
Concurrency Theory
Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/


Nominate

Rules
You can nominate lecturers and assistants whose teaching you liked. The candidates should be affiliated with the
department of Computer Science.

The category should match the teaching. Professors and Post-Docs, who supervise a lecture themselves, belong
to the category „Selbstständige Lehre“ (independent teaching). Assistants, who take care of exercises, substitute
lecturers or otherwise support teaching belong to the category „Unterstützende Lehre“ (supporting teaching).

Only those people are eligible, who did not win the award in the last two years. You can find a list of the award
winners here (https://www.fsmpi.rwth-aachen.de/pages/studium/lehrpreise/informatik.html).

Thanks!

Nominate someone!

Your nomination counts for Lehrpreis Informatik / Teaching Award Computer Science 2019, currently. The
results will be announced at December 6, 2019.

Nominee

Category

Selbständige Lehre

Module

Reason

Submit

The nominee is eligible for the award.

The Teaching Award Computer Science is provided by Fachschaft Mathematik/Physik/Informatik. | Contact Us
(mailto:lehrpreisinformatik@fsmpi.rwth-aachen.de)

Nominate - Teaching Award Computer Science https://lehrpreis.fsmpi.rwth-aachen.de/

1 of 1 25.11.19, 10:52

https://lehrpreis.fsmpi.rwth-aachen.de/

https://lehrpreis.fsmpi.rwth-aachen.de/


Recap: Strong Bisimulation

Outline of Lecture 14

Recap: Strong Bisimulation

Strong Bisimilarity as a Fixed Point

Inadequacy of Strong Bisimilarity

Weak Bisimulation

Properties of Weak Bisimilarity

Observation Congruence

Game Characterisation of Weak Bisimilarity

3 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Recap: Strong Bisimulation

Summary

• Strong bisimulation of processes is based on mutually mimicking each other

• Strong bisimilarity ∼:
1. is the largest strong bisimulation
2. is an equivalence relation
3. is strictly coarser than LTS isomorphism
4. is strictly finer than trace equivalence
5. is a CCS congruence
6. is deadlock sensitive
7. can be checked using a two-player game
• Strong similarity v:

1. is a one-way strong bisimilarity
2. bi-directional version (strong simulation equivalence) is strictly coarser than∼

4 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Recap: Strong Bisimulation

Summary

• Strong bisimulation of processes is based on mutually mimicking each other
• Strong bisimilarity ∼:

1. is the largest strong bisimulation
2. is an equivalence relation
3. is strictly coarser than LTS isomorphism
4. is strictly finer than trace equivalence
5. is a CCS congruence
6. is deadlock sensitive
7. can be checked using a two-player game

• Strong similarity v:
1. is a one-way strong bisimilarity
2. bi-directional version (strong simulation equivalence) is strictly coarser than∼

4 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Recap: Strong Bisimulation

Summary

• Strong bisimulation of processes is based on mutually mimicking each other
• Strong bisimilarity ∼:

1. is the largest strong bisimulation
2. is an equivalence relation
3. is strictly coarser than LTS isomorphism
4. is strictly finer than trace equivalence
5. is a CCS congruence
6. is deadlock sensitive
7. can be checked using a two-player game
• Strong similarity v:

1. is a one-way strong bisimilarity
2. bi-directional version (strong simulation equivalence) is strictly coarser than∼

4 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Outline of Lecture 14

Recap: Strong Bisimulation

Strong Bisimilarity as a Fixed Point

Inadequacy of Strong Bisimilarity

Weak Bisimulation

Properties of Weak Bisimilarity

Observation Congruence

Game Characterisation of Weak Bisimilarity

5 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Strong Bisimilarity

Recall: ∼ implies trace equivalence, and checking trace equivalence is
PSPACE-complete.

What about checking ∼ between two processes?

Definition (Strong bisimilarity; Definition 12.2)

Processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is a strong
bisimulation ρ with P ρQ. Thus,

∼ =
⋃
{ρ ⊆ Prc × Prc | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.

Note that (2Prc×Prc,⊆) is a complete lattice (cf. Definition 4.13) with
⋃

and
⋂

as
least upper and greatest lower bound, respectively.

We will show that ∼ can be characterised as a fixed point of a monotonic function on
this lattice.

6 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Strong Bisimilarity

Recall: ∼ implies trace equivalence, and checking trace equivalence is
PSPACE-complete.

What about checking ∼ between two processes?

Definition (Strong bisimilarity; Definition 12.2)

Processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is a strong
bisimulation ρ with P ρQ. Thus,

∼ =
⋃
{ρ ⊆ Prc × Prc | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.

Note that (2Prc×Prc,⊆) is a complete lattice (cf. Definition 4.13) with
⋃

and
⋂

as
least upper and greatest lower bound, respectively.

We will show that ∼ can be characterised as a fixed point of a monotonic function on
this lattice.

6 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Strong Bisimilarity

Recall: ∼ implies trace equivalence, and checking trace equivalence is
PSPACE-complete.

What about checking ∼ between two processes?

Definition (Strong bisimilarity; Definition 12.2)

Processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is a strong
bisimulation ρ with P ρQ. Thus,

∼ =
⋃
{ρ ⊆ Prc × Prc | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.

Note that (2Prc×Prc,⊆) is a complete lattice (cf. Definition 4.13) with
⋃

and
⋂

as
least upper and greatest lower bound, respectively.

We will show that ∼ can be characterised as a fixed point of a monotonic function on
this lattice.

6 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Strong Bisimilarity

Recall: ∼ implies trace equivalence, and checking trace equivalence is
PSPACE-complete.

What about checking ∼ between two processes?

Definition (Strong bisimilarity; Definition 12.2)

Processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is a strong
bisimulation ρ with P ρQ. Thus,

∼ =
⋃
{ρ ⊆ Prc × Prc | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.

Note that (2Prc×Prc,⊆) is a complete lattice (cf. Definition 4.13) with
⋃

and
⋂

as
least upper and greatest lower bound, respectively.

We will show that ∼ can be characterised as a fixed point of a monotonic function on
this lattice.

6 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Strong Bisimilarity

Recall: ∼ implies trace equivalence, and checking trace equivalence is
PSPACE-complete.

What about checking ∼ between two processes?

Definition (Strong bisimilarity; Definition 12.2)

Processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is a strong
bisimulation ρ with P ρQ. Thus,

∼ =
⋃
{ρ ⊆ Prc × Prc | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.

