

Modelling and Analysing Concurrent Systems

RIO 2023 Summer School of Informatics Rio Cuarto, Argentina; February 13–17, 2023

Lecture 4: Application to Mutual-Exclusion Protocols

Thomas Noll Software Modelling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-22-23/rio/

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Verifying Properties by Model Checking

Verifying Mutual Exclusion by Bisimulation Checking

The End

Peterson's Mutual Exclusion Algorithm

- Goal: ensuring exclusive access to non-shared resources
- Here: two competing processes P_1 , P_2 and shared variables
 - $-b_1$, b_2 (Boolean, both initially false) $-b_i$ indicates that P_i wants to enter critical section
 - -k (in $\{1, 2\}$, arbitrary initial value) index of prioritised process
- P_i uses local variable j := 2 i (index of other process)

Peterson's Mutual Exclusion Algorithm

- Goal: ensuring exclusive access to non-shared resources
- Here: two competing processes P_1 , P_2 and shared variables
 - $-b_1$, b_2 (Boolean, both initially false) $-b_i$ indicates that P_i wants to enter critical section
 - -k (in $\{1, 2\}$, arbitrary initial value) index of prioritised process
- P_i uses local variable j := 2 i (index of other process)

Algorithm 4.1 (Peterson's algorithm for P_i)

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := false;

end
```


- Not directly expressible in CCS (communication by handshaking)
- Idea: consider variables as processes that communicate with environment by processing read/write requests

- Not directly expressible in CCS (communication by handshaking)
- Idea: consider variables as processes that communicate with environment by processing read/write requests

Example 4.2 (Shared variables in Peterson's algorithm)

- Encoding of b_1 with two (process) states B_{1t} (value tt) and B_{1f} (value ff)
- Read access along ports b1rt (in state B_{1t}) and b1rf (in state B_{1f})
- Write access along ports *b1wt* and *b1wf* (in both states)

- Not directly expressible in CCS (communication by handshaking)
- Idea: consider variables as processes that communicate with environment by processing read/write requests

Example 4.2 (Shared variables in Peterson's algorithm)

- Encoding of b_1 with two (process) states B_{1t} (value tt) and B_{1f} (value ff)
- Read access along ports b1rt (in state B_{1t}) and b1rf (in state B_{1f})
- Write access along ports b1wt and b1wf (in both states)
- Possible behaviours:

 $B_{1f} = \overline{b1rf}.B_{1f} + b1wf.B_{1f} + b1wt.B_{1t}$ $B_{1t} = \overline{b1rt}.B_{1t} + b1wf.B_{1f} + b1wt.B_{1t}$

- Not directly expressible in CCS (communication by handshaking)
- Idea: consider variables as processes that communicate with environment by processing read/write requests

Example 4.2 (Shared variables in Peterson's algorithm)

- Encoding of b_1 with two (process) states B_{1t} (value tt) and B_{1f} (value ff)
- Read access along ports b1rt (in state B_{1t}) and b1rf (in state B_{1f})
- Write access along ports *b1wt* and *b1wf* (in both states)
- Possible behaviours:

$$B_{1f} = \overline{b1rf}.B_{1f} + b1wf.B_{1f} + b1wt.B_{1t}$$
$$B_{1t} = \overline{b1rt}.B_{1t} + b1wf.B_{1f} + b1wt.B_{1t}$$

• Similarly for b_2 and k:

$$B_{2f} = b2rf.B_{2f} + b2wf.B_{2f} + b2wt.B_{2t}$$

$$B_{2t} = \overline{b2rt}.B_{2t} + b2wf.B_{2f} + b2wt.B_{2t}$$

$$K_1 = \overline{kr1}.K_1 + kw1.K_1 + kw2.K_2$$

$$K_2 = \overline{kr2}.K_2 + kw1.K_1 + kw2.K_2$$

Assumption: P_i cannot fail or terminate within critical section

```
Peterson's algorithm
```

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := false;

end
```


Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := false;

end
```

```
P_1 = b1wt.kw2.P_{11}
                                             P_{11} = b2rf.P_{12} + b2rf.P_{12}
                                                                                                 b2rt.(kr1.P_{12} + kr2.P_{11})
                                              P_{12} = enter1.exit1.\overline{b1wf}.P_1
                                                    P_2 = b2wt.kw1.P_{21}
                                             P_{21} = b1rf.P_{22} + b1rf.P_{22}
                                                                                                 b1rt.(kr1.P_{21} + kr2.P_{22})
                                             P_{22} = enter2.exit2.b2wf.P_2
Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L
                                  for L = \{b1rf, b1rt, b1wf, b1wt, b
                                                                                                             b2rf, b2rt, b2wf, b2wt,
                                                                                                            kr1, kr2, kw1, kw2
```


Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := \text{true};

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := \text{false};

end
```

```
P_1 = b1wt.kw2.P_{11}
                                             P_{11} = b2rf.P_{12} + b2rf.P_{12}
                                                                                                 b2rt.(kr1.P_{12} + kr2.P_{11})
                                              P_{12} = enter1.exit1.\overline{b1wf}.P_1
                                                    P_2 = b2wt.kw1.P_{21}
                                             P_{21} = b1rf.P_{22} + b1rf.P_{22}
                                                                                                 b1rt.(kr1.P_{21} + kr2.P_{22})
                                             P_{22} = enter2.exit2.b2wf.P_2
Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L
                                  for L = \{b1rf, b1rt, b1wf, b1wt, b
                                                                                                             b2rf, b2rt, b2wf, b2wt,
                                                                                                            kr1, kr2, kw1, kw2
```


Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \wedge k = j do skip end;

"critical section";

b_i := false;

end
```

```
P_1 = b1wt.kw2.P_{11}
                                             P_{11} = b2rf.P_{12} + b2rf.P_{12}
                                                                                                 b2rt.(kr1.P_{12} + kr2.P_{11})
                                              P_{12} = enter1.exit1.\overline{b1wf}.P_1
                                                    P_2 = b2wt.kw1.P_{21}
                                             P_{21} = b1rf.P_{22} + b1rf.P_{22}
                                                                                                 b1rt.(kr1.P_{21} + kr2.P_{22})
                                             P_{22} = enter2.exit2.b2wf.P_2
Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L
                                  for L = \{b1rf, b1rt, b1wf, b1wt, b
                                                                                                             b2rf, b2rt, b2wf, b2wt,
                                                                                                            kr1, kr2, kw1, kw2
```


Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := false;

end
```

```
P_1 = b1wt.kw2.P_{11}
                                                                                  P_{11} = b2rf_{.}P_{12} + b2rf_{.}P_{.
                                                                                                                                                                                    b2rt.(kr1.P_{12} + kr2.P_{11})
                                                                                   P_{12} = enter1.exit1.\overline{b1wf}.P_1
                                                                                                P_2 = b2wt.kw1.P_{21}
                                                                                   P_{21} = b1rf.P_{22} + b1rf.P_{22}
                                                                                                                                                                                    b1rt.(kr1.P_{21} + kr2.P_{22})
                                                                                   P_{22} = enter2.exit2.b2wf.P_2
Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L
                                                               for L = \{b1rf, b1rt, b1wf, b1wt, b
                                                                                                                                                                                                        b2rf, b2rt, b2wf, b2wt,
                                                                                                                                                                                                      kr1, kr2, kw1, kw2
```


Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \wedge k = j do skip end;

"critical section";

b_i := false;

end
```

```
P_1 = b1wt.kw2.P_{11}
                                             P_{11} = b2rf.P_{12} + b2rf.P_{12}
                                                                                                 b2rt.(kr1.P_{12} + kr2.P_{11})
                                             P_{12} = enter1.exit1.\overline{b1wf}.P_1
                                                    P_2 = b2wt.kw1.P_{21}
                                             P_{21} = b1rf.P_{22} + b1rf.P_{22}
                                                                                                 b1rt.(kr1.P_{21} + kr2.P_{22})
                                             P_{22} = enter2.exit2.b2wf.P_2
Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L
                                  for L = \{b1rf, b1rt, b1wf, b1wt, b
                                                                                                             b2rf, b2rt, b2wf, b2wt,
                                                                                                            kr1, kr2, kw1, kw2
```


Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \wedge k = j do skip end;

"critical section";

b_i := false;

end
```

```
P_1 = b1wt.kw2.P_{11}
                                             P_{11} = b2rf.P_{12} + b2rf.P_{12}
                                                                                                 b2rt.(kr1.P_{12} + kr2.P_{11})
                                              P_{12} = enter1.exit1.\overline{b1wf}.P_1
                                                    P_2 = b2wt.kw1.P_{21}
                                             P_{21} = b1rf.P_{22} + b1rf.P_{22}
                                                                                                 b1rt.(kr1.P_{21} + kr2.P_{22})
                                             P_{22} = enter2.exit2.b2wf.P_2
Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L
                                  for L = \{b1rf, b1rt, b1wf, b1wt, b
                                                                                                             b2rf, b2rt, b2wf, b2wt,
                                                                                                            kr1, kr2, kw1, kw2
```


Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := false;

end
```

```
P_1 = b1wt.kw2.P_{11}
                                                                                  P_{11} = b2rf.P_{12} + b2rf.
                                                                                                                                                                                  b2rt.(kr1.P_{12} + kr2.P_{11})
                                                                                     P_{12} = enter1.exit1.\overline{b1wf}.P_1
                                                                                                P_2 = b2wt.kw1.P_{21}
                                                                                  P_{21} = b1rf.P_{22} + b1rf.P_{22}
                                                                                                                                                                                  b1rt.(kr1.P_{21} + kr2.P_{22})
                                                                                   P_{22} = enter2.exit2.b2wf.P_2
Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L
                                                               for L = \{b1rf, b1rt, b1wf, b1wt, b
                                                                                                                                                                                                        b2rf, b2rt, b2wf, b2wt,
                                                                                                                                                                                                      kr1, kr2, kw1, kw2
```


Modelling Mutual Exclusion Algorithms

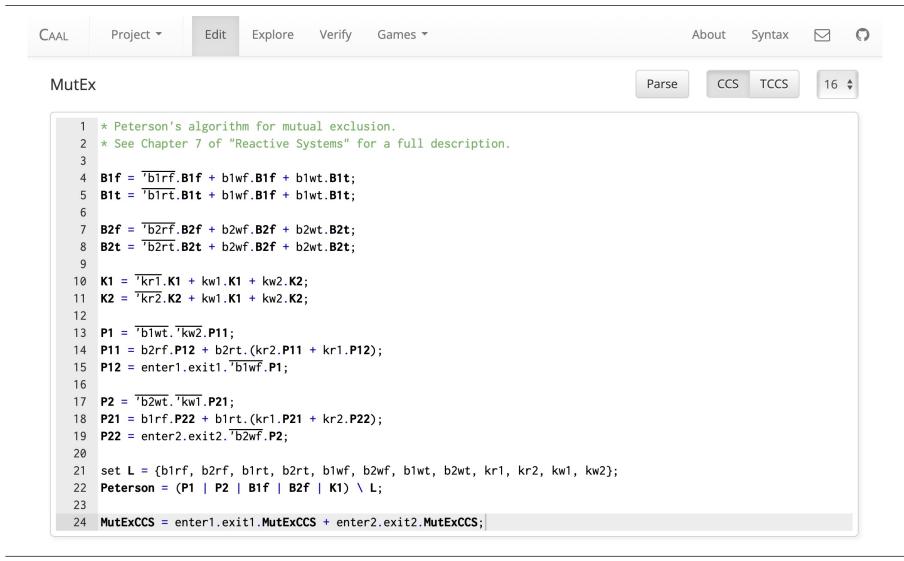
Evaluating the CCS Model

Verifying Properties by Model Checking

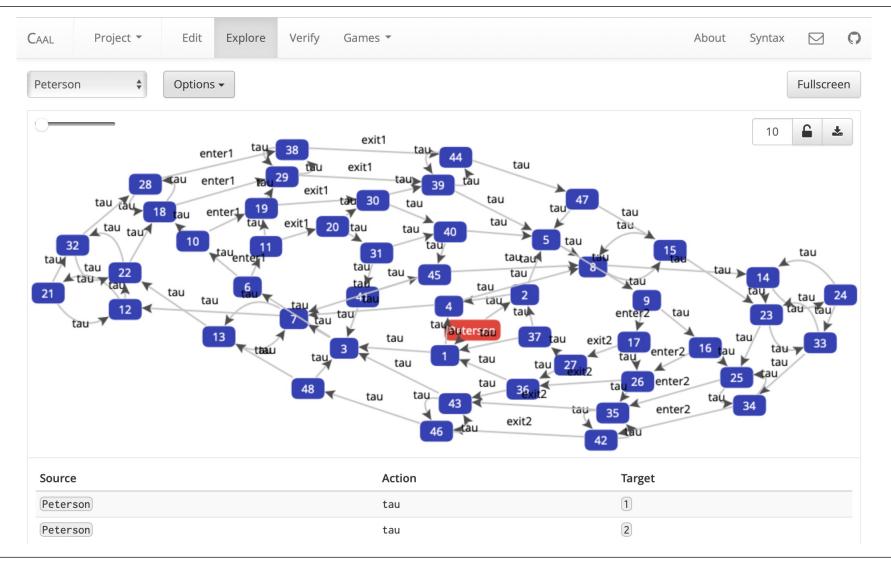
Verifying Mutual Exclusion by Bisimulation Checking

The End

