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Introductory Example |

Example B.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

(Expression)

Expression) * { Expression)

=0
1
(Expression) + ( Expression)
(
((Expression) )

Meaning:

An expression is either 0 or 1, or it is of the form u + v, u x v, or (u) where u, v
are again expressions
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Introductory Example Il

Example B.1 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=”". Thus:

E—0[1|E+E|E*E]|(E)
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Introductory Example Il

Example B.1 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=”". Thus:
E —O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
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Introductory Example Il

Example B.1 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=”". Thus:
E —-O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)* E
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Introductory Example Il

Example B.1 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=”". Thus:
E —-O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)* E
= (E) * 1
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Introductory Example Il

Example B.1 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=”". Thus:
E —O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)* E
= (E) * 1
= (E+ E) * 1
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Introductory Example Il

Example B.1 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=”". Thus:
E —O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:

E = ExE
= (E)x E
= (E) * 1
= (E+ E) * 1
= (0+ E) * 1
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Introductory Example Il

Example B.1 (continued)
Here we abbreviate ( Expression) as E, and use “—” instead of “::=”". Thus:
E —-O0|1|E+E|ExE|(E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E:
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Context-Free Grammars |

Definition B.2
A context-free grammar (CFQG) is a quadruple

G=(N,%L,P,S)

where
e N is a finite set of nonterminal symbols
e 2 is the (finite) alphabet of terminal symbols (disjoint from N)
e Pis a finite set of production rules of the form A — awhere Ac Nand o € (NU ¥)*
e S € Nis a start symbol
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Context-Free Grammars Il

Example B.3

For the above example, we have:

o N={E}

'z:{oa1a+7*7(7)}
eP={E—-0E—-1E—-E+EE—ExEE— (E)}
e S=FEFE

RWTH
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Context-Free Grammars Il

Example B.3

For the above example, we have:

o N={E}

e ={0,1,+,%(,)}
eP={E—-0,E—-1E—-E+EE—>ExE E— (E)}
e S=F

Naming conventions:

e nonterminals start with uppercase letters

e terminals start with lowercase letters

e start symbol = symbol on LHS of first production
= grammar completely defined by productions
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Context-Free Languages |

Definition B.4
Let G= (N, X, P, S) be a CFG.
e A sentence v € (N U ¥)* is directly derivable from 5 € (N U ¥)* if there exist
T=A— a € Pandd, i € (NUZX)" suchthat 5 = 0;Ad, and v = 410>
(notation: 3 = v or just 3 = ).
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Context-Free Languages |

Definition B.4
Let G= (N, X, P, S) be a CFG.
e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— a € Pandd, i € (NUZX)" suchthat 5 = 0;Ad, and v = 410>
(notation: 3 = v or just 3 = ).
e A derivation (of length n € N) of v from [ is a sequence of direct derivations of the form
dp = 01 = ... = 0, where 6o = 3, 0, = v,and 6; 1 = o; forevery i € {1,..., n}
(notation: 3 =" 7).

RWTH
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Context-Free Languages |

Definition B.4
Let G= (N, X, P, S) be a CFG.

e A sentence v € (N U ¥)* is directly derivable from 5 € (N U ¥)* if there exist
T=A— a € Pandd, i € (NUZX)" suchthat 5 = 0;Ad, and v = 410>
(notation: 3 = v or just 3 = ).

e A derivation (of length n € N) of v from [ is a sequence of direct derivations of the form
dp = 01 = ... = 0, where 6o = 3, 0, = v,and 6; 1 = o; forevery i € {1,..., n}
(notation: 3 =" 7).

e Aword w € X" is called derivable in G if S =" w.

RWTH
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Context-Free Languages |

Definition B.4
Let G= (N, X, P, S) be a CFG.

e A sentence v € (N U ¥)* is directly derivable from 5 € (N U ¥)* if there exist
T=A— a € Pandd, i € (NUZX)" suchthat 5 = 0;Ad, and v = 410>
(notation: 3 = v or just 3 = ).

e A derivation (of length n € N) of v from [ is a sequence of direct derivations of the form
dp = 01 = ... = 0, where 6o = 3, 0, = v,and 6; 1 = o; forevery i € {1,..., n}
(notation: 3 =" 7).

e Aword w € 2" is called derivable in Gif S =" w.

e The language generated by Gis L(G) := {w € ¥* | S =" w}.

RWTH
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Context-Free Languages |

Definition B.4
Let G= (N, X, P, S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— a € Pandd, i € (NUZX)" suchthat 5 = 0;Ad, and v = 410>
(notation: 5 = ~ or just 5 = 7).

e A derivation (of length n € N) of v from [ is a sequence of direct derivations of the form
dp = 01 = ... = 0, where 6o = 3, 0, = v,and 6; 1 = o; forevery i € {1,..., n}
(notation: 3 =" 7).

e Aword w € X" is called derivable in G if S =" w.

e The language generated by Gis L(G) := {w € ¥* | S =" w}.

e Alanguage L C X" is called context-free (CFL) if it is generated by some CFG.

