider incomplete information. Similarly [20] and [15] study two-player games
on graphs with ω-regular objectives subject to partial observability of the current (and
past) game state. Recent state information is available, however; no restriction concern-
ing the minimum age of observable state information is imposed. As the latter is an
increasingly relevant problem in, e.g., networked control with its non-trivial end-to-end
communication latencies, we here address the problem of two-player safety games sub-
ject to delayed observation and delayed action of the controlled process, obtaining a
specific (and practically extremely relevant) case of imperfect information amenable to
optimized synthesis algorithms.

The notion of control under delayed information exchange between the controller
and the environment, where both the ego and the alter player suffer from having to op-
erate under dated information about their mutual adversary’s state, is complementary
to the notion of delayed ω-regular games investigated by Zimmermann et al. [10,9].
In their setting, a delayed output player lags behind the input player in that the output
player has to produce the i-th letter of the output string only when i+

∑i
j=0 f(j) letters

of the input string are available, with ∀j : f(j) ≥ 0. Thus, delay essentially comes as
an advantage, as the input player grants the output player a lookahead — the burden
for the output player is “just” that she may have to memorize (a finite abstraction of)
infinite lookahead if delay is unbounded in that

∑i
j=0 f(j) diverges. In Zimmermann’s

terminology, our setting can be understood as asking for a strategy of the input player
—whose strategic strength suffers from having to grant a lookahead— rather than for
the output player and under the condition that delay is constant, i.e., f(0) > 0 and
∀i > 0 : f(i) = 0. We exploit a similar reduction to games of perfect information as
the oblivious-delay construction of Zimmermann [21], which in the case of constant
delay exploits a product construction on the game graph essentially representing a syn-
chronous concurrent composition of the graph with a shift register implementing the
delays. In contrast to Zimmermann et al., we do not grant introspection into the shift
register, i.e., lookahead into an adversary’s future actions. We do instead adopt the per-
spective of their input player, who has to submit her actions without knowledge of the
recent history, as is frequently the case in practice. For this setting, the above reduction
by means of a shift register also provides a consistent semantics of playing under delay.

It is worth noting that the notion of delay employed in this paper and by Klein and
Zimmermann in [10] is different from that in timed games and their synthesis algo-
rithms, like UPPAAL-TIGA [2], as well as from that used in the discrete-event system
community, e.g. [13,1]. In timed games, delay refers to the possibility to deliberately
delay the next control action, i.e., a single event. Up-to-date positional information,
however, is always fully transparent to both players in timed games. In our setting, de-
lay refers to a time lag imposed when obtaining positional information, modelling the
end-to-end latency of information distribution in a communication network. Up-to-date
positional information thus is opaque to the players as long as it resides in a queue
modelling the network, where state information as well as control events of multiple
different ages coexist and pipeline towards delivery. Such pipelining of control actions
is lacking in the model of delay from [13], where only one controllable event can be
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latent at any time and just the time of its actual execution is determined by the en-
vironment. Meanwhile, the model of delay in [1] is different from ours as it leads to
non-regular languages.

2 Safety Games under Delayed Information

Notation. Given a set A, we denote its powerset by 2A, the set of finite sequences over
A by A∗, and the set of infinite sequences over A by Aω . The relative complement of a
set B in A is denoted A \B = {x ∈ A | x 6∈ B}. An empty sequence is denoted by ε.

2.1 Games with perfect information

The plays we consider are played on finite bipartite game graphs as known from ω-
regular games, see e.g. [18]:

Definition 1 (Two-player game graph). A finite game graph is of the form G =
〈S, s0, S0, S1, Σ,→〉, where S is a finite (non-empty) set of states, S0, S1 define a
partition of S (Si containing the states where it is the turn of player i to perform an
action), s0 ∈ S0 is the initial state, Σ is a finite alphabet of actions for player 0 (while
any action for player 1 is abstracted as u 6∈ Σ), and→⊆ S × (Σ ∪ {u}) × S is a set
of labeled transitions satisfying the following four conditions:

Bipartition: if s ∈ Si and s σ−→ s′ for some σ ∈ Σ ∪ {u} then s′ ∈ S1−i;
Absence of deadlock: for each s ∈ S there exist σ ∈ Σ ∪{u} and s′ ∈ S s.t. s σ−→ s′;
Alphabet restriction on actions: if s σ−→ s′ for some σ ∈ Σ ∪ {u} then σ ∈ Σ iff

s ∈ S0 (and consequently, σ = u iff s ∈ S1);
Determinacy of Σ moves: if s ∈ S0 and s σ−→ s1 and s σ−→ s2 then s1 = s2.

The state space is required to be deadlock-free and bipartite with respect to the transi-
tions, which thus alternate between S0 and S1 states. Furthermore, the actions of player
0 are from Σ and deterministic, while all actions of player 1 are lumped together into
a non-deterministic u action, since we are interested in synthesizing a winning strategy
merely for player 0 who models the controller.

The game is played by a controller (player 0, ego) against an environment (player
1, alter) in turns. Starting from s = s0 and in each second turn, the controller chooses
an action σ ∈ Σ that is enabled in the current state s. By s σ−→ s′, this leads the game to
a unique successor state s′ ∈ S1. From s′, it now is the environment’s turn to select an
action, which it does by selecting a successor state s′′ ∈ S0 with s′ u−→ s′′. As s′′ again
is a position controlled by player 0, the game alternates between moves of player 0 (the
controller) and player 1 (the environment) forever, leading to the following definition.

Definition 2 (Infinite play). A play on game graph G = 〈S, s0, S0, S1, Σ,→〉 is an
infinite sequence π = π0σ0π1 . . . σn−1πnσn . . . s.t. π0 = s0, and ∀i ∈ N : πi

σi−→ πi+1.

The game graph is accompanied by a winning condition. In a safety game, this is a
set of unsafe positions U ⊆ S and the controller loses (and thus the environment wins)
as soon as the play reaches an unsafe state si ∈ U . Conversely, the controller wins (and
the environment loses) iff the game goes on forever without ever visiting U .
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Definition 3 (Two-player safety game). A two-player safety game is of the form G =
〈S, s0, S0, S1, Σ,U ,→〉, where G′ = 〈S, s0, S0, S1, Σ,→〉 is a finite game graph and
U ⊆ S is a set of unsafe positions.
Π(G) denotes the set of plays over the underlying game graph G′. Play π0σ0π1 . . . ∈
Π(G) is won by player 0 iff ∀i ∈ N : πi 6∈ U and won by player 1 otherwise.

The objective of the controller in a safety game thus is to always select actions avoiding
unsafe states, while the hostile or just erratic environment would try to drive the game
to a visit of an unsafe state by picking adequate successor states on u actions.

For a given play π ∈ Π(G), its prefix up to position πn is denoted π(n). This
prefix thus is the finite sequence π(n) = π0σ0π1 . . . σn−1πn, whose length is |π(n)| =
n + 1 and whose last element is Tail(π(n)) = πn. The set of prefixes of all plays in
Π(G) is denoted by Pref(G), in which we denote those ending in a controller state
by Prefc(G) = {ρ ∈ Pref(G) | Tail(ρ) ∈ S0}. Likewise, Prefe(G) = {ρ ∈
Pref(G) | Tail(ρ) ∈ S1} marks prefixes of plays ending in environmental positions.

For a game G = 〈S, s0, S0, S1, Σ,U ,→〉, a strategy for the controller is a mapping
ξ : Prefc(G) 7→ 2Σ s.t. all σ ∈ ξ(ρ) are enabled in Tail(ρ) and ξ(ρ) 6= ∅ for any
ρ ∈ Prefc(G). The outcome of the strategy ξ in G is defined as O(G, ξ) = {π =
π0σ0π1 . . . ∈ Π(G) | ∀i ∈ N : σ2i ∈ ξ(π(2i))} and denotes all plays possible when
player 0 respects strategy ξ while player 1 plays arbitrarily.

