Winter Semester 2019/20

Lecture 11: Trace Equivalence

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Introduction

Outline of Lecture 11

Introduction

RWTH

20f25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Introduction

Introduction

e When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and Impl.

RWTH

3 0of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Introduction

Introduction

e When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and Impl.

e This gives rise to the natural question: when are two CCS processes behaving the same?

RWTH

3 0of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Introduction

Introduction

e When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and Impl.

e This gives rise to the natural question: when are two CCS processes behaving the same?

e As there are many different interpretations of “behaving the same”, different behavioural
equivalences have emerged.

RWTH

3 0of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Introduction

Behavioural Equivalence

Implementation

CM = coin.coffee.CM
CS = pub.coin.coffee.CS
Uni = (CM || CS) \ {coin, coffee}

RWTH

4 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Introduction

Behavioural Equivalence

Implementation Specification

CM = coin.coffee.CM -
CS = pub.coin.coffee.CS Spec = pub.Spec
Uni = (CM || CS) \ {coin, coffee}

RWTH

4 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Introduction

Behavioural Equivalence

Implementation Specification

CM = coin.coffee.CM
CS = pub.coin.coffee.CS Spec = pub.Spec
Uni = (CM || CS) \ {coin, coffee}

Question

Are the specification Spec and implementation Uni behaviourally equivalent:

?

Spec = Uni

RWTH

4 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Preliminaries

Outline of Lecture 11

Preliminaries

5 of 25 Concurrency Theory
Winter Semester 2019/20

Lecture 11: Trace Equivalence

)

4

Software Modeling
Il and Verification Chair

RWTH

Preliminaries

Equivalence Relations

Some reasonable required properties

e Reflexivity: P = P for every process P
e Symmetry: P= Qifandonlyif Q=P

e Transitivity: Spec, = ... = Spec,, = Impl implies that Spec, = Impl/
6 of 25 Concurrency Theory
Winter Semester 2019/20 2 Soft\‘llvar(fe Moue"gﬂ Rm
and Verification Chair

Lecture 11: Trace Equivalence

Preliminaries

Equivalence Relations

Some reasonable required properties

e Reflexivity: P = P for every process P
e Symmetry: P= Qifandonlyif Q=P
e Transitivity: Spec, = ... = Spec,, = Impl implies that Spec, = Impl/

Definition 11.1 (Equivalence)

A binary relation = C S X S over a set S is an equivalence if
e it is reflexive: s = sforevery s € S,
e it is symmetric: s = timplies t = s for every s, € S,
e it is transitive: s = tand t = uimplies s = uforevery s, t,u € S.

RWTH

6 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Preliminaries

Equivalence Relations

Some reasonable required properties

e Reflexivity: P = P for every process P
e Symmetry: P= Qifandonlyif Q=P
e Transitivity: Spec, = ... = Spec,, = Impl implies that Spec, = Impl/

Definition 11.1 (Equivalence)

A binary relation = C S X S over a set S is an equivalence if
e it is reflexive: s = sforevery s € S,
e it is symmetric: s = timplies t = s for every s, € S,
e it is transitive: s = tand t = uimplies s = uforevery s, t,u € S.

Remark: equivalences induce quotient structures with equivalence classes as
elements

RWTH

6 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Preliminaries

Isomorphism: An Example Behavioural Equivalence

Definition 11.2 (LTS isomorphism)

Two LTSs Ty = (S;, Acty, —¢) and T, = (S,, Act,, —>5) are isomorphic, denoted
T =iso T, if there exists a bijection 7 : S; — S, such that

s —qt ifandonlyif f(s) —f(t).

RWTH

7 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Preliminaries

Isomorphism: An Example Behavioural Equivalence

Definition 11.2 (LTS isomorphism)

Two LTSs Ty = (S;, Acty, —¢) and T, = (S,, Act,, —>5) are isomorphic, denoted
T =iso T, if there exists a bijection 7 : S; — S, such that

s —qt ifandonlyif f(s) —f(t).