Obtaining the LTS using CAAL I



Obtaining the LTS using CAAL II



8 of 18 Modelling and Analysing Concurrent Systems RIO 2023 Lecture 4: Application to Mutual-Exclusion Protocols

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Verifying Properties by Model Checking

Verifying Mutual Exclusion by Bisimulation Checking

The End

The Mutual Exclusion Property

- Done: formal description of Peterson's algorithm
- To do: analysing its behaviour
- Question: what does "ensuring mutual exclusion" formally mean?

The Mutual Exclusion Property

- Done: formal description of Peterson's algorithm
- To do: analysing its behaviour
- Question: what does "ensuring mutual exclusion" formally mean?

Mutual exclusion

At no point in the execution of the algorithm, processes P_1 and P_2 will both be in their critical section at the same time.

Equivalently:

It is always the case that either P_1 or P_2 or both are not in their critical section.

Mutual exclusion

It is always the case that either P_1 or P_2 or both are not in their critical section.

Mutual exclusion

It is always the case that either P_1 or P_2 or both are not in their critical section.

Observations:

- Mutual exclusion is an invariance property ("always")
- *P_i* is in its critical section iff action *exit i* is enabled

Mutual exclusion

It is always the case that either P_1 or P_2 or both are not in their critical section.

Observations:

- Mutual exclusion is an invariance property ("always")
- *P_i* is in its critical section iff action *exit i* is enabled

Mutual exclusion in HML

$$\begin{array}{l} \textit{MutExHML} := \textit{Inv}(\textit{NotBoth}) \\ \textit{Inv}(F) \stackrel{\tiny max}{=} F \land [\textit{Act}]\textit{Inv}(F) & (cf. Example 3.11) \\ \textit{NotBoth} := [\textit{exit1}] \textit{ff} \lor [\textit{exit2}] \textit{ff} \end{array}$$

Model Checking Mutual Exclusion

- Using CAAL Tool
- Supports property specifications by recursive HML formulae:

```
MutExHML max= ([exit1]ff or [exit2]ff) and [-]MutExHML;
```

CAAL	Project 🝷	Edit Ex	xplore	Verify	Games 🔻		About	Syntax	□ 0
Add	Property							Stop	Verify All
Stat	us Time	Property				Verify	Edit	Delete	Options
		Peterson ⊨ MutExHML MutExHML max= ([exit1]ff or [exit2]ff) and [-]MutExHML						Ŵ	=

Absence of Deadlocks

Absence of deadlocks

It is always the case that the system can progress, i.e., perform any action.

Absence of Deadlocks

Absence of deadlocks

It is always the case that the system can progress, i.e., perform any action.

Absence of deadlocks in HML

 $egin{aligned} \textit{NoDeadlocks} &:= \textit{Inv}(\textit{CanProgress})\ \textit{Inv}(\textit{F}) \stackrel{\scriptscriptstyle{max}}{=} \textit{F} \land [\textit{Act}]\textit{Inv}(\textit{F})\ \textit{CanProgress} &:= \langle\textit{Act}
angle \textit{tt} \end{aligned}$

Fairness

Fairness

14 of 18

RIO 2023

Whenever a process requires access to the critical section, it will eventually be granted.

Fairness

Whenever a process requires access to the critical section, it will eventually be granted.

Observation: requires nesting of recursive formulae

- outer: "whenever" \Rightarrow invariant \Rightarrow greatest fixed point
- inner: "eventually" \Rightarrow to be ensured after finitely many steps \Rightarrow least fixed point

Fairness

Whenever a process requires access to the critical section, it will eventually be granted.

Observation: requires nesting of recursive formulae

- outer: "whenever" \Rightarrow invariant \Rightarrow greatest fixed point
- inner: "eventually" \Rightarrow to be ensured after finitely many steps \Rightarrow least fixed point

Fairness in HML (only first process)

$$Fair_1 := Inv(EventuallyLeaves_1)$$

 $Inv(F) \stackrel{max}{=} F \land [Act]Inv(F)$
 $EventuallyLeaves_1 := Evt(Exits_1)$
 $Evt(G) \stackrel{min}{=} G \lor [Act]Evt(G)$
 $Exits_1 := \langle exit1 \rangle$ tt

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Verifying Properties by Model Checking

Verifying Mutual Exclusion by Bisimulation Checking

The End

• Goal: express desired behaviour of algorithm as an "abstract" CCS process

- Goal: express desired behaviour of algorithm as an "abstract" CCS process
- Intuitively:
- (1) Initially, either P_1 or P_2 can enter its critical section.
- (2) Once this happened, the other process cannot enter the critical section before the first has exited it .

Software Modeling

- Goal: express desired behaviour of algorithm as an "abstract" CCS process
- Intuitively:
 - (1) Initially, either P_1 or P_2 can enter its critical section.
 - (2) Once this happened, the other process cannot enter the critical section before the first has exited it .

Mutual exclusion in CCS

MutExCCS = *enter1.exit1.MutExCCS* + *enter2.exit2.MutExCCS*

- Goal: express desired behaviour of algorithm as an "abstract" CCS process
- Intuitively:
 - (1) Initially, either P_1 or P_2 can enter its critical section.
 - (2) Once this happened, the other process cannot enter the critical section before the first has exited it .

Mutual exclusion in CCS

MutExCCS = *enter1.exit1.MutExCCS* + *enter2.exit2.MutExCCS*

- Weak bisimulation does *not* hold as *Peterson* satisfies additional fairness constraints (prioritisation via variable *k*).
- However, *Peterson* and *MutExSpec* share the same weak traces (i.e., action sequences ignoring τ -transitions).

Lecture 4: Application to Mutual-Exclusion Protocols

- Goal: express desired behaviour of algorithm as an "abstract" CCS process
- Intuitively:
 - (1) Initially, either P_1 or P_2 can enter its critical section.
 - (2) Once this happened, the other process cannot enter the critical section before the first has exited it .

Mutual exclusion in CCS

MutExCCS = *enter1.exit1.MutExCCS* + *enter2.exit2.MutExCCS*

- Weak bisimulation does *not* hold as *Peterson* satisfies additional fairness constraints (prioritisation via variable *k*).
- However, *Peterson* and *MutExSpec* share the same weak traces (i.e., action sequences ignoring τ -transitions).

С	AAL Proje	ect 🔻	Edit Explore Verify Games 🕶			About S	Syntax 🖂
	Add Pro	perty				Stop	Verify All
	Status	Time	Property	Verify	Edit	Delete	Options
	8	52 ms	Peterson \approx MutExCCS	0	A	Û	Ξ
	•	51 ms	$Traces_{\Rightarrow}(Peterson) = Traces_{\Rightarrow}(MutExCCS)$	0	S	Ŵ	≡
f 18	Modelling a RIO 2023	nd Analysir	ng Concurrent Systems	9	officiaria Manda		RWITH
		Vanilantian t	to Mutual Evolution Protocolo		oftware Mode nd Verificatio		UNI

Modelling Mutual Exclusion Algorithms

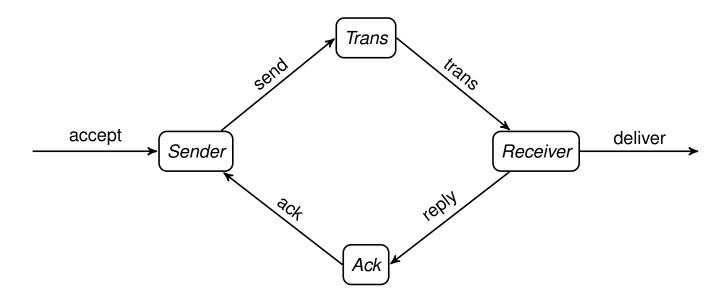
Evaluating the CCS Model

Verifying Properties by Model Checking

Verifying Mutual Exclusion by Bisimulation Checking

The End

Homework: The Alternating-Bit Protocol



To do (using CAAL):

- Implementation as CCS process definition
- Abstract specification in CCS and bisimilarity checking
- Model checking for deadlocks and livelocks
- Deliverable: short experience report with description of outcomes
- Deadline: March 31, 2023
- More details in https://moves.rwth-aachen.de/wp-content/uploads/abp.pdf