Definition 4 (Winning strategy for the controller). A strategy ξ for the controller in a
safety gameG = 〈S, s0, S0, S1, Σ,U ,→〉 is winning for the controller (or just winning
for short) iff ∀π = π0σ0π1 . . . ∈ O(G, ξ).∀k ∈ N : πk 6∈ U .

A winning strategy for the environment can be defined similarly as being a mapping
ξ̃ : Prefe(G) 7→ 2S0 with equivalent well-defined conditions as above. It is a classical
result of game theory that such safety games under perfect observation are determined:
one of the two players has a sure winning strategy enforcing a win irrespective of the
opponent’s choice of actions.

Theorem 1 (Determinacy [8]). Safety games are determined, i.e., in each safety game
G = 〈S, s0, S0, S1, Σ,U ,→〉 exactly one of the two players has a winning strategy.

We call a (controller) strategy ξ : Prefc(G) 7→ 2Σ positional (or memoryless) if for
any ρ and ρ′ ∈ Prefc(G), Tail(ρ) = Tail(ρ′) implies ξ(ρ) = ξ(ρ′). Being positional
implies that at any position in a play, the next decision of a controller which follows
the strategy only depends on the current position in the game graph and not on the
history of the play. As a consequence, such a positional strategy can also be described
by a function ξ′ : S0 7→ 2Σ that maps every state of the controller in the game to a
set of actions to be performed whenever the state is visited. The reduction to positional
strategies is motivated by the fact that in delay-free safety games, whenever there exists
a winning strategy for the controller, then there also exists a positional strategy for it.

Theorem 2 (Computing positional strategies [7,18]). Given a two-player safety game
G, the set of states from which player 0 (player 1, resp.) can enforce a win is com-
putable, and memoryless strategies are sufficient for the winning party.

The construction of a positional strategy builds on backward fixed-point iteration com-
puting the set of states from which a visit in U can be enforced by player 1 [18].
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2.2 Games under delayed control

As immediately obvious from the fact that memoryless strategies suffice in the above
setting, being able to fully observe the current state and to react on it immediately is an
essential feature of the above games. In practice, this is often impossible due to delays
between sensing the environmental state, computing the control action, submitting it,
and it taking effect. The strategy, if existent, thus cannot resort to the full state history,
but only to a proper prefix thereof due to the remainder becoming visible too late.

If the delay is constant and equates to δ ∈ N steps, then the controller would have
to decide about the action to be taken after some finite play π0σ0π1 . . . π2n already
after just seeing its proper prefix π0σ0π1 . . . π2n−δ . Furthermore, a constant strategy
not dependent on any historic observations would have to be played by the controller
initially for the first δ steps. That motivates the following definition:

Definition 5 (Playing under delay). Given a delay δ ∈ N, a strategy for the controller
under delay δ is a map ξ : Prefx(G) 7→ 2Σ , where x = c if δ is even and x = e else,
together with a non-empty set α ⊆ Σd

δ
2 e of initial action sequences. The outcome of

playing strategy (α, ξ) in G under delay δ is O(G,α, ξ, δ) =π = π0σ0π1 . . . ∈ Π(G)

∣∣∣∣∣∣
∃a = a0 . . . ad δ2 e−1

∈ α.∀i ∈ N :(
2i < δ ⇒ σ2i = ai
∧ 2i ≥ δ ⇒ σ2i ∈ ξ(π(2i− δ))

) .

We call the strategy (α, ξ) playable by the controller iff it always assigns permitted
moves, i.e., iff for each prefix π0σ0π1 . . . σ2n−1π2n−1 of a play in O(G,α, ξ, δ), we
have that the set of next actions

Σn =

{
{an | 〈σ0, σ2, σ4, . . . , σ2n−2, an〉 is a prefix of a word in α} iff 2n < δ,

ξ(π(2n− δ)) iff 2n ≥ δ

suggested by the strategy is non-empty and contains only actions enabled in π2n−1.
Strategy (α, ξ) is winning (for the controller) under delay δ iff it is playable and for
each π = π0σ0π1 . . . ∈ O(G,α, ξ, δ), the condition ∀k ∈ N : πk 6∈ U holds, i.e., no
unsafe state is ever visited when playing the strategy.

Playing under a delay of δ thus means that for a play π = π0σ0π1 . . ., the choice of ac-
tions suggested by the winning strategy at state π2i has to be pre-decided at state π2i−δ
for any i ≥ d δ2e and decided without recourse to positional information for the first
δ − 1 steps. Playing under delay 0 is identical to playing under complete information.

From Def. 5 it is obvious that existence of a (delay-free) winning strategy in the
complete information game G is a necessary, yet not sufficient condition for existence
of a strategy that is winning under a delay of δ > 0. Likewise, existence of a strategy
winning under some relatively small delay δ is a necessary, yet not sufficient condition
for existence of a strategy that is winning under a delay of δ′ > δ: the strategy for δ′ can
be played for δ by simply waiting δ′ − δ steps before implementing the control action.

Remark 1. The reader may wonder why Def. 5 assumes strictly sequential delay, i.e.,
in-order delivery of the delayed information, which cannot be guaranteed in many prac-
tical applications of networked control. The reason is that random out-of-order delivery
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with a maximum delay of δ has in-order delivery with an exact delay of δ as its worst-
case instance: whenever a data item is delivered out-of-order then it is delivered be-
fore δ, implying earlier availability of more recent state information and thus enhanced
controllability. In a qualitative setting, as addressed in this article, solving the control
problem for out-of-order delivery with a maximum delay of δ is consequently —up
to delaying data items arriving early— identical to solving the control problem under
in-order delivery with an exact delay of δ, as the latter is the former’s worst case.

Issues are, however, different in a stochastic setting, where out-of-order delivery
with a maximum delay of δ induces a reduced expected message delay strictly smaller
than δ, i.e., it even truly enhances controllability. Dealing with this basic quantitative
case and furthermore exploiting constructive means of control on message delay, like
setting a network’s QoS parameters, for control will be subject of future research.

2.3 Insufficiency of memoryless strategies

Recall that in safety games with complete information, the existence of a winning strat-
egy for the controller implies existence of a memoryless strategy for player 0. For games
with delayed information, however, memoryless strategies are not powerful enough:

Example 1. Consider the safety game G = 〈S, s0, S0, S1, Σ,U ,→〉, shown in Fig. 1,
where S = S0 ∪ S1, S0 = {c1, c2, c3}, S1 = {e1, e2, e3, e4, e5}, s0 = c1, Σ = {a, b},
and U = {e3}. Player 0 can obviously win this safety game if no delay is involved.
Now consider a memoryless strategy
ξ′ : S0 7→ 2Σ for the controller under
delay 2. We obviously need ξ′(c2) =
{b}, indicating that the controller ex-
ecutes b two steps later at either c1
or c3, as a at c3 would yield the un-
safe state e3. Analogously, we have
ξ′(c3) = {a}. It is a different matter
when arriving at c1, where the con-
troller has to draw a pre-decision for
both c2 and c3. If the controller picks
a (or b) at c1, then two steps later
at c3 (c2, resp.) it executes the un-
safe action a (b, resp.). For a win, ex-
tra memory keeping track of the his-
toric sequence of actions is necessary
such that the controller can determine
whether it will visit c2 or c3 from c1.

c1

e1
a

e2

b

c2
u

c3

u

e3

b

a

u

e4
a

u

e5
b

u

u

u

Fig. 1: A safety game winnable with memoryless
strategies for delay δ ≤ 1, yet not beyond.

