

Foundations of Informatics: a Bridging Course

Week 3: Formal Languages and Processes Part B: Context-Free Languages b-it Bonn; 02–06 March 2020

Thomas Noll Software Modeling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/foi/

Context-Free Grammars and Languages

- Context-Free vs. Regular Languages
- **Chomsky Normal Form**
- The Word Problem for Context-Free Languages
- The Emptiness Problem for CFLs
- **Closure Properties of CFLs**
- Pushdown Automata

Outlook

Syntax definition of programming languages by "Backus-Naur" rules Here: simple arithmetic expressions

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u * v, or (u) where u, v are again expressions

Here we abbreviate $\langle Expression \rangle$ as *E*, and use " \rightarrow " instead of "::=". Thus:

 $E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)$

Here we abbreviate $\langle Expression \rangle$ as *E*, and use " \rightarrow " instead of "::=". Thus:

```
E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)
```

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E:

 $E \Rightarrow E * E$

Here we abbreviate $\langle Expression \rangle$ as E, and use " \rightarrow " instead of "::=". Thus:

```
E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)
```

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol *E*:

> $E \Rightarrow E * E$ \Rightarrow (E) * E

Thomas Noll

b-it Bonn; 02-06 March 2020

```
Here we abbreviate \langle Expression \rangle as E, and use "\rightarrow" instead of "::=". Thus:
```

```
E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)
```

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E:

 $E \implies E * E$ $\implies (E) * E$ $\implies (E) * 1$


```
Here we abbreviate \langle Expression \rangle as E, and use "\rightarrow" instead of "::=". Thus:
```

```
E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)
```

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E:


```
Here we abbreviate \langle Expression \rangle as E, and use "\rightarrow" instead of "::=". Thus:
```

```
E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)
```

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E:

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

$$\Rightarrow (E + E) * ^{-1}$$

$$\Rightarrow (0 + E) * 1$$


```
Here we abbreviate \langle Expression \rangle as E, and use "\rightarrow" instead of "::=". Thus:
```

```
E \rightarrow 0 \mid 1 \mid E + E \mid E * E \mid (E)
```

Now expressions can be generated by replacing nonterminal symbols according to rules, beginning with the start symbol E:

$$E \Rightarrow E * E$$

$$\Rightarrow (E) * E$$

$$\Rightarrow (E) * 1$$

$$\Rightarrow (E + E) * 1$$

$$\Rightarrow (0 + E) * 1$$

$$\Rightarrow (0 + 1) * 1$$

A context-free grammar (CFG) is a quadruple

$$G = \langle N, \Sigma, P, S \rangle$$

where

- N is a finite set of nonterminal symbols
- Σ is the (finite) alphabet of terminal symbols (disjoint from N)
- *P* is a finite set of production rules of the form $A \to \alpha$ where $A \in N$ and $\alpha \in (N \cup \Sigma)^*$
- $S \in N$ is a start symbol

For the above example, we have:

- $N = \{E\}$
- $\bullet \ \Sigma = \{0, 1, +, *, (,)\}$
- $P = \{E \rightarrow 0, E \rightarrow 1, E \rightarrow E + E, E \rightarrow E * E, E \rightarrow (E)\}$
- *S* = *E*

For the above example, we have:

- *N* = {*E*}
- $\Sigma = \{0, 1, +, *, (,)\}$
- $P = \{E \rightarrow 0, E \rightarrow 1, E \rightarrow E + E, E \rightarrow E * E, E \rightarrow (E)\}$
- *S* = *E*

Naming conventions:

- nonterminals start with uppercase letters
- terminals start with lowercase letters
- start symbol = symbol on LHS of first production
- \Rightarrow grammar completely defined by productions

Let $G = \langle N, \Sigma, P, S \rangle$ be a CFG.

A sentence γ ∈ (N ∪ Σ)* is directly derivable from β ∈ (N ∪ Σ)* if there exist π = A → α ∈ P and δ₁, δ₂ ∈ (N ∪ Σ)* such that β = δ₁Aδ₂ and γ = δ₁αδ₂ (notation: β ⇒ γ or just β ⇒ γ).

- A sentence γ ∈ (N ∪ Σ)* is directly derivable from β ∈ (N ∪ Σ)* if there exist π = A → α ∈ P and δ₁, δ₂ ∈ (N ∪ Σ)* such that β = δ₁Aδ₂ and γ = δ₁αδ₂ (notation: β ⇒ γ or just β ⇒ γ).
- A derivation (of length *n* ∈ ℕ) of *γ* from *β* is a sequence of direct derivations of the form δ₀ ⇒ δ₁ ⇒ ... ⇒ δ_n where δ₀ = β, δ_n = γ, and δ_{i-1} ⇒ δ_i for every *i* ∈ {1,..., *n*} (notation: β ⇒^{*} γ).

- A sentence γ ∈ (N ∪ Σ)* is directly derivable from β ∈ (N ∪ Σ)* if there exist π = A → α ∈ P and δ₁, δ₂ ∈ (N ∪ Σ)* such that β = δ₁Aδ₂ and γ = δ₁αδ₂ (notation: β ⇒ γ or just β ⇒ γ).
- A derivation (of length *n* ∈ N) of *γ* from *β* is a sequence of direct derivations of the form δ₀ ⇒ δ₁ ⇒ ... ⇒ δ_n where δ₀ = β, δ_n = γ, and δ_{i-1} ⇒ δ_i for every *i* ∈ {1,..., *n*} (notation: β ⇒^{*} γ).
- A word $w \in \Sigma^*$ is called derivable in *G* if $S \Rightarrow^* w$.

- A sentence γ ∈ (N ∪ Σ)* is directly derivable from β ∈ (N ∪ Σ)* if there exist π = A → α ∈ P and δ₁, δ₂ ∈ (N ∪ Σ)* such that β = δ₁Aδ₂ and γ = δ₁αδ₂ (notation: β ⇒ γ or just β ⇒ γ).
- A derivation (of length *n* ∈ N) of *γ* from *β* is a sequence of direct derivations of the form δ₀ ⇒ δ₁ ⇒ ... ⇒ δ_n where δ₀ = β, δ_n = γ, and δ_{i-1} ⇒ δ_i for every *i* ∈ {1,..., *n*} (notation: β ⇒^{*} γ).
- A word $w \in \Sigma^*$ is called derivable in *G* if $S \Rightarrow^* w$.
- The language generated by G is $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}.$

- A sentence γ ∈ (N ∪ Σ)* is directly derivable from β ∈ (N ∪ Σ)* if there exist π = A → α ∈ P and δ₁, δ₂ ∈ (N ∪ Σ)* such that β = δ₁Aδ₂ and γ = δ₁αδ₂ (notation: β ⇒ γ or just β ⇒ γ).
- A derivation (of length *n* ∈ ℕ) of *γ* from *β* is a sequence of direct derivations of the form δ₀ ⇒ δ₁ ⇒ ... ⇒ δ_n where δ₀ = β, δ_n = γ, and δ_{i-1} ⇒ δ_i for every *i* ∈ {1,..., *n*} (notation: β ⇒^{*} γ).
- A word $w \in \Sigma^*$ is called derivable in *G* if $S \Rightarrow^* w$.
- The language generated by *G* is $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$.
- A language $L \subseteq \Sigma^*$ is called context-free (CFL) if it is generated by some CFG.

