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Staff

About me

• Associate professor at the Software Modelling and Verification Group (MOVES) in the
Department of Computer Science at RWTH Aachen University

• Research interests:
– Reliability, Safety and Security of Hardware/Software Systems
– Static Program Analysis for Software Optimisation and Verification
– Formal Verification of Artificial Neural Networks

• Teaching activities:
– Courses on Concurrency Theory
– Courses on Semantics and Verification of Software
– Courses on Compiler Construction
– Courses on Static Program Analysis
– Bridging courses on Foundations of Informatics
– Seminars on advanced topics
– Supervision of Bachelor’s and Master’s theses
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Course Objectives

Objectives

• Understand the foundations of concurrent systems
• Understand the main semantical underpinnings of concurrency
• Model, reason about, and compare concurrent systems in a rigorous manner

Motivation

• Supporting the design phase of systems
– “Programming Concurrent Systems”
– synchronisation, scheduling, semaphores, ...

• Verifying functional correctness properties
– “Model Checking”
– validation of mutual exclusion, fairness, absence of deadlocks, ...

• Comparing expressivity of models of concurrency
– “interleaving” vs. “true concurrency”
– equivalence, refinement, abstraction, ...
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Organisation of the Course

Organisation

• All material (slides, exercises, ...) made available via
https://moves.rwth-aachen.de/teaching/ws-22-23/rio/

• Schedule: Mon Feb 13 – Thu Feb 16, 10:30 – 13:00
• Exam Fri Feb 17 morning
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Concurrency and Interaction by Example

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ∥ x := x + 2)

value of x :

• At first glance: x is assigned 3
• But: both parallel components could read x before it is written
• Thus: x is assigned 2,
• If exclusive access to shared memory and atomic execution of assignments guaranteed
⇒ only possible outcome: 3
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Concurrency and Interaction

The problem arises due to the combination of
• concurrency and
• interaction (here: via shared memory)

Conclusion

When modelling concurrent systems, the precise description of the mechanisms of
both concurrency and interaction is crucially important.
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Concurrency Everywhere

Herb Sutter: The Free Lunch Is Over , Dr. Dobb’s Journal, 30(3), 2005

“The biggest sea change in software development since the OO revolution is
knocking at the door, and its name is Concurrency.”

• Operating systems
• Embedded/reactive systems

– parallelism (at least) between hardware,
software, and environment

• High-end parallel hardware infrastructure:
– high-performance computing

• Low-end parallel hardware infrastructure
– increasing performance only achievable by

parallelism
– multi-core computers, GPGPUs, FPGAs
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Problems Everywhere

• Operating systems:
– mutual exclusion
– fairness (no starvation)
– no deadlocks, ...

• Shared-memory systems:
– memory models
– data races
– inconsistencies

(“sequential consistency” vs.
relaxed notions)

• Embedded systems:
– safety
– liveness, ...
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Memory Models

1

                Initially: x = y = 0

         thread1:                      thread2:
         1: x = 1                       3: y = 1

         2: r1 = y                      4: r2 = x

             

     An illustrative example

Tuesday, April 5, 2011(with global variables x, y and local registers r1, r2)
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Memory Models

2

Electrical Engineering and
Computer Sciences

x=1

r1=y

y=1

r2=x

x = 0
y = 0

T1 T2
Memory

 Sequential Consistency (SC)

Tuesday, April 5, 2011
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Electrical Engineering and
Computer Sciences
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Memory Models

3
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Memory Models

3
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Reactive Systems I

• “Classical” model for sequential systems

System : Input → Output

(transformational systems) is not adequate
• Missing: aspect of interaction

• Rather: reactive systems which interact with
environment and among themselves

• Main interest: not terminating computations but
infinite behaviour (system maintains ongoing
interaction with environment)

• Examples:
– operating systems
– embedded systems controlling mechanical or electrical

devices (planes, cars, home appliances, ...)
– power plants, production lines, ...
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Reactive Systems II

Observation

Reactive systems are often safety critical, thus trustworthiness has to be ensured.
• Safety properties: “Nothing bad is ever going to happen.”

