Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
	/			

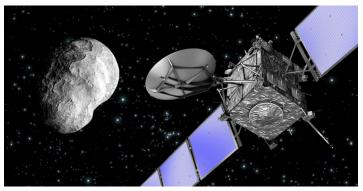
What's to Come is Still Unsure *

Synthesizing Controllers Resilient to Delayed Interaction

Mingshuai Chen 1 , Martin Fränzle 2 , Yangjia Li 3,1 , Peter N. Mosaad 2 , Naijun Zhan 1

¹ State Key Lab. of Computer Science, Institute of Software, Chinese Academy of Sciences, China ²Dpt. of Computing Science, Carl v. Ossietzky Universität Oldenburg, Germany ³University of Tartu, Estonia

Los Angeles, October 2018

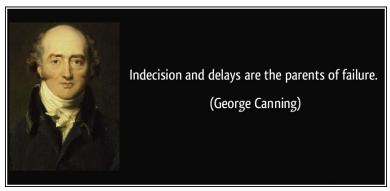


*. William Shakespeare, Twelfth Night/What You Will, Act 2, Scene 3.

Why Time Delays	Delay Games 0000	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks O

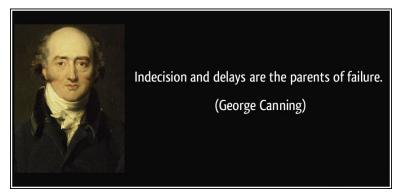
Staying Safe

When Observation & Actuation Suffer from Serious Delays



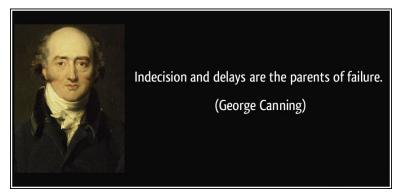
©ESA

- You could move slowly. (Well, can you?)
- You could trust autonomy.
- Or you have to anticipate and issue actions early.


Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks

A Pearl of Wisdom

©izQuotes


Why Time Delays 0000000	Delay Games 0000	Incremental Synthesis 000	Experimental Evaluation O	Concluding Remarks O
A Pearl of \	Wisdom			

©izQuotes

- Only relevant to ordinary people's life?
- Or to scientists, in particular comp. sci. and control folks, too?

Why Time Delays 0000000	Delay Games 0000	Incremental Synthesis 000	Experimental Evaluation O	Concluding Remarks O
A Pearl of \	Wisdom			

©izQuotes

- Only relevant to ordinary people's life?
- Or to scientists, in particular comp. sci. and control folks, too?

Remember that Canning briefly controlled Great Britain !

Why Time Delays	Delay Games 0000	Incremental Synthesis 000	Experimental Evaluation O	Concluding Remarks O
Outline				

1 Why Time Delays

- 2 Safety Games under Delay
- 3 Synthesizing Controllers Resilient to Delayed Interaction
- 4 Experimental Evaluation
- 5 Concluding Remarks

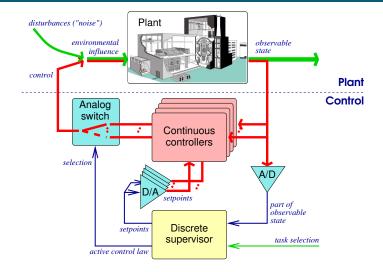
Why Time Delays	Delay Games 0000	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks O
Outline				

Why Time DelaysMotivation

2 Safety Games under Delay

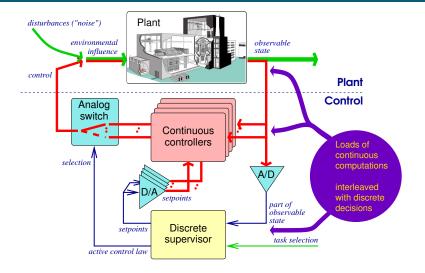
- Delayed observation and actuation
- Reducibility to standard safety games
- 3 Synthesizing Controllers Resilient to Delayed Interaction
 - Incremental handling of order-preserving delays
 - Out-of-order delivery

4 Experimental Evaluation

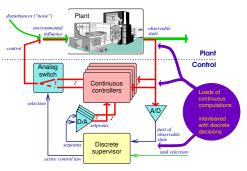

Performance

5 Concluding Remarks

Summary


Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
000000				
Motivation				

Hybrid Systems

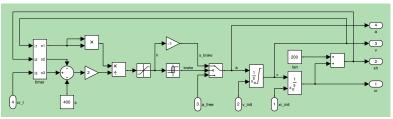


Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
•000000				
Motivation				

Hybrid Systems

Why Time Delays ●000000	Delay Games 0000	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks O
Motivation				
Hybrid Syst	ems			

Crucial question :


How do the controller and the plant interact?

