
Modelling and Analysing Concurrent Systems
RIO 2023 Summer School of Informatics
Rio Cuarto, Argentina; February 13–17, 2023

Lecture 4: Application to Mutual-Exclusion Protocols

Thomas Noll
Software Modelling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-22-23/rio/

https://moves.rwth-aachen.de/teaching/ws-22-23/rio/


Outline of Lecture 4

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Verifying Properties by Model Checking

Verifying Mutual Exclusion by Bisimulation Checking

The End
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Peterson’s Mutual Exclusion Algorithm

• Goal: ensuring exclusive access to non-shared resources
• Here: two competing processes P1,P2 and shared variables

– b1, b2 (Boolean, both initially false) – bi indicates that Pi wants to enter critical section
– k (in {1, 2}, arbitrary initial value) – index of prioritised process

• Pi uses local variable j := 2 − i (index of other process)

Algorithm 4.1 (Peterson’s algorithm for Pi)

while true do
“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end
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Representing Shared Variables in CCS

• Not directly expressible in CCS (communication by handshaking)
• Idea: consider variables as processes that communicate with environment by processing

read/write requests

Example 4.2 (Shared variables in Peterson’s algorithm)

• Encoding of b1 with two (process) states B1t (value tt) and B1f (value ff)
• Read access along ports b1rt (in state B1t) and b1rf (in state B1f )
• Write access along ports b1wt and b1wf (in both states)
• Possible behaviours:

B1f = b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t = b1rt .B1t + b1wf .B1f + b1wt .B1t

• Similarly for b2 and k :

B2f = b2rf .B2f + b2wf .B2f + b2wt .B2t

B2t = b2rt .B2t + b2wf .B2f + b2wt .B2t

K1 = kr1.K1 + kw1.K1 + kw2.K2

K2 = kr2.K2 + kw1.K1 + kw2.K2
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Modelling the Processes in CCS

Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm

while true do
“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ∥ P2 ∥ B1f ∥ B2f ∥ K1) \ L
for L = {b1rf , b1rt, b1wf , b1wt,

b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}
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Outline of Lecture 4

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Verifying Properties by Model Checking

Verifying Mutual Exclusion by Bisimulation Checking

The End
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Obtaining the LTS using CAAL I
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Obtaining the LTS using CAAL II
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The Mutual Exclusion Property

• Done: formal description of Peterson’s algorithm
• To do: analysing its behaviour
• Question: what does “ensuring mutual exclusion” formally mean?

Mutual exclusion

At no point in the execution of the algorithm, processes P1 and P2 will both be in their
critical section at the same time.

Equivalently:
It is always the case that either P1 or P2 or both are not in their critical section.
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Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P1 or P2 or both are not in their critical section.

Observations:
• Mutual exclusion is an invariance property (“always”)
• Pi is in its critical section iff action exit i is enabled

Mutual exclusion in HML

MutExHML := Inv(NotBoth)
Inv(F)

max
= F ∧ [Act]Inv(F) (cf. Example 3.11)

NotBoth := [exit1]ff ∨ [exit2]ff
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Model Checking Mutual Exclusion

• Using CAAL Tool
• Supports property specifications by recursive HML formulae:

MutExHML max= ([exit1]ff or [exit2]ff) and [-]MutExHML;
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Absence of Deadlocks

Absence of deadlocks

It is always the case that the system can progress, i.e., perform any action.

Absence of deadlocks in HML

NoDeadlocks := Inv(CanProgress)
Inv(F)

max
= F ∧ [Act]Inv(F)

CanProgress := ⟨Act⟩tt
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Fairness

Fairness

Whenever a process requires access to the critical section, it will eventually be
granted.

Observation: requires nesting of recursive formulae
• outer: “whenever” ⇒ invariant ⇒ greatest fixed point
• inner: “eventually” ⇒ to be ensured after finitely many steps ⇒ least fixed point

Fairness in HML (only first process)

Fair1 := Inv(EventuallyLeaves1)
Inv(F)

max
= F ∧ [Act]Inv(F)

EventuallyLeaves1 := Evt(Exits1)

Evt(G)
min
= G ∨ [Act]Evt(G)

Exits1 := ⟨exit1⟩tt
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Specifying Mutual Exclusion in CCS

• Goal: express desired behaviour of algorithm as an “abstract” CCS process

• Intuitively:
(1) Initially, either P1 or P2 can enter its critical section.
(2) Once this happened, the other process cannot enter the critical section before the first has exited it .

Mutual exclusion in CCS

MutExCCS = enter1.exit1.MutExCCS + enter2.exit2.MutExCCS
• Weak bisimulation does not hold as Peterson satisfies additional fairness constraints

(prioritisation via variable k ).
• However, Peterson and MutExSpec share the same weak traces (i.e., action sequences

ignoring τ -transitions).
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Homework: The Alternating-Bit Protocol

Sender

Trans

Receiver

Ack

accept

se
nd trans

replyack

deliver

To do (using CAAL):
• Implementation as CCS process definition
• Abstract specification in CCS and bisimilarity checking
• Model checking for deadlocks and livelocks
• Deliverable: short experience report with description of outcomes
• Deadline: March 31, 2023
• More details in https://moves.rwth-aachen.de/wp-content/uploads/abp.pdf
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