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Recap: Strong Bisimulation

Summary

• Strong bisimulation of processes is based on mutually mimicking each other

• Strong bisimilarity ∼:
1. is the largest strong bisimulation
2. is an equivalence relation
3. is strictly coarser than LTS isomorphism
4. is strictly finer than trace equivalence
5. is a CCS congruence
6. is deadlock sensitive
7. can be checked using a two-player game
• Strong similarity v:

1. is a one-way strong bisimilarity
2. bi-directional version (strong simulation equivalence) is strictly coarser than∼
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Strong Bisimilarity as a Fixed Point
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Strong Bisimilarity as a Fixed Point

Strong Bisimilarity

Recall: ∼ implies trace equivalence, and checking trace equivalence is
PSPACE-complete.

What about checking ∼ between two processes?

Definition (Strong bisimilarity; Definition 12.2)

Processes P and Q are strongly bisimilar, denoted P ∼ Q, iff there is a strong
bisimulation ρ with P ρQ. Thus,

∼ =
⋃
{ρ ⊆ Prc × Prc | ρ is a strong bisimulation}.

Relation ∼ is called strong bisimilarity.

Note that (2Prc×Prc,⊆) is a complete lattice (cf. Definition 4.13) with
⋃

and
⋂

as
least upper and greatest lower bound, respectively.

We will show that ∼ can be characterised as a fixed point of a monotonic function on
this lattice.
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Strong Bisimilarity as a Fixed Point

Fixed-Point Characterisation of Strong Bisimilarity I

Definition 14.1 (Function on relations)

Let ρ ⊆ Prc × Prc. Let F : 2Prc×Prc → 2Prc×Prc be defined as follows:
for every P,Q ∈ Prc, (P,Q) ∈ F(ρ) iff
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α−→ Q′ and P ′ ρQ′ and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α−→ P ′ and P ′ ρQ′.

Intuition: F(ρ) contains all pairs of processes from which, in one round of the
bisimulation game, the defender can ensure that the players reach a current
configuration that is contained in ρ. Note that F is monotonic.

Corollary 14.2

ρ is a strong bisimulation iff ρ ⊆ F(ρ), and thus:

∼ =
⋃
{ρ ∈ Prc × Prc | ρ ⊆ F(ρ)}.
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Strong Bisimilarity as a Fixed Point

Fixed-Point Characterisation of Strong Bisimilarity II

Corollary

ρ is a strong bisimulation iff ρ ⊆ F(ρ), and thus:

∼ =
⋃
{ρ ∈ Prc × Prc | ρ ⊆ F(ρ)}.

Thus: ∼ is the LUB of all post-fixed points of F

Theorem (Tarski’s fixed-point theorem; Definition 5.5)

Let (D,v) be a complete lattice and f : D → D monotonic. Then f has a least fixed
point fix(f ) and a greatest fixed point FIX(f ) given by

fix(f ) =
d
{d ∈ D | f (d) v d} (GLB of all pre-fixed points of f )

FIX(f ) =
⊔
{d ∈ D | d v f (d)} (LUB of all post-fixed points of f )

Thus: ∼ = FIX(F)
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Strong Bisimilarity as a Fixed Point

Application to Finite LTS

Theorem (Fixed-point theorem for finite lattices; Theorem 5.7)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)
for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Corollary 14.3

For finite-state process P with state
space S, ∼ can be computed by:

∼ =
⋂∞

i=0 ∼i where
∼0 := S × S
∼i+1 := F(∼i)

Example 14.4

P1

P2 P3

P4

b a

c

c

a

b

a

Equivalence classes:

∼0 = {{P1,P2,P3,P4}}
∼1 = {{P1,P4}, {P2,P3}}
∼2 = {{P1}, {P2,P3}, {P4}}
∼3 = ∼2
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Strong Bisimilarity as a Fixed Point

Complexity of Checking Strong Bisimilarity

• The previous corollary The fixed yields a polynomial-time algorithm.
• More efficient algorithms do exist, but are not topic of this lecture.

Theorem 14.5 (Complexity) (Balcázar et al. 1992)

Deciding strong bisimilarity between finite LTSs is P-complete.
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• More efficient algorithms do exist, but are not topic of this lecture.

