
Foundations of Informatics: a Bridging Course
Week 3: Formal Languages and Processes
Part B: Context-Free Languages
b-it Bonn; 02–06 March 2020

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/foi/

https://moves.rwth-aachen.de/teaching/ws-19-20/foi/


Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook

2 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Introductory Example I

Example B.1

Syntax definition of programming languages by “Backus-Naur” rules
Here: simple arithmetic expressions

〈Expression〉 ::= 0
| 1
| 〈Expression〉 + 〈Expression〉
| 〈Expression〉 ∗ 〈Expression〉
| (〈Expression〉)

Meaning:
An expression is either 0 or 1, or it is of the form u + v, u ∗ v, or (u) where u, v
are again expressions

3 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Introductory Example II

Example B.1 (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

4 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Introductory Example II

Example B.1 (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E

⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

4 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Introductory Example II

Example B.1 (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E

⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

4 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Introductory Example II

Example B.1 (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1

⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

4 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Introductory Example II

Example B.1 (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1

⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

4 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Introductory Example II

Example B.1 (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1

⇒ (0 + 1) ∗ 1

4 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Introductory Example II

Example B.1 (continued)

Here we abbreviate 〈Expression〉 as E , and use “→” instead of “::=”. Thus:

E → 0 | 1 | E + E | E ∗ E | (E)

Now expressions can be generated by replacing nonterminal symbols according to
rules, beginning with the start symbol E :

E ⇒ E ∗ E
⇒ (E) ∗ E
⇒ (E) ∗ 1
⇒ (E + E) ∗ 1
⇒ (0 + E) ∗ 1
⇒ (0 + 1) ∗ 1

4 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Context-Free Grammars I

Definition B.2

A context-free grammar (CFG) is a quadruple

G = 〈N,Σ,P,S〉
where
• N is a finite set of nonterminal symbols
• Σ is the (finite) alphabet of terminal symbols (disjoint from N)
• P is a finite set of production rules of the form A→ α where A ∈ N and α ∈ (N ∪ Σ)∗

• S ∈ N is a start symbol
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Context-Free Grammars II

Example B.3

For the above example, we have:
• N = {E}
• Σ = {0, 1,+, ∗, (, )}
• P = {E → 0,E → 1,E → E + E ,E → E ∗ E ,E → (E)}
• S = E

Naming conventions:
• nonterminals start with uppercase letters
• terminals start with lowercase letters
• start symbol = symbol on LHS of first production
⇒ grammar completely defined by productions
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Context-Free Languages I

Definition B.4

Let G = 〈N,Σ,P,S〉 be a CFG.
• A sentence γ ∈ (N ∪ Σ)∗ is directly derivable from β ∈ (N ∪ Σ)∗ if there exist
π = A→ α ∈ P and δ1, δ2 ∈ (N ∪ Σ)∗ such that β = δ1Aδ2 and γ = δ1αδ2

(notation: β π⇒ γ or just β ⇒ γ).

• A derivation (of length n ∈ N) of γ from β is a sequence of direct derivations of the form
δ0 ⇒ δ1 ⇒ . . .⇒ δn where δ0 = β, δn = γ, and δi−1 ⇒ δi for every i ∈ {1, . . . , n}
(notation: β ⇒∗ γ).
• A word w ∈ Σ∗ is called derivable in G if S ⇒∗ w .
• The language generated by G is L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
• A language L ⊆ Σ∗ is called context-free (CFL) if it is generated by some CFG.
• Two grammars G1,G2 are equivalent if L(G1) = L(G2).
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Context-Free Languages II

Example B.5

The language {anbn | n ∈ N} is context-free. It is generated by the grammar
G = 〈N,Σ,P,S〉 with
• N = {S}
• Σ = {a, b}
• P = {S → aSb | ε}

(proof: generating anbn requires exactly n applications of the first and one concluding
application of the second rule)

Remark: illustration of derivations by derivation trees
• root labelled by start symbol
• leaves labelled by terminal symbols
• successors of node labelled according to right-hand side of production rule
• sequence of leaf symbols = generated word
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Summary: Context-Free Grammars and Languages

Seen:
• Context-free grammars
• Derivations
• Context-free languages

Next:
• Relation between context-free and regular languages
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Context-Free vs. Regular Languages

Theorem B.6

1. Every regular language is context-free.
2. There exist CFLs which are not regular.

(Thus: regular languages are a proper subset of CFLs.)

Proof.

