

Concurrency Theory

- Winter Semester 2019/20
- **Lecture 13: Properties of Strong Bisimulation**
- Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Outline of Lecture 13

- Recap: Strong Bisimulation
- **Deadlock Sensitivity**
- **Buffers Revisited**
- Strong Bisimilarity as a Game
- Simulation Equivalence

Epilogue

Strong Bisimulation

Definition (Strong bisimulation)

(Park 1981, Milner 1989)

A binary relation $\rho \subseteq Prc \times Prc$ is a strong bisimulation whenever for every $(P, Q) \in \rho$ and $\alpha \in Act$: 1. if $P \xrightarrow{\alpha} P'$, then there exists $Q' \in Prc$ such that $Q \xrightarrow{\alpha} Q'$ and $P' \rho Q'$, and 2. if $Q \xrightarrow{\alpha} Q'$, then there exists $P' \in Prc$ such that $P \xrightarrow{\alpha} P'$ and $P' \rho Q'$.

Note: strong bisimulations are not necessarily equivalences

Definition (Strong bisimilarity)

Processes *P* and *Q* are strongly bisimilar, denoted $P \sim Q$, iff there is a strong bisimulation ρ with $P \rho Q$. Thus,

$$\sim = \bigcup \{ \rho \mid \rho \text{ is a strong bisimulation} \}.$$

Relation \sim is called strong bisimilarity.

Properties of Strong Bisimilarity

Lemma (Properties of \sim)

1. \sim is an equivalence relation (i.e., reflexive, symmetric, and transitive)

2. \sim is the coarsest strong bisimulation

Proof.

on the board

Strong Bisimulation vs. Trace Equivalence

Theorem

 $P \sim Q$ implies that P and Q are trace equivalent. The reverse does generally not hold.

Proof.

The implication from left to right follows from the previous slide.

Consider the other direction.

Take $P = a.P_1$ with $P_1 = b.nil + c.nil$ and Q = a.b.nil + a.c.nil.

Then: $Tr(P) = \{\epsilon, a, ab, ac\} = Tr(Q)$.

Thus, P and Q are trace equivalent.

But: $P \not\sim Q$, as there is no state in the LTS of Q that is bisimilar to P_1 (cf. Example 12.5).

Why? No state in Q can perform both b and c.

Congruence

Theorem (CCS congruence property of \sim)

Strong bisimilarity \sim is a CCS congruence, that is, whenever $P, Q \in Prc$ such that $P \sim Q$,

$\alpha.P$	\sim	$\alpha. Q$	for every action α
P + R	\sim	Q + R	for every process R
$P \parallel R$	\sim	$Q \parallel R$	for every process R
$P \setminus L$	\sim	$Q \setminus L$	for every set $L \subseteq A$
P[f]	\sim	Q[f]	for every relabelling $f: A \to A$

Proof.

- for ||: on the board
- for other CCS operators: left as an exercise

Outline of Lecture 13

Recap: Strong Bisimulation

Deadlock Sensitivity

Buffers Revisited

Strong Bisimilarity as a Game

Simulation Equivalence

Epilogue

Definition (Deadlock; cf. Definition 11.6)

Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w} Q$ and $Q \not\longrightarrow$. Then Q is called a *w*-deadlock of P.

Definition (Deadlock; cf. Definition 11.6)

Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w} Q$ and $Q \not\longrightarrow$. Then Q is called a *w*-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.8)

Relation $\equiv \subseteq Prc \times Prc$ is deadlock sensitive whenever:

 $P \equiv Q$ implies ($\forall w \in Act^*$. P has a w-deadlock iff Q has a w-deadlock).

Definition (Deadlock; cf. Definition 11.6)

Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w} Q$ and $Q \not\longrightarrow$. Then Q is called a *w*-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.8)

Relation $\equiv \subseteq Prc \times Prc$ is deadlock sensitive whenever:

 $P \equiv Q$ implies ($\forall w \in Act^*$. P has a w-deadlock iff Q has a w-deadlock).