RWTH
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Context-Free Languages |

Definition B.4
Let G= (N, X, P, S) be a CFG.

e A sentence v € (N U X)* is directly derivable from § € (N U X)* if there exist
T=A— a € Pandd, i € (NUZX)" suchthat 5 = 0;Ad, and v = 410>
(notation: 5 = ~ or just 5 = 7).

e A derivation (of length n € N) of v from [ is a sequence of direct derivations of the form
dp = 01 = ... = 0, where 6o = 3, 0, = v,and 6; 1 = o; forevery i € {1,..., n}
(notation: 5 =" 7).

e Aword w € 2" is called derivable in Gif S =" w.

e The language generated by Gis L(G) := {w € ¥* | S =" w}.

e Alanguage L C X" is called context-free (CFL) if it is generated by some CFG.

e Two grammars Gy, Gy are equivalent if L(Gy) = L(Gy).

RWTH
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Context-Free Languages Il

Example B.5

The language {a"b" | n € N} is context-free. It is generated by the grammar
G=(N,Z, P,S) with

o N={S}

o> ={a b}

e P={S— aSb|¢c}
(proof: generating a”b" requires exactly n applications of the first and one concluding
application of the second rule)

RWTH
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Context-Free Languages Il

Example B.5

The language {a"b"” | n € N} is context-free. It is generated by the grammar
G=(N,Z, P,S) with

o N={S}

o) ={a b}

e P={S— aSb|¢c}
(proof: generating a”b" requires exactly n applications of the first and one concluding
application of the second rule)

Remark: illustration of derivations by derivation trees
e root labelled by start symbol
e leaves labelled by terminal symbols
e successors of node labelled according to right-hand side of production rule
e sequence of leaf symbols = generated word

RWTH
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Summary: Context-Free Grammars and Languages

Seen:
e Context-free grammars
e Derivations
e Context-free languages
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Summary: Context-Free Grammars and Languages

Seen:
e Context-free grammars
e Derivations
e Context-free languages

Next:
e Relation between context-free and regular languages
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Outline of Part B

Context-Free vs. Regular Languages

10 of 46 Foundations of Informatics/Formal Languages and Processes, Part B Rm
Thomas Noll
. ‘ Software Modeling
b-it Bonn; 02-06 March 2020 B and Verification Chair




Context-Free vs. Regular Languages

Theorem B.6

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)
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Context-Free vs. Regular Languages

Theorem B.6

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)
Proof.

1. Let L be a regular language, and let 2l = (Q, ¥, 9, qo, F) be a DFA which recognises L.
Gy = (N, X, P, S) is defined as follows:
-N:=Q,S = q
—ifd(g,a) = q,thenqg — aq € P
—ifge F,theng —-c € P
Obviously a w-labelled run in 2[ from gy to F corresponds to a derivation of w in Gy, and
vice versa. Thus L(2l) = L(Gy) (example on the following slide).

2. An example is {a"b" | n € N} (see Ex. B.5).

Intuitive reason: recognising this language requires “unbounded counting” capability. u

RWTH
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F):

@——@> b

b a,b

q\

Q)

2 3
a,b
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

2 with N := Q, S := qp:
(@ @o b

b a,b

Q- b a3
a?
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

P o @:} with N := Q, S := qp:
Qo oF b
N >~ Qo — aq | bg

b a,b

2 3
a,b
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

P 2 @3 with N := Q, S := qp:
Qo oF b
N >~ Q% — aq | bg

a g — aq|bag ¢
b a,b

q\

Q)

2 3
a,b
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)
P 2 with N := Q, S := qp:
Qo a1 b
7 DR Qo — aq | b
z g — aq | bag|¢
b a,b @ — ags | bag
) @
g B 3
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

2 with N := Q, S := qp:
(@ @o b

Q — ags | bag
: g1 — ag:| bgs|e
b 2hle G — ags | bgs
Qs — aqs | bag
Q) (@3
a,b
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

P 2 //D:) with N := Q, S := qp:
Qo oF b
N ~ G — aq | bg

: g1 — ag:| bgs|e
b a,b % — ag | bgs

Qs — aqi | bag
@) @
a,b

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo
12 of 46 Foundations of Informatics/Formal Languages and Processes, Part B Rm
Thomas Noll
. Software Modeling
b-it Bonn; 02-06 March 2020 Bl and Verification Chair




From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

P 2 //D:) with N := Q, S := qp:
Qo oF b
N ~ Q% — aq | bg

: g1 — ag:| bgs|e
b a,b % — ag | bgs

Qs — aqi | bag
@) @
a,b

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo = b@go
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