Note that (2Prc×Prc,⊆) is a complete lattice (cf. Definition 4.13) with
⋃

and
⋂

as
least upper and greatest lower bound, respectively.

We will show that ∼ can be characterised as a fixed point of a monotonic function on
this lattice.

6 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Fixed-Point Characterisation of Strong Bisimilarity I

Definition 14.1 (Function on relations)

Let ρ ⊆ Prc × Prc. Let F : 2Prc×Prc → 2Prc×Prc be defined as follows:
for every P,Q ∈ Prc, (P,Q) ∈ F(ρ) iff
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α−→ Q′ and P ′ ρQ′ and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α−→ P ′ and P ′ ρQ′.

Intuition: F(ρ) contains all pairs of processes from which, in one round of the
bisimulation game, the defender can ensure that the players reach a current
configuration that is contained in ρ. Note that F is monotonic.

Corollary 14.2

ρ is a strong bisimulation iff ρ ⊆ F(ρ), and thus:

∼ =
⋃
{ρ ∈ Prc × Prc | ρ ⊆ F(ρ)}.

7 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Fixed-Point Characterisation of Strong Bisimilarity I

Definition 14.1 (Function on relations)

Let ρ ⊆ Prc × Prc. Let F : 2Prc×Prc → 2Prc×Prc be defined as follows:
for every P,Q ∈ Prc, (P,Q) ∈ F(ρ) iff
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α−→ Q′ and P ′ ρQ′ and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α−→ P ′ and P ′ ρQ′.

Intuition: F(ρ) contains all pairs of processes from which, in one round of the
bisimulation game, the defender can ensure that the players reach a current
configuration that is contained in ρ. Note that F is monotonic.

Corollary 14.2

ρ is a strong bisimulation iff ρ ⊆ F(ρ), and thus:

∼ =
⋃
{ρ ∈ Prc × Prc | ρ ⊆ F(ρ)}.

7 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Fixed-Point Characterisation of Strong Bisimilarity I

Definition 14.1 (Function on relations)

Let ρ ⊆ Prc × Prc. Let F : 2Prc×Prc → 2Prc×Prc be defined as follows:
for every P,Q ∈ Prc, (P,Q) ∈ F(ρ) iff
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α−→ Q′ and P ′ ρQ′ and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α−→ P ′ and P ′ ρQ′.

Intuition: F(ρ) contains all pairs of processes from which, in one round of the
bisimulation game, the defender can ensure that the players reach a current
configuration that is contained in ρ. Note that F is monotonic.

Corollary 14.2

ρ is a strong bisimulation iff ρ ⊆ F(ρ), and thus:

∼ =
⋃
{ρ ∈ Prc × Prc | ρ ⊆ F(ρ)}.

7 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Fixed-Point Characterisation of Strong Bisimilarity II

Corollary

ρ is a strong bisimulation iff ρ ⊆ F(ρ), and thus:

∼ =
⋃
{ρ ∈ Prc × Prc | ρ ⊆ F(ρ)}.

Thus: ∼ is the LUB of all post-fixed points of F

Theorem (Tarski’s fixed-point theorem; Definition 5.5)

Let (D,v) be a complete lattice and f : D → D monotonic. Then f has a least fixed
point fix(f ) and a greatest fixed point FIX(f ) given by

fix(f ) =
d
{d ∈ D | f (d) v d} (GLB of all pre-fixed points of f )

FIX(f ) =
⊔
{d ∈ D | d v f (d)} (LUB of all post-fixed points of f )

Thus: ∼ = FIX(F)

8 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Fixed-Point Characterisation of Strong Bisimilarity II

Corollary

ρ is a strong bisimulation iff ρ ⊆ F(ρ), and thus:

∼ =
⋃
{ρ ∈ Prc × Prc | ρ ⊆ F(ρ)}.

Thus: ∼ is the LUB of all post-fixed points of F
Theorem (Tarski’s fixed-point theorem; Definition 5.5)

Let (D,v) be a complete lattice and f : D → D monotonic. Then f has a least fixed
point fix(f ) and a greatest fixed point FIX(f ) given by

fix(f ) =
d
{d ∈ D | f (d) v d} (GLB of all pre-fixed points of f )

FIX(f ) =
⊔
{d ∈ D | d v f (d)} (LUB of all post-fixed points of f )

Thus: ∼ = FIX(F)
8 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Application to Finite LTS

Theorem (Fixed-point theorem for finite lattices; Theorem 5.7)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)
for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Corollary 14.3

For finite-state process P with state
space S, ∼ can be computed by:

∼ =
⋂∞

i=0 ∼i where
∼0 := S × S
∼i+1 := F(∼i)

Example 14.4

P1

P2 P3

P4

b a

c

c

a

b

a

Equivalence classes:

∼0 = {{P1,P2,P3,P4}}
∼1 = {{P1,P4}, {P2,P3}}
∼2 = {{P1}, {P2,P3}, {P4}}
∼3 = ∼2

9 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Application to Finite LTS

Theorem (Fixed-point theorem for finite lattices; Theorem 5.7)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)
for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Corollary 14.3

For finite-state process P with state
space S, ∼ can be computed by:

∼ =
⋂∞

i=0 ∼i where
∼0 := S × S
∼i+1 := F(∼i)

Example 14.4

P1

P2 P3

P4

b a

c

c

a

b

a

Equivalence classes:

∼0 = {{P1,P2,P3,P4}}
∼1 = {{P1,P4}, {P2,P3}}
∼2 = {{P1}, {P2,P3}, {P4}}
∼3 = ∼2

9 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Application to Finite LTS

Theorem (Fixed-point theorem for finite lattices; Theorem 5.7)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)
for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Corollary 14.3

For finite-state process P with state
space S, ∼ can be computed by:

∼ =
⋂∞

i=0 ∼i where
∼0 := S × S
∼i+1 := F(∼i)

Example 14.4

P1

P2 P3

P4

b a

c

c

a

b

a

Equivalence classes:

∼0 = {{P1,P2,P3,P4}}

∼1 = {{P1,P4}, {P2,P3}}
∼2 = {{P1}, {P2,P3}, {P4}}
∼3 = ∼2

9 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Application to Finite LTS

Theorem (Fixed-point theorem for finite lattices; Theorem 5.7)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)
for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Corollary 14.3

For finite-state process P with state
space S, ∼ can be computed by:

∼ =
⋂∞

i=0 ∼i where
∼0 := S × S
∼i+1 := F(∼i)

Example 14.4

P1

P2 P3

P4

b a

c

c

a

b

a

Equivalence classes:

∼0 = {{P1,P2,P3,P4}}
∼1 = {{P1,P4}, {P2,P3}}

∼2 = {{P1}, {P2,P3}, {P4}}
∼3 = ∼2

9 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Application to Finite LTS

Theorem (Fixed-point theorem for finite lattices; Theorem 5.7)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)
for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Corollary 14.3

For finite-state process P with state
space S, ∼ can be computed by:

∼ =
⋂∞

i=0 ∼i where
∼0 := S × S
∼i+1 := F(∼i)

Example 14.4

P1

P2 P3

P4

b a

c

c

a

b

a

Equivalence classes:

∼0 = {{P1,P2,P3,P4}}
∼1 = {{P1,P4}, {P2,P3}}
∼2 = {{P1}, {P2,P3}, {P4}}

∼3 = ∼2

9 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Application to Finite LTS

Theorem (Fixed-point theorem for finite lattices; Theorem 5.7)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)
for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Corollary 14.3

For finite-state process P with state
space S, ∼ can be computed by:

∼ =
⋂∞

i=0 ∼i where
∼0 := S × S
∼i+1 := F(∼i)

Example 14.4

P1

P2 P3

P4

b a

c

c

a

b

a

Equivalence classes:

∼0 = {{P1,P2,P3,P4}}
∼1 = {{P1,P4}, {P2,P3}}
∼2 = {{P1}, {P2,P3}, {P4}}
∼3 = ∼2

9 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Complexity of Checking Strong Bisimilarity

• The previous corollary The fixed yields a polynomial-time algorithm.
• More efficient algorithms do exist, but are not topic of this lecture.

Theorem 14.5 (Complexity) (Balcázar et al. 1992)

Deciding strong bisimilarity between finite LTSs is P-complete.

10 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Strong Bisimilarity as a Fixed Point

Complexity of Checking Strong Bisimilarity

• The previous corollary The fixed yields a polynomial-time algorithm.
• More efficient algorithms do exist, but are not topic of this lecture.

Theorem 14.5 (Complexity) (Balcázar et al. 1992)

Deciding strong bisimilarity between finite LTSs is P-complete.1

1Recall that checking trace equivalence is PSPACE-complete.

10 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

Outline of Lecture 14

Recap: Strong Bisimulation

Strong Bisimilarity as a Fixed Point

Inadequacy of Strong Bisimilarity

Weak Bisimulation

Properties of Weak Bisimilarity

Observation Congruence

Game Characterisation of Weak Bisimilarity

11 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

Inadequacy of Strong Bisimilarity

Example 14.6 (Two-place buffers; cf. Example 2.5)

1. Sequential two-place buffer:
B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

2. Parallel two-place buffer:
B‖ = (B[f ] ‖ B[g]) \ com
B = in.out .B

(f := [out 7→ com], g := [in 7→ com])

Observation:

Conclusion

• The requirement in ∼ to exactly match all actions is often too strong.
• This suggests to weaken this and not insist on exact matching of τ -actions.
• Rationale: τ -actions are special as they are unobservable.

12 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

Inadequacy of Strong Bisimilarity

Example 14.6 (Two-place buffers; cf. Example 2.5)

1. Sequential two-place buffer:
B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

2. Parallel two-place buffer:
B‖ = (B[f ] ‖ B[g]) \ com
B = in.out .B

(f := [out 7→ com], g := [in 7→ com])

Observation:

Conclusion

• The requirement in ∼ to exactly match all actions is often too strong.
• This suggests to weaken this and not insist on exact matching of τ -actions.
• Rationale: τ -actions are special as they are unobservable.

12 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

Inadequacy of Strong Bisimilarity

Example 14.6 (Two-place buffers; cf. Example 2.5)

1. Sequential two-place buffer:
B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

2. Parallel two-place buffer:
B‖ = (B[f ] ‖ B[g]) \ com
B = in.out .B

(f := [out 7→ com], g := [in 7→ com])

Observation:

Conclusion

• The requirement in ∼ to exactly match all actions is often too strong.
• This suggests to weaken this and not insist on exact matching of τ -actions.
• Rationale: τ -actions are special as they are unobservable.

12 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

The Rationales for Abstracting from τ -Actions

• τ -actions are internal and thus unobservable.

• This is natural in parallel communication resulting in τ :
– synchronization in CCS is binary handshaking
– observation means communication with the process
– thus the result of any communication is unobservable

• Strong bisimilarity treats τ -actions as any other action.
• Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

13 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

The Rationales for Abstracting from τ -Actions

• τ -actions are internal and thus unobservable.
• This is natural in parallel communication resulting in τ :

– synchronization in CCS is binary handshaking
– observation means communication with the process
– thus the result of any communication is unobservable

• Strong bisimilarity treats τ -actions as any other action.
• Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

13 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

The Rationales for Abstracting from τ -Actions

• τ -actions are internal and thus unobservable.
• This is natural in parallel communication resulting in τ :

– synchronization in CCS is binary handshaking
– observation means communication with the process
– thus the result of any communication is unobservable

• Strong bisimilarity treats τ -actions as any other action.

• Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

13 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

The Rationales for Abstracting from τ -Actions

• τ -actions are internal and thus unobservable.
• This is natural in parallel communication resulting in τ :

– synchronization in CCS is binary handshaking
– observation means communication with the process
– thus the result of any communication is unobservable

• Strong bisimilarity treats τ -actions as any other action.
• Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

13 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Outline of Lecture 14

Recap: Strong Bisimulation

Strong Bisimilarity as a Fixed Point

Inadequacy of Strong Bisimilarity

Weak Bisimulation

Properties of Weak Bisimilarity

Observation Congruence

Game Characterisation of Weak Bisimilarity

14 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Weak Transition Relation

Definition 14.7 (Weak transition relation)

For α ∈ Act ,
α

=⇒⊆ Prc × Prc is given by

α
=⇒ :=


(

τ−→
)∗
◦ α−→ ◦

(
τ−→
)∗

if α 6= τ(
τ−→
)∗

if α = τ.

where
(

τ−→
)∗

denotes the reflexive and transitive closure of relation
τ−→.