Traditional answer :

- Coupling assumed to be (or at least modeled as) delay-free.
- Mode dynamics is covered by the conjunction of the individual ODEs.
- Switching btw. modes is an immediate reaction to environmental conditions.

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
000000				
Motivation				

Instantaneous Coupling

©ETCS-3

Following the tradition, above (rather typical) Simulink model assumes

- delay-free coupling between all components,
- instantaneous feed-through within all functional blocks.

Central questions :

- Is this realistic?
- If not, does it have observable effect on control performance?
- May that effect be detrimental or even harmful?

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
000000				
Motivation				

Q1: Is Instantaneous Coupling Realistic?

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
000000				
Motivation				

Q1 : Is Instantaneous Coupling Realistic?

We are no better :

As soon as computer scientists enter the scene, serious delays are ahead...

Mingshuai Chen Institute of Software, CAS

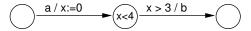
Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
000000				
Motivation				

Q1 : Is Instantaneous Coupling Realistic?

Digital control needs A/D and D/A conversion, which induces latency in signal forwarding.

Digital signal processing, especially in complex sensors like CV, needs processing time, adding signal delays.

Networked control introduces communication latency into the feedback control loop.


Harvesting, fusing, and forwarding data through sensor networks enlarge the latter by orders of magnitude.

Why Time Delays 000€000	Delay Games 0000	Incremental Synthesis 000	Experimental Evaluation O	Concluding Remarks O
Q1:Is Insta	intaneous Co	oupling Realistic	? No.	
	digital out	Digital control need induces latency in si	ls <mark>A/D and D/A conversio</mark> gnal forwarding.	n, which
		Digital signal processors like CV CAUTION DELAYS AHEAT	g time, adding si	ignal de-
			and forwarding data throo ge the latter by orders of	-

Why Time Delays ○○○○●○○	Delay Games 0000	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks O
Motivation				
O1a : Resul	tant Forms o	of Delav		

Delayed reaction : Reaction to a stimulus is not immediate.

Easy to model in timed automata, hybrid automata, ... :

- Thus amenable to the pertinent analysis tools.
- ⇒ Not of interest today.

Why Time Delays ○○○○●○○	Delay Games 0000	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks O
Motivation				
O1a : Resul	tant Forms o	of Delav		

Delayed reaction : Reaction to a stimulus is not immediate.

Easy to model in timed automata, hybrid automata, ... :

- Thus amenable to the pertinent analysis tools.
- ⇒ Not of interest today.

Network delay : Information of different age coexists and is queuing in the network when piped towards target.

- End-to-end latency may exceed sampling intervals etc. by orders of magnitude
- Not (continuous-time pipelined delay) or not efficiently (discrete-time pipelined delay) expressible in our std. models.
- ⇒ Our theme today : discrete-time pipelined delay.

[M. Chen, M. Fränzle et al.. ATVA'18],

[M. Zimmermann. LICS'18, GandALF'17], [F. Klein & M. Zimmermann. ICALP'15, CSL'15].

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

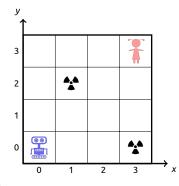


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\}, \Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

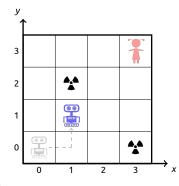


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\},\$ $\Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

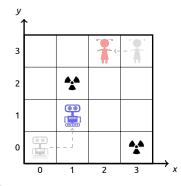


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\}, \Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

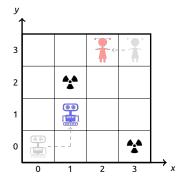


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\}, \Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

No delay :

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

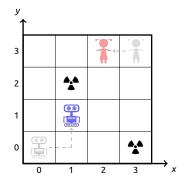


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\},\$ $\Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

No delay :

Robot always wins by circling around the obstacle at (1,2).