Theorem 14.5 (Complexity) (Balcázar et al. 1992)
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1Recall that checking trace equivalence is PSPACE-complete.
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Inadequacy of Strong Bisimilarity
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Inadequacy of Strong Bisimilarity

Inadequacy of Strong Bisimilarity

Example 14.6 (Two-place buffers; cf. Example 2.5)

1. Sequential two-place buffer:
B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

2. Parallel two-place buffer:
B‖ = (B[f ] ‖ B[g]) \ com
B = in.out .B

(f := [out 7→ com], g := [in 7→ com])

Observation:

Conclusion

• The requirement in ∼ to exactly match all actions is often too strong.
• This suggests to weaken this and not insist on exact matching of τ -actions.
• Rationale: τ -actions are special as they are unobservable.
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Inadequacy of Strong Bisimilarity

The Rationales for Abstracting from τ -Actions

• τ -actions are internal and thus unobservable.

• This is natural in parallel communication resulting in τ :
– synchronization in CCS is binary handshaking
– observation means communication with the process
– thus the result of any communication is unobservable

• Strong bisimilarity treats τ -actions as any other action.
• Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

13 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

The Rationales for Abstracting from τ -Actions

• τ -actions are internal and thus unobservable.
• This is natural in parallel communication resulting in τ :

– synchronization in CCS is binary handshaking
– observation means communication with the process
– thus the result of any communication is unobservable

• Strong bisimilarity treats τ -actions as any other action.
• Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

13 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

The Rationales for Abstracting from τ -Actions

• τ -actions are internal and thus unobservable.
• This is natural in parallel communication resulting in τ :

– synchronization in CCS is binary handshaking
– observation means communication with the process
– thus the result of any communication is unobservable

• Strong bisimilarity treats τ -actions as any other action.

• Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

13 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Inadequacy of Strong Bisimilarity

The Rationales for Abstracting from τ -Actions

• τ -actions are internal and thus unobservable.
• This is natural in parallel communication resulting in τ :

– synchronization in CCS is binary handshaking
– observation means communication with the process
– thus the result of any communication is unobservable

• Strong bisimilarity treats τ -actions as any other action.
• Can we retain the nice properties of ∼ while “abstracting” from τ -actions?

13 of 31 Concurrency Theory

Winter Semester 2019/20

Lecture 14: Bisimulation as a Fixed Point and Weak Variants



Weak Bisimulation
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Weak Bisimulation

Weak Transition Relation

Definition 14.7 (Weak transition relation)

For α ∈ Act ,
α

=⇒⊆ Prc × Prc is given by

α
=⇒ :=


(

τ−→
)∗
◦ α−→ ◦

(
τ−→
)∗

if α 6= τ(
τ−→
)∗

if α = τ.

where
(

τ−→
)∗

denotes the reflexive and transitive closure of relation
τ−→.

Informal meaning

• If α 6= τ , then s α
=⇒ t means that from s we can get to t by doing zero or more τ actions,

followed by the action α, followed by zero or more τ actions.
• If α = τ , then s α

=⇒ t means that from s we can reach t by doing zero or more τ actions.
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if α 6= τ(
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if α = τ.

where
(

τ−→
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τ−→.
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• If α 6= τ , then s α
=⇒ t means that from s we can get to t by doing zero or more τ actions,

followed by the action α, followed by zero or more τ actions.
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Weak Bisimulation

Weak Bisimulation

Definition 14.8 (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act (including α = τ ):
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α

=⇒ Q′ and P ′ ρQ′, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α

=⇒ P ′ and P ′ ρQ′.

Definition 14.9 (Weak bisimilarity)

Processes P and Q are weakly bisimilar, denoted P ≈ Q, iff there is a weak
bisimulation ρ with P ρQ. Thus,

≈ =
⋃
{ρ ⊆ Prc × Prc | ρ is a weak bisimulation}.

Relation ≈ is called observational equivalence or weak bisimilarity.
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Weak Bisimulation

Explanation

Definition (Weak bisimulation) (Milner 1989)

A binary relation ρ ⊆ Prc × Prc is a weak bisimulation whenever for every
(P,Q) ∈ ρ and α ∈ Act (including α = τ ):
1. if P α−→ P ′, then there exists Q′ ∈ Prc such that Q α

=⇒ Q′ and P ′ ρQ′, and
2. if Q α−→ Q′, then there exists P ′ ∈ Prc such that P α

=⇒ P ′ and P ′ ρQ′.

