
Concurrency Theory
Winter Semester 2019/20

Lecture 11: Trace Equivalence

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Introduction

Outline of Lecture 11

Introduction

Preliminaries

Requirements on Behavioural Equivalences

Trace Equivalence Revisited

Other Forms of Trace Equivalence

Summary

2 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Introduction

Introduction

• When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and Impl .

• This gives rise to the natural question: when are two CCS processes behaving the same?
• As there are many different interpretations of “behaving the same”, different behavioural

equivalences have emerged.

3 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Introduction

Introduction

• When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and Impl .
• This gives rise to the natural question: when are two CCS processes behaving the same?

• As there are many different interpretations of “behaving the same”, different behavioural
equivalences have emerged.

3 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Introduction

Introduction

• When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and Impl .
• This gives rise to the natural question: when are two CCS processes behaving the same?
• As there are many different interpretations of “behaving the same”, different behavioural

equivalences have emerged.

3 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Introduction

Behavioural Equivalence

Implementation

CM = coin.coffee.CM

CS = pub.coin.coffee.CS

Uni = (CM ‖ CS) \ {coin, coffee}

Specification

Spec = pub.Spec

Question

Are the specification Spec and implementation Uni behaviourally equivalent:

Spec
?≡ Uni

4 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Introduction

Behavioural Equivalence

Implementation

CM = coin.coffee.CM

CS = pub.coin.coffee.CS

Uni = (CM ‖ CS) \ {coin, coffee}

Specification

Spec = pub.Spec

Question

Are the specification Spec and implementation Uni behaviourally equivalent:

Spec
?≡ Uni

4 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Introduction

Behavioural Equivalence

Implementation

CM = coin.coffee.CM

CS = pub.coin.coffee.CS

Uni = (CM ‖ CS) \ {coin, coffee}

Specification

Spec = pub.Spec

Question

Are the specification Spec and implementation Uni behaviourally equivalent:

Spec
?≡ Uni

4 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Preliminaries

Outline of Lecture 11

Introduction

Preliminaries

Requirements on Behavioural Equivalences

Trace Equivalence Revisited

Other Forms of Trace Equivalence

Summary

5 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Preliminaries

Equivalence Relations

Some reasonable required properties

• Reflexivity: P ≡ P for every process P
• Symmetry: P ≡ Q if and only if Q ≡ P
• Transitivity: Spec0 ≡ . . . ≡ Specn ≡ Impl implies that Spec0 ≡ Impl

Definition 11.1 (Equivalence)

A binary relation ≡ ⊆ S × S over a set S is an equivalence if
• it is reflexive: s ≡ s for every s ∈ S,
• it is symmetric: s ≡ t implies t ≡ s for every s, t ∈ S,
• it is transitive: s ≡ t and t ≡ u implies s ≡ u for every s, t , u ∈ S.

Remark: equivalences induce quotient structures with equivalence classes as
elements

6 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Preliminaries

Equivalence Relations

Some reasonable required properties

• Reflexivity: P ≡ P for every process P
• Symmetry: P ≡ Q if and only if Q ≡ P
• Transitivity: Spec0 ≡ . . . ≡ Specn ≡ Impl implies that Spec0 ≡ Impl

Definition 11.1 (Equivalence)

A binary relation ≡ ⊆ S × S over a set S is an equivalence if
• it is reflexive: s ≡ s for every s ∈ S,
• it is symmetric: s ≡ t implies t ≡ s for every s, t ∈ S,
• it is transitive: s ≡ t and t ≡ u implies s ≡ u for every s, t , u ∈ S.

Remark: equivalences induce quotient structures with equivalence classes as
elements

6 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Preliminaries

Equivalence Relations

Some reasonable required properties

• Reflexivity: P ≡ P for every process P
• Symmetry: P ≡ Q if and only if Q ≡ P
• Transitivity: Spec0 ≡ . . . ≡ Specn ≡ Impl implies that Spec0 ≡ Impl

Definition 11.1 (Equivalence)

A binary relation ≡ ⊆ S × S over a set S is an equivalence if
• it is reflexive: s ≡ s for every s ∈ S,
• it is symmetric: s ≡ t implies t ≡ s for every s, t ∈ S,
• it is transitive: s ≡ t and t ≡ u implies s ≡ u for every s, t , u ∈ S.