Informal meaning

• If α 6= τ , then s α
=⇒ t means that from s we can get to t by doing zero or more τ actions,

followed by the action α, followed by zero or more τ actions.
• If α = τ , then s α

=⇒ t means that from s we can reach t by doing zero or more τ actions.

15 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Weak Transition Relation

Definition 14.7 (Weak transition relation)

For α ∈ Act ,
α

=⇒⊆ Prc × Prc is given by

α
=⇒ :=


(

τ−→
)∗
◦ α−→ ◦

(
τ−→
)∗

if α 6= τ(
τ−→
)∗

if α = τ.

where
(

τ−→
)∗

denotes the reflexive and transitive closure of relation
τ−→.

Informal meaning

• If α 6= τ , then s α
=⇒ t means that from s we can get to t by doing zero or more τ actions,

followed by the action α, followed by zero or more τ actions.

• If α = τ , then s α
=⇒ t means that from s we can reach t by doing zero or more τ actions.

15 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Weak Transition Relation

Definition 14.7 (Weak transition relation)

For α ∈ Act ,
α

=⇒⊆ Prc × Prc is given by

α
=⇒ :=


(

τ−→
)∗
◦ α−→ ◦

(
τ−→
)∗

if α 6= τ(
τ−→
)∗

if α = τ.

where
(

τ−→
)∗

denotes the reflexive and transitive closure of relation
τ−→.

Informal meaning

• If α 6= τ , then s α
=⇒ t means that from s we can get to t by doing zero or more τ actions,

followed by the action α, followed by zero or more τ actions.
• If α = τ , then s α

=⇒ t means that from s we can reach t by doing zero or more τ actions.

15 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Weak Bisimulation

Definition 14.8 (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act (including α = τ ):
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α

=⇒ Q′ and P ′ ρQ′, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α

=⇒ P ′ and P ′ ρQ′.

Definition 14.9 (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted P ≈ Q, iff there is a weak
bisimulation ρ with P ρQ. Thus,

≈ =
⋃
{ρ ⊆ Prc × Prc | ρ is a weak bisimulation}.

Relation ≈ is called observational equivalence or weak bisimilarity.

16 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Weak Bisimulation

Definition 14.8 (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act (including α = τ ):
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α

=⇒ Q′ and P ′ ρQ′, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α

=⇒ P ′ and P ′ ρQ′.

Definition 14.9 (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted P ≈ Q, iff there is a weak
bisimulation ρ with P ρQ.

Thus,

≈ =
⋃
{ρ ⊆ Prc × Prc | ρ is a weak bisimulation}.

Relation ≈ is called observational equivalence or weak bisimilarity.

16 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Weak Bisimulation

Definition 14.8 (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act (including α = τ ):
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α

=⇒ Q′ and P ′ ρQ′, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α

=⇒ P ′ and P ′ ρQ′.

Definition 14.9 (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted P ≈ Q, iff there is a weak
bisimulation ρ with P ρQ. Thus,

≈ =
⋃
{ρ ⊆ Prc × Prc | ρ is a weak bisimulation}.

Relation ≈ is called observational equivalence or weak bisimilarity.

16 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Weak Bisimulation

Definition 14.8 (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act (including α = τ ):
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α

=⇒ Q′ and P ′ ρQ′, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α

=⇒ P ′ and P ′ ρQ′.

Definition 14.9 (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted P ≈ Q, iff there is a weak
bisimulation ρ with P ρQ. Thus,

≈ =
⋃
{ρ ⊆ Prc × Prc | ρ is a weak bisimulation}.

Relation ≈ is called observational equivalence or weak bisimilarity.

16 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Explanation

Definition (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act (including α = τ ):
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α

=⇒ Q′ and P ′ ρQ′, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α

=⇒ P ′ and P ′ ρQ′.

Remark

Each clause in the definition of weak bisimulation subsumes two cases:
• P α−→ P ′ where α 6= τ :

implies ex. Q′ ∈ Prc such that Q (
τ−→)∗

α−→ (
τ−→)∗ Q′ and P ′ ρQ′

• P τ−→ P ′:
implies ex. Q′ ∈ Prc such that Q (

τ−→)∗ Q′ and P ′ ρQ′

(where Q′ = Q is admissible)

17 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Examples

Example 14.10

1. Let P = τ.Q with Q = a.nil.
– obviously P 6∼ Q; claim: P ≈ Q
– proof: ρ = {(P,Q), (Q,Q), (nil, nil)} is a weak bisimulation with P ρQ

2. More general: for every P ∈ Prc, P ≈ τ.P.
Proof: ρ = {(P, τ.P)} ∪ idPrc is a weak bisimulation:
i. every transition P

α−→ P ′ can be simulated by τ.P
τ−→ P

α−→ P ′ (i.e., τ.P
α

=⇒ P ′)
with P ′ ρP ′ ∈ ρ (since idPrc ⊆ ρ)

ii. the only transition of τ.P is τ.P
τ−→ P; it is simulated by P

τ
=⇒ P with P ρP ∈ ρ (since idPrc ⊆ ρ)

3. Sequential and parallel two-place buffer are weakly bisimilar:

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

ρ = {(P1,Q1), (P2,Q2), (P2,Q3), (P3,Q4)}

18 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Examples

Example 14.10

1. Let P = τ.Q with Q = a.nil.
– obviously P 6∼ Q; claim: P ≈ Q
– proof: ρ = {(P,Q), (Q,Q), (nil, nil)} is a weak bisimulation with P ρQ

2. More general: for every P ∈ Prc, P ≈ τ.P.
Proof: ρ = {(P, τ.P)} ∪ idPrc is a weak bisimulation:
i. every transition P

α−→ P ′ can be simulated by τ.P
τ−→ P

α−→ P ′ (i.e., τ.P
α

=⇒ P ′)
with P ′ ρP ′ ∈ ρ (since idPrc ⊆ ρ)

ii. the only transition of τ.P is τ.P
τ−→ P; it is simulated by P

τ
=⇒ P with P ρP ∈ ρ (since idPrc ⊆ ρ)

3. Sequential and parallel two-place buffer are weakly bisimilar:

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

ρ = {(P1,Q1), (P2,Q2), (P2,Q3), (P3,Q4)}

18 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Examples

Example 14.10

1. Let P = τ.Q with Q = a.nil.
– obviously P 6∼ Q; claim: P ≈ Q
– proof: ρ = {(P,Q), (Q,Q), (nil, nil)} is a weak bisimulation with P ρQ