- A sentence γ ∈ (N ∪ Σ)* is directly derivable from β ∈ (N ∪ Σ)* if there exist π = A → α ∈ P and δ₁, δ₂ ∈ (N ∪ Σ)* such that β = δ₁Aδ₂ and γ = δ₁αδ₂ (notation: β ⇒ γ or just β ⇒ γ).
- A derivation (of length *n* ∈ ℕ) of *γ* from *β* is a sequence of direct derivations of the form δ₀ ⇒ δ₁ ⇒ ... ⇒ δ_n where δ₀ = β, δ_n = γ, and δ_{i-1} ⇒ δ_i for every *i* ∈ {1,..., *n*} (notation: β ⇒^{*} γ).
- A word $w \in \Sigma^*$ is called derivable in G if $S \Rightarrow^* w$.
- The language generated by *G* is $L(G) := \{ w \in \Sigma^* \mid S \Rightarrow^* w \}$.
- A language $L \subseteq \Sigma^*$ is called context-free (CFL) if it is generated by some CFG.
- Two grammars G_1 , G_2 are equivalent if $L(G_1) = L(G_2)$.

The language $\{a^n b^n \mid n \in \mathbb{N}\}$ is context-free. It is generated by the grammar $G = \langle N, \Sigma, P, S \rangle$ with

- $N = \{S\}$
- $\Sigma = \{a, b\}$
- $P = \{S \rightarrow aSb \mid \varepsilon\}$

(proof: generating $a^n b^n$ requires exactly *n* applications of the first and one concluding application of the second rule)

The language $\{a^n b^n \mid n \in \mathbb{N}\}$ is context-free. It is generated by the grammar $G = \langle N, \Sigma, P, S \rangle$ with

- $N = \{S\}$
- $\Sigma = \{a, b\}$
- $P = \{S \rightarrow aSb \mid \varepsilon\}$

(proof: generating $a^n b^n$ requires exactly *n* applications of the first and one concluding application of the second rule)

Remark: illustration of derivations by derivation trees

- root labelled by start symbol
- leaves labelled by terminal symbols
- successors of node labelled according to right-hand side of production rule
- sequence of leaf symbols = generated word

Summary: Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Summary: Context-Free Grammars and Languages

Seen:

- Context-free grammars
- Derivations
- Context-free languages

Next:

• Relation between context-free and regular languages

Context-Free Grammars and Languages

- Context-Free vs. Regular Languages
- Chomsky Normal Form
- The Word Problem for Context-Free Languages
- The Emptiness Problem for CFLs
- **Closure Properties of CFLs**
- Pushdown Automata

Outlook

Theorem B.6

- 1. Every regular language is context-free.
- 2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)

Theorem B.6

- 1. Every regular language is context-free.
- 2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)

Proof.

1. Let *L* be a regular language, and let $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$ be a DFA which recognises *L*. $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ is defined as follows:

$$-N := Q, S := q_0$$

– if
$$\delta({m q},{m a})={m q}'$$
, then ${m q} o {m a}{m q}'\in{m P}$

- if $q \in F$, then $q \rightarrow \varepsilon \in P$

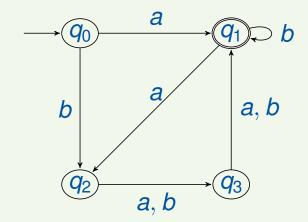
Obviously a *w*-labelled run in \mathfrak{A} from q_0 to *F* corresponds to a derivation of *w* in $G_{\mathfrak{A}}$, and vice versa. Thus $L(\mathfrak{A}) = L(G_{\mathfrak{A}})$ (example on the following slide).

2. An example is $\{a^nb^n \mid n \in \mathbb{N}\}$ (see Ex. B.5).

Intuitive reason: recognising this language requires "unbounded counting" capability.

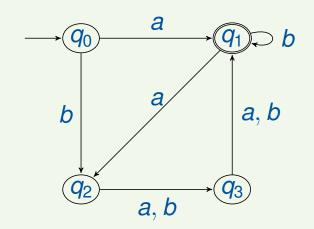
Example B.7

 $\mathsf{DFA}\ \mathfrak{A} = \langle \boldsymbol{\mathcal{Q}}, \boldsymbol{\Sigma}, \delta, \boldsymbol{\mathcal{q}}_0, \boldsymbol{\mathit{F}} \rangle:$



Example B.7

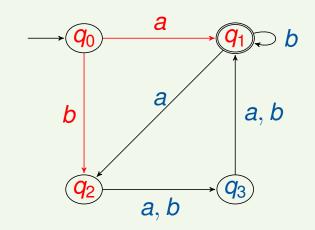
 $\mathsf{DFA}\ \mathfrak{A} = \langle \boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_0, \boldsymbol{F} \rangle:$



Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with N := Q, $S := q_0$:

Example B.7

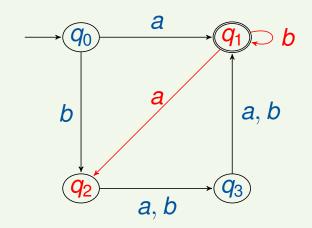
 $\mathsf{DFA}\ \mathfrak{A} = \langle \boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_0, \boldsymbol{F} \rangle:$



Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with $N := Q, S := q_0$: $q_0 \rightarrow a q_1 \mid b q_2$

Example B.7

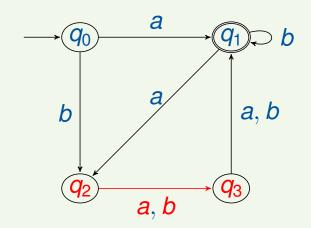
DFA $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$:



Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with $N := Q, S := q_0$: $q_0 \rightarrow a q_1 \mid b q_2$ $q_1 \rightarrow a q_2 \mid b q_1 \mid \varepsilon$