The above example shows that memoryless strategies are generally insufficient for
winning a safety game under delays. A straightforward generalization of the situation
shown in Fig. 1, namely deeply nesting triangles of the shape spanned by c1, c2, and
c3, demonstrates that the amount of memory needed will in worst case be exponential
in the delay. Any reduction to safety games under complete information will have to
introduce a corresponding blow-up of the game graph.
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2.4 Reduction to delay-free games

As playing a game under delay δ amounts to pre-deciding actions δ steps in advance, the
problem of finding a winning strategy for the controller inG = 〈S, s0, S0, S1, Σ,U ,→〉
that wins under delay δ can be reduced to the problem of finding an undelayed winning
strategy for the controller in a related safety game:

Lemma 1. LetG = 〈S, s0, S0, S1, Σ,U ,→〉 be a safety game and δ ∈ N a delay. Then
the controller has strategy that wins G under a delay δ iff the controller has a winning
strategy in the game Ĝ = 〈S′, s′0, S′0, S′1, Σ ∪Σd

δ
2 e,U ′,→′〉 given by

1. S′ =
(
S ×Σd δ2 e

)
] {s′0} ]

(
{s′0} ×Σd

δ
2 e
)

, where ] denotes disjoint union,

S′0 =
(
S0 ×Σd

δ
2 e
)
∪ {s′0}, and S′1 =

(
S1 ×Σd

δ
2 e
)
∪
(
{s′0} ×Σd

δ
2 e
)

,

2. s
σ

→′ s′ iff

s = s′0 ∧ σ = a1 . . . an ∈ Σn ∧ s′ = (s′0, a1 . . . an)
∨ s = (s′0, α) ∧ σ = u ∧ s′ = (s0, α)

∨ s = (ŝ, a1 . . . an) ∧ ŝ ∈ S0 ∧ σ ∈ Σ ∧ ŝ
a1−→ ŝ′ ∧ s′ = (ŝ′, a2 . . . anσ)

∨ s = (ŝ, α) ∧ ŝ ∈ S1 ∧ σ = u ∧ ŝ u−→ ŝ′ ∧ s′ = (ŝ′, α),

where n = δ
2 if δ is even and n = δ+1

2 if δ is odd.
3. U ′ = U ×Σd δ2 e.

The essential idea of the above reduction is to extend the game graph by a synchronous
product with a shift register appropriately delaying the implementation of the control
action decided by the controller. The blow-up in graph size incurred is by a factor |Σ|d δ2 e
and thus exponential in the delay. It is obvious that due to this, a winning strategy for
the controller in the delayed game can, if existent, be synthesized with |Σ|d δ2 e memory.

Note that the above reduction to delay-free safety games does not imply that games
under delay are determined, as the claim in Lemma 1 is not symmetric for the environ-
ment. A simple guessing game, where player 1 guesses in each step either a 0 or a 1 and
player 0 has to repeat the exact guess, losing as soon as she fails to properly repeat, re-
veals that player 0 has a sure winning strategy under delay 0, but none of the two players
has one under any positive delay.1 Determinacy is only obtained if one of the players
is granted a lookahead equivalent to the other’s delay, as in Klein and Zimmermann’s
setting [10]. Such lookahead does not, however, correspond to any physical reality in
distributed control, where both players are subject to the same end-to-end latency (i.e.,
delay) in their mutual feedback loop.

3 Synthesizing Controllers

As stated above, controller synthesis for games under delay can be obtained using a
reduction to a delay-free safety game involving the introduction of a shift register. The

1 While player 1 could enforce a win with probability 1 in a probabilistic setting by just playing
a random sequence, she cannot enforce a win in the qualitative setting where player 0 may just
be lucky to draw the right guesses throughout.
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exponential blow-up incurred by this reduction, however, seems impractical for any
non-trivial delay. We therefore present a novel incremental synthesis algorithm, which
starts from synthesizing a winning strategy for the underlying delay-free safety game
and then incrementally hardens the strategy against larger and larger delays, thus avoid-
ing explicit reductions. We further optimize the algorithm by pruning the otherwise
exponentially sized game graph after each such hardening step: as controllability (i.e.,
the controller wins) under delay k is a necessary condition for controllability under de-
lay k′ > k, each state uncontrollable under delay k can be removed before proceeding
to the next larger delay. The algorithm thus alternates between steps extending memory,
as necessary for winning under delay, and steps compressing the game graph.

The key idea of the synthesis procedure (Algorithm 1) is to compute a series of
finite-memory winning strategies ξ̂k while increasing delays from k = 0 to the final
delay of interest k = δ. The algorithm takes as input a delayed safety game Gδ and re-
turns either WINNING paired with a winning strategy (α, ξ̂δ) for the controller if Gδ is
controllable, or LOSING otherwise with an integer m indicating that the winning strat-
egy vanishes when lifting delay to m. Line 2 invokes the classical fixed-point iteration
(cf. Appendix C) to generate the maximally permissive strategy for the controller in G
under no delay. The procedure FPIteration first conducts a backward fixed-point itera-
tion computing the set L of states from which a visit to U can be enforced by the alter
player 1 [18]. The maximally permissive strategy for the controller is then obtained by
admitting in each state from S0 \L exactly those actions leading to a succesor in S1 \L.
Then the delays are lifted from k = 0 to δ by a while loop in line 3, and within each
step of the loop the strategy ξ̂k+1 is computed based on ξ̂k as follows:

1. If k + 1 is an odd delay, the controller needs to make pre-decisions at safe states
of the environment, namely at each s ∈ S1 \ U . The controller needs to pre-decide
at s a set of actions that are safe to perform at any successor s′ ∈ Succ(s), for
which the winning actions have already been encoded in the strategy ξ̂k(s′, ·). This
is achieved, in line 7, by taking an intersection of ξ̂k(s′, ρ) for all s′ ∈ Succ(s)
with the same history sequence of actions ρ. The derived strategy can be spurious
however, inasmuch as the intersection involves only immediate successors of s,
yet without observing the entire strategy space. At line 9 we therefore remove all
uncontrollable predecessors of freshly unwinnable states by a Shrink procedure
depicted in Algorithm 2, which will be explained below.

2. In case of an even delay k + 1, the controller needs to make pre-decisions at safe
states of its own, i.e. at each s ∈ S0 \ U . In contrast to an intersection in the odd
case, the controller can inherit the winning strategy ξ̂k(s′, ρ) directly from each
successor s′ of s. However, we have to prepend, if s σ0−→ s′, the action σ0 to the
history sequence ρ to record the choice in the shift register (line 19).

The synthesis algorithm may abort at line 14 if the controller does not have available
actions to pick anymore at the initial state s0, declaring LOSING at k + 1 where the
winning strategy vanishes. Otherwise, the algorithm continues and eventually produces
a winning strategy ξ̂δ for the controller in G.