Remark: equivalences induce quotient structures with equivalence classes as
elements

6 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Preliminaries

Isomorphism: An Example Behavioural Equivalence

Definition 11.2 (LTS isomorphism)

Two LTSs T1 = (S1,Act1,−→1) and T2 = (S2,Act2,−→2) are isomorphic, denoted
T1 ≡iso T2, if there exists a bijection f : S1 → S2 such that

s
α−→ 1 t if and only if f (s)

α−→ 2 f (t).

It follows immediately that ≡iso is an equivalence. (Why?)

Example 11.3 (Abelian monoid laws for + and ‖)
For all CCS processes P,Q ∈ Prc,
1. LTS(P + Q) ≡iso LTS(Q + P), LTS(P ‖ Q) ≡iso LTS(Q ‖ P)

2. LTS((P + Q) + R) ≡iso LTS(P + (Q + R)), LTS((P ‖ Q) ‖ R) ≡iso LTS(P ‖ (Q ‖ R))

3. LTS(P + nil) ≡iso LTS(P ‖ nil) ≡iso LTS(P)

7 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Preliminaries

Isomorphism: An Example Behavioural Equivalence

Definition 11.2 (LTS isomorphism)

Two LTSs T1 = (S1,Act1,−→1) and T2 = (S2,Act2,−→2) are isomorphic, denoted
T1 ≡iso T2, if there exists a bijection f : S1 → S2 such that

s
α−→ 1 t if and only if f (s)

α−→ 2 f (t).

It follows immediately that ≡iso is an equivalence. (Why?)

Example 11.3 (Abelian monoid laws for + and ‖)
For all CCS processes P,Q ∈ Prc,
1. LTS(P + Q) ≡iso LTS(Q + P), LTS(P ‖ Q) ≡iso LTS(Q ‖ P)

2. LTS((P + Q) + R) ≡iso LTS(P + (Q + R)), LTS((P ‖ Q) ‖ R) ≡iso LTS(P ‖ (Q ‖ R))

3. LTS(P + nil) ≡iso LTS(P ‖ nil) ≡iso LTS(P)

7 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Preliminaries

Isomorphism: An Example Behavioural Equivalence

Definition 11.2 (LTS isomorphism)

Two LTSs T1 = (S1,Act1,−→1) and T2 = (S2,Act2,−→2) are isomorphic, denoted
T1 ≡iso T2, if there exists a bijection f : S1 → S2 such that

s
α−→ 1 t if and only if f (s)

α−→ 2 f (t).

It follows immediately that ≡iso is an equivalence. (Why?)

Example 11.3 (Abelian monoid laws for + and ‖)
For all CCS processes P,Q ∈ Prc,
1. LTS(P + Q) ≡iso LTS(Q + P), LTS(P ‖ Q) ≡iso LTS(Q ‖ P)

2. LTS((P + Q) + R) ≡iso LTS(P + (Q + R)), LTS((P ‖ Q) ‖ R) ≡iso LTS(P ‖ (Q ‖ R))

3. LTS(P + nil) ≡iso LTS(P ‖ nil) ≡iso LTS(P)

7 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Preliminaries

Isomorphism II

Assumption

From now on, we will consider processes modulo isomorphism, i.e., we do not
distinguish CCS processes with isomorphic LTSs.

Caveat

But: isomorphism is very distinctive. For instance,

X = a.X and Y = a.a.Y

are distinguished although both can (only) execute infinitely many a-actions and
should thus be considered equivalent.

8 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Preliminaries

Isomorphism II

Assumption

From now on, we will consider processes modulo isomorphism, i.e., we do not
distinguish CCS processes with isomorphic LTSs.

Caveat

But: isomorphism is very distinctive. For instance,

X = a.X and Y = a.a.Y

are distinguished although both can (only) execute infinitely many a-actions and
should thus be considered equivalent.

8 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

Outline of Lecture 11

Introduction

Preliminaries

Requirements on Behavioural Equivalences

Trace Equivalence Revisited

Other Forms of Trace Equivalence

Summary

9 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., ≡ should be coarser than LTS isomorphism:

LTS(P) ≡iso LTS(Q) =⇒ P ≡ Q.