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

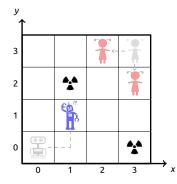


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\},\$ $\Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

No delay :

Robot always wins by circling around the obstacle at (1,2).

1 step delay :

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

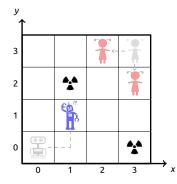
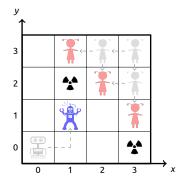


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\},\$ $\Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$


No delay :

Robot always wins by circling around the obstacle at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

 $\begin{array}{l} \mbox{Figure : A robot escape game in a 4 \times 4 room, with} \\ \Sigma_r = \{ {\rm RU}, {\rm UR}, {\rm LU}, {\rm UL}, {\rm RD}, {\rm DR}, {\rm LD}, {\rm DL}, \epsilon \}, \\ \Sigma_k = \{ {\rm R}, {\rm L}, {\rm U}, {\rm D} \}. \end{array}$

No delay :

Robot always wins by circling around the obstacle at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

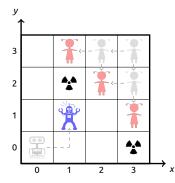


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\},\$ $\Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

No delay :

Robot always wins by circling around the obstacle at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

Robot still wins, yet extra memory is needed.

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

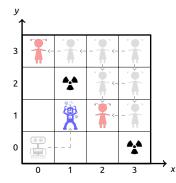


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\},\$ $\Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

No delay :

Robot always wins by circling around the obstacle at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

Robot still wins, yet extra memory is needed.

3 steps delay :

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

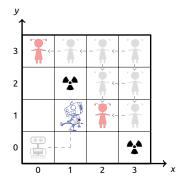


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\},\$ $\Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

No delay :

Robot always wins by circling around the obstacle at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

Robot still wins, yet extra memory is needed.

3 steps delay :

Robot is unwinnable (uncontrollable) anymore.

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000				
Motivation				

Q2 : Do Delays Have Observable Effect? -- Yes, they have.

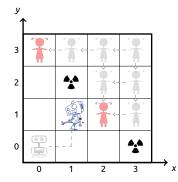


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\},\$ $\Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

No delay :

Robot always wins by circling around the obstacle at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

Robot still wins, yet extra memory is needed.

3 steps delay :

Robot is unwinnable (uncontrollable) anymore.

Why Time Delays ○○○○○○●	Delay Games 0000	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks O
Motivation				
O3 : Mav th	e Effects be	Harmful? Yes	s, delays may well	annihilate

control performance.

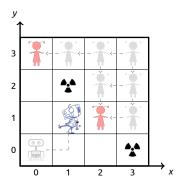


Figure : A robot escape game in a 4×4 room, with $\Sigma_r = \{\text{RU}, \text{UR}, \text{LU}, \text{UL}, \text{RD}, \text{DR}, \text{LD}, \text{DL}, \epsilon\},\$ $\Sigma_k = \{\text{R}, \text{L}, \text{U}, \text{D}\}.$

No delay :

Robot always wins by circling around the obstacle at (1,2).

1 step delay :

Robot wins by 1-step pre-decision.

2 steps delay :

Robot still wins, yet extra memory is needed.

3 steps delay :

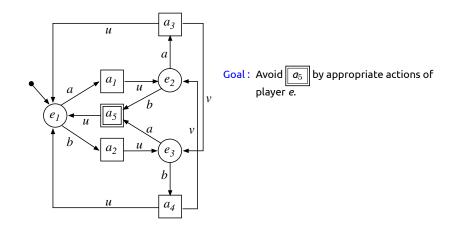
Robot is unwinnable (uncontrollable) anymore.