Only when a fresh unwinnable state s for the controller is detected (line 8), the
Shrink function (Algorithm 2) will be launched to carry out two tasks in a recursive
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Algorithm 1: Synthesizing winning finite-memory strategy
input : G = 〈S, s0, S0, S1, Σ,U ,→〉, a safety game played under delay δ.
/* initialization */

1 k ← 0 ; α← {ε} ;
/* computing maximally permissive strategy under no delay */

2 ξ̂0 ← FPIteration(G);
/* lifting delays from 0 to δ */

3 while k < δ do
/* with an odd delay k + 1 */

4 if k ≡ 0 (mod 2) then
5 for s ∈ S, σ1 . . . σ k

2
∈ α do

6 if s ∈ S1 \ U then
7 ξ̂k+1(s, σ1 . . . σ k

2
)←

⋂
s′:s

u−→s′
ξ̂k(s

′, σ1 . . . σ k
2
);

/* shrinking the possibly-spurious strategy */

8 if ξ̂k+1(s, σ1 . . . σ k
2
) = ∅ and

∧
s′:s

u−→s′
ξ̂k(s

′, σ1 . . . σ k
2
) 6= ∅ then

9 Shrink(ξ̂k+1, ξ̂k, G, (s, σ1 . . . σ k
2
));

10 else
11 ξ̂k+1(s, σ1 . . . σ k

2
)← ∅;

12 α← {σ0σ1 · · ·σ k
2
| s0

σ0−→ s′, σ1 · · ·σ k
2
∈ α, ξ̂k+1(s

′, σ1 · · ·σ k
2
) 6= ∅};

13 if α = ∅ then
14 return (LOSING, k + 1);

/* with an even delay k + 1 */
15 else
16 for s ∈ S, σ1 . . . σ k−1

2
∈ α do

17 if s ∈ S0 \ U then
18 for σ0, s

′ : s
σ0−→ s′ do

19 ξ̂k+1(s, σ0σ1 . . . σ k−1
2

)← ξ̂k(s
′, σ1 . . . σ k−1

2
);

20 else
21 ξ̂k+1(s, σ0σ1 . . . σ k−1

2
)← ∅;

22 k ← k + 1;

23 return (WINNING, (α, ξ̂k));

manner: (1) it traverses the graph backward and removes from the current strategy all
the actions that may lead the play to this unwinnable state, and consequently (2) it gives
a state-space pruning that removes all states no longer controllable under the given
delay before proceeding to the next larger delay. The latter accelerates synthesis, while
the former is a key ingredient to the correctness of Algorithm 1, as can be seen from
the proof of Theorem 3: it avoids “blind alleys” where locally controllable actions run
towards subsequently deadlocked states.
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Algorithm 2: Shrink: Shrinking the possibly-spurious strategy

input : ξ̂2n+1, the strategy under an odd delay 2n+ 1;
ξ̂2n, the strategy under an even delay 2n;
G = 〈S, s0, S0, S1, Σ,U ,→〉, a safety game played under delay δ;
(s, σ1 . . . σn), a fresh unwinnable state with the sequence of actions.

1 for s′ : s′ σ−→ s do
2 if σn ∈ ξ̂2n(s′, σσ1 . . . σn−1) then
3 ξ̂2n(s

′, σσ1 . . . σn−1)← ξ̂2n(s
′, σσ1 . . . σn−1) \ {σn};

/* s̃ < s indicates the existence of ξ̂2n+1(s̃, ·), i.e., we
visit merely states that have already been attached
with (possibly deadlocking) actions by Alg. 1 */

4 for s̃ : s̃ u−→ s′ and s̃ 6∈ U and s̃ < s do
5 if σn ∈ ξ̂2n+1(s̃, σσ1 . . . σn−1) then
6 ξ̂2n+1(s̃, σσ1 . . . σn−1)← ξ̂2n+1(s̃, σσ1 . . . σn−1) \ {σn};
7 if ξ̂2n+1(s̃, σσ1 . . . σn−1) = ∅ then
8 Shrink(ξ̂2n+1, ξ̂2n, G, (s̃, σσ1 . . . σn−1));

The worst-case complexity of Alg. 1 follows straightforwardly as O(δ · |S0| · |S1| ·
|Σ|b δ2 c), as is the case for the reduction to a delay-free safety games. In practice, the ad-
vantage however is that we avoid explicit construction of the graph of the corresponding
delay-free game, which yields an exponential blow-up, and interleave the expansion by
yet another shift-register stage with state-set shrinking removing uncontrollable states.

Theorem 3 (Correctness and Completeness). Algorithm 1 always terminates. If its
output is (WINNING, (α, ξ̂)) then (α, ξ̂) is a winning strategy of Gδ; otherwise, with
output (LOSING, k + 1) of the algorithm, Gδ has no winning strategy.

Proof. Elaborated in Appendix A.

Example 2. Consider the safety gameG under delayed information in Fig. 1. The series
of finite-memory winning strategies produced by Algorithm 1 is:

ξ̂0(c1, ε) = {a, b}, ξ̂0(c2, ε) = {a}, ξ̂0(c3, ε) = {b}.

ξ̂1(e1, ε) = {a}, ξ̂1(e2, ε) = {b}, ξ̂1(e3, ε) = ∅, ξ̂1(e4, ε) = {b}, ξ̂1(e5, ε) = {a}.

ξ̂2(c1, a) = {a}, ξ̂2(c2, a) = {b}, ξ̂2(c3, a) = ∅,

ξ̂2(c1, b) = {b}, ξ̂2(c2, b) = ∅, ξ̂2(c3, b) = {a}.

Winning strategies for the controller vanish when the delay reaches 3.

4 Case Study and Experimental Evaluation

Avoiding collisions is a central issue in transportation systems as well as in many other
applications. The task of a collision avoidance (CA) system is to track objects of poten-
tial collision risk and determine any action to avoid or mitigate a collision. One of the
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challenges in designing a CA system is determining the correct action in presence of
the end-to-end latency of the overall control system.

In the context of avoiding collisions, we present an escape game as an artificial
scenario to illustrate our approach. The game is a two-player game between a robot
(i.e., the controller) and a kid (i.e., the dynamical part of its environment), which are
moving in a closed room with some fixed obstacles as shown in Fig. 2. In this scenario,
the robot has to make decisions (actions) under δ-delayed information.

Definition 6 (Two-player escape game in a p × q room under delay). A two-player
escape game under delay δ is of the form Ĝ = 〈S, s0, S0, S1,O, Σ,U ,→〉, where

– S = X × Y × X × Y × B is a non-empty set of states providing x ∈ X =
{0, . . . , p − 1} and y ∈ Y = {0, . . . , q − 1} coordinates for the robot as well as
for the kid, together with a flag denoting whose move is next. Concretely, a state
(x0, y0, x1, y1, b) encodes that the robot currently is at position (x0, y0), while the
kid is at (x1, y1), and that the next move is the robot’s iff b holds. Here p, q ∈ N≥1
denote the width and length of the room.

– O ⊆ X × Y is a finite set of positions occupied by fixed obstacles.
– Σ is a finite alphabet of actions for player 0 (i.e., the robot), which consists of

kinematically constrained moves explained below.
– U ⊆ S is the finite set of undesirable states, which are characterized by featuring

collisions with the obstacles or the kid.
– →⊆ S × (Σ ∪ {u})× S is a set of labelled transitions, and
– δ is the delay in information retrieval s.t. the robot has to react on δ old information.

j

j
x

y

0 1 2 3

0

1

2

3

Fig. 2: The robot escape game

0033start

0033 1133

0032 0023 1132 1123

ε RU,UR

u u u u

Fig. 3: A snippet of the game graph

In our scenario, we first consider a room of extent 4 × 4, as shown in Fig. 2. The
fixed obstacles are located at o1 = (1, 2) and o2 = (3, 0) and the initial state s0 where
the robot and the kid are located in the room is s0 = (0, 0, 3, 3, true) ∈ S0. The kid
can move in the room and her possible moves (i.e., the uncontrollable actions) are
unilaterally denoted u for unpredictable, yet amount to moves either one step to the
right R, left L, up U, or down D. The robot has a finite set of moves (i.e., controllable
actions), which are kinematically constrained as being a combination of two moves,
e.g., up then right UR, denoted as Σ = {RU,UR,LU,UL,RD,DR,LD,DL, ε}, and ε
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means doing nothing. We assume that the two players respect the geometry of the room
and consequently never take any action leaving the inside area of the room or running
through an obstacle, which can be achieved by specifying two groups of constraints C
and E (exemplified in Appendix D) respectively for the robot and the kid, defining their
legal actions. Representing a state (x0, y0, x1, y1, b) as x0y0x1y1 inside a blue circular
node if b (robot’s turn) and inside a red square node if ¬b (kid’s turn), the game graph
spanned by the legal actions looks as shown in Fig. 3.