2. More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., ≡ should be finer than trace equivalence:

P ≡ Q =⇒ Tr(P) = Tr(Q).

3. Congruence property: the equivalence must be substitutive with respect to all CCS
operators (see next slide).

4. Deadlock preservation: equivalent processes should have the same deadlock behaviour,
i.e., equivalent process can either both deadlock, or both cannot.1

5. Optional: the coarsest possible equivalence: there should be no less discriminating
equivalence satisfying all these requirements.

1Later, we will generalise this to a set of properties that can be expressed in a logic.

10 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., ≡ should be coarser than LTS isomorphism:

LTS(P) ≡iso LTS(Q) =⇒ P ≡ Q.

2. More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., ≡ should be finer than trace equivalence:

P ≡ Q =⇒ Tr(P) = Tr(Q).

3. Congruence property: the equivalence must be substitutive with respect to all CCS
operators (see next slide).

4. Deadlock preservation: equivalent processes should have the same deadlock behaviour,
i.e., equivalent process can either both deadlock, or both cannot.1

5. Optional: the coarsest possible equivalence: there should be no less discriminating
equivalence satisfying all these requirements.

1Later, we will generalise this to a set of properties that can be expressed in a logic.

10 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., ≡ should be coarser than LTS isomorphism:

LTS(P) ≡iso LTS(Q) =⇒ P ≡ Q.

2. More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., ≡ should be finer than trace equivalence:

P ≡ Q =⇒ Tr(P) = Tr(Q).

3. Congruence property: the equivalence must be substitutive with respect to all CCS
operators (see next slide).

4. Deadlock preservation: equivalent processes should have the same deadlock behaviour,
i.e., equivalent process can either both deadlock, or both cannot.1

5. Optional: the coarsest possible equivalence: there should be no less discriminating
equivalence satisfying all these requirements.

1Later, we will generalise this to a set of properties that can be expressed in a logic.

10 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., ≡ should be coarser than LTS isomorphism:

LTS(P) ≡iso LTS(Q) =⇒ P ≡ Q.

2. More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., ≡ should be finer than trace equivalence:

P ≡ Q =⇒ Tr(P) = Tr(Q).

3. Congruence property: the equivalence must be substitutive with respect to all CCS
operators (see next slide).

4. Deadlock preservation: equivalent processes should have the same deadlock behaviour,
i.e., equivalent process can either both deadlock, or both cannot.1

5. Optional: the coarsest possible equivalence: there should be no less discriminating
equivalence satisfying all these requirements.

1Later, we will generalise this to a set of properties that can be expressed in a logic.

10 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., ≡ should be coarser than LTS isomorphism:

LTS(P) ≡iso LTS(Q) =⇒ P ≡ Q.

2. More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., ≡ should be finer than trace equivalence:

P ≡ Q =⇒ Tr(P) = Tr(Q).

3. Congruence property: the equivalence must be substitutive with respect to all CCS
operators (see next slide).

4. Deadlock preservation: equivalent processes should have the same deadlock behaviour,
i.e., equivalent process can either both deadlock, or both cannot.1

5. Optional: the coarsest possible equivalence: there should be no less discriminating
equivalence satisfying all these requirements.

1Later, we will generalise this to a set of properties that can be expressed in a logic.

10 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

What is a Congruence?

CCS contexts informally

A CCS context is a CCS process fragment with a “hole” in it (examples on the board).

CCS congruences informally

Relation ≡ is a CCS congruence whenever P ≡ Q implies C(P) ≡ C(Q) for every
CCS context C.

11 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

What is a Congruence?

CCS contexts informally

A CCS context is a CCS process fragment with a “hole” in it (examples on the board).

CCS congruences informally

Relation ≡ is a CCS congruence whenever P ≡ Q implies C(P) ≡ C(Q) for every
CCS context C.

11 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

What is a Congruence?

CCS contexts informally

A CCS context is a CCS process fragment with a “hole” in it (examples on the board).

CCS congruences informally

Relation ≡ is a CCS congruence whenever P ≡ Q implies C(P) ≡ C(Q) for every
CCS context C.

11 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Importance of Congruences

CCS congruences informally

Relation ≡ is a congruence whenever P ≡ Q implies C(P) ≡ C(Q) for every CCS
context C.