Why Time Delays 0000000	Delay Games	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks O
Outline				

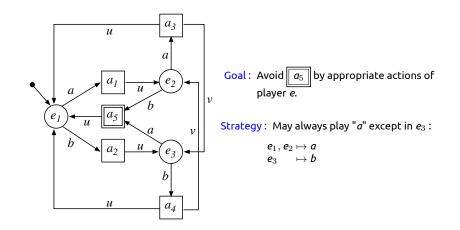
1 Why Time Delays Motivation

2 Safety Games under Delay

- Delayed observation and actuation
- Reducibility to standard safety games
- 3 Synthesizing Controllers Resilient to Delayed Interaction
 - Incremental handling of order-preserving delays
 - Out-of-order delivery

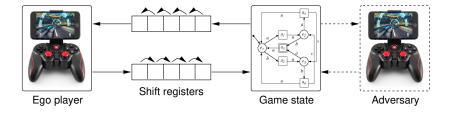

4 Experimental Evaluation

Performance


5 Concluding Remarks

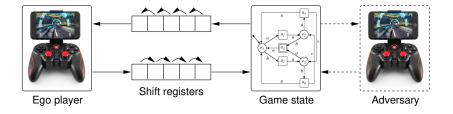
Summary

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks O
Delayed Observation &	Actuation			-
A Trivial Sa	fety Game			



Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
0000000	0000	000		
Delayed Observation &	Actuation			
	e			
A Trivial Sa	fety Game			

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
	0000			
Delayed Observation & A	ctuation			

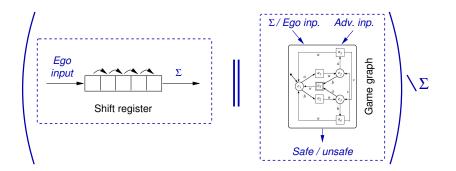

Playing Safety Game Subject to Discrete Delay

Observation : It doesn't make an observable difference for the joint dynamics whether delay occurs in perception, actuation, or both.

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
	0000			
Delayed Observation & A	Actuation			

Playing Safety Game Subject to Discrete Delay

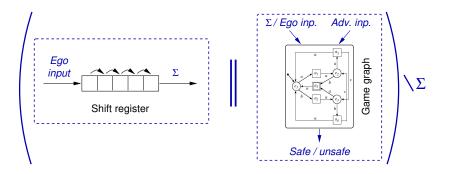
Observation : It doesn't make an observable difference for the joint dynamics whether delay occurs in perception, actuation, or both. Consequence : There is an ¹obvious reduction to a safety game of perfect


information.

^{1.} In fact, two different ones: To mimic opacity of the shift registers, delay has to be moved to actuation/sensing for ego/adversary, resp. The two thus play different games!

Why Time Delays	Delay Games ○○●○	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks O
Reduction				

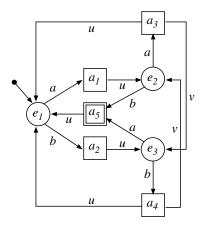
Reduction to Delay-Free Games


from Ego-Player Perspective

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
	0000			
Reduction				

Reduction to Delay-Free Games

from Ego-Player Perspective



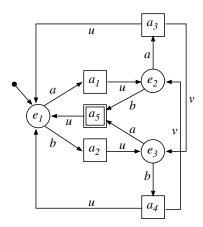
- © Safety games w. delay can be solved algorithmically.
- © Game graph incurs blow-up by factor |Alphabet(ego)|^{delay}.

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks		
	0000					
Reduction						

The Simple Safety Game

...but with Delay

No delay :

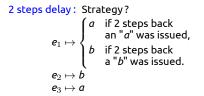

$$e_1, e_2 \mapsto a$$

 $e_3 \mapsto b$

1 step delay : Strategy ? $a_1, a_4 \mapsto a$ $a_2, a_3 \mapsto b$

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks		
	0000					
Reduction						

The Simple Safety Game


...but with Delay

No delay :

$$egin{array}{ccc} m{e}_1, m{e}_2 \mapsto m{a} \ m{e}_3 & \mapsto m{b} \end{array}$$

1 step delay : Strategy ? $a_1, a_4 \mapsto a$ $a_2, a_3 \mapsto b$

Need memory!

Why Time Delays 0000000	Delay Games 0000	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks O
Outline				

1 Why Time DelaysMotivation

2 Safety Games under Delay

- Delayed observation and actuation
- Reducibility to standard safety games

3 Synthesizing Controllers Resilient to Delayed Interaction

- Incremental handling of order-preserving delays
- Out-of-order delivery

4 Experimental Evaluation

Performance

5 Concluding Remarks

Summary

Why Time Delays 0000000	Delay Games 0000	Incremental Synthesis ●○○	Experimental Evaluation O	Concluding Remarks O		
Order-Preserving Delays						
Incremental Synthesis in a Nutshell						

Observation : A winning strategy for delay k' > k can always be utilized for a safe win under delay k.