It follows immediately that =, is an equivalence. (Why?)

RWTH

7 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Preliminaries

Isomorphism: An Example Behavioural Equivalence

Definition 11.2 (LTS isomorphism)

Two LTSs Ty = (S;, Acty, —¢) and T, = (S,, Act,, —>5) are isomorphic, denoted
T =iso T, if there exists a bijection 7 : S; — S, such that

s —qt ifandonlyif f(s) —f(t).

It follows immediately that =, is an equivalence. (Why?)

Example 11.3 (Abelian monoid laws for 4+ and ||)

For all CCS processes P, Q € Prc,

1. LTS(P + Q) =iso LTS(Q + P), LTS(P || Q) =iso LTS(Q || P)

2. LTS((P+ Q) + R) =i LTS(P + (Q + R)), LTS((P || Q) || R) =iso LTS(P || (Q || R))
3. LTS(P + nil) =jso LTS(P || nil) =50 LTS(P)

RWTH

7 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Preliminaries

Isomorphism Il

Assumption

From now on, we will consider processes modulo isomorphism, i.e., we do not
distinguish CCS processes with isomorphic LTSs.

RWTH

8 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Preliminaries

Isomorphism Il

Assumption

From now on, we will consider processes modulo isomorphism, i.e., we do not
distinguish CCS processes with isomorphic LTSs.

Caveat
But: isomorphism is very distinctive. For instance,

X=aX and Y =a.ayY

are distinguished although both can (only) execute infinitely many a-actions and
should thus be considered equivalent.

RWTH

8 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

Outline of Lecture 11

Requirements on Behavioural Equivalences

RWTH

9 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., = should be coarser than LTS isomorphism:

LTS(P) =i, LTS(Q) = P = Q.

RWTH

10 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., = should be coarser than LTS isomorphism:

LTS(P) =i, LTS(Q) = P = Q.

2. More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., = should be finer than trace equivalence:

P=Q = Tr(P) =Tr(Q).

RWTH

10 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., = should be coarser than LTS isomorphism:

LTS(P) =i, LTS(Q) = P = Q.

2. More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., = should be finer than trace equivalence:

P=Q = Tr(P) =Tr(Q).

3. Congruence property: the equivalence must be substitutive with respect to all CCS
operators (see next slide).

RWTH

10 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., = should be coarser than LTS isomorphism:
LTS(P) =50 LTS(Q) = P = Q.
2. More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., = should be finer than trace equivalence:
P=Q = Tr(P) =Tr(Q).
3. Congruence property: the equivalence must be substitutive with respect to all CCS

operators (see next slide).

4. Deadlock preservation: equivalent processes should have the same deadlock behaviour,
i.e., equivalent process can either both deadlock, or both cannot.’

'Later, we will generalise this to a set of properties that can be expressed in a logic.

RWTH

10 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., = should be coarser than LTS isomorphism:

LTS(P) =i, LTS(Q) = P = Q.

2. More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., = should be finer than trace equivalence:

P=Q = Tr(P) =Tr(Q).
3. Congruence property: the equivalence must be substitutive with respect to all CCS

operators (see next slide).

4. Deadlock preservation: equivalent processes should have the same deadlock behaviour,
i.e., equivalent process can either both deadlock, or both cannot.’

5. Optional: the coarsest possible equivalence: there should be no less discriminating
equivalence satisfying all these requirements.

'Later, we will generalise this to a set of properties that can be expressed in a logic.

RWTH

10 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

What is a Congruence?

C(P) C(Q)

RWTH

11 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

What is a Congruence?

C(P) C(Q)

CCS contexts informally

A CCS context is a CCS process fragment with a “hole” in it (examples on the board).

RWTH

11 0f 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

What is a Congruence?

C(P) C(Q)

CCS contexts informally

A CCS context is a CCS process fragment with a “hole” in it (examples on the board).