Theorem 13.1

 \sim is deadlock sensitive.

Definition (Deadlock; cf. Definition 11.6)

Let $P, Q \in Prc$ and $w \in Act^*$ such that $P \xrightarrow{w} Q$ and $Q \not\longrightarrow$. Then Q is called a *w*-deadlock of P.

Definition (Deadlock sensitivity; cf. Definition 11.8)

Relation $\equiv \subseteq Prc \times Prc$ is deadlock sensitive whenever:

 $P \equiv Q$ implies ($\forall w \in Act^*$. P has a w-deadlock iff Q has a w-deadlock).

Theorem 13.1

 \sim is deadlock sensitive.

Proof.

on the board

Outline of Lecture 13

Recap: Strong Bisimulation

Deadlock Sensitivity

Buffers Revisited

Strong Bisimilarity as a Game

Simulation Equivalence

Epilogue

Two Buffers

Example 13.2

One-place buffer:

$$B_0^{\scriptscriptstyle I} = in.B_1^{\scriptscriptstyle I} \ B_1^{\scriptscriptstyle I} = \overline{out}.B_0^{\scriptscriptstyle I}.$$

Two Buffers

Example 13.2

One-place buffer:

$$B_0^1 = in.B_1^1$$

 $B_1^1 = out.B_0^1.$

Two-place buffer:

$$B_0^2 = in.B_1^2$$

$$B_1^2 = in.B_2^2 + \overline{out}.B_0^2$$

$$B_2^2 = \overline{out}.B_1^2.$$

Two Buffers

Example 13.2

Semaphores I

Example 13.3 (An *n*-ary semaphore)

Let S_i^n stand for a semaphore for *n* exclusive resources *i* of which are taken:

$$egin{array}{rcl} S_{0}^{n} &= get.S_{1}^{n} \ S_{i}^{n} &= get.S_{i+1}^{n} + put.S_{i-1}^{n} & ext{ for } 0 < i < n \ S_{n}^{n} &= put.S_{n-1}^{n} \end{array}$$

Semaphores I

Example 13.3 (An *n*-ary semaphore)

Let S_i^n stand for a semaphore for *n* exclusive resources *i* of which are taken:

This process is strongly bisimilar to *n* parallel binary semaphores:

Lemma 13.4
For every
$$n \in \mathbb{N}_+$$
, we have: $S_0^n \sim \underbrace{S_0^1 \parallel \cdots \parallel S_0^1}_{n \text{ times}}$.

 11 of 25
 Concurrency Theory

 Winter Semester 2019/20
 Lecture 13: Properties of Strong Bisimulation

Semaphores II

Lemma

For every
$$n \in \mathbb{N}_+$$
, we have: $S_0^n \sim \underbrace{S_0^1 \parallel \cdots \parallel S_0^1}_{n \text{ times}}$.

Semaphores II

Lemma

For every $n \in \mathbb{N}_+$, we have: $S_0^n \sim \underbrace{S_0^1 \parallel \cdots \parallel S_0^1}_{n \text{ times}}$.

Proof.

Consider the following binary relation where $i_1, i_2, \ldots, i_n \in \{0, 1\}$:

$$\rho = \left\{ \left(S_{\boldsymbol{i}}^{\boldsymbol{n}}, S_{\boldsymbol{i}_{1}}^{1} \parallel \cdots \parallel S_{\boldsymbol{i}_{n}}^{1} \right) \left| \sum_{j=1}^{\boldsymbol{n}} \boldsymbol{i}_{j} = \boldsymbol{i} \right\} \right\}$$

Semaphores II

Lemma

For every $n \in \mathbb{N}_+$, we have: $S_0^n \sim \underbrace{S_0^1 \parallel \cdots \parallel S_0^1}_{n \text{ times}}$.

Proof.