Example B.7

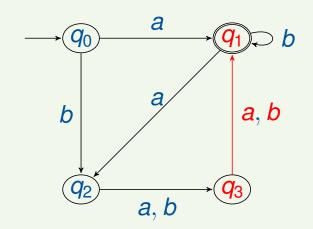
DFA $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$:



Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with $N := Q, S := q_0$: $q_0 \rightarrow a q_1 \mid b q_2$ $q_1 \rightarrow a q_2 \mid b q_1 \mid \varepsilon$ $q_2 \rightarrow a q_3 \mid b q_3$

Example B.7

 $\mathsf{DFA}\ \mathfrak{A} = \langle \boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_0, \boldsymbol{F} \rangle:$

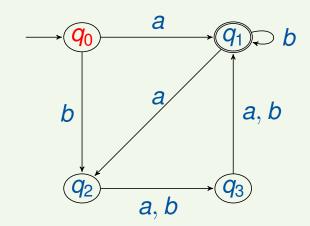


Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with $N := Q, S := q_0$:

$$q_0
ightarrow a q_1 \mid b q_2$$

 $q_1
ightarrow a q_2 \mid b q_1 \mid \varepsilon$
 $q_2
ightarrow a q_3 \mid b q_3$
 $q_3
ightarrow a q_1 \mid b q_1$

DFA $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$:

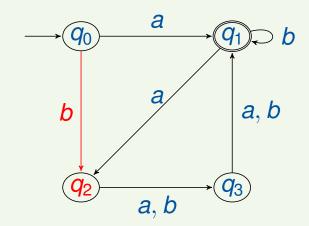


Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with $N := Q, S := q_0$: $\begin{array}{c} q_0 \rightarrow a q_1 \mid b q_2 \\ q_1 \rightarrow a q_2 \mid b q_1 \mid \varepsilon \\ q_2 \rightarrow a q_3 \mid b q_3 \\ q_3 \rightarrow a q_1 \mid b q_1 \end{array}$

E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

 q_0

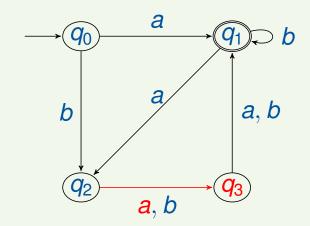
DFA $\mathfrak{A} = \langle Q, \Sigma, \delta, q_0, F \rangle$:



Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with $N := Q, S := q_0$: $q_0 \rightarrow a q_1 \mid b q_2$ $q_1 \rightarrow a q_2 \mid b q_1 \mid \varepsilon$ $q_2 \rightarrow a q_3 \mid b q_3$ $q_3 \rightarrow a q_1 \mid b q_1$

E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$: $q_0 \Rightarrow b q_2$

DFA $\mathfrak{A} = \langle \boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_0, \boldsymbol{F} \rangle$:

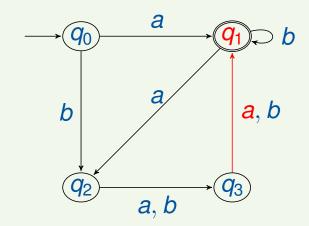


Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with $N := Q, S := q_0$: $q_0 \rightarrow a q_1 \mid b q_2$ $q_1 \rightarrow a q_2 \mid b q_1 \mid \varepsilon$ $q_2 \rightarrow a q_3 \mid b q_3$ $q_3 \rightarrow a q_1 \mid b q_1$

E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

 $q_0 \Rightarrow b q_2 \Rightarrow b a q_3$

DFA $\mathfrak{A} = \langle \boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_0, \boldsymbol{F} \rangle$:



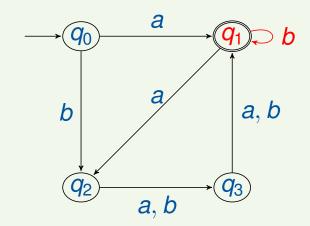
Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with $N := Q, S := q_0$: $q_0 \rightarrow a q_1 \mid b q_2$ $q_1 \rightarrow a q_2 \mid b q_1 \mid \varepsilon$ $q_2 \rightarrow a q_3 \mid b q_3$ $q_3 \rightarrow a q_1 \mid b q_1$

E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

 $q_0 \Rightarrow b \, q_2 \Rightarrow b \, a \, q_3 \Rightarrow b \, a \, a \, q_1$

Example B.7

DFA $\mathfrak{A} = \langle \boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_0, \boldsymbol{F} \rangle$:



Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with $N := Q, S := q_0$: $q_0 \rightarrow a q_1 \mid b q_2$ $q_1 \rightarrow a q_2 \mid b q_1 \mid \varepsilon$ $q_2 \rightarrow a q_3 \mid b q_3$ $q_3 \rightarrow a q_1 \mid b q_1$

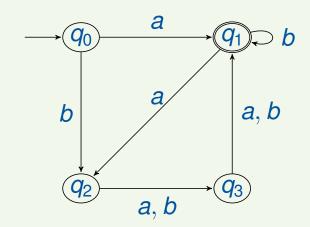
E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

 $q_0 \Rightarrow b \, q_2 \Rightarrow b \, a \, q_3 \Rightarrow b \, a \, a \, q_1 \Rightarrow b \, a \, a \, b \, q_1$

12 of 46 Foundations of Informatics/Formal Languages and Processes, Part B Thomas Noll b-it Bonn; 02–06 March 2020

Example B.7

DFA $\mathfrak{A} = \langle \boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{q}_0, \boldsymbol{F} \rangle$:



Corresponding CFG $G_{\mathfrak{A}} := \langle N, \Sigma, P, S \rangle$ with $N := Q, S := q_0$: $q_0 \rightarrow a q_1 \mid b q_2$ $q_1 \rightarrow a q_2 \mid b q_1 \mid \varepsilon$ $q_2 \rightarrow a q_3 \mid b q_3$ $q_3 \rightarrow a q_1 \mid b q_1$

E.g., \mathfrak{A} 's run on input $baab \in L(\mathfrak{A})$ is simulated by the following derivation in $G_{\mathfrak{A}}$:

 $q_0 \Rightarrow b q_2 \Rightarrow b a q_3 \Rightarrow b a a q_1 \Rightarrow b a a b q_1 \Rightarrow b a a b$

Seen:

• CFLs are more expressive than regular languages

Summary: Context-Free vs. Regular Languages

Seen:

• CFLs are more expressive than regular languages

Next:

• Decidability of word problem

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

Word Problem for CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not.

Word Problem for CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$ and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not.