2. More general: for every P ∈ Prc, P ≈ τ.P.
Proof: ρ = {(P, τ.P)} ∪ idPrc is a weak bisimulation:
i. every transition P

α−→ P ′ can be simulated by τ.P
τ−→ P

α−→ P ′ (i.e., τ.P
α

=⇒ P ′)
with P ′ ρP ′ ∈ ρ (since idPrc ⊆ ρ)

ii. the only transition of τ.P is τ.P
τ−→ P; it is simulated by P

τ
=⇒ P with P ρP ∈ ρ (since idPrc ⊆ ρ)

3. Sequential and parallel two-place buffer are weakly bisimilar:

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

ρ = {(P1,Q1), (P2,Q2), (P2,Q3), (P3,Q4)}

18 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation

Examples

Example 14.10

1. Let P = τ.Q with Q = a.nil.
– obviously P 6∼ Q; claim: P ≈ Q
– proof: ρ = {(P,Q), (Q,Q), (nil, nil)} is a weak bisimulation with P ρQ

2. More general: for every P ∈ Prc, P ≈ τ.P.
Proof: ρ = {(P, τ.P)} ∪ idPrc is a weak bisimulation:
i. every transition P

α−→ P ′ can be simulated by τ.P
τ−→ P

α−→ P ′ (i.e., τ.P
α

=⇒ P ′)
with P ′ ρP ′ ∈ ρ (since idPrc ⊆ ρ)

ii. the only transition of τ.P is τ.P
τ−→ P; it is simulated by P

τ
=⇒ P with P ρP ∈ ρ (since idPrc ⊆ ρ)

3. Sequential and parallel two-place buffer are weakly bisimilar:

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

ρ = {(P1,Q1), (P2,Q2), (P2,Q3), (P3,Q4)}

18 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Outline of Lecture 14

Recap: Strong Bisimulation

Strong Bisimilarity as a Fixed Point

Inadequacy of Strong Bisimilarity

Weak Bisimulation

Properties of Weak Bisimilarity

Observation Congruence

Game Characterisation of Weak Bisimilarity

19 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Divergence

Example 14.11 (A polling process) (Koomen 1982)

A? = a.nil + τ.B?
B? = b.nil + τ.A?

• Claim: A? ≈ B? ≈ a.nil + b.nil
• But note that A? τ−→ B? τ−→ A? is a τ -loop, whereas a.nil + b.nil does not have a loop (not

even a τ -loop).
• Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually will do so.
• Also note that Div ≈ nil where Div = τ.Div .
• Thus, a deadlock process is weakly bisimilar to a process that can only diverge.
• This is justified by the fact that “observations” can only be made by interacting with the

process.

20 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Divergence

Example 14.11 (A polling process) (Koomen 1982)

A? = a.nil + τ.B?
B? = b.nil + τ.A?

• Claim: A? ≈ B? ≈ a.nil + b.nil

• But note that A? τ−→ B? τ−→ A? is a τ -loop, whereas a.nil + b.nil does not have a loop (not
even a τ -loop).
• Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually will do so.
• Also note that Div ≈ nil where Div = τ.Div .
• Thus, a deadlock process is weakly bisimilar to a process that can only diverge.
• This is justified by the fact that “observations” can only be made by interacting with the

process.

20 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Divergence

Example 14.11 (A polling process) (Koomen 1982)

A? = a.nil + τ.B?
B? = b.nil + τ.A?

• Claim: A? ≈ B? ≈ a.nil + b.nil
• But note that A? τ−→ B? τ−→ A? is a τ -loop, whereas a.nil + b.nil does not have a loop (not

even a τ -loop).

• Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually will do so.
• Also note that Div ≈ nil where Div = τ.Div .
• Thus, a deadlock process is weakly bisimilar to a process that can only diverge.
• This is justified by the fact that “observations” can only be made by interacting with the

process.

20 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Divergence

Example 14.11 (A polling process) (Koomen 1982)

A? = a.nil + τ.B?
B? = b.nil + τ.A?

• Claim: A? ≈ B? ≈ a.nil + b.nil
• But note that A? τ−→ B? τ−→ A? is a τ -loop, whereas a.nil + b.nil does not have a loop (not

even a τ -loop).
• Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually will do so.2

Divergence is a τ -loop.

• Also note that Div ≈ nil where Div = τ.Div .
• Thus, a deadlock process is weakly bisimilar to a process that can only diverge.
• This is justified by the fact that “observations” can only be made by interacting with the

process.

2This is called fair abstraction from divergence.

20 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Divergence

Example 14.11 (A polling process) (Koomen 1982)

A? = a.nil + τ.B?
B? = b.nil + τ.A?

• Claim: A? ≈ B? ≈ a.nil + b.nil
• But note that A? τ−→ B? τ−→ A? is a τ -loop, whereas a.nil + b.nil does not have a loop (not

even a τ -loop).
• Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually will do so.2

Divergence is a τ -loop.
• Also note that Div ≈ nil where Div = τ.Div .

• Thus, a deadlock process is weakly bisimilar to a process that can only diverge.
• This is justified by the fact that “observations” can only be made by interacting with the

process.

2This is called fair abstraction from divergence.

20 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Divergence

Example 14.11 (A polling process) (Koomen 1982)

A? = a.nil + τ.B?
B? = b.nil + τ.A?

• Claim: A? ≈ B? ≈ a.nil + b.nil
• But note that A? τ−→ B? τ−→ A? is a τ -loop, whereas a.nil + b.nil does not have a loop (not

even a τ -loop).
• Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually will do so.2

Divergence is a τ -loop.
• Also note that Div ≈ nil where Div = τ.Div .
• Thus, a deadlock process is weakly bisimilar to a process that can only diverge.

• This is justified by the fact that “observations” can only be made by interacting with the
process.

2This is called fair abstraction from divergence.

20 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Divergence

Example 14.11 (A polling process) (Koomen 1982)

A? = a.nil + τ.B?
B? = b.nil + τ.A?

• Claim: A? ≈ B? ≈ a.nil + b.nil
• But note that A? τ−→ B? τ−→ A? is a τ -loop, whereas a.nil + b.nil does not have a loop (not

even a τ -loop).
• Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually will do so.2

Divergence is a τ -loop.
• Also note that Div ≈ nil where Div = τ.Div .
• Thus, a deadlock process is weakly bisimilar to a process that can only diverge.
• This is justified by the fact that “observations” can only be made by interacting with the

process.
2This is called fair abstraction from divergence.