Consider the following binary relation where $i_1, i_2, \ldots, i_n \in \{0, 1\}$:

$$\rho = \left\{ \left(S_i^n, S_{i_1}^1 \parallel \cdots \parallel S_{i_n}^1 \right) \mid \sum_{j=1}^n i_j = i \right\}$$

Then: ρ is a strong bisimulation and $(S_0^n, \underbrace{S_0^1 \parallel \cdots \parallel S_0^1}_{n \text{ times}}) \in \rho$.

Outline of Lecture 13

Recap: Strong Bisimulation

Deadlock Sensitivity

Buffers Revisited

Strong Bisimilarity as a Game

Simulation Equivalence

Epilogue

How to Show Non-Bisimilarity?

How to Show Non-Bisimilarity?

Alternatives to prove that $s \not\sim t$

• Enumerate all binary relations and show that none of those containing (*s*, *t*) is a strong bisimulation.

How to Show Non-Bisimilarity?

Alternatives to prove that $s \not\sim t$

• Enumerate all binary relations and show that none of those containing (s, t) is a strong bisimulation. (This is expensive, as there are 2^{k^2} binary relations on *Prc* with |Prc| = k.)

How to Show Non-Bisimilarity?

Alternatives to prove that $s \not\sim t$

- Enumerate all binary relations and show that none of those containing (s, t) is a strong bisimulation. (This is expensive, as there are 2^{k^2} binary relations on *Prc* with |Prc| = k.)
- Make certain observations which will enable to disqualify many bisimulation candidates in one step.

How to Show Non-Bisimilarity?

Alternatives to prove that $s \not\sim t$

- Enumerate all binary relations and show that none of those containing (s, t) is a strong bisimulation. (This is expensive, as there are 2^{k^2} binary relations on *Prc* with |Prc| = k.)
- Make certain observations which will enable to disqualify many bisimulation candidates in one step. (Yields heuristics – how about completeness?)

How to Show Non-Bisimilarity?

Alternatives to prove that $s \not\sim t$

- Enumerate all binary relations and show that none of those containing (s, t) is a strong bisimulation. (This is expensive, as there are 2^{k^2} binary relations on *Prc* with |Prc| = k.)
- Make certain observations which will enable to disqualify many bisimulation candidates in one step. (Yields heuristics – how about completeness?)
- Use game characterisation of strong bisimilarity.

Let (*Prc*, *Act*, \rightarrow) be an LTS and *s*, *t* \in *Prc*. Question: does *s* \sim *t*?

Let (*Prc*, *Act*, \rightarrow) be an LTS and *s*, *t* \in *Prc*. Question: does *s* \sim *t*?

We define a game with two players: an "attacker" and a "defender".

Let (*Prc*, *Act*, \rightarrow) be an LTS and *s*, *t* \in *Prc*. Question: does *s* \sim *t*?

We define a game with two players: an "attacker" and a "defender".

• The game is played in rounds and configurations of the game are pairs of states from *Prc* × *Prc*.

Let (*Prc*, *Act*, \rightarrow) be an LTS and *s*, *t* \in *Prc*. Question: does *s* \sim *t*?

We define a game with two players: an "attacker" and a "defender".

- The game is played in rounds and configurations of the game are pairs of states from *Prc* × *Prc*.
- In each round exactly one configuration is called current.

Let (*Prc*, *Act*, \rightarrow) be an LTS and *s*, *t* \in *Prc*. Question: does *s* \sim *t*?

We define a game with two players: an "attacker" and a "defender".

- The game is played in rounds and configurations of the game are pairs of states from *Prc* × *Prc*.
- In each round exactly one configuration is called current.
- Initially, the configuration (s, t) is the current one.

Let (*Prc*, *Act*, \rightarrow) be an LTS and *s*, *t* \in *Prc*. Question: does *s* \sim *t*?

We define a game with two players: an "attacker" and a "defender".