- Important problem with many applications
 - syntax analysis of programming languages
 - HTML parsers
 - ...
- For regular languages this was easy: just let the corresponding DFA run on w.
- But here: how to decide when to stop a derivation?
- Solution: establish normal form for grammars which guarantees that each nonterminal produces at least one terminal symbol
- \Rightarrow Only finitely many combinations to be inspected

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$A
ightarrow BC$$
 or $A
ightarrow a$

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the form

$$A \rightarrow BC$$
 or $A \rightarrow a$

Example B.9

Let $S \rightarrow ab \mid aSb$ be the grammar which generates $L := \{a^n b^n \mid n \ge 1\}$. An equivalent grammar in Chomsky NF is

$S ightarrow AB \mid AC$	(generates L)
A ightarrow a	(generates $\{a\}$)
B ightarrow b	(generates $\{b\}$)
$\mathcal{C} ightarrow \mathcal{SB}$	(generates $\{a^n b^{n+1} \mid n \ge 1\}$)

Conversion to Chomsky Normal Form

Theorem B.10

Every CFL L (with $\varepsilon \notin L$) can be generated by a CFG in Chomsky NF.

Theorem B.10

Every CFL L (with $\varepsilon \notin L$) can be generated by a CFG in Chomsky NF.

Proof.

Let *L* be a CFL, and let $G = \langle N, \Sigma, P, S \rangle$ be some CFG which generates *L*. The transformation of *P* into rules of the form $A \to BC$ and $A \to a$ proceeds in three steps:

- 1. terminal symbols only in rules of the form $A \rightarrow a$ (thus all other rules have the shape $A \rightarrow A_1 \dots A_n$)
- 2. elimination of "chain rules" of the form $A \rightarrow B$
- 3. elimination of rules of the form $A \rightarrow A_1 \dots A_n$ where n > 2

(see following slides for details)

- 1. For every terminal symbol $a \in \Sigma$, introduce a new nonterminal symbol $B_a \in N$.
- 2. Add corresponding productions $B_a \rightarrow a$ to P.
- 3. In each original production $A \to \alpha$, replace every $a \in \Sigma$ with B_a .

This yields G'.

- 1. For every terminal symbol $a \in \Sigma$, introduce a new nonterminal symbol $B_a \in N$.
- 2. Add corresponding productions $B_a \rightarrow a$ to P.
- 3. In each original production $A \to \alpha$, replace every $a \in \Sigma$ with B_a .

This yields G'.

Example B.11 $G: S \rightarrow ab \mid aSb$ is converted to $G': S \rightarrow AB \mid ASB$ $A \rightarrow a$ $B \rightarrow b$

- 1. Determine all derivations $A_1 \Rightarrow \ldots \Rightarrow A_n$ with rules of the form $A \rightarrow B$ without repetition of nonterminals (\implies only finitely many!).
- **2**. Determine all productions $A_n \rightarrow \alpha$ with $\alpha \notin N$.
- 3. Add corresponding productions $A_1 \rightarrow \alpha$ to P.
- 4. Remove all chain rules from *P*.

This yields G''.

- 1. Determine all derivations $A_1 \Rightarrow \ldots \Rightarrow A_n$ with rules of the form $A \rightarrow B$ without repetition of nonterminals (\implies only finitely many!).
- **2**. Determine all productions $A_n \rightarrow \alpha$ with $\alpha \notin N$.
- 3. Add corresponding productions $A_1 \rightarrow \alpha$ to P.
- 4. Remove all chain rules from *P*.

This yields G''.

Example B.12

G': S ightarrow A	is converted to	$\mathit{G}'': \ \mathit{S} \ ightarrow \ \mathit{DA} \mid \mathit{c}$
$A \rightarrow B \mid C$		$A ightarrow \mathit{D}A \mid \mathit{c}$
$B \rightarrow A \mid DA$		$B ightarrow \mathit{DA} \mid \mathit{c}$
C ightarrow c		C ightarrow c
D ightarrow d		D ightarrow d

 19 of 46
 Foundations of Informatics/Formal Languages and Processes, Part B

 Thomas Noll
 b-it Bonn; 02–06 March 2020

Iteratively apply the following transformation:

- 1. For every $A \rightarrow A_1 \dots A_n$ with n > 2, introduce a new nonterminal symbol $B \in N$.
- 2. Replace original production by $A \rightarrow A_1 B$.
- 3. Add new production $B \rightarrow A_2 \dots A_n$.

This yields G'''.

Iteratively apply the following transformation:

- 1. For every $A \rightarrow A_1 \dots A_n$ with n > 2, introduce a new nonterminal symbol $B \in N$.
- 2. Replace original production by $A \rightarrow A_1 B$.
- 3. Add new production $B \rightarrow A_2 \dots A_n$.

This yields G'''.

$\mathit{G}'': \ \mathit{S} \ ightarrow \ \mathit{AB} \mid \mathit{ASB}$	is converted to	$G^{\prime\prime\prime}: \ S \ o \ AB \mid AC$
A ightarrow a		A ightarrow a
B ightarrow b		B ightarrow b
		$\mathcal{C} ightarrow \mathcal{SB}$

Seen:

• Chomsky NF: all productions of the form $A \rightarrow BC$ or $A \rightarrow a$

Seen:

• Chomsky NF: all productions of the form $A \rightarrow BC$ or $A \rightarrow a$

Next:

• Exploit Chomsky Normal Form to solve word problem for CFL

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

Word Problem for ε -free CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$ such that $\varepsilon \notin L(G)$ and $w \in \Sigma^+$, decide whether $w \in L(G)$ or not.

(If $w = \varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)

Word Problem for ε -free CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$ such that $\varepsilon \notin L(G)$ and $w \in \Sigma^+$, decide whether $w \in L(G)$ or not.

(If $w = \varepsilon$, then $w \in L(G)$ easily decidable for arbitrary G)

Algorithm B.14 (by Cocke, Younger, Kasami – CYK algorithm)

- 1. Transform G into Chomsky NF
- 2. *Let* $w = a_1 \dots a_n$ ($n \ge 1$)
- 3. Let $w[i, j] := a_i \dots a_j$ for every $1 \le i \le j \le n$
- 4. Consider segments w[i, j] in order of increasing length, starting with $w[i, i] = a_i$ (i.e., letters)
- 5. In each case, determine $N_{i,j} := \{A \in N \mid A \Rightarrow^* w[i, j]\}$ using a "dynamic programming" approach:

$$-i = j: N_{i,i} = \{A \in N \mid A \to a_i \in P\} \\ -i < j: N_{i,j} = \{A \in N \mid \exists B, C \in N, k \in \{i, \dots, j-1\} : A \to BC \in P, B \in N_{i,k}, C \in N_{k+1,j}\}$$