CCS congruences informally

Relation = is a CCS congruence whenever P = Q implies C(P) = C(Q) for every
CCS context C.

RWTH

11 0f 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Importance of Congruences

CCS congruences informally

Relation = is a congruence whenever P = Q implies C(P) = C(Q) for every CCS
context C.

12 of 25 Concurrency Theory 0
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Importance of Congruences

Relation = is a whenever implies for every CCS
context

Example 11.4 (Congruence)

Let a = bfor a, b € Z whenever amod kK = b mod k, for some kK € N, .
Equivalence relation = is a congruence for addition and multiplication.

RWTH

12 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Importance of Congruences

Relation = is a whenever implies for every CCS
context

Example 11.4 (Congruence)

Let a = bfor a, b € Z whenever amod kK = b mod k, for some kK € N, .
Equivalence relation = is a congruence for addition and multiplication.

Important motivations of requiring = to be a congruence on processes:

1. Model-based development through refinement: replacing an abstract model Spec by a
more detailed model Impl

2. Optimisation: replacing an implementation /mp/ by a more efficient implementation /mp!/'.

RWTH

12 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

CCS Congruences Formally

Definition 11.5 (CCS congruence)

An equivalence relation = C Prc X Prcis a CCS congruence if it is preserved by all
CCS constructs, i.e., it P, Q € Prc with P = Q then:

a.P=a.Q for every a € Act
P+R=Q+ R forevery R & Prc
P||R=Q| R forevery R € Prc
P\L=Q\L foreveryL C A

P[f]=Q|f|] foreveryf:A— A

RWTH

13 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

CCS Congruences Formally

Definition 11.5 (CCS congruence)

An equivalence relation = C Prc X Prcis a CCS congruence if it is preserved by all
CCS constructs, i.e., if P, Q € Prc with P = Q then:

a.P=a.Q for every a € Act
P+R=Q+ R forevery R & Prc
P||R=Q| R forevery R € Prc
P\L=Q\L foreveryL C A

P[f]=Q|f|] foreveryf:A— A

Thus, a CCS congruence is substitutive for all possible CCS contexts.

RWTH

13 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

Deadlocks
Definition 11.6 (Deadlock)

Let P, Q € Prc and w € Act* such that P — Qand Q /. Then Qs called a
w-deadlock of P.

RWTH

14 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

Deadlocks
Definition 11.6 (Deadlock)

Let P, Q € Prc and w € Act* such that P — Q and Q #—. Then Qs called a
w-deadlock of P.

Example 11.7
P = a.b.nil + a.nil has an a-deadlock, whereas Q — a.b.nil has not.

Such properties are important as it can be crucial that a certain action is eventually
possible.

RWTH

14 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

Deadlocks

Definition 11.6 (Deadlock)

Let P, Q € Prc and w € Act* such that P — Q and Q #—. Then Qs called a
w-deadlock of P.

Example 11.7

P = a.b.nil + a.nil has an a-deadlock, whereas Q = a.b.nil has not.

Such properties are important as it can be crucial that a certain action is eventually
possible.

Definition 11.8 (Deadlock sensitivity)
Relation = C Prc x Prc is deadlock sensitive whenever:

P = Qimplies (Vw € Act”. P has a w-deadlock iff Q has a w-deadlock) .

RWTH

14 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Outline of Lecture 11

Trace Equivalence Revisited

15 of 25 Concurrency Theory
Winter Semester 2019/20

Lecture 11: Trace Equivalence

)

4

Software Modeling
Il and Verification Chair

RWTH

Trace Equivalence Revisited

Trace Equivalence

Trace language (Definition 3.2)
The trace language of P € Prc is defined by:
TH(P) := {w € Act* | IP' € Prc. P - P'}.

RWTH

16 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence

Trace language (Definition 3.2)
The trace language of P € Prc is defined by:
TH(P) := {w € Act* | IP' € Prc. P - P'}.