– e.g., “at most one process in the critical section”
• Liveness properties: “Eventually something good will happen.”

– e.g., “every request will finally be answered by the server”
• Fairness properties: “No component will starve to death.”

– e.g., “any process requiring entry to the critical section will eventually be admitted”

• Reliability, performance, survivability, ...
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Overview of the Course

Overview

(1) Milner’s Calculus of Communicating Systems (CCS)
– introduction and motivation
– syntax of CCS

– semantics of CCS
– the CAAL tool

(2) Behavioural Equivalences
– trace equivalence
– bisimulation

– congruence
– deadlock sensitivity

(3) Logical Specifications
– Hennessy-Milner Logic
– HML and traces

– HML and bisimulation
– adding recursion

(4) Application: Mutual-Exclusion Protocols
– modelling mutex algorithms in CCS
– verification by model checking

– verification by bisimulation checking

Literature

Luca Aceto, Anna Ingólfsdóttir, Kim Guldstrand Larsen and Jiřı́ Srba: Reactive
Systems: Modelling, Specification and Verification, Cambridge Univ. Press, 2007
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The Calculus of Communicating Systems

History

• First development:
Robin Milner: A Calculus of Communicating Systems, LNCS 92, Springer, 1980

• Elaboration and larger case studies:
Robin Milner: Communication and Concurrency, Prentice-Hall, 1989

• Extension to mobile systems:
Robin Milner: Communicating and Mobile Systems: the π-calculus, Cambridge University
Press, 1999

Approach

Description of concurrency on a simple and abstract level, using only a few basic
primitives
• no explicit storage (variables)
• no explicit representation of values (numbers, Booleans, ...) or data structures

⇒ Concurrent system reduced to communication potential
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Syntax of CCS I

Definition 1.2 (Syntax of CCS)

• Let A be a set of (action) names.

• A := {a | a ∈ A} denotes the set of co-names.
• Act := A ∪ A ∪ {τ} is the set of actions with the silent (or: unobservable) action τ .
• Let Pid be a set of process identifiers.
• The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ∥ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)

where α ∈ Act , ∅ ≠ L ⊆ A, C ∈ Pid , and f : Act → Act such that f (τ ) = τ and f (a) = f (a)
for each a ∈ A.

21 of 37 Modelling and Analysing Concurrent Systems

RIO 2023

Lecture 1: Milner’s Calculus of Communicating Systems



Syntax of CCS I

Definition 1.2 (Syntax of CCS)

• Let A be a set of (action) names.
• A := {a | a ∈ A} denotes the set of co-names.

• Act := A ∪ A ∪ {τ} is the set of actions with the silent (or: unobservable) action τ .
• Let Pid be a set of process identifiers.
• The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ∥ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)
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Syntax of CCS II

Definition 1.2 (continued)

• A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with identifiers from {C1, . . . ,Ck}).

Notational Conventions:
• a means a
•
∑n

i=1 Pi (n ∈ N) means P1 + . . . + Pn (where
∑0

i=1 Pi := nil)
• P \ a abbreviates P \ {a}
• [a1 7→ b1, . . . , an 7→ bn] stands for f : Act → Act with f (ai) = bi for i ∈ [n] and f (α) = α

otherwise
• Restriction and relabelling bind stronger than prefixing, prefixing stronger than composition,

composition stronger than choice:
P \ a + b.Q ∥ R means (P \ a) + ((b.Q) ∥ R)
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Meaning of CCS Constructs

• nil is an inactive process that can do nothing.