6. Test whether $S \in N_{1,n}$ (and thus, whether $S \Rightarrow^* w[1, n] = w$)

Matrix Representation of CYK Algorithm

Matrix Representation of CYK Algorithm

$$\begin{array}{ll} \textbf{N}_{1,1} \ = \ \{ \textbf{A} \in \textbf{N} \mid \textbf{A} \rightarrow \textbf{a}_1 \in \textbf{P} \} \\ \textbf{N}_{2,2} \ = \ \{ \textbf{A} \in \textbf{N} \mid \textbf{A} \rightarrow \textbf{a}_2 \in \textbf{P} \} \\ \vdots \end{array}$$

$$N_{1,1} = \{A \in N \mid A \to a_1 \in P\}$$

$$N_{2,2} = \{A \in N \mid A \to a_2 \in P\}$$

$$i$$

$$N_{1,2} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{1,1}, C \in N_{2,2}\}$$

$$N_{2,3} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,2}, C \in N_{3,3}\}$$

$$N_{1,1} = \{A \in N \mid A \to a_1 \in P\}$$

$$N_{2,2} = \{A \in N \mid A \to a_2 \in P\}$$

$$N_{1,2} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{1,1}, C \in N_{2,2}\}$$

$$N_{2,3} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,2}, C \in N_{3,3}\}$$

$$\vdots$$

$$N_{1,3} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{1,1}, C \in N_{2,3}\}$$

$$\cup \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{1,2}, C \in N_{3,3}\}$$

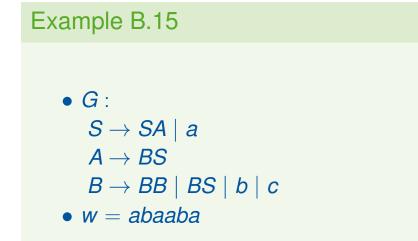
$$U \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{1,2}, C \in N_{3,3}\}$$

$$N_{2,4} = \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,2}, C \in N_{3,4}\}$$

$$\cup \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,3}, C \in N_{3,4}\}$$

$$\cup \{A \in N \mid \exists B, C \in N : A \to BC \in P, B \in N_{2,3}, C \in N_{3,4}\}$$

24 of 46 Foundations of Informatics/Formal Languages and Processes, Part B Thomas Noll



Example B.15

• G: $S \rightarrow SA \mid a$ $A \rightarrow BS$ $B \rightarrow BB \mid BS \mid b \mid c$ • w = abaaba

	а	b	а	а	b	а
$i \setminus j$	1	2	3	4	5	6
1						
2	X					
3	X	X				
4	X	X	X			
5	X	X	X	X		
6	X	X	X	X	X	


```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```

	а	b	а	а	b	а
$i \setminus j$	1	2	3	4	5	6
1	{ S }					
2	X					
3	X	X	{ S }			
4	X	X	X	{ S }		
5	X	X	X	X		
6	X	X	X	X	X	{ S }


```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```

	а	b	а	а	b	а
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }					
2	X	{ B }				
3	X	X	$\{S\}$			
4	X	X	X	$\{S\}$		
5	X	X	X	X	{ B }	
6	X	X	X	X	X	{ <i>S</i> }


```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```

	а	b	а	а	b	а
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø				
2		{ <i>B</i> }				
3	X	X	{ <i>S</i> }	Ø		
4	X	X	X	{ <i>S</i> }	Ø	
5	X	X	X	X	{ B }	
6	X	X	X	X	X	{ <i>S</i> }


```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```

	а	b	а	а	b	а
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø				
2	X	{ B }	{ A }			
3	X	X	{ S }	Ø		
4	X	X	X	$\{S\}$	Ø	
5	X	X	X	X	{ B }	{ A }
6	X	X	X	X	X	{ S }


```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```

	а	b	а	а	b	а
i j	1	2	3	4	5	6
1	{ <i>S</i> }	Ø				
2	X	{ B }	{ A , B }			
3	X	X	{ S }	Ø		
4	X	X	X	$\{S\}$	Ø	
5	X	X	X	X	{ B }	{ <i>A</i> , <i>B</i> }
6	X	X	X	X	X	{ S }

Example B.15

```
• G:
     S \rightarrow SA \mid a
     A \rightarrow BS
      \textit{B} \rightarrow \textit{BB} \mid \textit{BS} \mid \textit{b} \mid \textit{c}
• w = abaaba
```

Thomas Noll

b-it Bonn; 02-06 March 2020

	а	b	а	а	b	а
$i \setminus j$	1	2	3	4	5	6
1	{ S }	Ø	{ S }			
2	X	$\{B\}$	{ A , B }			
3	X	X	$\{S\}$	Ø		
4	X	X	X	{ S }	Ø	{ S }
5	X	X	X	X	{ B }	{ A , B }
6	X	X	X	X	X	{ <i>S</i> }

Example B.15

```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```

	а	b	а	а	b	а
i j	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }			
2	X	$\{B\}$	{ A , B }	{ A }		
3	X	X	$\{S\}$	Ø		
4	X	X	X	{ S }	Ø	{ <i>S</i> }
5	X	X	X	X	{ B }	{ <i>A</i> , <i>B</i> }
6	X	X	X	X	X	{ <i>S</i> }

Software Modeling

and Verification Chair

RNTHAA(


```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```

	а	b	а	а	b	а
$i \setminus j$	1	2	3	4	5	6
1	{ <i>S</i> }	Ø	{ <i>S</i> }			
2	X	{ B }	{ A , B }	{ A , B }		
3	X	X	$\{S\}$	Ø		
4	X	X	X	{ S }	Ø	{ <i>S</i> }
5	X	X	X	X	{ B }	{ <i>A</i> , <i>B</i> }
6	X	X	X	X	X	{ <i>S</i> }

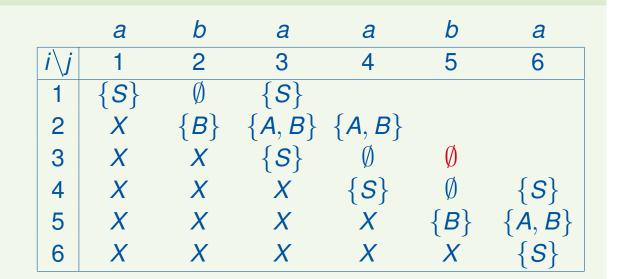