20 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Properties of Weak Bisimilarity

Lemma 14.12 (Properties of ≈)

1. P ∼ Q implies P ≈ Q.
2. ≈ is an equivalence relation (reflexive, symmetric, transitive).
3. ≈ is the largest weak bisimulation.
4. ≈ is (non-τ ) deadlock sensitive.3

5. ≈ abstracts from τ -loops.

Proof.

1. Straightforward (as α−→ ⊆ α
=⇒)

2. Similar to Lemma 12.6(1) for ∼
3. Similar to Lemma 12.6(2) for ∼
4. Similar to Theorem 13.1 for ∼
5. Previous slide

3Where w-deadlocks are considered on observable traces – see following slide.

21 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Properties of Weak Bisimilarity

Lemma 14.12 (Properties of ≈)

1. P ∼ Q implies P ≈ Q.
2. ≈ is an equivalence relation (reflexive, symmetric, transitive).
3. ≈ is the largest weak bisimulation.
4. ≈ is (non-τ ) deadlock sensitive.3

5. ≈ abstracts from τ -loops.

Proof.

1. Straightforward (as α−→ ⊆ α
=⇒)

2. Similar to Lemma 12.6(1) for ∼
3. Similar to Lemma 12.6(2) for ∼
4. Similar to Theorem 13.1 for ∼
5. Previous slide

3Where w-deadlocks are considered on observable traces – see following slide.

21 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Weak Bisimilarity vs. Trace Equivalence

Definition 14.13 (Observational trace language)

The observational trace language of P ∈ Prc is defined by:
ObsTr(P) := {ŵ ∈ (Act \ {τ})∗ | ∃P ′ ∈ Prc.P

w−→ P ′}
where ŵ is obtained from w by removing all τ -actions.

Definition 14.14 (Observational trace equivalence)

P,Q ∈ Prc are observational trace equivalent if ObsTr(P) = ObsTr(Q).

Theorem 14.15

P ≈ Q implies that P and Q are observational trace equivalent. The reverse does
not hold.

Proof.

similar to Theorem 12.8

22 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Weak Bisimilarity vs. Trace Equivalence

Definition 14.13 (Observational trace language)

The observational trace language of P ∈ Prc is defined by:
ObsTr(P) := {ŵ ∈ (Act \ {τ})∗ | ∃P ′ ∈ Prc.P

w−→ P ′}
where ŵ is obtained from w by removing all τ -actions.

Definition 14.14 (Observational trace equivalence)

P,Q ∈ Prc are observational trace equivalent if ObsTr(P) = ObsTr(Q).

Theorem 14.15

P ≈ Q implies that P and Q are observational trace equivalent. The reverse does
not hold.

Proof.

similar to Theorem 12.8

22 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Weak Bisimilarity vs. Trace Equivalence

Definition 14.13 (Observational trace language)

The observational trace language of P ∈ Prc is defined by:
ObsTr(P) := {ŵ ∈ (Act \ {τ})∗ | ∃P ′ ∈ Prc.P

w−→ P ′}
where ŵ is obtained from w by removing all τ -actions.

Definition 14.14 (Observational trace equivalence)

P,Q ∈ Prc are observational trace equivalent if ObsTr(P) = ObsTr(Q).

Theorem 14.15

P ≈ Q implies that P and Q are observational trace equivalent. The reverse does
not hold.

Proof.

similar to Theorem 12.8

22 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Weak Bisimilarity vs. Trace Equivalence

Definition 14.13 (Observational trace language)

The observational trace language of P ∈ Prc is defined by:
ObsTr(P) := {ŵ ∈ (Act \ {τ})∗ | ∃P ′ ∈ Prc.P

w−→ P ′}
where ŵ is obtained from w by removing all τ -actions.

Definition 14.14 (Observational trace equivalence)

P,Q ∈ Prc are observational trace equivalent if ObsTr(P) = ObsTr(Q).

Theorem 14.15

P ≈ Q implies that P and Q are observational trace equivalent. The reverse does
not hold.

Proof.

similar to Theorem 12.8

22 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Milner’s τ -Laws

Lemma 14.16 (Milner’s τ -laws)

α.τ.P ≈ α.P
P + τ.P ≈ τ.P

α.(P + τ.Q) ≈ α.(P + τ.Q) + α.Q

Proof.

by constructing appropriate weak bisimulation relations (left as an exercise)

23 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Milner’s τ -Laws

Lemma 14.16 (Milner’s τ -laws)

α.τ.P ≈ α.P
P + τ.P ≈ τ.P

α.(P + τ.Q) ≈ α.(P + τ.Q) + α.Q

Proof.

by constructing appropriate weak bisimulation relations (left as an exercise)

23 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Congruence

Lemma 14.17 (Partial CCS congruence property of ≈)

Whenever P,Q ∈ Prc such that P ≈ Q,
α.P ≈ α.Q for every action α

P ‖ R ≈ Q ‖ R for every process R
P \ L ≈ Q \ L for every set L ⊆ A

P[f ] ≈ Q[f ] for every relabelling f : A→ A

Proof.

omitted

What about choice?

• τ.a.nil ≈ a.nil (cf. Ex. 14.10(1)) and b.nil ≈ b.nil (reflexivity)
• but τ.a.nil + b.nil 6≈ a.nil + b.nil (why?).
• Thus, weak bisimilarity is not a CCS congruence, which motivates a slight adaptation of ≈.

24 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Congruence

Lemma 14.17 (Partial CCS congruence property of ≈)

Whenever P,Q ∈ Prc such that P ≈ Q,
α.P ≈ α.Q for every action α

P ‖ R ≈ Q ‖ R for every process R
P \ L ≈ Q \ L for every set L ⊆ A

P[f ] ≈ Q[f ] for every relabelling f : A→ A

Proof.

omitted

What about choice?

• τ.a.nil ≈ a.nil (cf. Ex. 14.10(1)) and b.nil ≈ b.nil (reflexivity)
• but τ.a.nil + b.nil 6≈ a.nil + b.nil (why?).
• Thus, weak bisimilarity is not a CCS congruence, which motivates a slight adaptation of ≈.