P 2 //D:) with N := Q, S := qp:
Qo oF b
N ~ Q% — aq | bg

Z g — aq | bag|¢
b a, b Q — ags | bgs

Qs — aqi | bag
@) @
a,b

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo= bg = bags

RWTH
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

P 2 //D:) with N := Q, S := qp:
Qo oF b
N >~ Q% — aq | bg

Z g — aq | bag|¢
b a, b Q — ags | bgs

Qs — aqi | bag
@) @
a,b

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo= bg = bag; = baaaqg;

RWTH
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

P 2 //DZD with N := Q, S := qp:
Qo oF b
N >~ Q% — aq | bg

a g — aq: | bag|¢
b a, b Q — ags | bgs

Qs — aqi | bag
@) @
a,b

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo = bg, = bag; = baag; = baabq;

RWTH
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From Regular to Context-Free Languages

Example B.7
DFARI = (Q, %, 6, qo, F): Corresponding CFG Gy := (N, %, P, S)

P 2 //D:) with N := Q, S := qp:
Qo oF b
N ~ Q% — aq | bg

: g1 — ag:| bgs|e
b a,b % — ag | bgs

Qs — aqi | bag
@) @
a,b

E.g., A’s run on input baab € L(2l) is simulated by the following derivation in Gy:

Qo= bg = bags; = baaqg; = baabg; = baab

RWTH
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Summary: Context-Free vs. Regular Languages

Seen:
e CFLs are more expressive than regular languages
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Summary: Context-Free vs. Regular Languages

Seen:
e CFLs are more expressive than regular languages

Next:
e Decidability of word problem
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Outline of Part B

Chomsky Normal Form
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The Word Problem for CFL

Word Problem for CFL
Given CFG G = (N, X, P, S) and w € ¥*, decide whether w € L(G) or not.
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The Word Problem for CFL

Word Problem for CFL
Given CFG G = (N, X, P, S) and w € ¥L*, decide whether w € L(G) or not.

e Important problem with many applications

— syntax analysis of programming languages
— HTML parsers

e For regular languages this was easy: just let the corresponding DFA run on w.
e But here: how to decide when to stop a derivation?

e Solution: establish normal form for grammars which guarantees that each nonterminal
produces at least one terminal symbol

= Only finitely many combinations to be inspected

RWTH
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Chomsky Normal Form

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the

form
A—BC o A—a
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Chomsky Normal Form

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the
form
A—BC o A—a

Example B.9

Let S — ab | aSb be the grammar which generates L := {a"b" | n > 1}.
An equivalent grammar in Chomsky NF is

S— AB| AC  (generates L)

A— a (generates {a})

B—b (generates {b})

C — SB (generates {a"b™ " | n > 1})

RWTH
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Conversion to Chomsky Normal Form

Theorem B.10
Every CFL L (with = ¢ L) can be generated by a CFG in Chomsky NF.
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Conversion to Chomsky Normal Form

Theorem B.10
Every CFL L (with e ¢ L) can be generated by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = (N, X, P, S) be some CFG which generates L. The
transformation of P into rules of the form A — BC and A — a proceeds in three
steps:

1. terminal symbols only in rules of the form A — a
(thus all other rules have the shape A — Ay ... A))

2. elimination of “chain rules” of the form A — B
3. elimination of rules of the form A — A; ... A, where n > 2

(see following slides for details)

RWTH
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Step 1: Only A — a

Procedure

1. For every terminal symbol a € %, introduce a new nonterminal symbol B, € N.
2. Add corresponding productions B, — ato P.
3. In each original production A — «, replace every a € > with B,.

This yields G'.
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Step 1: Only A — a

Procedure

1. For every terminal symbol a € %, introduce a new nonterminal symbol B, € N.
2. Add corresponding productions B, — ato P.
3. In each original production A — «, replace every a € > with B,.

This yields G'.

Example B.11
G: S — ab| aSb is converted to G:S — AB| ASB
A — a
B — b
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Step 2: Elimination of Chain Rules A — B

Procedure

1. Determine all derivations A; = ... = A, with rules of the form A — B without repetition of
nonterminals ( = only finitely many!).

2. Determine all productions A, — « with o ¢ N.

3. Add corresponding productions A; — a to P.

4. Remove all chain rules from P.

This yields G”.
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Step 2: Elimination of Chain Rules A — B

Procedure

1. Determine all derivations A; = ... = A, with rules of the form A — B without repetition of
nonterminals ( = only finitely many!).

2. Determine all productions A, — « with o ¢ N.
3. Add corresponding productions A; — a to P.
4. Remove all chain rules from P.

This yields G”.

Example B.12
G:S — A is converted to G': S— DA|c
A — B|C A — DAlc
B — A|DA B — DA|c
C —c C —+c
D —d D — d
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Step 3: Elimination of Rules A — A, ... A, withn > 2

Procedure

lteratively apply the following transformation:

1. Forevery A — A; ... A, with n > 2, introduce a new nonterminal symbol B € N.
2. Replace original production by A — AB.