• α.P can execute α and then behaves as P.
• An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.) operation. Both are

complementary: if performed in parallel (i.e., in P1 ∥ P2), they are merged into a τ -action.
• P1 + P2 represents the nondeterministic choice between P1 and P2.
• P1 ∥ P2 denotes the parallel execution of P1 and P2, involving interleaving or

communication.
• The restriction P \ L declares each a ∈ L as a local name which is only known within P.
• The relabelling P[f ] allows to adapt the naming of actions.
• The behaviour of a process call C is given by the right-hand side of the corresponding

equation.
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CCS Examples

Example 1.3

(1) One-place buffer:

B = in.out .B

(2) Two-place buffer:

B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

(3) Parallel two-place buffer:

B∥ = (B[out 7→ com] ∥ B[in 7→ com]) \ com
B = in.out .B

“Interaction diagram”:

in−→ in−→ in−→ B out−→ com−→ in−→ B out−→ out−→ out−→
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Labelled Transition Systems

Goal: represent system behaviour by (infinite) graph
• nodes = system states
• edges = transitions between states

Definition 1.4 (Labelled transition system)

A labelled transition system (LTS) is a triple (S,Act,−→) consisting of
• a set S of states
• a set Act of (action) labels
• a transition relation −→ ⊆ S × Act × S

For (s, α, s′) ∈ −→ we write s
α−→ s′. An LTS is called finite if S is so.

Remarks:
• Sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”).
• (Finite) LTSs correspond to (finite) automata without final states.
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Semantics of CCS I

We define the assignment

syntax → semantics
process definition 7→ LTS

by induction over the syntactic structure of process expressions. Here we employ
derivation rules of the form

(rule name)

premise(s)
conclusion

which are composed to form derivation trees (where axioms, i.e., rules without
premises, correspond to leaves).
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Semantics of CCS II

Reminder: P ::= nil | α.P | P1 + P2 | P1 ∥ P2 | P \ L | P[f ] | C

Definition 1.5 (Semantics of CCS)

A process definition (Ci = Pi | 1 ≤ i ≤ k) determines the LTS (Prc,Act,−→)
whose transitions can be inferred from the following rules (P,P ′,Q,Q′ ∈ Prc,
α ∈ Act , λ ∈ A ∪ A, a ∈ A):

(Act)

α.P
α−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q′

P + Q
α−→ Q′

(Par1)
P

α−→ P ′

P ∥ Q
α−→ P ′ ∥ Q

(Par2)
Q

α−→ Q′

P ∥ Q
α−→ P ∥ Q′

(Com)
P

λ−→ P ′ Q
λ−→ Q′

P ∥ Q
τ−→ P ′ ∥ Q′

(Res)

P
α−→ P ′ (α, α /∈ L)

P \ L
α−→ P ′ \ L

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Call)

P
α−→ P ′ (C = P)

C
α−→ P ′
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Semantics of CCS III

Example 1.6

(1) One-place buffer: B = in.out .B

– First step:

(Call)

(Act)

in.out.B
in−→ out.B

B
in−→ out.B

– Second step:

(Act)

out.B
out−→ B

⇒ Complete LTS:

B out.B

in

out

30 of 37 Modelling and Analysing Concurrent Systems

RIO 2023

Lecture 1: Milner’s Calculus of Communicating Systems



Semantics of CCS III

Example 1.6

(1) One-place buffer: B = in.out .B

– First step:

(Call)

(Act)

in.out.B
in−→ out.B

B
in−→ out.B

– Second step:

(Act)

out.B
out−→ B

⇒ Complete LTS:

B out.B

in

out

30 of 37 Modelling and Analysing Concurrent Systems

RIO 2023

Lecture 1: Milner’s Calculus of Communicating Systems



Semantics of CCS III

Example 1.6

(1) One-place buffer: B = in.out .B

– First step:

(Call)

(Act)

in.out.B
in−→ out.B

B
in−→ out.B

– Second step:

(Act)

out.B
out−→ B

⇒ Complete LTS:

B out.B

in

out

30 of 37 Modelling and Analysing Concurrent Systems

RIO 2023

Lecture 1: Milner’s Calculus of Communicating Systems



Semantics of CCS IV

Example 1.6 (continued)

(2) Sequential two-place buffer: B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

– First step:

(Call)

(Act)

in.B1
in−→ B1

B0
in−→ B1

– Second step:

(Call)

(Sum1)