Example 11.4 (Congruence)

Let a ≡ b for a, b ∈ Z whenever a mod k = b mod k , for some k ∈ N+.
Equivalence relation ≡ is a congruence for addition and multiplication.

Important motivations of requiring ≡ to be a congruence on processes:
1. Model-based development through refinement: replacing an abstract model Spec by a

more detailed model Impl
2. Optimisation: replacing an implementation Impl by a more efficient implementation Impl ′.

12 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Importance of Congruences

CCS congruences informally

Relation ≡ is a congruence whenever P ≡ Q implies C(P) ≡ C(Q) for every CCS
context C.

Example 11.4 (Congruence)

Let a ≡ b for a, b ∈ Z whenever a mod k = b mod k , for some k ∈ N+.
Equivalence relation ≡ is a congruence for addition and multiplication.

Important motivations of requiring ≡ to be a congruence on processes:
1. Model-based development through refinement: replacing an abstract model Spec by a

more detailed model Impl
2. Optimisation: replacing an implementation Impl by a more efficient implementation Impl ′.

12 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

The Importance of Congruences

CCS congruences informally

Relation ≡ is a congruence whenever P ≡ Q implies C(P) ≡ C(Q) for every CCS
context C.

Example 11.4 (Congruence)

Let a ≡ b for a, b ∈ Z whenever a mod k = b mod k , for some k ∈ N+.
Equivalence relation ≡ is a congruence for addition and multiplication.

Important motivations of requiring ≡ to be a congruence on processes:
1. Model-based development through refinement: replacing an abstract model Spec by a

more detailed model Impl
2. Optimisation: replacing an implementation Impl by a more efficient implementation Impl ′.

12 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

CCS Congruences Formally

Definition 11.5 (CCS congruence)

An equivalence relation ≡ ⊆ Prc × Prc is a CCS congruence if it is preserved by all
CCS constructs, i.e., if P,Q ∈ Prc with P ≡ Q then:

α.P ≡ α.Q for every α ∈ Act
P + R ≡ Q + R for every R ∈ Prc
P ‖ R ≡ Q ‖ R for every R ∈ Prc
P \ L ≡ Q \ L for every L ⊆ A

P[f] ≡ Q[f] for every f : A→ A

Thus, a CCS congruence is substitutive for all possible CCS contexts.

13 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

CCS Congruences Formally

Definition 11.5 (CCS congruence)

An equivalence relation ≡ ⊆ Prc × Prc is a CCS congruence if it is preserved by all
CCS constructs, i.e., if P,Q ∈ Prc with P ≡ Q then:

α.P ≡ α.Q for every α ∈ Act
P + R ≡ Q + R for every R ∈ Prc
P ‖ R ≡ Q ‖ R for every R ∈ Prc
P \ L ≡ Q \ L for every L ⊆ A

P[f] ≡ Q[f] for every f : A→ A

Thus, a CCS congruence is substitutive for all possible CCS contexts.

13 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

Deadlocks

Definition 11.6 (Deadlock)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w−→ Q and Q 6−→. Then Q is called a

w-deadlock of P.

Example 11.7

P = a.b.nil + a.nil has an a-deadlock, whereas Q = a.b.nil has not.

Such properties are important as it can be crucial that a certain action is eventually
possible.

Definition 11.8 (Deadlock sensitivity)

Relation ≡ ⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗.P has a w-deadlock iff Q has a w-deadlock) .

14 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

Deadlocks

Definition 11.6 (Deadlock)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w−→ Q and Q 6−→. Then Q is called a

w-deadlock of P.

Example 11.7

P = a.b.nil + a.nil has an a-deadlock, whereas Q = a.b.nil has not.

Such properties are important as it can be crucial that a certain action is eventually
possible.

Definition 11.8 (Deadlock sensitivity)

Relation ≡ ⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗.P has a w-deadlock iff Q has a w-deadlock) .

14 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Requirements on Behavioural Equivalences

Deadlocks

Definition 11.6 (Deadlock)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w−→ Q and Q 6−→. Then Q is called a

w-deadlock of P.

Example 11.7

P = a.b.nil + a.nil has an a-deadlock, whereas Q = a.b.nil has not.