The safety objective for the robot is to move inside the working room while avoiding
to ever be collocated with the kid or the fixed obstacles. We consequently define the set
of unsafe states as U = {(x0, y0, x1, y1, b) | (x0, y0) ∈ O ∨ (x0, y0) = (x1, y1)}.

There obviously exists a winning strategy for the robot in a delay-free setting,
namely to cycle around the obstacle at o1 to avoid being caught by the kid. To investi-
gate the controllability resilient to delays, we first construct the graph structure from the
symbolic description by a C++ program. It consists of 224 states, 16 unsafe states, and
738 legal transitions satisfying the respective conditions C and E . The obtained game
graph is then used as input to a prototypical implementation in Mathematica2 of Algo-
rithm 1, which declares WINNING paired with a finite-memory winning strategy (i.e.,
a safe controller) ξ̂δ under delays 0 ≤ δ ≤ 2 (see Appendix E), while LOSING when
the delay is 3. The latter indicates that the problem is uncontrollable under any delay
δ′ ≥ 3.

To further investigate the scalability and efficiency of our method, we have evalu-
ated the implementation on two additional examples (cf. Appendix B) as well as evasion
games instantiated to rooms of different sizes (marked with prefix Escp.). A slightly
adapted scenario (denoted by prefix Stub.) was also investigated, where the kid plays
in a rather stubborn way, namely she always moves either one step to the left or down,
yet never goes right nor up, which yields potentially larger affordable delays for the
robot. In particular, a comparison of the performance of our incremental algorithm was
done with respect to two points of reference: to the same Mathematica-based algorithm
using δ = 0 (the underlying explicit-state delay-free safety synthesis) employed af-
ter reducing the games to delay-free ones by shift registers (cf. Lemma 1), and to the
state-of-the-art synthesizer SafetySynth3 for solving safety games applied to an appro-
priate symbolic form of that shift-register reduction. All experiments were pursued on
a 2.5GHz Intel Core-i7 processor with 8GB RAM running 64-bit Ubuntu 17.04.

From the upper part of Table 1, it can be seen that our incremental algorithm signif-
icantly outperforms the use of the shift-register reduction. On all cases involving delay,
Algorithm 1 is faster than the same underlying explicit-state implementation of safety
synthesis employed to the reduction of Lemma 1. The benefits from not resorting to an
explicit reduction, instead taking advantage of incrementally generated strategies and
on-the-fly pruning of already-uncontrollable branches, are thus obvious. In contrast, the
reduction-based approach suffers inevitably from the state-explosion problem: for e.g.

2 Both the prototype implementation and the evaluation examples used in this section can be
found at http://lcs.ios.ac.cn/˜chenms/tools/DGame.tar.bz2. We opted
for an implementation in Mathematica due to its built-in primitives for visualization.

3 Available at https://www.react.uni-saarland.de/tools/safetysynth/

http://lcs.ios.ac.cn/~chenms/tools/DGame.tar.bz2
https://www.react.uni-saarland.de/tools/safetysynth/
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Benchmark Reduction + Explicit-State Synthesis Algorithm 1

name |S| |→| |U| δmax δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δmax δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 %

Exmp. 3 14 20 4 ≥ 22 0.00 0.00 0.01 0.02 0.02 ≥ 30 0.00 0.00 0.00 0.01 0.01
Exmp. 4 14 22 4 = 2 0.00 0.01 0.01 0.02 – = 2 0.00 0.00 0.00 0.01 – 81.97
Escp.4×4 224 738 16 = 2 0.08 11.66 11.73 1059.23 – = 2 0.08 0.13 0.22 0.25 – 99.02
Escp.4×5 360 1326 20 = 2 0.18 34.09 33.80 3084.58 – = 2 0.18 0.27 0.46 0.63 – 99.02
Escp.5×5 598 2301 26 ≥ 2 0.46 96.24 97.10 ? ? = 2 0.46 0.68 1.16 1.71 – 98.98
Escp.5×6 840 3516 30 ≥ 2 1.01 217.63 216.83 ? ? = 2 1.00 1.42 2.40 4.30 – 99.00
Escp.6×6 1224 5424 36 ≥ 2 2.13 516.92 511.41 ? ? = 2 2.06 2.90 5.12 10.30 – 98.97
Escp.7×7 2350 11097 50 ≥ 2 7.81 2167.86 2183.01 ? ? = 2 7.71 10.67 19.04 52.47 – 98.99
Escp.7×8 3024 14820 56 ≥ 0 13.07 ? ? ? ? = 2 13.44 18.25 32.69 108.60 – 99.01

Benchmark Reduction + Yosys + SafetySynth4 (symbolic) Algorithm 1 (simple explicit-state implementation)

name δmax δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 0 δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 %

Stub.4×4 = 2 1.07 1.24 1.24 1.80 – – – 0.04 0.07 0.12 0.18 – – – 98.98
Stub.4×5 = 2 1.16 1.49 1.49 2.83 – – – 0.08 0.14 0.25 0.44 – – – 98.97
Stub.5×5 = 2 1.19 2.61 2.50 13.67 – – – 0.21 0.37 0.63 1.17 – – – 98.97
Stub.5×6 = 2 1.18 2.60 2.59 23.30 – – – 0.42 0.69 1.20 2.49 – – – 98.96
Stub.6×6 = 4 1.17 2.76 2.74 19.96 19.69 655.24 – 0.93 1.47 2.60 5.79 7.54 7.60 – 99.89
Stub.7×7 = 4 1.23 2.50 2.48 24.57 23.01 2224.62 – 3.60 5.52 10.08 22.75 31.18 32.98 – 99.88

δmax: the maximum delay under whichGδ is controllable.
δmax = δ′:Gδ is verified controllable under delays 0 ≤ δ ≤ δ′ while uncontrollable under any delay δ > δ′.
δmax ≥ δ′: Gδ is verified controllable under delays 0 ≤ δ ≤ δ′ within 1 hour CPU time bound, yet unknown under
δ > δ′ due to the limitation of computing capability.
–: already for smaller δ the controller has no winning strategy.
?: algorithm fails to answer the control/synthesis problem within 1 hour of CPU time.
%: percentage of savings in state space compared to the reduction-based methods, as obtained on δmax + 1.

Table 1: Benchmark results in relation to reduction-based approaches (time in seconds)

Escp.4×5 under δ = 3, the reduction yields a game graph comprising 29242 states
and 107568 transitions.