(Act)

out.B0
out−→ B0

out.B0 + in.B2
out−→ B0

B1
out−→ B0

– Like second step (with (Sum2)): B1
in−→ B2

– Like first step: B2
out−→ B1

– Complete LTS:

B0 B1 B2

empty one entry full

in in

out out
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Semantics of CCS IV

Example 1.6 (continued)

(2) Sequential two-place buffer: B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

– First step:

(Call)

(Act)

in.B1
in−→ B1

B0
in−→ B1

– Second step:

(Call)

(Sum1)

(Act)

out.B0
out−→ B0

out.B0 + in.B2
out−→ B0

B1
out−→ B0

– Like second step (with (Sum2)): B1
in−→ B2

– Like first step: B2
out−→ B1

– Complete LTS:

B0 B1 B2

empty one entry full

in in

out out
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Semantics of CCS IV

Example 1.6 (continued)

(2) Sequential two-place buffer: B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

– First step:

(Call)

(Act)

in.B1
in−→ B1

B0
in−→ B1

– Second step:

(Call)

(Sum1)

(Act)

out.B0
out−→ B0

out.B0 + in.B2
out−→ B0

B1
out−→ B0

– Like second step (with (Sum2)): B1
in−→ B2

– Like first step: B2
out−→ B1

– Complete LTS:

B0 B1 B2

empty one entry full

in in

out out
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Semantics of CCS IV

Example 1.6 (continued)

(2) Sequential two-place buffer: B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

– First step:

(Call)

(Act)

in.B1
in−→ B1

B0
in−→ B1

– Second step:

(Call)

(Sum1)

(Act)

out.B0
out−→ B0

out.B0 + in.B2
out−→ B0

B1
out−→ B0

– Like second step (with (Sum2)): B1
in−→ B2

– Like first step: B2
out−→ B1

– Complete LTS:

B0 B1 B2

empty one entry full

in in

out out
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Semantics of CCS V

Example 1.6 (continued)

(3) Parallel two-place buffer:

B∥ = (B[f ] ∥ B[g]) \ com
B = in.out .B

(f := [out 7→ com], g := [in 7→ com])

First step:

(Call)

(Res)

(Par1)

(Rel)

(Call)

(Act)

in.out .B in−→ out .B

B in−→ out .B

B[f ] in−→ (out .B)[f ]

B[f ] ∥ B[g] in−→ (out .B)[f ] ∥ B[g]

(B[f ] ∥ B[g]) \ com in−→ ((out .B)[f ] ∥ B[g]) \ com

B∥
in−→ ((out .B)[f ] ∥ B[g]) \ com
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Semantics of CCS VI

Example 1.6 (continued)

(3) Parallel two-place buffer: B∥ = (B[f ] ∥ B[g]) \ com
B = in.out .B

(f := [out 7→ com], g := [in 7→ com])

Complete LTS:
B∥

((out .B)[f ] ∥ B[g]) \ com

((out .B)[f ] ∥ (out .B)[g]) \ com

(B[f ] ∥ (out .B)[g]) \ com

(B[f ] ∥ B[g]) \ com empty

one entry

full

in
in

τ

out

inout
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The Power of Recursive Definitions

So far: only finite state spaces – not necessarily true!

Example 1.7 (Counter)

C = up.(C ∥ down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

C C ∥ down C ∥ down ∥ down . . .

C ∥ nil
C ∥ down ∥ nil “=”
C ∥ nil ∥ down

. . .

C ∥ nil ∥ nil . . .

up up up

up up

up

down down

down
Sequential “specification”:

C0 = up.C1

Cn = up.Cn+1 + down.Cn−1 (n > 0)
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The CAAL Tool

CAAL (Concurrency Workbench, Aalborg Edition; https://caal.cs.aau.dk/)

• Smart editor
• Visualisation of generated LTS
• Equivalence checking w.r.t. several bisimulation, simulation and trace equivalences
• Generation of distinguishing formulae for non-equivalent processes
• Model checking of recursive HML formulae
• (Bi)simulation and model checking games.
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