Such properties are important as it can be crucial that a certain action is eventually
possible.

Definition 11.8 (Deadlock sensitivity)

Relation ≡ ⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗.P has a w-deadlock iff Q has a w-deadlock) .

14 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Outline of Lecture 11

Introduction

Preliminaries

Requirements on Behavioural Equivalences

Trace Equivalence Revisited

Other Forms of Trace Equivalence

Summary

15 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence

Trace language (Definition 3.2)

The trace language of P ∈ Prc is defined by:

Tr(P) := {w ∈ Act∗ | ∃P ′ ∈ Prc.P
w−→ P ′}.

Trace equivalence (Definition 3.2)

P,Q ∈ Prc are called trace equivalent iff Tr(P) = Tr(Q).

Trace equivalence is evidently an equivalence relation and is less discriminative than
isomorphism.

16 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence

Trace language (Definition 3.2)

The trace language of P ∈ Prc is defined by:

Tr(P) := {w ∈ Act∗ | ∃P ′ ∈ Prc.P
w−→ P ′}.

Trace equivalence (Definition 3.2)

P,Q ∈ Prc are called trace equivalent iff Tr(P) = Tr(Q).

Trace equivalence is evidently an equivalence relation and is less discriminative than
isomorphism.

16 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence

Trace language (Definition 3.2)

The trace language of P ∈ Prc is defined by:

Tr(P) := {w ∈ Act∗ | ∃P ′ ∈ Prc.P
w−→ P ′}.

Trace equivalence (Definition 3.2)

P,Q ∈ Prc are called trace equivalent iff Tr(P) = Tr(Q).

Trace equivalence is evidently an equivalence relation and is less discriminative than
isomorphism.

16 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:
• Let P,Q ∈ Prc with Tr(P) = Tr(Q).
• Then for R ∈ Prc it holds:

Tr(P + R) = Tr(P) ∪ Tr(R) = Tr(Q) ∪ Tr(R) = Tr(Q + R).

• Thus, P + R and Q + R are trace equivalent.

For the other CCS constructs, the proof goes along similar lines.
Exercise: do the proof for ‖.

17 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.

For + this proceeds as follows:
• Let P,Q ∈ Prc with Tr(P) = Tr(Q).
• Then for R ∈ Prc it holds:

Tr(P + R) = Tr(P) ∪ Tr(R) = Tr(Q) ∪ Tr(R) = Tr(Q + R).

• Thus, P + R and Q + R are trace equivalent.

For the other CCS constructs, the proof goes along similar lines.
Exercise: do the proof for ‖.

17 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:

• Let P,Q ∈ Prc with Tr(P) = Tr(Q).
• Then for R ∈ Prc it holds:

Tr(P + R) = Tr(P) ∪ Tr(R) = Tr(Q) ∪ Tr(R) = Tr(Q + R).

• Thus, P + R and Q + R are trace equivalent.

For the other CCS constructs, the proof goes along similar lines.
Exercise: do the proof for ‖.

17 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:
• Let P,Q ∈ Prc with Tr(P) = Tr(Q).

• Then for R ∈ Prc it holds:

Tr(P + R) = Tr(P) ∪ Tr(R) = Tr(Q) ∪ Tr(R) = Tr(Q + R).

• Thus, P + R and Q + R are trace equivalent.

For the other CCS constructs, the proof goes along similar lines.
Exercise: do the proof for ‖.

17 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:
• Let P,Q ∈ Prc with Tr(P) = Tr(Q).
• Then for R ∈ Prc it holds:

Tr(P + R) = Tr(P) ∪ Tr(R) = Tr(Q) ∪ Tr(R) = Tr(Q + R).

• Thus, P + R and Q + R are trace equivalent.

For the other CCS constructs, the proof goes along similar lines.
Exercise: do the proof for ‖.

17 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:
• Let P,Q ∈ Prc with Tr(P) = Tr(Q).
• Then for R ∈ Prc it holds:

Tr(P + R) = Tr(P) ∪ Tr(R) = Tr(Q) ∪ Tr(R) = Tr(Q + R).

• Thus, P + R and Q + R are trace equivalent.

For the other CCS constructs, the proof goes along similar lines.
Exercise: do the proof for ‖.