Within the lower part of Table 1, the performance of the current explicit-state im-
plementation of Algorithm 1 is compared with that of SafetySynth, the winner in the
sequential safety synthesis track of the 3rd and 4th Reactive Synthesis Competition4

(SYNTCOMP 2016 and 2017). In order to be able to examine the efficiency of our
incremental algorithm under larger delays, we used a slight modification of the escape
game forbidding the kid to take moves to the right or up, thus increasing the controlla-
bility for the robot. Note that Algorithm 1 completes synthesis faster in these “stubborn”
scenarios due to the reduced action set. SafetySynth implements a symbolic backward
fixed-point algorithm for solving delay-free safety games using the CUDD package.
Its input is an extension of the AIGER5 format known from hardware model-checking
and synthesis. We therefore provided symbolic models of the escape games in Verilog6

and compiled them to AIGER format using Yosys7. Verilog supports compact symbolic
modelling of the coordinates other than an explicit representation of the game graph
as in Fig. 3, and further admits direct use of shift registers for memorizing actions of
the robot under delays. Therefore, as visible in Table 1, SafetySynth outperforms our
explicit-state safety synthesis for some large room sizes under small delays. For larger
delays it is, however, evident that our incremental algorithm always wins, despite its
use of non-symbolic encodings.

4 http://www.syntcomp.org/ 5 http://fmv.jku.at/aiger/
6 http://www.verilog.com/ 7 http://www.clifford.at/yosys/

http://www.syntcomp.org/
http://fmv.jku.at/aiger/
http://www.verilog.com/
http://www.clifford.at/yosys/
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Remark 2. It would be desirable to pursue a comparison on standard benchmarks like
the synthesis track of SYNTCOMP. As these are conveyed in AIGER format only and
not designed for modifiability, like the introduction of shift registers, this unfortunately
is not yet possible. Likewise, other state-of-the-art synthesizers from the SYNTCOMP
community, like AbsSynthe [4], could not be used for comparison as they do not support
the state initializations appearing in the AIGER translations of the escape game.

5 Conclusions

Designing controllers that work safely and reliably when exposed to delays is a crucial
challenge in many application domains, like transportation systems or industrial robots.
In this paper, we have used a straightforward, yet exponential reduction to show that the
existence of a finite-memory winning strategy for the controller in games with delays
is decidable with respect to safety objectives. As such a reduction being exponential
in the magnitude of the delay would rapidly become unwieldy, we proposed an algo-
rithm that incrementally synthesizes a series of controllers withstanding increasingly
larger delays, thereby interleaving the unavoidable introduction of memory with state-
space pruning removing all states no longer controllable under the given delay before
proceeding to the next larger delay. To the best of our knowledge, we also provided
the first implementation of such a state-space pruning within an algorithm for solv-
ing games with delays, and we demonstrated the beneficial effects of this incremental
approach on a number of benchmarks.

The benchmarks used were robot escape games indicative of collision avoidance
scenarios in, e.g., traffic maneuvers. Control under delay here involves selecting appro-
priate safe actions or movements without yet knowing the most recent positions of the
other traffic participants. Experimental results on such escape games demonstrate that
our incremental algorithm outperforms reduction-based safety synthesis, irrespective of
whether this safety synthesis employs naı̈ve explicit-state or state-of-the-art symbolic
synthesis methods, as available in Saarbrücken’s SafetySynth tool.

An extension to hybrid control, dealing with infinite-state game graphs described
by hybrid safety games, is currently under development and will be exposed in future
work. We are also moving forward to a more efficient implementation of Algorithm 1
based on symbolic encodings, like BDDs [17] or SAT [3]. A further subject of future
investigation is stochastic models of out-of-order delivery of messages. As these result
in a high likelihood of state information being available before the maximum trans-
portation delay, such models can quantitatively guarantee better controllability than the
worst-case scenario of always delivering messages with maximum delay addressed in
this paper. We will therefore attack synthesis towards quantitative safety targets in such
stochastic settings and may also exploit constructive means of manipulating probability
distributions of message delays, like QoS control, within the synthesis.

Acknowledgements. The authors would like to thank Bernd Finkbeiner and Ralf Wim-
mer for insightful discussions on the AIGER format for synthesis and Leander Tentrup
for extending his tool SafetySynth by state initialization, thus facilitating a comparison.
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Appendix A Proofs of Lemma 1 and Theorem 3

Proof (of Lemma 1). We first concentrate on the case of even delay δ. For an even
delay δ, game Ĝ simulates playing G under delay δ by first forcing the controller to
guess an initial action sequence α ∈ Σ δ

2 and then maintains a shift register of player-0
actions. It subsequently determines actions of player 0 by the head of the shift register
while appending fresh actions to its tail, thus delaying the effect of player-0 actions by
δ steps. As each action that thus comes to effect has been decided δ time units ago, this
is equivalent to deciding actions at step i based on the play prefix π(i− δ), as a strategy
under delay would have to. Consequently, a winning strategy for the controller in this
safety game Ĝ exists iff a strategy winning for the controller in G under delay δ exists.

For the case of odd delay δ = 2k + 1, we observe that the move from a state at
πi−δ−1 to πi−δ is under control of the controller if i itself is an even position, i.e.,
under control of the controller. If playing a deterministic strategy, which obviously is as
powerful as playing potentially non-deterministic strategies, the controller consequently
cannot gain any additional information from being able to observe the play prefix π(i−
δ) rather than just the shorter prefix π(i − δ − 1). The problem of finding a strategy
under odd delay δ thus is equivalent to that of finding a strategy for even delay δ + 1,
which warrants using reduction to the same safety game Ĝ in both cases. ut

Proof (of Theorem 3). Termination is trivially guaranteed by the strictly increasing in-
dex k bounded by the final delay of interest δ. For convenience, we define the union of
two maps ξ̂1, ξ̂2 : S ×Σb δ2 c 7→ 2Σ as ξ̂1 ∪ ξ̂2 : S ×Σb δ2 c 7→ 2Σ by (ξ̂1 ∪ ξ̂2)(s, α) =
ξ̂1(s, α) ∪ ξ̂2(s, α) ∀s ∈ S, α ∈ Σb

δ
2 c. It then follows that if (α, ξ̂1) and (α, ξ̂2) are

both winning strategies of a game with delay δ, then (α, ξ̂1∪ ξ̂2) is also a winning strat-
egy. This fact allows us to define for any α ∈ Σb δ2 c the maximally permissive winning
strategy as (α,∪ξ̂), where the union is over all such ξ̂’s that (α, ξ̂) is a winning strategy
with delay δ.

Now, we prove that with output (WINNING, α, ξ̂δ) the strategy (α, ξ̂δ) is actually
a maximally permissive winning strategy of game Gδ . We prove by induction on k
that during execution of the algorithm, (α, ξ̂k) is always a maximally permissive win-
ning strategy of the game with delay k. The initial case of k = 0 is guaranteed by
FPIteration in line 2 of Algorithm 1, and the induction from k to k + 1 is achieved by
two steps. First, we prove that (α, ξ̂k+1) is a winning strategy. It suffices to prove the
fact ∅ 6= O(G,α, ξ̂k+1, k+1) ⊆ O(G,α, ξ̂k, k), which is demonstrated in the following
two cases:

1. For an even k, the strategy (α, ξ̂k+1) is playable, since for any path π = π0σ0π1σ1 . . .

obtained under (α, ξ̂k+1), ξ̂k+1(π2i+1, σ2i+2σ2i+4 . . . σ2i+k) 6= ∅; otherwise, the
configuration (π2i+1, σ2i+2 . . . σ2i+k) will be removed by the Shrink procedure in
line 9 and thus cannot be reached under the strategy. Furthermore, the assignment
in line 7 implies that for any play π0σ0π1σ1 . . . ∈ Π(G),

α2i ∈ ξ̂k+1(π2i−k−1, σ2i−kσ2i−k+2 . . . σ2i−2)⇒ α2i ∈ ξ̂k(π2i−k, σ2i−k . . . σ2i−2),

thus we have O(G,α, ξ̂k+1, k + 1) ⊆ O(G,α, ξ̂k, k). So, all the outcomes are safe
from the induction.
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2. For an odd k, playing under (α, ξ̂k+1) is as the same as playing under (α, ξ̂k),
since O(G,α, ξk+1, k + 1) = O(G,α, ξk, k) can be verified from the assignment
in line 19. So, (α, ξ̂k+1) should be a winning strategy, as the same as (α, ξ̂k).