Consequence : That a position is winning for delay k is a necessary condition for it being winning under delay k' > k.

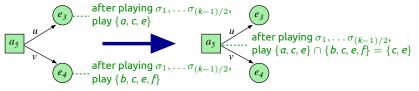
Why Time Delays 0000000	Delay Games 0000	Incremental Synthesis ●○○	Experimental Evaluation O	Concluding Remarks O
Order-Preserving Delays				
Incremental	Svnthesis i	n a Nutshell		

Observation : A winning strategy for delay k' > k can always be utilized for a safe win under delay k.

Consequence : That a position is winning for delay k is a necessary condition for it being winning under delay k' > k.

- Idea : Incrementally filter out loss states & incrementally synthesize winning strategy for the remaining :
 - Synthesize winning strategy for underlying delay-free safety game.
 - **2** For each winning state, lift strategy from delay k to k + 1.
 - Remove states where this does not succeed.
 - Repeat from 2 until either delay-resilience suffices (winning) or initial state turns lossy (losing).

M. Chen, M. Fränzle, Y. Li, P.N. Mosaad, N. Zhan: What's to come is still unsure: Synthesizing controllers resilient to delayed interaction. To appear in Proc. of ATVA 2018.

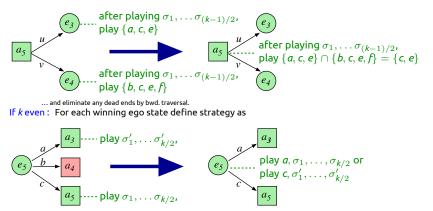

0000000 0000 0●0 0 0 Order-Preserving Delays 0	Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
Order-Preserving Delays			000		
	Order-Preserving Delays				

1 Generate a *maximally permissive* strategy for delay k = 0.

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
		000		
Order-Preserving Delays				

- **1** Generate a maximally permissive strategy for delay k = 0.
- 2 Advance to delay k + 1:

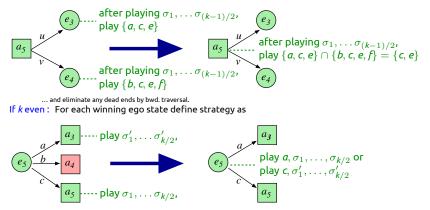
If k odd : For each (ego-)winning adversarial state define strategy as



... and eliminate any dead ends by bwd. traversal.

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
		000		
Order-Preserving Delays				

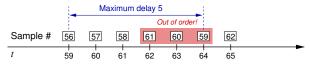
- **1** Generate a *maximally permissive* strategy for delay k = 0.
- 2 Advance to delay k + 1:


If k odd : For each (ego-)winning adversarial state define strategy as

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
		000		
Order-Preserving Delays				

- **1** Generate a *maximally permissive* strategy for delay k = 0.
- 2 Advance to delay k + 1:

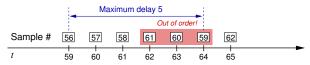
If k odd : For each (ego-)winning adversarial state define strategy as

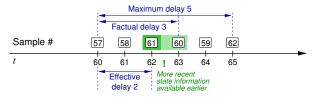


3 Repeat from 2 until either delay-resilience suffices or initial state turns lossy.

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks		
		000				
Non-Order-Preserving Delays						

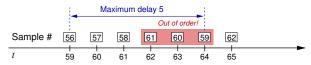
How About Non-Order-Preserving Delays?

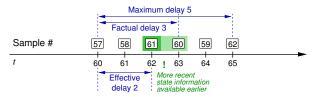

Observations may arrive out-of-order :


Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks		
		000				
Non-Order-Preserving Delays						

How About Non-Order-Preserving Delays?

Observations may arrive out-of-order :


© But this may only reduce effective delay, improving controllability :


Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
		000		
Non-Order-Preserving De	lays			

How About Non-Order-Preserving Delays?

Observations may arrive out-of-order :

© But this may only reduce effective delay, improving controllability :

W.r.t. qualitative controllability, the worst-case of out-of-order delivery is equivalent to order-preserving delay k.