1. Let L be a regular language, and let A = 〈Q,Σ, δ, q0,F 〉 be a DFA which recognises L.
GA := 〈N,Σ,P,S〉 is defined as follows:
– N := Q, S := q0

– if δ(q, a) = q′, then q → aq′ ∈ P
– if q ∈ F , then q → ε ∈ P

Obviously a w-labelled run in A from q0 to F corresponds to a derivation of w in GA, and
vice versa. Thus L(A) = L(GA) (example on the following slide).

2. An example is {anbn | n ∈ N} (see Ex. B.5).
Intuitive reason: recognising this language requires “unbounded counting” capability.
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From Regular to Context-Free Languages

Example B.7

DFA A = 〈Q,Σ, δ, q0, F〉:

q0 q1

q2 q3

a

b
a

b

a, b

a, b

Corresponding CFG GA := 〈N,Σ,P,S〉
with N := Q, S := q0:

q0 → a q1 | b q2

q1 → a q2 | b q1 | ε
q2 → a q3 | b q3

q3 → a q1 | b q1

E.g., A’s run on input baab ∈ L(A) is simulated by the following derivation in GA:

q0 ⇒ b q2 ⇒ b a q3 ⇒ b a a q1 ⇒ b a a b q1 ⇒ b a a b
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Summary: Context-Free vs. Regular Languages

Seen:
• CFLs are more expressive than regular languages

Next:
• Decidability of word problem
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Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook
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The Word Problem for CFL

Word Problem for CFL

Given CFG G = 〈N,Σ,P,S〉 and w ∈ Σ∗, decide whether w ∈ L(G) or not.

• Important problem with many applications
– syntax analysis of programming languages
– HTML parsers
– ...

• For regular languages this was easy: just let the corresponding DFA run on w .
• But here: how to decide when to stop a derivation?
• Solution: establish normal form for grammars which guarantees that each nonterminal

produces at least one terminal symbol
⇒ Only finitely many combinations to be inspected
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Chomsky Normal Form

Definition B.8

A CFG is in Chomsky Normal Form (Chomsky NF) if every of its productions is of the
form

A→ BC or A→ a

Example B.9

Let S → ab | aSb be the grammar which generates L := {anbn | n ≥ 1}.
An equivalent grammar in Chomsky NF is

S→ AB | AC (generates L)
A→ a (generates {a})
B→ b (generates {b})
C→ SB (generates {anbn+1 | n ≥ 1})
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Conversion to Chomsky Normal Form

Theorem B.10

Every CFL L (with ε /∈ L) can be generated by a CFG in Chomsky NF.

Proof.

Let L be a CFL, and let G = 〈N,Σ,P,S〉 be some CFG which generates L. The
transformation of P into rules of the form A→ BC and A→ a proceeds in three
steps:
1. terminal symbols only in rules of the form A→ a

(thus all other rules have the shape A→ A1 . . .An)
2. elimination of “chain rules” of the form A→ B
3. elimination of rules of the form A→ A1 . . .An where n > 2

(see following slides for details)
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Step 1: Only A→ a

Procedure

1. For every terminal symbol a ∈ Σ, introduce a new nonterminal symbol Ba ∈ N.
2. Add corresponding productions Ba → a to P.
3. In each original production A→ α, replace every a ∈ Σ with Ba.

This yields G′.

Example B.11

G : S → ab | aSb is converted to G′ : S → AB | ASB
A → a
B → b
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Step 2: Elimination of Chain Rules A→ B

Procedure

1. Determine all derivations A1 ⇒ . . .⇒ An with rules of the form A→ B without repetition of
nonterminals ( =⇒ only finitely many!).

2. Determine all productions An → α with α /∈ N.
3. Add corresponding productions A1 → α to P.
4. Remove all chain rules from P.

This yields G′′.

Example B.12

G′ : S → A
A → B | C
B → A | DA
C → c
D → d

is converted to G′′ : S → DA | c
A → DA | c
B → DA | c
C → c
D → d
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Step 3: Elimination of Rules A→ A1 . . .An with n > 2

Procedure

Iteratively apply the following transformation:
1. For every A→ A1 . . .An with n > 2, introduce a new nonterminal symbol B ∈ N.
2. Replace original production by A→ A1B.
3. Add new production B → A2 . . .An.

This yields G′′′.

Example B.13

G′′ : S → AB | ASB
A → a
B → b

is converted to G′′′ : S → AB | AC
A → a
B → b
C → SB
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Summary: Chomsky Normal Form

Seen:
• Chomsky NF: all productions of the form A→ BC or A→ a

Next:
• Exploit Chomsky Normal Form to solve word problem for CFL
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The Word Problem for CFL Revisited

Word Problem for ε-free CFL

Given CFG G = 〈N,Σ,P,S〉 such that ε /∈ L(G) and w ∈ Σ+, decide whether
w ∈ L(G) or not.