- The game is played in rounds and configurations of the game are pairs of states from *Prc* × *Prc*.
- In each round exactly one configuration is called current.
- Initially, the configuration (s, t) is the current one.

Intuition

The defender wants to show that $s \sim t$ while the attacker aims to prove the opposite.

Rules

In each round, the current configuration (s, t) is changed as follows:

1. the attacker chooses one of the two processes in the current configuration, say *t*, and makes an $\xrightarrow{\alpha}$ -move for some $\alpha \in Act$ to *t'*, say,

Rules

In each round, the current configuration (s, t) is changed as follows:

- 1. the attacker chooses one of the two processes in the current configuration, say t, and makes an $\xrightarrow{\alpha}$ -move for some $\alpha \in Act$ to t', say, and
- 2. the defender must respond by making an $\xrightarrow{\alpha}$ -move in the other process *s* of the current configuration under the same action α , yielding $s \xrightarrow{\alpha} s'$.

Rules

In each round, the current configuration (s, t) is changed as follows:

- 1. the attacker chooses one of the two processes in the current configuration, say *t*, and makes an $\xrightarrow{\alpha}$ -move for some $\alpha \in Act$ to *t'*, say, and
- 2. the defender must respond by making an $\xrightarrow{\alpha}$ -move in the other process *s* of the current configuration under the same action α , yielding $s \xrightarrow{\alpha} s'$.

The pair of processes (s', t') becomes the new current configuration. The game continues with another round.

Rules

In each round, the current configuration (s, t) is changed as follows:

- 1. the attacker chooses one of the two processes in the current configuration, say *t*, and makes an $\xrightarrow{\alpha}$ -move for some $\alpha \in Act$ to *t'*, say, and
- 2. the defender must respond by making an $\xrightarrow{\alpha}$ -move in the other process *s* of the current configuration under the same action α , yielding $s \xrightarrow{\alpha} s'$.

The pair of processes (s', t') becomes the new current configuration. The game continues with another round.

Results

- 1. If one player cannot move, the other player wins:
 - attacker cannot move if s
 earrow and t
 earrow
 - defender cannot move if no matching transition available

Rules

In each round, the current configuration (s, t) is changed as follows:

- 1. the attacker chooses one of the two processes in the current configuration, say *t*, and makes an $\xrightarrow{\alpha}$ -move for some $\alpha \in Act$ to *t'*, say, and
- 2. the defender must respond by making an $\xrightarrow{\alpha}$ -move in the other process *s* of the current configuration under the same action α , yielding $s \xrightarrow{\alpha} s'$.

The pair of processes (s', t') becomes the new current configuration. The game continues with another round.

Results

- 1. If one player cannot move, the other player wins:
 - attacker cannot move if s
 earrow and t
 earrow
 - defender cannot move if no matching transition available
- 2. If the game can be played *ad infinitum*, the defender wins.

Examples

Example 13.5 (Bisimulation games)

1. Use the game characterisation to show $P \sim Q$ where

$$P = a.P_1 + a.P_2$$
 $Q = a.Q_1$
 $P_1 = b.P_2$ $Q_1 = b.Q_1$
 $P_2 = b.P_2$

Examples

Example 13.5 (Bisimulation games)

1. Use the game characterisation to show $P \sim Q$ where

$$P = a.P_1 + a.P_2$$
 $Q = a.Q_1$
 $P_1 = b.P_2$ $Q_1 = b.Q_1$
 $P_2 = b.P_2$

2. Use the game characterisation to show that $s \not\sim t$ where:

Two winning strategies for attacker in configuration (s, t):

- start with $s \xrightarrow{a} s_1$
- start with $t \xrightarrow{a} t_1$

Game Characterisation of Bisimulation

Theorem 13.6 (Game characterisation of bisimulation) (Stirling 1995, Thomas 1993)

1. $s \sim t$ iff the defender has a universal winning strategy from configuration (s, t).