3. Add new production B — A, ... A,.

This yields G”'.
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Step 3: Elimination of Rules A — A, ... A, withn > 2

Procedure

lteratively apply the following transformation:

1. Forevery A — A; ... A, with n > 2, introduce a new nonterminal symbol B € N.
2. Replace original production by A — AB.

3. Add new production B — A, ... A,.

This yields G”'.

Example B.13
G': S — AB| ASB is converted to G": S — AB| AC
A — a A — a
B — b B — b
Cc — SB
20 of 46 -';Eg;diioNr;? of Informatics/Formal Languages and Processes, Part B o | Rm
b-it Bonn; 02-06 March 2020 ‘ | 3235"25?.2"3?3,‘2'3?.;,"




Summary: Chomsky Normal Form

Seen:
e Chomsky NF: all productions of the form A — BC or A — a
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Summary: Chomsky Normal Form

Seen:
e Chomsky NF: all productions of the form A — BC or A — a

Next:
e Exploit Chomsky Normal Form to solve word problem for CFL
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Outline of Part B

The Word Problem for Context-Free Languages
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The Word Problem for CFL Revisited

Word Problem for e-free CFL

Given CFG G = (N, X, P, S) such thate ¢ L(G) and w € ¥, decide whether
w € L(G) or not.

(If w = ¢, then w € L(G) easily decidable for arbitrary G)
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The Word Problem for CFL Revisited

Word Problem for e-free CFL

Given CFG G = (N, X, P, S) such thate ¢ L(G) and w € ¥, decide whether
w € L(G) or not.

(If w = ¢, then w € L(G) easily decidable for arbitrary G)
Algorithm B.14 (by Cocke, Younger, Kasami — CYK algorithm)

ok Wb~

Transform G into Chomsky NF

Letw=ay...a,(n>1)

Letw[i,jl:=a;...ajforevery1 <i<j<n

Consider segments wli, j| in order of increasing length, starting with wli, i] = a; (i.e., letters)
In each case, determine N;j .= {A € N | A=" wl[i,j]} using a “dynamic programming”
approach:

—I:jN,’,:{AGN’A%a,EP}
—i<ji:Nj={AeN|3IB,CceENkeE{i,....j—1} : A— BC € P,B € Nix, C € Nci1,}

Test whether S € Ny , (and thus, whether S =* w[1,n| = w)
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Matrix Representation of CYK Algorithm
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Matrix Representation of CYK Algorithm

-
<
<
N
<
w
<
>

N11:{AEN’A—>31EP} n X X - - Ny,

NZZ? {AEN’A%&QEP}
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Matrix Representation of CYK Algorithm

a ao as
iNj| 1 2 3
T Nyt Nip Nis A
2| X Nop Nos No
30 X X Nag - N,
N171:{AEN A—>a1€P} ni X X - - Ny,

No o> = {AEN A—>32€P}

N12 = {AEN HB,CGN:A%BCEP,B€N1_’1,CEN2_’2}
N23 — {AEN E|B7CEN:A—>BCEP,B€N272,C€N373}
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Matrix Representation of CYK Algorithm

a ao as
N1 2 3
TNy 4 Nig Nyg -+ Ny
2| X Nop Nog --+ Nop
30X X Ngs - Ny,
N171:{AEN A—>a1€P} n X X Nnn
N2’2 — {AEN A—>32€P}
Nip = {AEN|IB,CEN:A—BCEP,BEN;1,CE Nap}
Nog = {AEN|IB,CEN:A— BCEP,BE Ny, CE N33}
Nis = {AEN|3B,CEN:A—BCEP,BEN,{,CE Nz}
U{AeN|IB,CEN:A—BCEP,Be N;» CeE N3}
N274 — {AEN EIB,CEN:A%BCGP,B€N272,C€N3,4}
U {AeN|IB,CeEN:A— BC€P,Be N3, C € Nyut
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Applying the CYK Algorithm

Example B.15

e G:
S—SA|a
A — BS
B—BB|BS|b|c
e W = abaaba
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Applying the CYK Algorithm

Example B.15

QL

a b a a b
o GG: 1 2 3 4 5
S—SA|a
A — BS

B—BB|BS|b|c
e W = abaaba

o R
X X X X X

X X X X

X X X

X X

<
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Applying the CYK Algorithm

Example B.15

ey
Q
Q
oy

QD

N
w
N
@)

o G:

S—SA|a

A — BS

B—BB|BS|b|c
e W = abaaba

ovmhoor\)—xz
——
X X XXX W=
——
X X X X
X X X W
r—/—\
X X W
——

15}
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Applying the CYK Algorithm

Example B.15

b a a b a
e G: 2 3 4 5 6
S—SA|a
A — BS

B—BB|BS|b|c
e W = abaaba

—~—

—
~—
0p)
——

1B}

ovmhoor\)—xz
——
X X XXX W= o
——
——
X X X X W
——
X X X W
X< X
<

15}
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Applying the CYK Algorithm