```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```



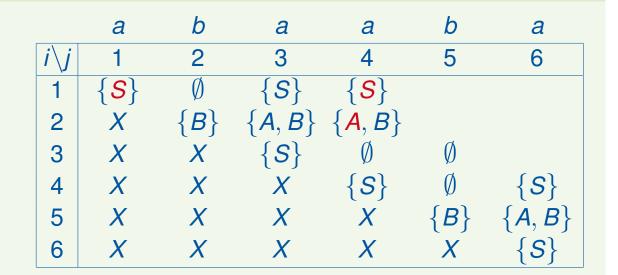

```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```



Example B.15

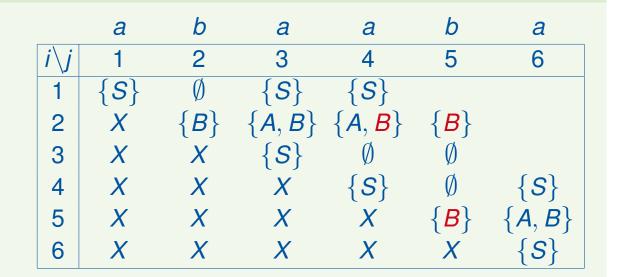
```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```



Software Modeling

and Verification Chair

Example B.15

25 of 46

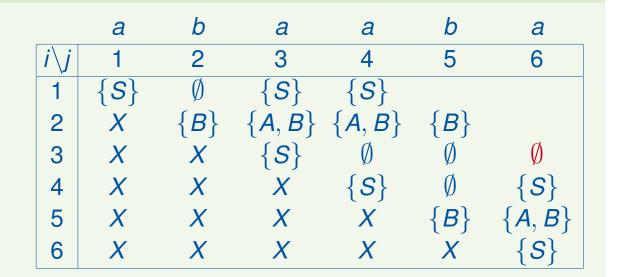
```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```



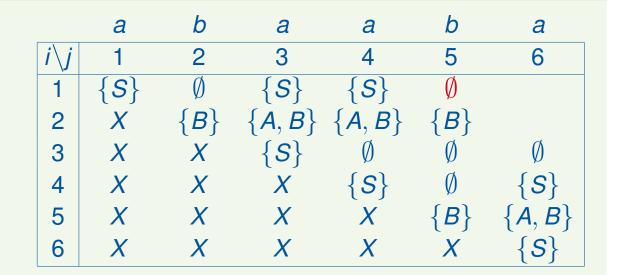

```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```

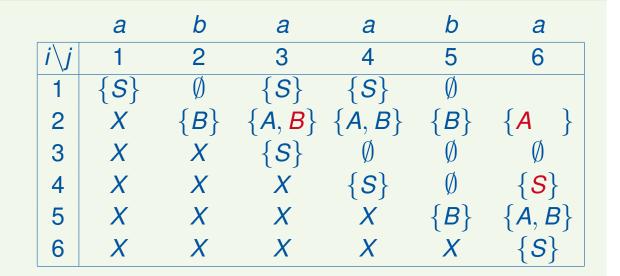


Example B.15

25 of 46

```
• G :
   S 
ightarrow SA \mid a
   A \rightarrow BS
    B \rightarrow BB \mid BS \mid b \mid c
• w = abaaba
```

Thomas Noll



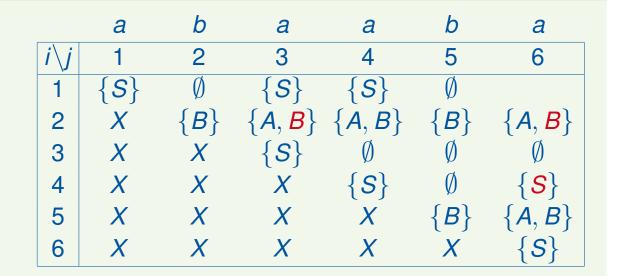

```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```



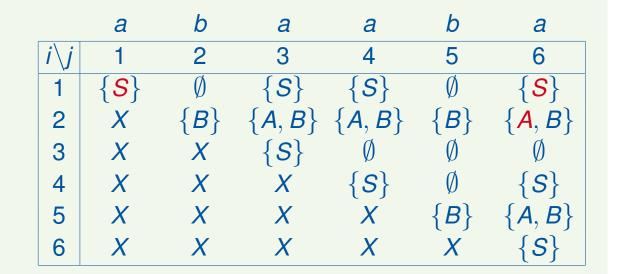
Example B.15

25 of 46

```
• G :
   S \rightarrow SA \mid a
   A \rightarrow BS
    B \rightarrow BB \mid BS \mid b \mid c
• w = abaaba
```

Thomas Noll

b-it Bonn; 02-06 March 2020



Example B.15

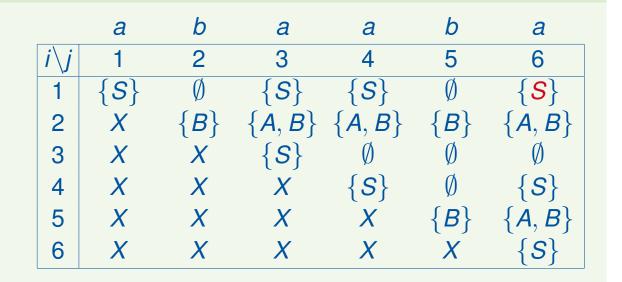
```
• G:

S \rightarrow SA \mid a

A \rightarrow BS

B \rightarrow BB \mid BS \mid b \mid c

• w = abaaba
```



 $S \in N_{1,6} \implies w = abaaba \in L(G)$

Summary: The Word Problem for Context-Free Languages

Seen:

- Given CFG G and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not
- Decidable using CYK algorithm (based on dynamic programming)
- Cubic complexity

Summary: The Word Problem for Context-Free Languages

Seen:

- Given CFG G and $w \in \Sigma^*$, decide whether $w \in L(G)$ or not
- Decidable using CYK algorithm (based on dynamic programming)
- Cubic complexity

Next:

• Emptiness problem

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

Emptiness Problem for CFL

Given CFG $G = \langle N, \Sigma, P, S \rangle$, decide whether $L(G) = \emptyset$ or not.

Emptiness Problem for CFL

— ...

Given CFG $G = \langle N, \Sigma, P, S \rangle$, decide whether $L(G) = \emptyset$ or not.

- Important problem with many applications
 - consistency of context-free language definitions
 - correctness properties of recursive programs
- For regular languages this was easy: check in the corresponding DFA whether some final state is reachable from the initial state.
- Here: test whether start symbol is productive, i.e., whether it generates a terminal word

Algorithm B.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle

Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive;

repeat

if there is A \to \alpha \in P such that all symbols in \alpha productive then

mark A as productive;

end;

until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```


Algorithm B.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle

Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive;

repeat

if there is A \to \alpha \in P such that all symbols in \alpha productive then

mark A as productive;

end;

until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```

Example B.17