17 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:
• Let P,Q ∈ Prc with Tr(P) = Tr(Q).
• Then for R ∈ Prc it holds:

Tr(P + R) = Tr(P) ∪ Tr(R) = Tr(Q) ∪ Tr(R) = Tr(Q + R).

• Thus, P + R and Q + R are trace equivalent.

For the other CCS constructs, the proof goes along similar lines.
Exercise: do the proof for ‖.

17 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Two Coffee/Tea Machines

Example 11.10

Consider the coffee/tea machines CTM and its variant CTM’:

CTM = coin.
(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

Note the difference between the two processes. Nevertheless:

Tr(CTM) = Tr(CTM’).

Are we satisfied? No, as CTM and CTM’ differ in the context:

C(·) = (·︸︷︷︸
hole
‖ CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.

Why? C(CTM’) may yield a deadlock, but C(CTM) does not.

18 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Two Coffee/Tea Machines

Example 11.10

Consider the coffee/tea machines CTM and its variant CTM’:

CTM = coin.
(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

Note the difference between the two processes. Nevertheless:

Tr(CTM) = Tr(CTM’).

Are we satisfied? No, as CTM and CTM’ differ in the context:

C(·) = (·︸︷︷︸
hole
‖ CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.

Why? C(CTM’) may yield a deadlock, but C(CTM) does not.

18 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Two Coffee/Tea Machines

Example 11.10

Consider the coffee/tea machines CTM and its variant CTM’:

CTM = coin.
(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

Note the difference between the two processes. Nevertheless:

Tr(CTM) = Tr(CTM’).

Are we satisfied?

No, as CTM and CTM’ differ in the context:

C(·) = (·︸︷︷︸
hole
‖ CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.

Why? C(CTM’) may yield a deadlock, but C(CTM) does not.

18 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Two Coffee/Tea Machines

Example 11.10

Consider the coffee/tea machines CTM and its variant CTM’:

CTM = coin.
(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

Note the difference between the two processes. Nevertheless:

Tr(CTM) = Tr(CTM’).

Are we satisfied? No, as CTM and CTM’ differ in the context:

C(·) = (·︸︷︷︸
hole
‖ CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.

Why? C(CTM’) may yield a deadlock, but C(CTM) does not.

18 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Two Coffee/Tea Machines

Example 11.10

Consider the coffee/tea machines CTM and its variant CTM’:

CTM = coin.
(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

Note the difference between the two processes. Nevertheless:

Tr(CTM) = Tr(CTM’).

Are we satisfied? No, as CTM and CTM’ differ in the context:

C(·) = (·︸︷︷︸
hole
‖ CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.

Why? C(CTM’) may yield a deadlock, but C(CTM) does not.

18 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Checking Trace Equivalence

Traces by automata

For finite-state P, the trace language Tr(P) of process P is accepted by the
(non-deterministic) finite automaton obtained from the LTS of P with initial state P
and making all states accepting (final).

Theorem 11.11

Checking trace equivalence of two finite processes is PSPACE-complete.

Proof.

Checking whether Tr(P) = Tr(Q), for finite-state P and Q, boils down to deciding
whether their non-deterministic automata accept the same language. As this problem
in automata theory is PSPACE-complete, it follows that checking Tr(P) = Tr(Q) is
PSPACE-complete.

19 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Checking Trace Equivalence

Traces by automata

For finite-state P, the trace language Tr(P) of process P is accepted by the
(non-deterministic) finite automaton obtained from the LTS of P with initial state P
and making all states accepting (final).

Theorem 11.11

Checking trace equivalence of two finite processes is PSPACE-complete.

Proof.

Checking whether Tr(P) = Tr(Q), for finite-state P and Q, boils down to deciding
whether their non-deterministic automata accept the same language. As this problem
in automata theory is PSPACE-complete, it follows that checking Tr(P) = Tr(Q) is
PSPACE-complete.

19 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Checking Trace Equivalence

Traces by automata

For finite-state P, the trace language Tr(P) of process P is accepted by the
(non-deterministic) finite automaton obtained from the LTS of P with initial state P
and making all states accepting (final).

Theorem 11.11

Checking trace equivalence of two finite processes is PSPACE-complete.