Trace equivalence (Definition 3.2)

P, Q € Prc are called trace equivalent iff Tr(P) = Tr(Q).

RWTH

16 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence

Trace language (Definition 3.2)
The trace language of P € Prc is defined by:
TH(P) == {w € Act* | IP' € Prc. P 5 P'}.

Trace equivalence (Definition 3.2)

P, Q € Prc are called trace equivalent iff Tr(P) = Tr(Q).

Trace equivalence is evidently an equivalence relation and is less discriminative than
isomorphism.

RWTH

16 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

17 of 25 Concurrency Theory
Winter Semester 2019/20

Lecture 11: Trace Equivalence

n

4

Software Modeling
Il and Verification Chair

RWTH

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.

RWTH

17 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:

RWTH

17 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 11: Trace Equivalence ‘ Bl and Verification Chair

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:

e Let P,Q € Prc with Tr(P) = Tr(Q).

RWTH

17 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 11: Trace Equivalence ‘ Bl and Verification Chair

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:

e Let P,Q € Prc with Tr(P) = Tr(Q).
e Then for R € Prc it holds:

THP + R) = TH(P) U TH(R) = TH(Q) U TH(R) = THQ + R).

RWTH

17 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 11: Trace Equivalence ‘ Bl and Verification Chair

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:

e Let P,Q € Prc with Tr(P) = Tr(Q).
e Then for R € Prc it holds:

Tr(P+R)=Tr(P)UTr(R) = Tr(Q) U Tr(R) = Tr(Q + R).
e Thus, P+ R and Q + R are trace equivalent.

RWTH

17 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 11: Trace Equivalence ‘ Bl and Verification Chair

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:

e Let P,Q € Prc with Tr(P) = Tr(Q).

e Then for R € Prc it holds:

Tr(P+R)=Tr(P)UTr(R) = Tr(Q) U Tr(R) = Tr(Q + R).
e Thus, P+ R and Q + R are trace equivalent.

For the other CCS constructs, the proof goes along similar lines.
Exercise: do the proof for ||.

RWTH

17 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Two Coffee/Tea Machines
Example 11.10

Consider the coffee/tea machines CTM and its variant CTM”.
CTM = coin. (coffee. CTM + tea.CTM)

CTM’ = coin.coffee. CTM’ + coin.tea.CTM’.

18 of 25 Concurrency Theory o Rm
Winter Semester 2019/20 Software Modeling

Lecture 11: Trace Equivalence Bl and Verification Chair

Trace Equivalence Revisited

Two Coffee/Tea Machines
Example 11.10

Consider the coffee/tea machines CTM and its variant CTM”.
CTM = coin. (coffee. CTM + tea.CTM)

CTM’ = coin.coffee.CTM’ + coin.tea. CTM’.
Note the difference between the two processes. Nevertheless:

Tr(CTM) = Tr(CTM).

RWTH

18 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 11: Trace Equivalence Bl and Verification Chair

Trace Equivalence Revisited

Two Coffee/Tea Machines
Example 11.10

Consider the coffee/tea machines CTM and its variant CTM”.
CTM = coin. (coffee. CTM + tea.CTM)

CTM’ = coin.coffee.CTM’ + coin.tea. CTM’.
Note the difference between the two processes. Nevertheless:

Tr(CTM) = Tr(CTM).

Are we satisfied?

RWTH

18 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Two Coffee/Tea Machines
Example 11.10

Consider the coffee/tea machines CTM and its variant CTM”.
CTM = coin. (coffee. CTM + tea.CTM)

CTM’ = coin.coffee.CTM’ + coin.tea. CTM’.
Note the difference between the two processes. Nevertheless:

Tr(CTl\/I) — Tr(CTM’).
Are we satisfied? No, as CTM and CTM'’ differ in the context:

C(-) = (_-_ || CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.
hole

RWTH

18 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Two Coffee/Tea Machines
Example 11.10

Consider the coffee/tea machines CTM and its variant CTM”.
CTM = coin. (coffee. CTM + tea.CTM)

CTM’ = coin.coffee.CTM’ + coin.tea. CTM’.
Note the difference between the two processes. Nevertheless:
Tr(CTM) = Tr(CTM).
Are we satisfied? No, as CTM and CTM’ differ in the context:

C(-) = (_-_ || CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.
hole

Why? C(CTM’) may yield a deadlock, but C(CTM) does not.