Remark

Each clause in the definition of weak bisimulation subsumes two cases:
• P α−→ P ′ where α 6= τ :

implies ex. Q′ ∈ Prc such that Q (
τ−→)∗

α−→ (
τ−→)∗ Q′ and P ′ ρQ′

• P τ−→ P ′:
implies ex. Q′ ∈ Prc such that Q (

τ−→)∗ Q′ and P ′ ρQ′

(where Q′ = Q is admissible)
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Weak Bisimulation

Examples

Example 14.10

1. Let P = τ.Q with Q = a.nil.
– obviously P 6∼ Q; claim: P ≈ Q
– proof: ρ = {(P,Q), (Q,Q), (nil, nil)} is a weak bisimulation with P ρQ

2. More general: for every P ∈ Prc, P ≈ τ.P.
Proof: ρ = {(P, τ.P)} ∪ idPrc is a weak bisimulation:
i. every transition P

α−→ P ′ can be simulated by τ.P
τ−→ P

α−→ P ′ (i.e., τ.P
α

=⇒ P ′)
with P ′ ρP ′ ∈ ρ (since idPrc ⊆ ρ)

ii. the only transition of τ.P is τ.P
τ−→ P; it is simulated by P

τ
=⇒ P with P ρP ∈ ρ (since idPrc ⊆ ρ)

3. Sequential and parallel two-place buffer are weakly bisimilar:

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

ρ = {(P1,Q1), (P2,Q2), (P2,Q3), (P3,Q4)}
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Properties of Weak Bisimilarity

Outline of Lecture 14

Recap: Strong Bisimulation

Strong Bisimilarity as a Fixed Point

Inadequacy of Strong Bisimilarity

Weak Bisimulation

Properties of Weak Bisimilarity

Observation Congruence

Game Characterisation of Weak Bisimilarity
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Properties of Weak Bisimilarity

Divergence

Example 14.11 (A polling process) (Koomen 1982)

A? = a.nil + τ.B?
B? = b.nil + τ.A?

• Claim: A? ≈ B? ≈ a.nil + b.nil
• But note that A? τ−→ B? τ−→ A? is a τ -loop, whereas a.nil + b.nil does not have a loop (not

even a τ -loop).
• Thus, ≈ assumes that if a process can escape from a τ -loop, it eventually will do so.
• Also note that Div ≈ nil where Div = τ.Div .
• Thus, a deadlock process is weakly bisimilar to a process that can only diverge.
• This is justified by the fact that “observations” can only be made by interacting with the

process.
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Divergence is a τ -loop.
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• This is justified by the fact that “observations” can only be made by interacting with the

process.

2This is called fair abstraction from divergence.
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Properties of Weak Bisimilarity

Properties of Weak Bisimilarity

Lemma 14.12 (Properties of ≈)

1. P ∼ Q implies P ≈ Q.
2. ≈ is an equivalence relation (reflexive, symmetric, transitive).
3. ≈ is the largest weak bisimulation.
4. ≈ is (non-τ ) deadlock sensitive.3

5. ≈ abstracts from τ -loops.

Proof.

1. Straightforward (as α−→ ⊆ α
=⇒)

2. Similar to Lemma 12.6(1) for ∼
3. Similar to Lemma 12.6(2) for ∼
4. Similar to Theorem 13.1 for ∼
5. Previous slide

3Where w-deadlocks are considered on observable traces – see following slide.
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Properties of Weak Bisimilarity

Weak Bisimilarity vs. Trace Equivalence

Definition 14.13 (Observational trace language)

The observational trace language of P ∈ Prc is defined by:
ObsTr(P) := {ŵ ∈ (Act \ {τ})∗ | ∃P ′ ∈ Prc.P

w−→ P ′}
where ŵ is obtained from w by removing all τ -actions.

Definition 14.14 (Observational trace equivalence)

P,Q ∈ Prc are observational trace equivalent if ObsTr(P) = ObsTr(Q).

Theorem 14.15

P ≈ Q implies that P and Q are observational trace equivalent. The reverse does
not hold.

Proof.

similar to Theorem 12.8
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Properties of Weak Bisimilarity

Milner’s τ -Laws

Lemma 14.16 (Milner’s τ -laws)

α.τ.P ≈ α.P
P + τ.P ≈ τ.P

α.(P + τ.Q) ≈ α.(P + τ.Q) + α.Q

Proof.

by constructing appropriate weak bisimulation relations (left as an exercise)
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Properties of Weak Bisimilarity

Congruence

Lemma 14.17 (Partial CCS congruence property of ≈)

Whenever P,Q ∈ Prc such that P ≈ Q,
α.P ≈ α.Q for every action α

P ‖ R ≈ Q ‖ R for every process R
P \ L ≈ Q \ L for every set L ⊆ A

P[f ] ≈ Q[f ] for every relabelling f : A→ A

Proof.

omitted

What about choice?