Example B.15

a a b a
e G: 3 4 ) 6
S—SA|a
A — BS

B—BB|BS|b|c
e W = abaaba

ovmhoor\)—xz
——
X X XXX W=
——
——
XXX XIS NDT
——
——
(S

X X X WO
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Applying the CYK Algorithm

Example B.15

a b a a b a
e G: i\j 1 2 3 4 5 6
S—SA|a 1 {s} 0
A — BS 2 X {B} {A }
B%BB|BS’b|C 3 X X {S} @
e W = abaaba 4 X X X {S} 0
5 X X X X {B} {A }
6 X X X X X {S}
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Applying the CYK Algorithm

Example B.15

a b a a b a
e G: i\j 1 2 3 4 5 6
S—SA|a 1 {s} 0
A — BS 2| X {B} {AB}
B%BB|BS’b|C 3 X X {S} @
e W = abaaba 4 X X X {S} 0
5 X X X X {B} {A, B}
6 X X X X X {S}

25 of 46 Foundations of Informatics/Formal Languages and Processes, Part B Rm
Thomas Noll
Software Modeling

b-it Bonn; 02-06 March 2020 Bl and Verification Chair



Applying the CYK Algorithm

Example B.15

a b a = b a

S—SA|a 11 {s} 0 {s}

A—s BS 2 X {B} {AB}

B—BB|BS|b|c 3 X X {s} 0

e W = abaaba 4 X X X {S} @ {S}
5. X X X X {B {AB
6 X X X X x {s
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Applying the CYK Algorithm

Example B.15
a b a 2 2 2
e G: l\/ 1 2 3 4 0 £
S—SA|a 11 {s} 0 {s}
A — BS 2 X {B} {A,B} {A }
B—BB|BS|b|c 3 X X {s} )
e W = abaaba 4 X X X {S} @ {S}
5. X X X X {B} {AB}
6 X X X X X {s
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Applying the CYK Algorithm

Example B.15
a b a 2 2 2
e G: l\/ 1 2 3 4 0 £
S—SA|a 11 {s} 0 {s}
A BS 2 X {B} {AB} {AB}
B—BB|BS|b|c 3 X X {s} )
e W = abaaba 4 X X X {S} @ {S}
5. X X X X {B} {AB}
6 X X X X X {s
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Applying the CYK Algorithm

Example B.15
a b a a b a
¢ G: N 2 3 4 5 6
S— SA|a 1] {S} 0 {s}
A— BS 2 X {B} {A B} {AB}
B%BB|BS’b|C 3 X X {S} @ @
e W = abaaba 4 X X X {S} @ {S}
5 X X X X {B} {AB}
6 X X X X X {s
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Applying the CYK Algorithm

Example B.15
a b a a b a
¢ G: N 2 3 4 5 6
D= A& t{sy 0 {s} {s}
A— BS 2| X {B} {A B} {AB}
B%BB|BS’b|C 3 X X {S} @ @
e W = abaaba 4 X X X {S} @ {S}
5 X X X X {B} {AB}
6 X X X X X {s
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Applying the CYK Algorithm

Example B.15
a b a a b a
«G: N 2 3 4 5 6
I A& t{sy 0 {s} {s}
A BS 2 X {B} {AB} {AB} {B;
B%BB|BS’b|C 3 X X {S} @ @
e W = abaaba 4 X X X {S} @ {S}
5 X X X X {B} {A B}
6 X X X X X {s
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Applying the CYK Algorithm

Example B.15
a b a a b a
¢ G: N 2 3 4 5 6
I A& t{sy 0 {s} {s}
A BS 2 X {B} {AB} {AB} {B;
B—BB|BS|b|c 3| x X {s} 0 0 0
e W = abaaba 4 X X X {S} @ {S}
5 X X X X {B} {AB}
6 X X X X X {s
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Applying the CYK Algorithm

Example B.15
a b a a b a
e G: i\j 1 2 3 4 5 6
S— SA|a 1 {s} 0 {s} {S} 0
A= BS 2 X {B} {AB} {AB} {B}
e W — abaaba 4 X % X {S} 0 {S}
5 X X X X {B} {A, B}
6 X X X X X {S}
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Applying the CYK Algorithm

Example B.15
a b a 2 : 2
o G: I\/ 1 2 £ 4 > °
S—SA|a th{sy 0 {s} {s} 0
A— BS 2 X 1B} 1AB} {AB} {B} {A }
B BB|BS|b|c 3. X X {s} 0 0 0
e W = abaaba 4 X X X {S} @ {S}
5. X X X X {B} {AB
6 X X X X x {s
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Applying the CYK Algorithm