24 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Congruence

Lemma 14.17 (Partial CCS congruence property of ≈)

Whenever P,Q ∈ Prc such that P ≈ Q,
α.P ≈ α.Q for every action α

P ‖ R ≈ Q ‖ R for every process R
P \ L ≈ Q \ L for every set L ⊆ A

P[f ] ≈ Q[f ] for every relabelling f : A→ A

Proof.

omitted

What about choice?

• τ.a.nil ≈ a.nil (cf. Ex. 14.10(1)) and b.nil ≈ b.nil (reflexivity)

• but τ.a.nil + b.nil 6≈ a.nil + b.nil (why?).
• Thus, weak bisimilarity is not a CCS congruence, which motivates a slight adaptation of ≈.

24 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Congruence

Lemma 14.17 (Partial CCS congruence property of ≈)

Whenever P,Q ∈ Prc such that P ≈ Q,
α.P ≈ α.Q for every action α

P ‖ R ≈ Q ‖ R for every process R
P \ L ≈ Q \ L for every set L ⊆ A

P[f ] ≈ Q[f ] for every relabelling f : A→ A

Proof.

omitted

What about choice?

• τ.a.nil ≈ a.nil (cf. Ex. 14.10(1)) and b.nil ≈ b.nil (reflexivity)
• but τ.a.nil + b.nil 6≈ a.nil + b.nil (why?).

• Thus, weak bisimilarity is not a CCS congruence, which motivates a slight adaptation of ≈.

24 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Properties of Weak Bisimilarity

Congruence

Lemma 14.17 (Partial CCS congruence property of ≈)

Whenever P,Q ∈ Prc such that P ≈ Q,
α.P ≈ α.Q for every action α

P ‖ R ≈ Q ‖ R for every process R
P \ L ≈ Q \ L for every set L ⊆ A

P[f ] ≈ Q[f ] for every relabelling f : A→ A

Proof.

omitted

What about choice?

• τ.a.nil ≈ a.nil (cf. Ex. 14.10(1)) and b.nil ≈ b.nil (reflexivity)
• but τ.a.nil + b.nil 6≈ a.nil + b.nil (why?).
• Thus, weak bisimilarity is not a CCS congruence, which motivates a slight adaptation of ≈.

24 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Observation Congruence

Outline of Lecture 14

Recap: Strong Bisimulation

Strong Bisimilarity as a Fixed Point

Inadequacy of Strong Bisimilarity

Weak Bisimulation

Properties of Weak Bisimilarity

Observation Congruence

Game Characterisation of Weak Bisimilarity

25 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Observation Congruence

Observation Congruence

Definition 14.18 (Observation congruence) (Milner 1989)

P,Q ∈ Prc are observationally congruent, denoted P ≈c Q, if for every α ∈ Act
(including α = τ ):
1. if P α−→ P ′, then there is a sequence of transitions Q τ

=⇒ ◦ α−→ ◦ τ
=⇒ Q′ such that P ′ ≈ Q′

and
2. if Q α−→ Q′, then there is a sequence of transitions P τ

=⇒ ◦ α−→ ◦ τ
=⇒ P ′ such that P ′ ≈ Q′.

Remark

• ≈c differs from ≈ only in that ≈c requires τ -moves by P or Q to be mimicked by at least one
τ -move in the other process.
• This only applies to the first step; the successors just have to satisfy P ′ ≈ Q′ (and not

necessarily P ′ ≈c Q′).
• Thus: if P 6 τ−→ and Q 6 τ−→, then P ≈c Q iff P ≈ Q.

26 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Observation Congruence

Observation Congruence

Definition 14.18 (Observation congruence) (Milner 1989)

P,Q ∈ Prc are observationally congruent, denoted P ≈c Q, if for every α ∈ Act
(including α = τ ):
1. if P α−→ P ′, then there is a sequence of transitions Q τ

=⇒ ◦ α−→ ◦ τ
=⇒ Q′ such that P ′ ≈ Q′

and
2. if Q α−→ Q′, then there is a sequence of transitions P τ

=⇒ ◦ α−→ ◦ τ
=⇒ P ′ such that P ′ ≈ Q′.

Remark

• ≈c differs from ≈ only in that ≈c requires τ -moves by P or Q to be mimicked by at least one
τ -move in the other process.
• This only applies to the first step; the successors just have to satisfy P ′ ≈ Q′ (and not

necessarily P ′ ≈c Q′).

• Thus: if P 6 τ−→ and Q 6 τ−→, then P ≈c Q iff P ≈ Q.

26 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Observation Congruence

Observation Congruence

Definition 14.18 (Observation congruence) (Milner 1989)

P,Q ∈ Prc are observationally congruent, denoted P ≈c Q, if for every α ∈ Act
(including α = τ ):
1. if P α−→ P ′, then there is a sequence of transitions Q τ

=⇒ ◦ α−→ ◦ τ
=⇒ Q′ such that P ′ ≈ Q′

and
2. if Q α−→ Q′, then there is a sequence of transitions P τ

=⇒ ◦ α−→ ◦ τ
=⇒ P ′ such that P ′ ≈ Q′.

Remark

• ≈c differs from ≈ only in that ≈c requires τ -moves by P or Q to be mimicked by at least one
τ -move in the other process.
• This only applies to the first step; the successors just have to satisfy P ′ ≈ Q′ (and not

necessarily P ′ ≈c Q′).
• Thus: if P 6 τ−→ and Q 6 τ−→, then P ≈c Q iff P ≈ Q.

26 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Observation Congruence

Examples

Example 14.19

1. Sequential and parallel two-place buffer:

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

P1 ≈c Q1 since P1 ≈ Q1 (cf. Example 14.10(3)) and neither P1 nor Q1 has initial τ -steps.

2. τ.a.nil 6≈c a.nil (since τ.a.nil τ−→ but a.nil 6 τ−→);
thus the counterexample to congruence of ≈ for + does not apply.

3. a.τ.nil ≈c a.nil (since τ.nil ≈ nil).

27 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Observation Congruence

Examples

Example 14.19

1. Sequential and parallel two-place buffer:

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

P1 ≈c Q1 since P1 ≈ Q1 (cf. Example 14.10(3)) and neither P1 nor Q1 has initial τ -steps.
2. τ.a.nil 6≈c a.nil (since τ.a.nil τ−→ but a.nil 6 τ−→);

thus the counterexample to congruence of ≈ for + does not apply.

3. a.τ.nil ≈c a.nil (since τ.nil ≈ nil).