© Stochastically expected controllability even better than for strict delay k.

Why Time Delays 0000000	Delay Games 0000	Incremental Synthesis	Experimental Evaluation	Concluding Remarks O
Outline				

1 Why Time DelaysMotivation

2 Safety Games under Delay

- Delayed observation and actuation
- Reducibility to standard safety games

3 Synthesizing Controllers Resilient to Delayed Interaction

- Incremental handling of order-preserving delays
- Out-of-order delivery

4 Experimental EvaluationPerformance

5 Concluding Remarks

Summary

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
			•	
Performance				

Incremental vs. Reduction-Based

Ben	chmar	k		F	Reduction	on + Expl	icit-State	e Synthesis	3	Ine	crement	al Expli	icit-Stat	e Synthe	sis	
name	S	$ \rightarrow $	$ \mathcal{U} $	δ_{\max}	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	δ_{\max}	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	%
Exmp.trv1	14	20	4	≥ 22	0.00	0.00	0.01	0.02	0.02	≥ 30	0.00	0.00	0.00	0.01	0.01	
Exmp.trv2	14	22	4	= 2	0.00	0.01	0.01	0.02	-	= 2	0.00	0.00	0.00	0.01	_	81.97
Escp.4×4	224	738	16	= 2	0.08	11.66	11.73	1059.23	-	= 2	0.08	0.13	0.22	0.25	_	99.02
Escp.4×5	360	1326	20	= 2	0.18	34.09	33.80	3084.58	-	= 2	0.18	0.27	0.46	0.63	-	99.02
Escp.5×5	598	2301	26	≥ 2	0.46	96.24	97.10	?	?	= 2	0.46	0.68	1.16	1.71	_	98.98
Escp.5×6	840	3516	30	≥ 2	1.01	217.63	216.83	?	?	= 2	1.00	1.42	2.40	4.30	-	99.00
Escp.6×6	1224	5424	36	≥ 2	2.13	516.92	511.41	?	?	= 2	2.06	2.90	5.12	10.30	_	98.97
Escp.7×7	2350	11097	50	≥ 2	7.81	2167.86	2183.01	?	?	= 2	7.71	10.67	19.04	52.47	_	98.99
Escp.7×8	3024	14820	56	≥ 0	13.07	?	?	?	?	= 2	13.44	18.25	32.69	108.60	-	99.01
Benchmar	'k	R	educt	ion + Yo	sys + S	afetySynt	h (symb	olic)	Inc	cremental	Synthe	esis (exp	olicit-sta	ate imple	mentati	on)
name	δ_{max}	$\delta = 0$)δ=	$1 \delta =$	$2 \delta =$	$3 \delta = 4$	$\delta =$	$5 \delta = 6$	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$	%
Stub.4×4	= 2	1.07	7 1.	.24 1.2	24 1.	80 -	-		0.04	0.07	0.12	0.18	-	-	-	98.98
Stub.4×5	= 2	1.10	5 1.	.49 1.4	49 2.	83 -	-		0.08	0.14	0.25	0.44	-	-	-	98.97
Stub.5×5	= 2	1.19	2	.61 2.5	50 13.	67 -	-		0.21	0.37	0.63	1.17	-	-	-	98.97
Stub.5×6	= 2	1.18	3 2.	.60 2.5	59 23.	30 -	-		0.42	0.69	1.20	2.49	-	-	-	98.96
Stub.6×6	= 4	1.17	7 2.	76 2.3	74 19.	96 19.69	655.2	4 –	0.93	1.47	2.60	5.79	7.54	7.60	-	99.89
Stub.7×7	= 4	1.23	3 2	.50 2.4	48 24.	57 23.01	2224.6	2 –	3.60	5.52	10.08	22.75	31.18	32.98	-	99.88

Table : Benchmark results in relation to reduction-based approaches (time in seconds)

Why Time Delays	Delay Games	Incremental Synthesis	Experimental Evaluation	Concluding Remarks
			•	
Performance				