2. $s \not\sim t$ iff the attacker has a universal winning strategy from configuration (s, t).

(By means of a universal winning strategy, a player can always win, regardless of how the other player selects their moves.)

Game Characterisation of Bisimulation

Theorem 13.6 (Game characterisation of bisimulation) (Stirling 1995, Thomas 1993)

1. $s \sim t$ iff the defender has a universal winning strategy from configuration (s, t). 2. $s \not\sim t$ iff the attacker has a universal winning strategy from configuration (s, t).

(By means of a universal winning strategy, a player can always win, regardless of how the other player selects their moves.)

Proof.

by relating winning strategy of defender/attacker to existence/non-existence of strong bisimulation relation

Game Characterisation of Bisimulation

Theorem 13.6 (Game characterisation of bisimulation) (Stirling 1995, Thomas 1993)

1. $s \sim t$ iff the defender has a universal winning strategy from configuration (s, t). 2. $s \not\sim t$ iff the attacker has a universal winning strategy from configuration (s, t). (By means of a universal winning strategy, a player can always win, regardless of how the other player selects their moves.)

Proof.

by relating winning strategy of defender/attacker to existence/non-existence of strong bisimulation relation

A bisimulation game can be used to prove bisimilarity as well as non-bisimilarity.¹ It often provides elegant arguments for $s \not\sim t$.

¹In the following lectures, we will present yet another method to check this.

Outline of Lecture 13

Recap: Strong Bisimulation

Deadlock Sensitivity

Buffers Revisited

Strong Bisimilarity as a Game

Simulation Equivalence

Epilogue

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features).

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features).

Definition 13.7 (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P, Q) ∈ ρ and P → P', there exists Q' ∈ Prc such that Q → Q' and P' ρ Q'.

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features).

Definition 13.7 (Strong simulation)

- Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P, Q) ∈ ρ and P → P', there exists Q' ∈ Prc such that Q → Q' and P' ρ Q'.
- *Q* strongly simulates *P*, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features).

Definition 13.7 (Strong simulation)

- Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P, Q) ∈ ρ and P → P', there exists Q' ∈ Prc such that Q → Q' and P' ρ Q'.
- *Q* strongly simulates *P*, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.
- *P* and *Q* are strongly simulation equivalent if $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features).

Definition 13.7 (Strong simulation)

- Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P, Q) ∈ ρ and P → P', there exists Q' ∈ Prc such that Q → Q' and P' ρ Q'.
- *Q* strongly simulates *P*, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.
- *P* and *Q* are strongly simulation equivalent if $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Thus: if *Q* strongly simulates *P*, then whatever transition *P* takes, *Q* can match it with retaining all of *P*'s options.

Observation: sometimes, the concept of strong bisimulation is too strong (example: extending a system by new features).

Definition 13.7 (Strong simulation)

- Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P, Q) ∈ ρ and P → P', there exists Q' ∈ Prc such that Q → Q' and P' ρ Q'.
- *Q* strongly simulates *P*, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.
- *P* and *Q* are strongly simulation equivalent if $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Thus: if *Q* strongly simulates *P*, then whatever transition *P* takes, *Q* can match it with retaining all of *P*'s options.

But: P does not need to be able to match each transition of Q!

Definition (Strong simulation)

Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P, Q) ∈ ρ and P → P', there exists Q' ∈ Prc such that Q → Q' and P' ρ Q'.

Definition (Strong simulation)

- Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P, Q) ∈ ρ and P → P', there exists Q' ∈ Prc such that Q → Q' and P' ρ Q'.
- *Q* strongly simulates *P*, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.