RWTH

18 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Checking Trace Equivalence

Traces by automata

For finite-state P, the trace language Tr(P) of process P is accepted by the
(non-deterministic) finite automaton obtained from the LTS of P with initial state P
and making all states accepting (final).

RWTH

19 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Checking Trace Equivalence

Traces by automata

For finite-state P, the trace language Tr(P) of process P is accepted by the
(non-deterministic) finite automaton obtained from the LTS of P with initial state P
and making all states accepting (final).

Theorem 11.11

Checking trace equivalence of two finite processes is PSPACE-complete.

RWTH

19 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Checking Trace Equivalence

Traces by automata

For finite-state P, the trace language Tr(P) of process P is accepted by the
(non-deterministic) finite automaton obtained from the LTS of P with initial state P
and making all states accepting (final).

Theorem 11.11

Checking trace equivalence of two finite processes is PSPACE-complete.

Proof.

Checking whether Tr(P) = Tr(Q), for finite-state P and Q, boils down to deciding
whether their non-deterministic automata accept the same language. As this problem
in automata theory is PSPACE-complete, it follows that checking Tr(P) = Tr(Q) is
PSPACE-complete. O]

RWTH

19 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Traces and Deadlocks
Example 11.12 (Traces and deadlocks)

Traces and deadlocks are independent in the following sense:

P Q P Q
a/\a Ja a,/ \b a/N\c
bl b O b Oc
same traces different traces
different deadlocks same deadlocks
20 of 2 Concurrency Theory
0 i Winter Semester 2019/20 o Softwar_e_Mo_deIing _ Rm

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Traces and Deadlocks
Example 11.12 (Traces and deadlocks)

Traces and deadlocks are independent in the following sense:

P Q P Q
a,/\a Jla a,/\nb a/\c
bl b O b Oc

same traces different traces
different deadlocks same deadlocks

But: processes with finite trace sets and identical deadlocks are trace equivalent
(since every trace is a prefix of some deadlock).

RWTH

20 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Outline of Lecture 11

Other Forms of Trace Equivalence

21 of 25 Concurrency Theory
Winter Semester 2019/20

Lecture 11: Trace Equivalence

)

4

Software Modeling
Il and Verification Chair

RWTH

Other Forms of Trace Equivalence

Completed Trace Equivalence

Definition 11.13 (Completed traces)
A completed trace of P € Prcis a sequence w & Act” such that:
P Q and Q4

for some Q € Pre.

RWTH

22 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Completed Trace Equivalence

Definition 11.13 (Completed traces)
A completed trace of P € Prcis a sequence w & Act” such that:
P Q and Q4

for some Q € Pre.

The completed traces of process P may be seen as capturing its deadlock behaviour,
as they are precisely the action sequences that can lead to a process from which no
transition is possible (i.e., is a deadlock).

RWTH

22 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Completed Trace Equivalence

Definition 11.13 (Completed traces)
A completed trace of P € Prcis a sequence w & Act” such that:
P Q and Q4

for some Q € Pre.

The completed traces of process P may be seen as capturing its deadlock behaviour,
as they are precisely the action sequences that can lead to a process from which no
transition is possible (i.e., is a deadlock).

Exercise

Check whether completed trace equivalence is a congruence for restriction.

RWTH

22 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Further Variations of Trace Equivalence

Definition 11.14 (Ready trace equivalence) (Baeten et al.)