Example B.15
a b a 2 : 2
o G: I\/ 1 2 £ 4 > °
S—SA|a th{sy 0 {s} {s} 0
A BS 2 X {B} {AB} {AB} {B; {AB;j
B BB|BS|b|c 3, X x {s} 0 0 0
e W = abaaba 4 X X X {S} @ {S}
5/ X X X X {B} {AB)
6 X X X X x {s
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Applying the CYK Algorithm

Example B.15
a b a 2 : 2
o G: I\/ 1 2 £ 4 > °
S SA|a ti{st 0 {s} {st 0 {5}
A BS 2| x {8} {AB}{AB} {B} {AB)
B BB|BS|b|c 3, X x {s} 0 0 0
e W = abaaba 4 X X X {S} @ {S}
5. X X X X {B} {AB
6 X X X X x {s
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Applying the CYK Algorithm

Example B.15
a b a a b a
¢ G: N 2 3 4 5 6
I A& i {sy 0 {s} {s} 0 {s}
A BS 2 X {B} {ABj{AB} {B} {AB}
B—BB|BS|b|c 3| x X {s} 0 0 0
e W = abaaba 4 X X X {S} @ {S}
5 X X X X {B} {A B}
6 X X X X X {s
Se N g = w= abaaba € L(G)
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Summary: The Word Problem for Context-Free Languages

Seen:
e Given CFG G and w € ¥*, decide whether w € L(G) or not
e Decidable using CYK algorithm (based on dynamic programming)
e Cubic complexity
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Summary: The Word Problem for Context-Free Languages

Seen:
e Given CFG G and w € ¥*, decide whether w € L(G) or not
e Decidable using CYK algorithm (based on dynamic programming)
e Cubic complexity

Next:
e Emptiness problem
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Outline of Part B

The Emptiness Problem for CFLs
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The Emptiness Problem

Emptiness Problem for CFL
Given CFG G = (N, X, P, S), decide whether L(G) = () or not.
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The Emptiness Problem

Emptiness Problem for CFL
Given CFG G = (N, X, P, S), decide whether L(G) = () or not.

e Important problem with many applications

— consistency of context-free language definitions
— correctness properties of recursive programs

e For regular languages this was easy: check in the corresponding DFA whether some final
state is reachable from the initial state.

e Here: test whether start symbol is productive, i.e., whether it generates a terminal word
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The Emptiness Test

Algorithm B.16 (Emptiness Test)

Input: G = (N, X, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;

repeat

1f there is A — « € P such that all symbols in c«c productive then
mark A as productive;
end;
until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

RWTH
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The Emptiness Test

Algorithm B.16 (Emptiness Test)

Input: G = (N, X, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;
repeat
1f there is A — « € P such that all symbols in c«c productive then
mark A as productive;
end;
until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example B.17

G: S— AB| CA
A— a
B — BC | AB
C—aB|b

RWTH
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The Emptiness Test

Algorithm B.16 (Emptiness Test)

Input: G = (N, X, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;
repeat
1f there is A — « € P such that all symbols in c«c productive then
mark A as productive;
end;
until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example B.17

G: S— AB| CA 1. Initalisation
A— a
B — BC | AB
C—aB|b

RWTH
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The Emptiness Test

Algorithm B.16 (Emptiness Test)

Input: G = (N, X, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;

repeat
if there is A — « € P such that all symbols in @ productive then
mark A as productive;
end;
until no further productive symbols found,

Output: “no” if S productive, otherwise “yes”

Example B.17
G:- S— AB | CA 1. Initalisation
A— 3 2. 1st iteration
B — BC | AB
C—aB|b
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The Emptiness Test

Algorithm B.16 (Emptiness Test)

Input: G = (N, X, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;
repeat
1f there is A — « € P such that all symbols in c«c productive then
mark A as productive;
end;
until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example B.17
G: S— AB| CA 1. Initalisation
A— 3 2. 1st iteration
B — BC | AB 3. 2nd iteration
C—aB|b
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The Emptiness Test

Algorithm B.16 (Emptiness Test)

Input: G = (N, X, P, S)
Question: L(G) = () ?
Procedure: mark every a € X as productive;
repeat
1f there is A — « € P such that all symbols in c«c productive then
mark A as productive;
end;
until no further productive symbols found,
Output: “no” if S productive, otherwise “yes”

Example B.17
G: S AB| CA 1. Initalisation
A— 3 2. 1st iteration
B — BC | AB 3. 2nd iteration
C—aB|b S productive = L(G) # ()
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Summary: The Emptiness Problem for CFLs

Seen:
e Emptiness problem decidable based on productivity of symbols
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Summary: The Emptiness Problem for CFLs

Seen:
e Emptiness problem decidable based on productivity of symbols

Next:
e Closure properties of CFLs
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Outline of Part B

Closure Properties of CFLs
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Positive Results

Theorem B.18

The set of CFLs is closed under concatenation, union, and iteration.
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Positive Results

Theorem B.18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2,let G = (N, X, P;, S;) with L; := L(G;) and Ny N N, = (). Then
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Positive Results