Definition (Strong simulation)

- Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P, Q) ∈ ρ and P → P', there exists Q' ∈ Prc such that Q → Q' and P' ρ Q'.
- *Q* strongly simulates *P*, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.
- *P* and *Q* are strongly simulation equivalent if $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Definition (Strong simulation)

- Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P, Q) ∈ ρ and P → P', there exists Q' ∈ Prc such that Q → Q' and P' ρ Q'.
- *Q* strongly simulates *P*, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.
- *P* and *Q* are strongly simulation equivalent if $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Example 13.8

Q strongly simulates P, but not vice versa

Definition (Strong simulation)

- Relation ρ ⊆ Prc × Prc is a strong simulation if, whenever (P, Q) ∈ ρ and P → P', there exists Q' ∈ Prc such that Q → Q' and P' ρ Q'.
- *Q* strongly simulates *P*, denoted $P \sqsubseteq Q$, if there exists a strong simulation ρ such that $P \rho Q$. Relation \sqsubseteq is called strong similarity.
- *P* and *Q* are strongly simulation equivalent if $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Example 13.8

Q strongly simulates *P*, but not vice versa

This yields that:

 $a.b.nil + a.c.nil \sqsubseteq a.(b.nil + c.nil)$ $a.(b.nil + c.nil) \nvDash a.b.nil + a.c.nil.$

Lemma 13.9 (Bisimilarity implies simulation equivalence)

If $P \sim Q$, then $P \sqsubseteq Q$ and $Q \sqsubseteq P$.

Lemma 13.9 (Bisimilarity implies simulation equivalence)

```
If P \sim Q, then P \sqsubseteq Q and Q \sqsubseteq P.
```

Proof.

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions.

Lemma 13.9 (Bisimilarity implies simulation equivalence)

```
If P \sim Q, then P \sqsubseteq Q and Q \sqsubseteq P.
```

Proof.

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions.

Caveat: the converse does not generally hold!

Lemma 13.9 (Bisimilarity implies simulation equivalence)

```
If P \sim Q, then P \sqsubseteq Q and Q \sqsubseteq P.
```

Proof.

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions.

Caveat: the converse does not generally hold!

Lemma 13.9 (Bisimilarity implies simulation equivalence)

```
If P \sim Q, then P \sqsubseteq Q and Q \sqsubseteq P.
```

Proof.

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions.

Caveat: the converse does not generally hold!

Example 13.10

Lemma 13.9 (Bisimilarity implies simulation equivalence)

```
If P \sim Q, then P \sqsubseteq Q and Q \sqsubseteq P.
```

Proof.

22 of 25

A strong bisimulation $\rho \subseteq Prc \times Prc$ for $P \sim Q$ is a strong simulation for both directions.

Caveat: the converse does not generally hold!

Example 13.10

 $P \sqsubseteq Q$ and $Q \sqsubseteq P$, but $P \not\sim Q$

Reason: \sim allows the attacker to switch sides at each step!

Outline of Lecture 13

Recap: Strong Bisimulation

Deadlock Sensitivity

Buffers Revisited

Strong Bisimilarity as a Game

Simulation Equivalence

Epilogue

Summary

• Strong bisimulation of processes is based on mutually mimicking each other

Summary

24 of 25

- Strong bisimulation of processes is based on mutually mimicking each other
- Strong bisimilarity \sim :
 - 1. is the largest strong bisimulation
 - 2. is an equivalence relation
 - 3. is strictly coarser than LTS isomorphism
 - 4. is strictly finer than trace equivalence
 - 5. is a CCS congruence
 - 6. is deadlock sensitive
 - 7. can be checked using a two-player game

Summary

- Strong bisimulation of processes is based on mutually mimicking each other
- Strong bisimilarity \sim :
 - 1. is the largest strong bisimulation
 - 2. is an equivalence relation
 - 3. is strictly coarser than LTS isomorphism
 - 4. is strictly finer than trace equivalence
 - 5. is a CCS congruence
 - 6. is deadlock sensitive
 - 7. can be checked using a two-player game
- Strong similarity \sqsubseteq :
 - 1. is a one-way strong bisimilarity
 - 2. bi-directional version (strong simulation equivalence) is strictly coarser than \sim

Overview of Some Behavioural Equivalences