(If w = ε, then w ∈ L(G) easily decidable for arbitrary G)

Algorithm B.14 (by Cocke, Younger, Kasami – CYK algorithm)

1. Transform G into Chomsky NF
2. Let w = a1 . . . an (n ≥ 1)
3. Let w [i, j] := ai . . . aj for every 1 ≤ i ≤ j ≤ n
4. Consider segments w [i, j] in order of increasing length, starting with w [i, i] = ai (i.e., letters)
5. In each case, determine Ni,j := {A ∈ N | A⇒∗ w [i, j]} using a “dynamic programming”

approach:
– i = j : Ni,i = {A ∈ N | A→ ai ∈ P}
– i < j : Ni,j = {A ∈ N | ∃B,C ∈ N, k ∈ {i, . . . , j − 1} : A→ BC ∈ P,B ∈ Ni,k ,C ∈ Nk+1,j}

6. Test whether S ∈ N1,n (and thus, whether S ⇒∗ w [1, n] = w)
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Matrix Representation of CYK Algorithm

a1 a2 a3 · · · an

i\j 1 2 3 · · · n
1 N1,1 N1,2 N1,3 · · · N1,n

2 X N2,2 N2,3 · · · N2,n

3 X X N3,3 · · · N3,n
... ... ... · · · ...
n X X · · · · · · Nn,n

N1,1 = {A ∈ N | A→ a1 ∈ P}
N2,2 = {A ∈ N | A→ a2 ∈ P}...
N1,2 = {A ∈ N | ∃B,C ∈ N : A→ BC ∈ P,B ∈ N1,1,C ∈ N2,2}
N2,3 = {A ∈ N | ∃B,C ∈ N : A→ BC ∈ P,B ∈ N2,2,C ∈ N3,3}...
N1,3 = {A ∈ N | ∃B,C ∈ N : A→ BC ∈ P,B ∈ N1,1,C ∈ N2,3}

∪ {A ∈ N | ∃B,C ∈ N : A→ BC ∈ P,B ∈ N1,2,C ∈ N3,3}
N2,4 = {A ∈ N | ∃B,C ∈ N : A→ BC ∈ P,B ∈ N2,2,C ∈ N3,4}

∪ {A ∈ N | ∃B,C ∈ N : A→ BC ∈ P,B ∈ N2,3,C ∈ N4,4}...
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Applying the CYK Algorithm

Example B.15

• G :
S → SA | a
A→ BS
B → BB | BS | b | c

• w = abaaba

a b a a b a
i\j 1 2 3 4 5 6
1

{S} ∅ {S} {S} ∅ {S}

2 X

{B} {A

,B

} {A

,B

} {B} {A

,B

}

3 X X

{S} ∅ ∅ ∅

4 X X X

{S} ∅ {S}

5 X X X X

{B} {A

,B

}

6 X X X X X

{S}

S ∈ N1,6 =⇒ w = abaaba ∈ L(G)
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Summary: The Word Problem for Context-Free Languages

Seen:
• Given CFG G and w ∈ Σ∗, decide whether w ∈ L(G) or not
• Decidable using CYK algorithm (based on dynamic programming)
• Cubic complexity

Next:
• Emptiness problem
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The Emptiness Problem

Emptiness Problem for CFL

Given CFG G = 〈N,Σ,P,S〉, decide whether L(G) = ∅ or not.

• Important problem with many applications
– consistency of context-free language definitions
– correctness properties of recursive programs
– ...

• For regular languages this was easy: check in the corresponding DFA whether some final
state is reachable from the initial state.
• Here: test whether start symbol is productive, i.e., whether it generates a terminal word
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The Emptiness Test

Algorithm B.16 (Emptiness Test)

Input: G = 〈N,Σ,P,S〉
Question: L(G) = ∅?
Procedure: mark every a ∈ Σ as productive;

repeat
if there is A→ α ∈ P such that all symbols in α productive then

mark A as productive;
end;

until no further productive symbols found;
Output: “no” if S productive, otherwise “yes”

Example B.17

G : S→ AB | CA
A→ a
B→ BC | AB
C→ aB | b

1. Initalisation
2. 1st iteration
3. 2nd iteration

S productive =⇒ L(G) 6= ∅
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Summary: The Emptiness Problem for CFLs

Seen:
• Emptiness problem decidable based on productivity of symbols

Next:
• Closure properties of CFLs
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Positive Results

Theorem B.18

The set of CFLs is closed under concatenation, union, and iteration.