```
G: S 
ightarrow AB \mid CA \ A 
ightarrow a \ B 
ightarrow BC \mid AB \ C 
ightarrow aB \mid b
```

29 of 46 Foundations of Informatics/Formal Languages and Processes, Part B Thomas Noll b-it Bonn; 02–06 March 2020

Algorithm B.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle

Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive;

repeat

if there is A \to \alpha \in P such that all symbols in \alpha productive then

mark A as productive;

end;

until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```


Algorithm B.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle

Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive;

repeat

if there is A \to \alpha \in P such that all symbols in \alpha productive then

mark A as productive;

end;

until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```

Example B.17

29 of 46

```
\begin{array}{ccc} G: & S \rightarrow AB \mid CA \\ & A \rightarrow a \\ & B \rightarrow BC \mid AB \\ & C \rightarrow aB \mid b \end{array}
```

Initalisation
 1st iteration

Algorithm B.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle

Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive;

repeat

if there is A \to \alpha \in P such that all symbols in \alpha productive then

mark A as productive;

end;

until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```

```
G: S \rightarrow AB \mid CAA \rightarrow aB \rightarrow BC \mid ABC \rightarrow aB \mid b
```

- 1. Initalisation
- 2. 1st iteration
- 3. 2nd iteration

Algorithm B.16 (Emptiness Test)

```
Input: G = \langle N, \Sigma, P, S \rangle

Question: L(G) = \emptyset?

Procedure: mark every a \in \Sigma as productive;

repeat

if there is A \to \alpha \in P such that all symbols in \alpha productive then

mark A as productive;

end;

until no further productive symbols found;