Theorem B.18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2,let G = (N, X, P;, S;) with L; := L(G;) and Ny N N, = (). Then

e G:=(N, L, P,S)with N:={S}UN;UN,and P :={S — $;S,} U P; U P, generates
Ly - Ly;
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Positive Results

Theorem B.18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2,let G = (N, X, P;, S;) with L; := L(G;) and Ny N N, = (). Then

e G:=(N, L, P,S)with N:={S}UN;UN,and P :={S — $;S,} U P; U P, generates
Ly - Ly;

e G:=(N,L,P,S)withN:={S}UN;UN,and P:={S — S; | So} U P; U P, generates
L1 U Lg; and
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Positive Results

Theorem B.18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.
Fori=1,2,let G;= (N, X, P;, S;) with L; := L(G;) and N; N N, = (). Then
e G:=(N, L, P,S)with N:={S}UN;UN,and P :={S — $;S,} U P; U P, generates
Ly - Lp;
e G:=(N,L,P,S)withN:={S}UN;UN,and P:={S — S; | So} U P; U P, generates
L4 U Ly; and
e G:=(N,L,P,S)with N:={S}UN;and P:= {S — ¢ | S;S} U P; generates L;.

RWTH
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Negative Results

Theorem B.19

The set of CFLs is not closed under intersection and complement.
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Negative Results

Theorem B.19

The set of CFLs is not closed under intersection and complement.

Proof.

e Intersection: both Ly := {a“b*c' | k, 1 € N} and L, := {a"b/c | k, | € N} are CFLs, but not
Ly N Ly ={a"b"c" | n € N} (without proof).
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Negative Results

Theorem B.19

The set of CFLs is not closed under intersection and complement.

Proof.
e Intersection: both Ly := {a“b*c' | k, 1 € N} and L, := {a"b/c | k, | € N} are CFLs, but not
Ly N Ly ={a"b"c" | n € N} (without proof).
e Complement: if CFLs were closed under complement, then also under intersection (as
LiN L= LU Ly).

RWTH
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Overview of Decidability and Closure Results

Decidability Results
Class | weElL L=10 Ly = L
Reg +(A37) +(A39) +(A.41)
CFL +(B.14) + (B.16) —
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Overview of Decidability and Closure Results

Decidability Results
Class | weL L=10 Ly =L,
Reg +(A37) +(A39) +(A41)
CFL +(B.14) + (B.16) —

Closure Results
Class Li- Lo LU L LiN Ly L L*
Reg +(A.28) +(A.18) +(A.16) +(A.14) + (A.29)
CFL +(B.18) +(B.18) —-(B.19) —-(B.19) + (B.18)
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Closure Properties

Seen:
e Closure under concatenation, union and iteration
e Non-closure under intersection and complement
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Closure Properties

Seen:
e Closure under concatenation, union and iteration
e Non-closure under intersection and complement

Next:
e Automata model for CFLs
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Outline of Part B

Pushdown Automata
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Pushdown Automata |

e Goal: introduce an automata model which exactly accepts CFLs

e Clear: DFA not sufficient
(missing “counting capability”, e.g. for {a"b" | n > 1})
e DFA will be extended to pushdown automata by

— adding a pushdown store which stores symbols from a pushdown alphabet and uses a special
bottom symbol
— adding push and pop operations to transitions
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Pushdown Automata ll

Definition B.20

A pushdown automaton (PDA) is of the form 2l = (Q, ¥, I, A, qo, Zy, F) where
e () is afinite set of states
e 2 is the (finite) input alphabet
e [ is the (finite) pushdown alphabet
e AC(QxT xX.)x(QxT*)is afinite set of transitions
e gp € Qs the initial state
e Z; is the (pushdown) bottom symbol
e F C Qs a set of final states

Interpretation of ((q, Z, x), (¢, 9)) € A: if the PDA 2l is in state g where Z is on top
of the stack and x is the next input symbol (or empty), then %l reads x, replaces Z by
0, and changes into the state ¢'.

RWTH
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Configurations, Runs, Acceptance

Definition B.21
LetA = (Q, %X, T, A, q, 2, F) be a PDA.
e An element of Q x " x X" is called a configuration of 2I.
e The initial configuration for input w € ¥* is given by (qo, 2o, w).
e The set of final configurations is given by F x {e} x {c}.
e If ((q,Z,x),(q,0)) € A, then (q, Zv, xw) F (¢, 0, w) forevery v € ', w € L*.
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Configurations, Runs, Acceptance

Definition B.21
LetA = (Q, %X, T, A, q, 2, F) be a PDA.
e An element of Q x " x X" is called a configuration of 2I.
e The initial configuration for input w € ¥* is given by (qo, 2o, w).
e The set of final configurations is given by F x {¢} x {e}.
e If ((q,Z,x),(q,0)) € A, then (q, Zv, xw) F (¢, 0, w) forevery v € ', w € L*.
e 2l accepts w € X*if (qo, Zo, W) - (g, €, €) for some g € F.
e The language accepted by 2 is L(2A) := {w € L* | 2l accepts w}.
e Alanguage L is called PDA-recognisable if L = L(%l) for some PDA %I.
e Two PDA 2l 2L, are called equivalent if L(2(;) = L(2l»).