A sequence AyapAiay ... A, with A; C Act and «; € Act (i € N) is a ready trace of
(07 (07 R

process Pif P = Py —= P, —% ... -“s P, such that A; = {a € Act | P, —}. Processes
P and Q are ready-trace equivalent if they have exactly the same set of ready traces.

RWTH

23 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Further Variations of Trace Equivalence

Definition 11.14 (Ready trace equivalence) (Baeten et al.)

A sequence ApapAiay ... A, with A; € Act and «; € Act (i € N) is a ready trace of
(07 (07 N

process Pif P = Py —= P, —% ... -“s P, such that A; = {a € Act | P, —}. Processes
P and Q are ready-trace equivalent if they have exactly the same set of ready traces.

Definition 11.15 (Failure trace equivalence) (Reed and Roscoe)

A sequence AyapAiay . .. apA, with A; C Act and «o; € Act (i € N) is a failure trace of
process Pif P = Py — P, —% ... =% P, suchthat AN {a € Act | P, -} = 0).
Processes P and Q are failure-trace equivalent if they have exactly the same set of failure

traces.

RWTH

23 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Further Variations of Trace Equivalence

Definition 11.14 (Ready trace equivalence) (Baeten et al.)

A sequence ApapAiay ... A, with A; € Act and «; € Act (i € N) is a ready trace of
(07 (07 N

process Pif P = Py —= P, —% ... -“s P, such that A; = {a € Act | P, —}. Processes
P and Q are ready-trace equivalent if they have exactly the same set of ready traces.

Definition 11.15 (Failure trace equivalence) (Reed and Roscoe)

A sequence AyapAiay . .. apA, with A; C Act and «o; € Act (i € N) is a failure trace of
process Pif P = Py — P, —% ... =% P, suchthat AN {a € Act | P, -} = 0).
Processes P and Q are failure-trace equivalent if they have exactly the same set of failure

traces.

Example 11.16

P:=ab+ acand Q:= a.(b+ c) are
e trace equivalent: Tr(P) = {¢, a, ab, ac} = Tr(Q), but
e not ready equivalent: {a} a{b,c} b € rTr(Q) \ rTr(P)

RWTH

23 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 11: Trace Equivalence

Summary

Outline of Lecture 11

Summary

24 of 25 Concurrency Theory
Winter Semester 2019/20

Lecture 11: Trace Equivalence

)

4

Software Modeling
Il and Verification Chair

RWTH

Summary

Summary

1. Behavioural equivalences should be
I. less distinctive than isomorphism
ii. more distinctive than trace equivalence
iii. a CCS congruence
iv. deadlock sensitive

25 of 25 Concurrency Theory
Winter Semester 2019/20

Lecture 11: Trace Equivalence

4

: Software Modeling

Il and Verification Chair

RWTH

Summary

Summary

1. Behavioural equivalences should be
I. less distinctive than isomorphism
ii. more distinctive than trace equivalence
iii. a CCS congruence
iv. deadlock sensitive
2. Trace equivalence
I. equates processes that have the same traces, i.e., action sequences
ii. is implied by LTS isomorphism
lii. is a CCS congruence
Iv. is not deadlock sensitive
v. checking trace equivalence is PSPACE-complete

RWTH

25 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 11: Trace Equivalence ‘ Bl and Verification Chair

Summary

Summary

1. Behavioural equivalences should be
I. less distinctive than isomorphism
ii. more distinctive than trace equivalence
iii. a CCS congruence
iv. deadlock sensitive
2. Trace equivalence
I. equates processes that have the same traces, i.e., action sequences
ii. is implied by LTS isomorphism
lii. is a CCS congruence
Iv. is not deadlock sensitive
v. checking trace equivalence is PSPACE-complete

3. Variations: completed, ready, and failure traces

RWTH

25 of 25 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 11: Trace Equivalence ‘ Bl and Verification Chair

	Introduction
	Preliminaries
	Requirements on Behavioural Equivalences
	Trace Equivalence Revisited
	Other Forms of Trace Equivalence
	Summary