Output: "no" if S productive, otherwise "yes"
```

```
G: S \rightarrow AB \mid CAA \rightarrow aB \rightarrow BC \mid ABC \rightarrow aB \mid b
```

- 1. Initalisation
- 2. 1st iteration
- 3. 2nd iteration
- S productive $\implies L(G) \neq \emptyset$

Seen:

• Emptiness problem decidable based on productivity of symbols

Summary: The Emptiness Problem for CFLs

Seen:

• Emptiness problem decidable based on productivity of symbols

Next:

• Closure properties of CFLs

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

Foundations of Informatics/Formal Languages and Processes, Part B b-it Bonn; 02-06 March 2020

The set of CFLs is closed under concatenation, union, and iteration.

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then • $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \to S_1S_2\} \cup P_1 \cup P_2$ generates

 $L_1 \cdot L_2;$

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1S_2\} \cup P_1 \cup P_2$ generates $L_1 \cdot L_2$;
- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1 \mid S_2\} \cup P_1 \cup P_2$ generates $L_1 \cup L_2$; and

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let $G_i = \langle N_i, \Sigma, P_i, S_i \rangle$ with $L_i := L(G_i)$ and $N_1 \cap N_2 = \emptyset$. Then

- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1S_2\} \cup P_1 \cup P_2$ generates $L_1 \cdot L_2$;
- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1 \cup N_2$ and $P := \{S \rightarrow S_1 \mid S_2\} \cup P_1 \cup P_2$ generates $L_1 \cup L_2$; and
- $G := \langle N, \Sigma, P, S \rangle$ with $N := \{S\} \cup N_1$ and $P := \{S \to \varepsilon \mid S_1S\} \cup P_1$ generates L_1^* .

The set of CFLs is not closed under intersection and complement.

The set of CFLs is not closed under intersection and complement.

Proof.

• Intersection: both $L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$ and $L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$ are CFLs, but not $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ (without proof).

The set of CFLs is not closed under intersection and complement.

Proof.

- Intersection: both $L_1 := \{a^k b^k c^l \mid k, l \in \mathbb{N}\}$ and $L_2 := \{a^k b^l c^l \mid k, l \in \mathbb{N}\}$ are CFLs, but not $L_1 \cap L_2 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$ (without proof).
- Complement: if CFLs were closed under complement, then also under intersection (as $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$).

Overview of Decidability and Closure Results

Decidability Results						
Class	$w \in L$	$L=\emptyset$	$L_{1} = L_{2}$			
Reg	+ (A.37)	+ (A.39)	+ (A.41)			
CFL	+ (B.14)	+ (B.16)	-			

Decidability Results						
Class	$w \in L$	$L = \emptyset$	$L_{1} = L_{2}$			
Reg	+ (A.37)	+ (A.39)	+ (A.41)			
CFL	+ (B.14)	+ (B.16)	_			

Closure Results							
Class	$L_1 \cdot L_2$	$L_1 \cup L_2$	$L_1 \cap L_2$	Ī	L *		
Reg	+ (A.28)	+ (A.18)	+ (A.16)	+ (A.14)	+ (A.29)		
CFL	+ (B.18)	+ (B.18)	– (B.19)	- (B.19)	+ (B.18)		

Seen:

- Closure under concatenation, union and iteration
- Non-closure under intersection and complement

Seen:

- Closure under concatenation, union and iteration
- Non-closure under intersection and complement

Next:

Automata model for CFLs

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

Pushdown Automata I

- Goal: introduce an automata model which exactly accepts CFLs
- Clear: DFA not sufficient (missing "counting capability", e.g. for {aⁿbⁿ | n ≥ 1})
- DFA will be extended to pushdown automata by
 - adding a pushdown store which stores symbols from a pushdown alphabet and uses a special bottom symbol
 - adding push and pop operations to transitions

A pushdown automaton (PDA) is of the form $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ where

- *Q* is a finite set of states
- Σ is the (finite) input alphabet
- Γ is the (finite) pushdown alphabet
- $\Delta \subseteq (Q \times \Gamma \times \Sigma_{\varepsilon}) \times (Q \times \Gamma^*)$ is a finite set of transitions
- $q_0 \in Q$ is the initial state
- Z_0 is the (pushdown) bottom symbol
- $F \subseteq Q$ is a set of final states

Interpretation of $((q, Z, x), (q', \delta)) \in \Delta$: if the PDA \mathfrak{A} is in state q where Z is on top of the stack and x is the next input symbol (or empty), then \mathfrak{A} reads x, replaces Z by δ , and changes into the state q'.

Let $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ be a PDA.

- An element of $Q \times \Gamma^* \times \Sigma^*$ is called a configuration of \mathfrak{A} .
- The initial configuration for input $w \in \Sigma^*$ is given by (q_0, Z_0, w) .
- The set of final configurations is given by $F \times \{\varepsilon\} \times \{\varepsilon\}$.
- If $((q, Z, x), (q', \delta)) \in \Delta$, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$ for every $\gamma \in \Gamma^*$, $w \in \Sigma^*$.

39 of 46

Let $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ be a PDA.

- An element of $Q \times \Gamma^* \times \Sigma^*$ is called a configuration of \mathfrak{A} .
- The initial configuration for input $w \in \Sigma^*$ is given by (q_0, Z_0, w) .
- The set of final configurations is given by $F \times \{\varepsilon\} \times \{\varepsilon\}$.
- If $((q, Z, x), (q', \delta)) \in \Delta$, then $(q, Z\gamma, xw) \vdash (q', \delta\gamma, w)$ for every $\gamma \in \Gamma^*$, $w \in \Sigma^*$.
- \mathfrak{A} accepts $w \in \Sigma^*$ if $(q_0, Z_0, w) \vdash^* (q, \varepsilon, \varepsilon)$ for some $q \in F$.
- The language accepted by \mathfrak{A} is $L(\mathfrak{A}) := \{ w \in \Sigma^* \mid \mathfrak{A} \text{ accepts } w \}.$
- A language L is called PDA-recognisable if $L = L(\mathfrak{A})$ for some PDA \mathfrak{A} .
- Two PDA $\mathfrak{A}_1, \mathfrak{A}_2$ are called equivalent if $L(\mathfrak{A}_1) = L(\mathfrak{A}_2)$.

Examples

Example B.22

1. PDA which recognises $L = \{a^n b^n \mid n \ge 1\}$ (on the board)

Example B.22

- 1. PDA which recognises $L = \{a^n b^n \mid n \ge 1\}$ (on the board)
- 2. PDA which recognises $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length; on the board)

Example B.22

- 1. PDA which recognises $L = \{a^n b^n \mid n \ge 1\}$ (on the board)
- 2. PDA which recognises $L = \{ww^R \mid w \in \{a, b\}^*\}$ (palindromes of even length; on the board)

Observation: \mathfrak{A}_2 is nondeterministic: whenever a construction transition is applicable, the pushdown could also be deconstructed

A PDA $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is called deterministic (DPDA) if for every $q \in Q, Z \in \Gamma$,

- 1. for every $x \in \Sigma_{\varepsilon}$, there is at most one (q, Z, x)-transition in Δ and
- 2. If there is a (q, Z, a)-transition in Δ for some $a \in \Sigma$, then there is no (q, Z, ε) -transition in Δ .

Remark: this excludes two types of nondeterminism:

1. if
$$((q, Z, x), (q'_1, \delta_1)), ((q, Z, x), (q'_2, \delta_2)) \in \Delta$$
:
 $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, xw) \vdash (q'_2, \delta_2 \gamma, w)$
2. if $((q, Z, a), (q'_1, \delta_1)), ((q, Z, \varepsilon), (q'_2, \delta_2)) \in \Delta$:
 $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, aw) \vdash (q'_2, \delta_2 \gamma, aw)$

A PDA $\mathfrak{A} = \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is called deterministic (DPDA) if for every $q \in Q, Z \in \Gamma$,

- 1. for every $x \in \Sigma_{\varepsilon}$, there is at most one (q, Z, x)-transition in Δ and
- 2. If there is a (q, Z, a)-transition in Δ for some $a \in \Sigma$, then there is no (q, Z, ε) -transition in Δ .

Remark: this excludes two types of nondeterminism:

1. if
$$((q, Z, x), (q'_1, \delta_1)), ((q, Z, x), (q'_2, \delta_2)) \in \Delta$$
:
 $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, xw) \vdash (q'_2, \delta_2 \gamma, w)$
2. if $((q, Z, a), (q'_1, \delta_1)), ((q, Z, \varepsilon), (q'_2, \delta_2)) \in \Delta$:
 $(q'_1, \delta_1 \gamma, w) \dashv (q, Z\gamma, aw) \vdash (q'_2, \delta_2 \gamma, aw)$

Corollary B.24

In a DPDA, every configuration has at most one ⊢-successor.

One can show: determinism restricts the set of acceptable languages (DPDA-recognisable languages are closed under complement, which is generally not true for PDA-recognisable languages)

One can show: determinism restricts the set of acceptable languages (DPDA-recognisable languages are closed under complement, which is generally not true for PDA-recognisable languages)

Example B.25

The set of palindromes of even length is PDA-recognisable, but not DPDA-recognisable (without proof).

Theorem B.26

A language is context-free iff it is PDA-recognisable.

Theorem B.26

A language is context-free iff it is PDA-recognisable.

Proof.

- ⇐: omitted
- \Rightarrow : let $G = \langle N, \Sigma, P, S \rangle$ be a CFG. Construction of PDA \mathfrak{A}_G recognising L(G):
 - \mathfrak{A}_G simulates a derivation of G where always the leftmost nonterminal of a sentence is replaced ("leftmost derivation")
 - begin with S on pushdown
 - if nonterminal on top: apply a corresponding production rule
 - if terminal on top: match with next input symbol
 - (cf. formal construction on following slide)

Proof of Theorem B.26 (continued).

- \Rightarrow : Formally: $\mathfrak{A}_G := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by
 - $Q := \{q_0\}$
 - $\Gamma := N \cup \Sigma$
 - for each $A \rightarrow \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$
 - for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$
 - $Z_0 := S$
 - *F* := *Q*

Proof of Theorem B.26 (continued).

- \Rightarrow : Formally: $\mathfrak{A}_{G} := \langle Q, \Sigma, \Gamma, \Delta, q_0, Z_0, F \rangle$ is given by
 - $Q := \{q_0\}$
 - $\Gamma := N \cup \Sigma$
 - for each $A \rightarrow \alpha \in P$: $((q_0, A, \varepsilon), (q_0, \alpha)) \in \Delta$
 - for each $a \in \Sigma$: $((q_0, a, a), (q_0, \varepsilon)) \in \Delta$
 - $Z_0 := S$
 - *F* := *Q*

Example B.27

"Bracket language", given by G:

 $\mathcal{S}
ightarrow \langle
angle \mid \langle \mathcal{S}
angle \mid \mathcal{SS}$

(on the board)

44 of 46 Foundations of Informatics/Formal Languages and Processes, Part B Thomas Noll b-it Bonn; 02–06 March 2020

Context-Free Grammars and Languages

- Context-Free vs. Regular Languages
- **Chomsky Normal Form**
- The Word Problem for Context-Free Languages
- The Emptiness Problem for CFLs
- **Closure Properties of CFLs**
- Pushdown Automata

Outlook

Outlook

- Equivalence problem for CFG and PDA (" $L(X_1) = L(X_2)$?") (generally undecidable, decidable for DPDA)
- Pumping Lemma for CFL
- Greibach Normal Form for CFG
- Construction of parsers for compilers
- Non-context-free grammars and languages (context-sensitive and recursively enumerable languages, Turing machines—see Week 4)