RWTH
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Examples

Example B.22

1. PDA which recognises L = {a"b" | n > 1}
(on the board)
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Examples

Example B.22

1. PDA which recognises L = {a"b" | n > 1}
(on the board)

2. PDA which recognises L = {ww" | w € {a,b}*}
(palindromes of even length; on the board)
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Examples

Example B.22

1. PDA which recognises L = {a"b" | n > 1}
(on the board)

2. PDA which recognises L = {ww" | w € {a, b}*}
(palindromes of even length; on the board)

Observation: %[, is nondeterministic: whenever a construction transition is
applicable, the pushdown could also be deconstructed
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Deterministic PDA

Definition B.23

APDAR = (Q,%, I, A, q, Z, F) is called deterministic (DPDA) if for every

qge Q,Zel,

1. for every x € ¥, there is at most one (g, Z, x)-transition in A and

2. if there is a (g, Z, a)-transition in A for some a € %, then there is no (q, Z, ¢)-transition in A.

Remark: this excludes two types of nondeterminism:
1.1 ((9,Z, x), (41, 61)), ((a, Z, ), (@2, 02)) € A:

(qq ) 5177 W) n (q7 Z’% XW) = (q,27 5277 W)
2. if ((Q7 27 a)7 (qq ) 51))7 ((Q7 Za 5)7 (q/27 52)) € A:

(q4761/)/7 W) _| (q7 ZfY? aW) |_ (q./27 5277 aW)
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Deterministic PDA

Definition B.23

APDAR = (Q,%, I, A, q, Z, F) is called deterministic (DPDA) if for every

qge Q,Zel,

1. for every x € ¥_, there is at most one (g, Z, x)-transition in A and

2. if there is a (g, Z, a)-transition in A for some a € %, then there is no (q, Z, ¢)-transition in A.

Remark: this excludes two types of nondeterminism:

1. if ((CI7 27 X)? (q4751))7 ((qa Z7 X)? (qéa 52)) € A:

(QQ75177 W) . (qa Zf% XW) - (q/27 5277 W)
2. f ((Qa Z, a)? (qq ) 51))7 ((qv Z, 5)7 (qév 52)) € A:

(q475177 W) - (q7 ZfYa aW) - (q./27 5277 aW)

Corollary B.24

In a DPDA, every configuration has at most one —-successor.

RWTH
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Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognisable languages are closed under complement, which is generally not

true for PDA-recognisable languages)
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Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages

(DPDA-recognisable languages are closed under complement, which is generally not
true for PDA-recognisable languages)

Example B.25

The set of palindromes of even length is PDA-recognisable, but not
DPDA-recognisable (without proof).
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PDA and Context-Free Languages |

Theorem B.26

A language is context-free iff it is PDA-recognisable.
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PDA and Context-Free Languages |

Theorem B.26
A language is context-free iff it is PDA-recognisable.

Proof.

<: omitted
=:let G= (N, %, P, S) be a CFG. Construction of PDA 2(5 recognising L(G):
e l; simulates a derivation of G where always the leftmost nonterminal of a
sentence is replaced (“leftmost derivation”)
e begin with S on pushdown
e if nonterminal on top: apply a corresponding production rule
e if terminal on top: match with next input symbol

(cf. formal construction on following slide)
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PDA and Context-Free Languages Il

Proof of Theorem B.26 (continued).

—=: Formally: 2s := (Q, %, I, A, qv, Zo, F) is given by
e Q:={qo}
o[ =NUX
e foreach A — a € P: ((qv, A, ¢),(qo, ) € A
e foreachac ¥: ((qo, a,a),(qo,€)) € A

o ZO =S
o [ :=Q
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PDA and Context-Free Languages Il

Proof of Theorem B.26 (continued).

—=: Formally: 2s := (Q, %, I, A, qv, Zo, F) is given by
e Q:={qo}
o[ =NUX
e foreach A — a € P: ((qv, A, ¢),(qo, ) € A
e foreachac ¥: ((qo, a,a),(qo,€)) € A

o ZO =S
o [ =Q
Example B.27

“Bracket language”, given by G:
S—=(1(S)|Sss
(on the board)
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Outline of Part B

Outlook
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Outlook

e Equivalence problem for CFG and PDA (“L(X;) = L(X2)?”)
(generally undecidable, decidable for DPDA)

e Pumping Lemma for CFL
e Greibach Normal Form for CFG
e Construction of parsers for compilers

e Non-context-free grammars and languages (context-sensitive and recursively enumerable
languages, Turing machines—see Week 4)

RWTH
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