Proof.

For i = 1, 2, let Gi = 〈Ni,Σ,Pi,Si〉 with Li := L(Gi) and N1 ∩ N2 = ∅. Then
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1S2} ∪ P1 ∪ P2 generates

L1 · L2;
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 ∪ N2 and P := {S → S1 | S2} ∪ P1 ∪ P2 generates

L1 ∪ L2; and
• G := 〈N,Σ,P,S〉 with N := {S} ∪ N1 and P := {S → ε | S1S} ∪ P1 generates L∗1.
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Negative Results

Theorem B.19

The set of CFLs is not closed under intersection and complement.

Proof.

• Intersection: both L1 := {akbkc l | k , l ∈ N} and L2 := {akblc l | k , l ∈ N} are CFLs, but not
L1 ∩ L2 = {anbncn | n ∈ N} (without proof).
• Complement: if CFLs were closed under complement, then also under intersection (as

L1 ∩ L2 = L1 ∪ L2).
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Overview of Decidability and Closure Results

Decidability Results
Class w ∈ L L = ∅ L1 = L2

Reg + (A.37) + (A.39) + (A.41)
CFL + (B.14) + (B.16) –

Closure Results
Class L1 · L2 L1 ∪ L2 L1 ∩ L2 L L∗

Reg + (A.28) + (A.18) + (A.16) + (A.14) + (A.29)
CFL + (B.18) + (B.18) – (B.19) – (B.19) + (B.18)
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Closure Properties

Seen:
• Closure under concatenation, union and iteration
• Non-closure under intersection and complement

Next:
• Automata model for CFLs
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Pushdown Automata I

• Goal: introduce an automata model which exactly accepts CFLs
• Clear: DFA not sufficient

(missing “counting capability”, e.g. for {anbn | n ≥ 1})
• DFA will be extended to pushdown automata by

– adding a pushdown store which stores symbols from a pushdown alphabet and uses a special
bottom symbol

– adding push and pop operations to transitions
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Pushdown Automata II

Definition B.20

A pushdown automaton (PDA) is of the form A = 〈Q,Σ, Γ,∆, q0, Z0, F〉 where
• Q is a finite set of states
• Σ is the (finite) input alphabet
• Γ is the (finite) pushdown alphabet
• ∆ ⊆ (Q × Γ× Σε)× (Q × Γ∗) is a finite set of transitions
• q0 ∈ Q is the initial state
• Z0 is the (pushdown) bottom symbol
• F ⊆ Q is a set of final states

Interpretation of ((q, Z , x), (q′, δ)) ∈ ∆: if the PDA A is in state q where Z is on top
of the stack and x is the next input symbol (or empty), then A reads x , replaces Z by
δ, and changes into the state q′.
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Configurations, Runs, Acceptance

Definition B.21

Let A = 〈Q,Σ, Γ,∆, q0, Z0, F〉 be a PDA.
• An element of Q × Γ∗ × Σ∗ is called a configuration of A.
• The initial configuration for input w ∈ Σ∗ is given by (q0,Z0,w).
• The set of final configurations is given by F × {ε} × {ε}.
• If ((q,Z , x), (q′, δ)) ∈ ∆, then (q,Zγ, xw) ` (q′, δγ,w) for every γ ∈ Γ∗, w ∈ Σ∗.

• A accepts w ∈ Σ∗ if (q0,Z0,w) `∗ (q, ε, ε) for some q ∈ F .
• The language accepted by A is L(A) := {w ∈ Σ∗ | A accepts w}.
• A language L is called PDA-recognisable if L = L(A) for some PDA A.
• Two PDA A1,A2 are called equivalent if L(A1) = L(A2).
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Examples

Example B.22

1. PDA which recognises L = {anbn | n ≥ 1}
(on the board)

2. PDA which recognises L = {wwR | w ∈ {a, b}∗}
(palindromes of even length; on the board)

Observation: A2 is nondeterministic: whenever a construction transition is
applicable, the pushdown could also be deconstructed
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Deterministic PDA

Definition B.23

A PDA A = 〈Q,Σ, Γ,∆, q0, Z0, F〉 is called deterministic (DPDA) if for every
q ∈ Q, Z ∈ Γ,
1. for every x ∈ Σε, there is at most one (q,Z , x)-transition in ∆ and
2. if there is a (q,Z , a)-transition in ∆ for some a ∈ Σ, then there is no (q,Z , ε)-transition in ∆.