Proof.

Checking whether Tr(P) = Tr(Q), for finite-state P and Q, boils down to deciding
whether their non-deterministic automata accept the same language. As this problem
in automata theory is PSPACE-complete, it follows that checking Tr(P) = Tr(Q) is
PSPACE-complete.

19 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Traces and Deadlocks

Example 11.12 (Traces and deadlocks)

Traces and deadlocks are independent in the following sense:

P Q P Q
a↙↘ a ↓ a a↙↘ b a↙↘ c
b ↓ ↓ b 	 b 	 c

same traces different traces
different deadlocks same deadlocks

But: processes with finite trace sets and identical deadlocks are trace equivalent
(since every trace is a prefix of some deadlock).

20 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Trace Equivalence Revisited

Traces and Deadlocks

Example 11.12 (Traces and deadlocks)

Traces and deadlocks are independent in the following sense:

P Q P Q
a↙↘ a ↓ a a↙↘ b a↙↘ c
b ↓ ↓ b 	 b 	 c

same traces different traces
different deadlocks same deadlocks

But: processes with finite trace sets and identical deadlocks are trace equivalent
(since every trace is a prefix of some deadlock).

20 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Outline of Lecture 11

Introduction

Preliminaries

Requirements on Behavioural Equivalences

Trace Equivalence Revisited

Other Forms of Trace Equivalence

Summary

21 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Completed Trace Equivalence

Definition 11.13 (Completed traces)

A completed trace of P ∈ Prc is a sequence w ∈ Act∗ such that:

P
w−→ Q and Q 6−→

for some Q ∈ Prc.

The completed traces of process P may be seen as capturing its deadlock behaviour,
as they are precisely the action sequences that can lead to a process from which no
transition is possible (i.e., is a deadlock).

Exercise

Check whether completed trace equivalence is a congruence for restriction.

22 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Completed Trace Equivalence

Definition 11.13 (Completed traces)

A completed trace of P ∈ Prc is a sequence w ∈ Act∗ such that:

P
w−→ Q and Q 6−→

for some Q ∈ Prc.

The completed traces of process P may be seen as capturing its deadlock behaviour,
as they are precisely the action sequences that can lead to a process from which no
transition is possible (i.e., is a deadlock).

Exercise

Check whether completed trace equivalence is a congruence for restriction.

22 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Completed Trace Equivalence

Definition 11.13 (Completed traces)

A completed trace of P ∈ Prc is a sequence w ∈ Act∗ such that:

P
w−→ Q and Q 6−→

for some Q ∈ Prc.

The completed traces of process P may be seen as capturing its deadlock behaviour,
as they are precisely the action sequences that can lead to a process from which no
transition is possible (i.e., is a deadlock).

Exercise

Check whether completed trace equivalence is a congruence for restriction.

22 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Further Variations of Trace Equivalence

Definition 11.14 (Ready trace equivalence) (Baeten et al.)

A sequence A0α0A1α1 . . . αnAn with Ai ⊆ Act and αi ∈ Act (i ∈ N) is a ready trace of
process P if P = P0

α0−→ P1
α1−→ . . .

αn−→ Pn such that Ai = {α ∈ Act | Pi
α−→}. Processes

P and Q are ready-trace equivalent if they have exactly the same set of ready traces.

Definition 11.15 (Failure trace equivalence) (Reed and Roscoe)

A sequence A0α0A1α1 . . . αnAn with Ai ⊆ Act and αi ∈ Act (i ∈ N) is a failure trace of
process P if P = P0

α0−→ P1
α1−→ . . .

αn−→ Pn such that Ai ∩ {α ∈ Act | Pi
α−→} = ∅.

Processes P and Q are failure-trace equivalent if they have exactly the same set of failure
traces.

Example 11.16

P := a.b + a.c and Q := a.(b + c) are
• trace equivalent: Tr(P) = {ε, a, ab, ac} = Tr(Q), but
• not ready equivalent: {a} a {b, c} b ∅ ∈ rTr(Q) \ rTr(P)

23 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Further Variations of Trace Equivalence

Definition 11.14 (Ready trace equivalence) (Baeten et al.)