Second, the maximality of (α, ξ̂k+1) can be argued by the maximality of (α, ξ̂k),
together with the fact: for any winning strategy (α, ξ̂′k+1) for an odd delay k + 1, a
winning strategy (α′, ξ̂′k) for delay k can be constructed by

α′ = {α0 . . . α k
2−1
| α0 . . . α k

2
∈ α} and ξ̂′k(s

′, σ1 . . . σ k
2
) = ξ̂′k+1(s, σ1 . . . σ k

2
), (1)

where s u−→ s′, and the maximality of the winning strategy is preserved.
To prove that with output (LOSING, k) the game has no winning strategy even for

delay k, we note that k should be an odd number in this case. Suppose that there is a
winning strategy (α, ξ̂′k) for delay k, we can construct a winning strategy (α′, ξ̂′k−1) for
delay k−1 as by Eq. (1). It is easy to check that ξ̂k−1∪ ξ̂′k−1 6= ξ̂k−1, which contradicts
to the maximality of ξ̂k−1. ut

Appendix B Additional Examples

Example 3. Consider the safety game
G = 〈S, s0, S0, S1, Σ,U ,→〉, illus-
trated in Fig. 4, where S = S0 ∪ S1,
with S0 = {c1, c2, c3, c4, c5, c6}, and
S1 = {e1, e2, e3, e4, e5, e6, e7, e8},
while s0 = c1, Σ = {a, b}, and
U = {e1, e3, e5, e7}.

Example 4. The game in this example
shares the same graph structure as that
in Fig. 4, except that we empower the
environment there a bit by introduc-
ing two fresh transitions e4

u−→ c2 and
e4

u−→ c6 in G. The winning strategy
then vanishes when the delay is lifted
to 3.

c1

e1a

e2

b

c2

u

u

e3a

e4

b

c3

u

u

c4

e5b

e6

a

c5

u

u

e7

b

e8

a

c6

u

u

ab

a

b

Fig. 4: A safety game winnable for the controller
with finite-memory strategies with δmax ≥ 30.

To show the essential feature of a game, the choices of the environment in these ex-
amples can be presented distinguishably as e.g. u, v, w, . . ., which though are abstracted
away —as we do in this paper— when one is interested in synthesizing a winning strat-
egy merely for the controller.
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Appendix C Sub-algorithm: FPIteration

Algorithm 3: FPIteration: Generating permissive strategy for delay-free games
input : G = 〈S, s0, S0, S1, Σ,U ,→〉, a safety game played under no delay.
/* initialization */

1 U ← U ;
2 for s ∈ S0 do
3 if s ∈ U then
4 ξ̂0(s, ε)← ∅ ;

5 else
6 ξ̂0(s, ε)← {σ | ∃s′ : s

σ−→ s′} ;

/* computing fixed-point on set of unwinnable states U */
7 while U 6= ∅ do
8 s′ ← Pop(U) ;
9 if s′ ∈ S0 then

10 Push(U, {s | s u−→ s′} \ U) ;

11 else
12 for s : s σ−→ s′ do
13 ξ̂0(s, ε)← ξ̂0(s, ε) \ {σ};
14 if ξ̂0(s, ε) = ∅ and s 6∈ U then
15 Push(U, s) ;

16 return ξ̂0 ;

Appendix D Constraint Systems C and E in Escp.4×4

For instance, when the robot takes UR action that leads a play from (x0, y0, x1, y1, true)
to (x′0, y

′
0, x
′
1, y
′
1, false), this action should satisfy the constraint C, which consists of the

following four conditions:

– C1 := (x′0 − x0 = 1) ∧ (y′0 − y0 = 1) ∧ (x′1 = x1) ∧ (y′1 = y1), which describes
how the robot moves.

– C2 := ¬(y1 − y0 = 1 ∧ x0 = x1), which prohibits the robot from running into the
kid, namely the collision with the kid occurs in the first direction of its move.

– C3 := (x0, y0 + 1) 6∈ O, which prohibits the robot from running through an obsta-
cle during the first direction of its move (that the endpoint of the move is outside
obstacles is taken care off by the safety condition).

– C4 := ∀x0, y0, x′0, y′0 : 0 ≤ x0, y0, x
′
0, y
′
0 ≤ 3, which restricts the robot to move

inside the room area and avoid running into the walls.

The four conditions are instantiated for each available action and the robot must during
the game only choose from legal actions satisfying the corresponding constraint C. An
analogous constraint system E defines the possible actions of the kid.
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Appendix E Finite-Memory Winning Strategies in Escp.4×4

Relabelling states: r for robot, k for kid.
Relabelling actions: {a : UL,b : LU,c : UR,d : RU,e : DL,f : LD,g : DR,h : RD,i : ε}.

Under δ = 0:

ξ̂0 = { (r0033, ε) 7→ {c,d,i}, (r1123, ε) 7→ {b,e,f,g,h,i}, (r1132, ε) 7→ {b,e,f,g,h,i},
(r0023, ε) 7→ {i,c,d}, (r0032, ε) 7→ {i,c,d}, (r0213, ε) 7→ {g,i},
(r0233, ε) 7→ {g,c,i}, (r0222, ε) 7→ {c,g,i}, (r2213, ε) 7→ {e,g,h,i},
(r2233, ε) 7→ {a,e,g,h,i}, (r2222, ε) 7→ {}, (r0013, ε) 7→ {c,d,i},
(r0022, ε) 7→ {c,d}, (r2013, ε) 7→ {a,b,c,i}, (r2033, ε) 7→ {a,b,c,i},
(r2022, ε) 7→ {a,b}, (r1113, ε) 7→ {i,b,d,e,f,g,h}, (r1133, ε) 7→ {i,e,f,b,d,g,h},
(r1122, ε) 7→ {b,i}, (r0231, ε) 7→ {c,g,i}, (r2231, ε) 7→ {a,e,i}, (r0031, ε) 7→ {c,d},
(r2031, ε) 7→ {a,b}, (r1131, ε) 7→ {b,d,i}, (r1303, ε) 7→ {h}, (r1323, ε) 7→ {f},
(r1103, ε) 7→ {d,e,f,g,h,i}, (r0203, ε) 7→ {g}, (r0223, ε) 7→ {g,i},
(r1332, ε) 7→ {f,i}, (r0232, ε) 7→ {i,g,c}, (r1321, ε) 7→ {f,i}, (r1121, ε) 7→ {b},
(r0221, ε) 7→ {c,i}, (r3303, ε) 7→ {e,f,i}, (r3323, ε) 7→ {}, (r3103, ε) 7→ {a,b,f,i},
(r3123, ε) 7→ {f}, (r2203, ε) 7→ {c,d,e,g,h,i}, (r2223, ε) 7→ {e}, (r3332, ε) 7→ {},
(r3132, ε) 7→ {f}, (r2232, ε) 7→ {a,e}, (r3321, ε) 7→ {}, (r3121, ε) 7→ {},
(r2221, ε) 7→ {a}, (r0003, ε) 7→ {i,c,d}, (r0021, ε) 7→ {}, (r2003, ε) 7→ {i,a,b,c},
(r2023, ε) 7→ {a,b,i}, (r2032, ε) 7→ {a,b,i}, (r2021, ε) 7→ {},
(r2202, ε) 7→ {a,c,d,e,g,h,i}, (r1313, ε) 7→ {}, (r1302, ε) 7→ {h,i},
(r1333, ε) 7→ {i,f,h}, (r1322, ε) 7→ {f,i}, (r0202, ε) 7→ {}, (r0002, ε) 7→ {c,d},
(r2002, ε) 7→ {a,b,c,i}, (r1102, ε) 7→ {d,g,h,i}, (r1331, ε) 7→ {i,f,h},
(r0211, ε) 7→ {c,i}, (r0220, ε) 7→ {c,g,i}, (r2211, ε) 7→ {a,i}, (r2220, ε) 7→ {a,e,i},
(r1311, ε) 7→ {i,f,h}, (r1320, ε) 7→ {i,f,h}, (r0011, ε) 7→ {}, (r0020, ε) 7→ {c,d},
(r2011, ε) 7→ {}, (r2020, ε) 7→ {}, (r1111, ε) 7→ {}, (r1120, ε) 7→ {b,d,i},
(r3313, ε) 7→ {e,f}, (r3302, ε) 7→ {i,e,f}, (r3333, ε) 7→ {}, (r3322, ε) 7→ {},
(r3113, ε) 7→ {i,a,b,f}, (r3102, ε) 7→ {i,a,b,f}, (r3133, ε) 7→ {i,a,b,f},
(r3122, ε) 7→ {}, (r3331, ε) 7→ {e,f}, (r3131, ε) 7→ {}, (r3311, ε) 7→ {e,f},
(r3320, ε) 7→ {e,f}, (r3111, ε) 7→ {a,b}, (r3120, ε) 7→ {a,b}, (r1301, ε) 7→ {h,i},
(r3301, ε) 7→ {e,f,i}, (r1101, ε) 7→ {d}, (r3101, ε) 7→ {a,b,i},
(r2201, ε) 7→ {a,c,d,g,h,i}, (r0201, ε) 7→ {c}, (r0001, ε) 7→ {}, (r2001, ε) 7→ {c},
(r1310, ε) 7→ {f,h,i}, (r1110, ε) 7→ {b,d}, (r0210, ε) 7→ {c,i}, (r3310, ε) 7→ {e,f,i},
(r3110, ε) 7→ {a,b,i}, (r2210, ε) 7→ {a,c,d,g,h,i}, (r0010, ε) 7→ {}, (r2010, ε) 7→ {c},
(r0200, ε) 7→ {c,g,i}, (r2200, ε) 7→ {a,e,c,d,g,h,i}, (r1300, ε) 7→ {i,f,h},
(r3300, ε) 7→ {i,e,f}, (r0000, ε) 7→ {}, (r2000, ε) 7→ {a,b,c,i},
(r1100, ε) 7→ {b,d,g,h,i}, (r3100, ε) 7→ {i,a,b,f} }.
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Under δ = 1:

ξ̂1 = { (k1133, ε) 7→ {b,e,f,g,h,i}, (k0033, ε) 7→ {c,d,i}, (k0223, ε) 7→ {g,i},
(k2223, ε) 7→ {}, (k0023, ε) 7→ {c,d}, (k2023, ε) 7→ {a,b}, (k1123, ε) 7→ {b,i},
(k0232, ε) 7→ {c,g,i}, (k2232, ε) 7→ {}, (k0032, ε) 7→ {c,d}, (k2032, ε) 7→ {a,b},
(k1132, ε) 7→ {b,i}, (k1313, ε) 7→ {}, (k1113, ε) 7→ {e,f,g,h,i}, (k0213, ε) 7→ {g},
(k1333, ε) 7→ {f}, (k0233, ε) 7→ {g,i}, (k1322, ε) 7→ {f}, (k1122, ε) 7→ {b},
(k0222, ε) 7→ {i}, (k3313, ε) 7→ {}, (k3113, ε) 7→ {f}, (k2213, ε) 7→ {e}, (k3333, ε) 7→ {},
(k3133, ε) 7→ {f}, (k2233, ε) 7→ {e}, (k3322, ε) 7→ {}, (k3122, ε) 7→ {}, (k2222, ε) 7→ {},
(k0013, ε) 7→ {c,d,i}, (k0022, ε) 7→ {}, (k2013, ε) 7→ {a,b,i}, (k2033, ε) 7→ {a,b,i},
(k2022, ε) 7→ {}, (k1331, ε) 7→ {f,i}, (k1131, ε) 7→ {b}, (k0231, ε) 7→ {c,i},
(k3331, ε) 7→ {}, (k3131, ε) 7→ {}, (k2231, ε) 7→ {a}, (k0031, ε) 7→ {}, (k2031, ε) 7→ {},
(k2203, ε) 7→ {e,g,h,i}, (k1303, ε) 7→ {}, (k1323, ε) 7→ {}, (k0203, ε) 7→ {},
(k0003, ε) 7→ {c,d}, (k2003, ε) 7→ {a,b,c,i}, (k1103, ε) 7→ {d,g,h,i},
(k1332, ε) 7→ {f,i}, (k0221, ε) 7→ {c,i}, (k2221, ε) 7→ {}, (k1321, ε) 7→ {f,i},
(k0021, ε) 7→ {}, (k2021, ε) 7→ {}, (k1121, ε) 7→ {}, (k3303, ε) 7→ {e,f}, (k3323, ε) 7→ {},
(k3103, ε) 7→ {a,b,f,i}, (k3123, ε) 7→ {}, (k3332, ε) 7→ {}, (k3132, ε) 7→ {},
(k3321, ε) 7→ {}, (k3121, ε) 7→ {}, (k1302, ε) 7→ {h}, (k3302, ε) 7→ {e,f,i},
(k1102, ε) 7→ {d}, (k3102, ε) 7→ {a,b,i}, (k2202, ε) 7→ {c,d,g,h,i}, (k0202, ε) 7→ {},
(k0002, ε) 7→ {}, (k2002, ε) 7→ {c}, (k1311, ε) 7→ {i}, (k1111, ε) 7→ {}, (k0211, ε) 7→ {c},
(k1320, ε) 7→ {f,i}, (k1120, ε) 7→ {b}, (k0220, ε) 7→ {c,i}, (k3311, ε) 7→ {},
(k3111, ε) 7→ {}, (k2211, ε) 7→ {a}, (k3320, ε) 7→ {}, (k3120, ε) 7→ {}, (k2220, ε) 7→ {a},
(k0011, ε) 7→ {}, (k0020, ε) 7→ {}, (k2011, ε) 7→ {}, (k2020, ε) 7→ {}, (k0201, ε) 7→ {},
(k2201, ε) 7→ {a,i}, (k1301, ε) 7→ {h,i}, (k3301, ε) 7→ {e,f}, (k0001, ε) 7→ {},
(k2001, ε) 7→ {}, (k1101, ε) 7→ {}, (k3101, ε) 7→ {a,b}, (k0210, ε) 7→ {c,i},
(k2210, ε) 7→ {a,i}, (k1310, ε) 7→ {f,h,i}, (k0010, ε) 7→ {}, (k2010, ε) 7→ {},
(k1110, ε) 7→ {}, (k3310, ε) 7→ {e,f}, (k3110, ε) 7→ {a,b}, (k1300, ε) 7→ {h,i},
(k1100, ε) 7→ {d}, (k0200, ε) 7→ {c}, (k3300, ε) 7→ {e,f,i}, (k3100, ε) 7→ {a,b,i},
(k2200, ε) 7→ {a,c,d,g,h,i}, (k0000, ε) 7→ {}, (k2000, ε) 7→ {c} }.

The strategy under δ = 2 is analogous to that under δ = 1, except that an action is
prepended in the history sequence (which is previously ε). Thus we omit the detailed
strategy here for the sake of space.
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