Remark: this excludes two types of nondeterminism:
1. if ((q,Z , x), (q′1, δ1)), ((q,Z , x), (q′2, δ2)) ∈ ∆:

(q′1, δ1γ,w) a (q,Zγ, xw) ` (q′2, δ2γ,w)

2. if ((q,Z , a), (q′1, δ1)), ((q,Z , ε), (q′2, δ2)) ∈ ∆:
(q′1, δ1γ,w) a (q,Zγ, aw) ` (q′2, δ2γ, aw)

Corollary B.24

In a DPDA, every configuration has at most one `-successor.

41 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Deterministic PDA

Definition B.23

A PDA A = 〈Q,Σ, Γ,∆, q0, Z0, F〉 is called deterministic (DPDA) if for every
q ∈ Q, Z ∈ Γ,
1. for every x ∈ Σε, there is at most one (q,Z , x)-transition in ∆ and
2. if there is a (q,Z , a)-transition in ∆ for some a ∈ Σ, then there is no (q,Z , ε)-transition in ∆.

Remark: this excludes two types of nondeterminism:
1. if ((q,Z , x), (q′1, δ1)), ((q,Z , x), (q′2, δ2)) ∈ ∆:

(q′1, δ1γ,w) a (q,Zγ, xw) ` (q′2, δ2γ,w)

2. if ((q,Z , a), (q′1, δ1)), ((q,Z , ε), (q′2, δ2)) ∈ ∆:
(q′1, δ1γ,w) a (q,Zγ, aw) ` (q′2, δ2γ, aw)

Corollary B.24

In a DPDA, every configuration has at most one `-successor.

41 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Expressiveness of DPDA

One can show: determinism restricts the set of acceptable languages
(DPDA-recognisable languages are closed under complement, which is generally not
true for PDA-recognisable languages)

Example B.25

The set of palindromes of even length is PDA-recognisable, but not
DPDA-recognisable (without proof).
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PDA and Context-Free Languages I

Theorem B.26

A language is context-free iff it is PDA-recognisable.

Proof.

⇐: omitted
⇒: let G = 〈N,Σ,P,S〉 be a CFG. Construction of PDA AG recognising L(G):
• AG simulates a derivation of G where always the leftmost nonterminal of a

sentence is replaced (“leftmost derivation”)
• begin with S on pushdown
• if nonterminal on top: apply a corresponding production rule
• if terminal on top: match with next input symbol

(cf. formal construction on following slide)
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PDA and Context-Free Languages II

Proof of Theorem B.26 (continued).

⇒: Formally: AG := 〈Q,Σ, Γ,∆, q0, Z0, F〉 is given by
• Q := {q0}
• Γ := N ∪ Σ
• for each A→ α ∈ P: ((q0,A, ε), (q0, α)) ∈ ∆
• for each a ∈ Σ: ((q0, a, a), (q0, ε)) ∈ ∆
• Z0 := S
• F := Q

Example B.27

“Bracket language”, given by G:

S → 〈〉 | 〈S〉 | SS

(on the board)

44 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



PDA and Context-Free Languages II

Proof of Theorem B.26 (continued).

⇒: Formally: AG := 〈Q,Σ, Γ,∆, q0, Z0, F〉 is given by
• Q := {q0}
• Γ := N ∪ Σ
• for each A→ α ∈ P: ((q0,A, ε), (q0, α)) ∈ ∆
• for each a ∈ Σ: ((q0, a, a), (q0, ε)) ∈ ∆
• Z0 := S
• F := Q

Example B.27

“Bracket language”, given by G:

S → 〈〉 | 〈S〉 | SS

(on the board)

44 of 46 Foundations of Informatics/Formal Languages and Processes, Part B
Thomas Noll

b-it Bonn; 02–06 March 2020



Outline of Part B

Context-Free Grammars and Languages

Context-Free vs. Regular Languages

Chomsky Normal Form

The Word Problem for Context-Free Languages

The Emptiness Problem for CFLs

Closure Properties of CFLs

Pushdown Automata

Outlook
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Outlook

• Equivalence problem for CFG and PDA (“L(X1) = L(X2)?”)
(generally undecidable, decidable for DPDA)
• Pumping Lemma for CFL
• Greibach Normal Form for CFG
• Construction of parsers for compilers
• Non-context-free grammars and languages (context-sensitive and recursively enumerable

languages, Turing machines—see Week 4)
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