Incremental vs. Reduction-Based

Ben	chmar	k	Reduction + Explicit-State Synthesis					5	Incremental Explicit-State Synthesis							
name	S	$ \rightarrow $	$ \mathcal{U} $	δ_{\max}	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	δ_{\max}	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	%
Exmp.trv1	14	20	4	≥ 22	0.00	0.00	0.01	0.02	0.02	≥ 30	0.00	0.00	0.00	0.01	0.01	
Exmp.trv2	14	22	4	= 2	0.00	0.01	0.01	0.02	-	= 2	0.00	0.00	0.00	0.01	-	81.97
Escp.4×4	224	738	16	= 2	0.08	11.66	11.73	1059.23	-	= 2	0.08	0.13	0.22	0.25	_	99.02
Escp.4×5	360	1326	20	= 2	0.18	34.09	33.80	3084.58	-	= 2	0.18	0.27	0.46	0.63	_	99.02
Escp.5×5	598	2301	26	≥ 2	0.46	96.24	97.10	?	?	= 2	0.46	0.68	1.16	1.71	_	98.98
Escp.5×6	840	3516	30	≥ 2	1.01	217.63	216.83		?	= 2	1.00	1.42	2.40	4.30	_	99.00
Escp.6×6	1224	5424	36	≥ 2	2.13	516.92	511.41	?	?	= 2	2.06	2.90	5.12	10.30	-	98.97
Escp.7×7	2350	11097	50	≥ 2	7.81	2167.86	2183.01	?	?	= 2	7.71	10.67	19.04	52.47	-	98.99
Escp.7×8	3024	14820	56	≥ 0	13.07	?	?	?	?	= 2	13.44	18.25	32.69	108.60	-	99.01
Benchmar	k	R	educti	ion + Yo	osys + S	afetySynt	th (symb	olic)	In	cremental	Synthe	esis (exp	olicit-sta	ate imple	mentati	on)
name a	δ_{max}	$\delta = 0$	$\delta =$	$1 \delta =$	$2 \delta =$	$3 \delta = 4$	$\delta =$	$5 \delta = 6$	$\delta = 0$	$\delta = 1$	$\delta = 2$	$\delta = 3$	$\delta = 4$	$\delta = 5$	$\delta = 6$	%
Stub.4×4	= 2	1.07	71.	24 1.	24 1.	80 -	-		0.04	0.07	0.12	0.18	-	-	-	98.98
Stub.4×5	= 2	1.10	5 1.	49 1.	49 2.	83 -	-		0.08	0.14	0.25	0.44	-	-	-	98.97
Stub.5×5	= 2	1.19	2.	61 2.	50 13.	67 -	-		0.21	0.37	0.63	1.17	-	-	-	98.97
Stub.5×6	= 2	1.18	3 2.	60 2.	59 23.	30 -	-		0.42	0.69	1.20	2.49	-	-	-	98.96
Stub.6×6	= 4	1.17	7 2.	76 2.	74 19.	96 19.69	655.2	4 –	0.93	1.47	2.60	5.79	7.54	7.60	-	99.89
Stub.7 \times 7	= 4	1.2	32.	50 2.	48 24.	57 23.01	2224.6	2 –	3.60	5.52	10.08	22.75	31.18	32.98	-	99.88

Table : Benchmark results in relation to reduction-based approaches (time in seconds)

Why Time Delays	Delay Games 0000	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks
Outline				

1 Why Time DelaysMotivation

2 Safety Games under Delay

- Delayed observation and actuation
- Reducibility to standard safety games
- 3 Synthesizing Controllers Resilient to Delayed Interaction
 - Incremental handling of order-preserving delays
 - Out-of-order delivery

4 Experimental Evaluation

Perrormance

5 Concluding Remarks Summary

Why Time Delays	Delay Games 0000	Incremental Synthesis	Experimental Evaluation O	Concluding Remarks
Summary				
Concluding	Remarks			

Problem : We face

- increasingly wide-spread use of networked distributed sensing and control,
- substantial delays thus impacting controllability and control performance,
- naïve reduction to delay-free settings, yet with an exponential blow-up.

Status: We present

- insufficiency of memoryless control strategies for discrete safety games under delay,
- incremental algorithm for efficient delay-tolerant control synthesis,
- the practically relevant case of non-order-preserving delays.

Future Work : We plan to

- integrate stochastic models of message delays into safety synthesis processes,
- let synthesis constructively leverage the advantages of (partial) control on out-of-order delivery,
- extend to hybrid setting combining delayed continuous and delayed discrete reactive behavior.