• τ.a.nil ≈ a.nil (cf. Ex. 14.10(1)) and b.nil ≈ b.nil (reflexivity)
• but τ.a.nil + b.nil 6≈ a.nil + b.nil (why?).
• Thus, weak bisimilarity is not a CCS congruence, which motivates a slight adaptation of ≈.
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Proof.

omitted

What about choice?

• τ.a.nil ≈ a.nil (cf. Ex. 14.10(1)) and b.nil ≈ b.nil (reflexivity)
• but τ.a.nil + b.nil 6≈ a.nil + b.nil (why?).

• Thus, weak bisimilarity is not a CCS congruence, which motivates a slight adaptation of ≈.
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Observation Congruence

Observation Congruence

Definition 14.18 (Observation congruence) (Milner 1989)

P,Q ∈ Prc are observationally congruent, denoted P ≈c Q, if for every α ∈ Act
(including α = τ ):
1. if P α−→ P ′, then there is a sequence of transitions Q τ

=⇒ ◦ α−→ ◦ τ
=⇒ Q′ such that P ′ ≈ Q′

and
2. if Q α−→ Q′, then there is a sequence of transitions P τ

=⇒ ◦ α−→ ◦ τ
=⇒ P ′ such that P ′ ≈ Q′.

Remark

• ≈c differs from ≈ only in that ≈c requires τ -moves by P or Q to be mimicked by at least one
τ -move in the other process.
• This only applies to the first step; the successors just have to satisfy P ′ ≈ Q′ (and not

necessarily P ′ ≈c Q′).
• Thus: if P 6 τ−→ and Q 6 τ−→, then P ≈c Q iff P ≈ Q.
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Observation Congruence

Examples

Example 14.19

1. Sequential and parallel two-place buffer:

P1

in ↓↑ out
P2

in ↓↑ out
P3

Q1

in↙↖ out
Q2

τ−→ Q3

out ↖↙ in
Q4

P1 ≈c Q1 since P1 ≈ Q1 (cf. Example 14.10(3)) and neither P1 nor Q1 has initial τ -steps.

2. τ.a.nil 6≈c a.nil (since τ.a.nil τ−→ but a.nil 6 τ−→);
thus the counterexample to congruence of ≈ for + does not apply.

3. a.τ.nil ≈c a.nil (since τ.nil ≈ nil).
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Observation Congruence

Properties of Observation Congruence

Lemma 14.20

For every P,Q ∈ Prc,
1. ≈c is an equivalence relation
2. P ∼ Q implies P ≈c Q, and P ≈c Q implies P ≈ Q
3. ≈c is a CCS congruence
4. ≈c is (non-τ ) deadlock-sensitive
5. P ≈c Q if and only if P + R ≈ Q + R for every R ∈ Prc
6. P ≈ Q if and only if (P ≈c Q or P ≈c τ.Q or τ.P ≈c Q)

Proof.

omitted

Note: (5) states that ≈c is the “minimal fix” to establish congruence of ≈.
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Game Characterisation of Weak Bisimilarity

Weak Bisimilarity as a Game

Rules

In each round, the current configuration (s, t) is changed as follows:
1. the attacker chooses one of the processes in the current configuration, say t , and makes an

α−→-move for some α ∈ Act to t ′, say,

and
2. the defender must respond by making an α

=⇒-move in the other process s of the current
configuration under the same action α, yielding s α

=⇒ s′.

The pair of processes (s′, t ′) becomes the new current configuration.
The game continues with another round.

Results

1. If one player cannot move, the other player wins.
– attacker cannot move if s 6→ and t 6→
– defender cannot move if no matching transition available

2. If the game can be played ad infinitum, the defender wins.
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Game Characterisation of Weak Bisimilarity

Game Characterisation of Weak Bisimilarity

Theorem 14.21 (Game characterisation of weak bisimilarity) (Stirling 1995, Thomas 1993)

1. s ≈ t iff the defender has a universal winning strategy from configuration (s, t).
2. s 6≈ t iff the attacker has a universal winning strategy from configuration (s, t).

(By means of a universal winning strategy, a player can always win, regardless of
how the other player selects their moves.)

Proof.

by relating winning strategy of defender/attacker to existence/non-existence of weak
bisimulation relation
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