A sequence A0α0A1α1 . . . αnAn with Ai ⊆ Act and αi ∈ Act (i ∈ N) is a ready trace of
process P if P = P0

α0−→ P1
α1−→ . . .

αn−→ Pn such that Ai = {α ∈ Act | Pi
α−→}. Processes

P and Q are ready-trace equivalent if they have exactly the same set of ready traces.

Definition 11.15 (Failure trace equivalence) (Reed and Roscoe)

A sequence A0α0A1α1 . . . αnAn with Ai ⊆ Act and αi ∈ Act (i ∈ N) is a failure trace of
process P if P = P0

α0−→ P1
α1−→ . . .

αn−→ Pn such that Ai ∩ {α ∈ Act | Pi
α−→} = ∅.

Processes P and Q are failure-trace equivalent if they have exactly the same set of failure
traces.

Example 11.16

P := a.b + a.c and Q := a.(b + c) are
• trace equivalent: Tr(P) = {ε, a, ab, ac} = Tr(Q), but
• not ready equivalent: {a} a {b, c} b ∅ ∈ rTr(Q) \ rTr(P)

23 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Other Forms of Trace Equivalence

Further Variations of Trace Equivalence

Definition 11.14 (Ready trace equivalence) (Baeten et al.)

A sequence A0α0A1α1 . . . αnAn with Ai ⊆ Act and αi ∈ Act (i ∈ N) is a ready trace of
process P if P = P0

α0−→ P1
α1−→ . . .

αn−→ Pn such that Ai = {α ∈ Act | Pi
α−→}. Processes

P and Q are ready-trace equivalent if they have exactly the same set of ready traces.

Definition 11.15 (Failure trace equivalence) (Reed and Roscoe)

A sequence A0α0A1α1 . . . αnAn with Ai ⊆ Act and αi ∈ Act (i ∈ N) is a failure trace of
process P if P = P0

α0−→ P1
α1−→ . . .

αn−→ Pn such that Ai ∩ {α ∈ Act | Pi
α−→} = ∅.

Processes P and Q are failure-trace equivalent if they have exactly the same set of failure
traces.

Example 11.16

P := a.b + a.c and Q := a.(b + c) are
• trace equivalent: Tr(P) = {ε, a, ab, ac} = Tr(Q), but
• not ready equivalent: {a} a {b, c} b ∅ ∈ rTr(Q) \ rTr(P)

23 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Summary

Outline of Lecture 11

Introduction

Preliminaries

Requirements on Behavioural Equivalences

Trace Equivalence Revisited

Other Forms of Trace Equivalence

Summary

24 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Summary

Summary

1. Behavioural equivalences should be
i. less distinctive than isomorphism
ii. more distinctive than trace equivalence
iii. a CCS congruence
iv. deadlock sensitive

2. Trace equivalence
i. equates processes that have the same traces, i.e., action sequences
ii. is implied by LTS isomorphism
iii. is a CCS congruence
iv. is not deadlock sensitive
v. checking trace equivalence is PSPACE-complete

3. Variations: completed, ready, and failure traces

25 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Summary

Summary

1. Behavioural equivalences should be
i. less distinctive than isomorphism
ii. more distinctive than trace equivalence
iii. a CCS congruence
iv. deadlock sensitive

2. Trace equivalence
i. equates processes that have the same traces, i.e., action sequences
ii. is implied by LTS isomorphism
iii. is a CCS congruence
iv. is not deadlock sensitive
v. checking trace equivalence is PSPACE-complete

3. Variations: completed, ready, and failure traces

25 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

Summary

Summary

1. Behavioural equivalences should be
i. less distinctive than isomorphism
ii. more distinctive than trace equivalence
iii. a CCS congruence
iv. deadlock sensitive

2. Trace equivalence
i. equates processes that have the same traces, i.e., action sequences
ii. is implied by LTS isomorphism
iii. is a CCS congruence
iv. is not deadlock sensitive
v. checking trace equivalence is PSPACE-complete

3. Variations: completed, ready, and failure traces

25 of 25 Concurrency Theory

Winter Semester 2019/20

Lecture 11: Trace Equivalence

	Introduction
	Preliminaries
	Requirements on Behavioural Equivalences
	Trace Equivalence Revisited
	Other Forms of Trace Equivalence
	Summary