27 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Observation Congruence

Examples

Example 14.19

1. Sequential and parallel two-place buffer:

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

P1 ≈c Q1 since P1 ≈ Q1 (cf. Example 14.10(3)) and neither P1 nor Q1 has initial τ -steps.
2. τ.a.nil 6≈c a.nil (since τ.a.nil τ−→ but a.nil 6 τ−→);

thus the counterexample to congruence of ≈ for + does not apply.
3. a.τ.nil ≈c a.nil (since τ.nil ≈ nil).

27 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Observation Congruence

Properties of Observation Congruence

Lemma 14.20

For every P,Q ∈ Prc,
1. ≈c is an equivalence relation
2. P ∼ Q implies P ≈c Q, and P ≈c Q implies P ≈ Q
3. ≈c is a CCS congruence
4. ≈c is (non-τ ) deadlock-sensitive
5. P ≈c Q if and only if P + R ≈ Q + R for every R ∈ Prc
6. P ≈ Q if and only if (P ≈c Q or P ≈c τ.Q or τ.P ≈c Q)

Proof.

omitted

Note: (5) states that ≈c is the “minimal fix” to establish congruence of ≈.

28 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Observation Congruence

Properties of Observation Congruence

Lemma 14.20

For every P,Q ∈ Prc,
1. ≈c is an equivalence relation
2. P ∼ Q implies P ≈c Q, and P ≈c Q implies P ≈ Q
3. ≈c is a CCS congruence
4. ≈c is (non-τ ) deadlock-sensitive
5. P ≈c Q if and only if P + R ≈ Q + R for every R ∈ Prc
6. P ≈ Q if and only if (P ≈c Q or P ≈c τ.Q or τ.P ≈c Q)

Proof.

omitted

Note: (5) states that ≈c is the “minimal fix” to establish congruence of ≈.

28 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Game Characterisation of Weak Bisimilarity

Outline of Lecture 14

Recap: Strong Bisimulation

Strong Bisimilarity as a Fixed Point

Inadequacy of Strong Bisimilarity

Weak Bisimulation

Properties of Weak Bisimilarity

Observation Congruence

Game Characterisation of Weak Bisimilarity

29 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Game Characterisation of Weak Bisimilarity

Weak Bisimilarity as a Game

Rules

In each round, the current configuration (s, t) is changed as follows:
1. the attacker chooses one of the processes in the current configuration, say t , and makes an

α−→-move for some α ∈ Act to t ′, say,

and
2. the defender must respond by making an α

=⇒-move in the other process s of the current
configuration under the same action α, yielding s α

=⇒ s′.

The pair of processes (s′, t ′) becomes the new current configuration.
The game continues with another round.

Results

1. If one player cannot move, the other player wins.
– attacker cannot move if s 6→ and t 6→
– defender cannot move if no matching transition available

2. If the game can be played ad infinitum, the defender wins.

30 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Game Characterisation of Weak Bisimilarity

Weak Bisimilarity as a Game

Rules

In each round, the current configuration (s, t) is changed as follows:
1. the attacker chooses one of the processes in the current configuration, say t , and makes an

α−→-move for some α ∈ Act to t ′, say, and
2. the defender must respond by making an α

=⇒-move in the other process s of the current
configuration under the same action α, yielding s α

=⇒ s′.

The pair of processes (s′, t ′) becomes the new current configuration.
The game continues with another round.

Results

1. If one player cannot move, the other player wins.
– attacker cannot move if s 6→ and t 6→
– defender cannot move if no matching transition available

2. If the game can be played ad infinitum, the defender wins.

30 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Game Characterisation of Weak Bisimilarity

Weak Bisimilarity as a Game

Rules

In each round, the current configuration (s, t) is changed as follows:
1. the attacker chooses one of the processes in the current configuration, say t , and makes an

α−→-move for some α ∈ Act to t ′, say, and
2. the defender must respond by making an α

=⇒-move in the other process s of the current
configuration under the same action α, yielding s α

=⇒ s′.

The pair of processes (s′, t ′) becomes the new current configuration.
The game continues with another round.

Results

1. If one player cannot move, the other player wins.
– attacker cannot move if s 6→ and t 6→
– defender cannot move if no matching transition available

2. If the game can be played ad infinitum, the defender wins.

30 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Game Characterisation of Weak Bisimilarity

Weak Bisimilarity as a Game

Rules

In each round, the current configuration (s, t) is changed as follows:
1. the attacker chooses one of the processes in the current configuration, say t , and makes an

α−→-move for some α ∈ Act to t ′, say, and
2. the defender must respond by making an α

=⇒-move in the other process s of the current
configuration under the same action α, yielding s α

=⇒ s′.

The pair of processes (s′, t ′) becomes the new current configuration.
The game continues with another round.

Results

1. If one player cannot move, the other player wins.
– attacker cannot move if s 6→ and t 6→
– defender cannot move if no matching transition available

2. If the game can be played ad infinitum, the defender wins.

30 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Game Characterisation of Weak Bisimilarity

Game Characterisation of Weak Bisimilarity

Theorem 14.21 (Game characterisation of weak bisimilarity) (Stirling 1995, Thomas 1993)

1. s ≈ t iff the defender has a universal winning strategy from configuration (s, t).
2. s 6≈ t iff the attacker has a universal winning strategy from configuration (s, t).

(By means of a universal winning strategy, a player can always win, regardless of
how the other player selects their moves.)

Proof.

by relating winning strategy of defender/attacker to existence/non-existence of weak
bisimulation relation

31 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Game Characterisation of Weak Bisimilarity

Game Characterisation of Weak Bisimilarity

Theorem 14.21 (Game characterisation of weak bisimilarity) (Stirling 1995, Thomas 1993)

1. s ≈ t iff the defender has a universal winning strategy from configuration (s, t).
2. s 6≈ t iff the attacker has a universal winning strategy from configuration (s, t).

(By means of a universal winning strategy, a player can always win, regardless of
how the other player selects their moves.)

Proof.

by relating winning strategy of defender/attacker to existence/non-existence of weak
bisimulation relation

31 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants


	Recap: Strong Bisimulation
	Strong Bisimilarity as a Fixed Point
	Inadequacy of Strong Bisimilarity
	Weak Bisimulation
	Properties of Weak Bisimilarity
	Observation Congruence
	Game Characterisation of Weak Bisimilarity

