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Introduction

Introduction

• When using process algebras like CCS, an important approach is to model both the
specification and implementation as CCS processes, say Spec and Impl .

• This gives rise to the natural question: when are two CCS processes behaving the same?
• As there are many different interpretations of “behaving the same”, different behavioural

equivalences have emerged.
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Introduction

Behavioural Equivalence

Implementation

CM = coin.coffee.CM

CS = pub.coin.coffee.CS

Uni = (CM ‖ CS) \ {coin, coffee}

Specification

Spec = pub.Spec

Question

Are the specification Spec and implementation Uni behaviourally equivalent:

Spec
?≡ Uni
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Preliminaries

Equivalence Relations

Some reasonable required properties

• Reflexivity: P ≡ P for every process P
• Symmetry: P ≡ Q if and only if Q ≡ P
• Transitivity: Spec0 ≡ . . . ≡ Specn ≡ Impl implies that Spec0 ≡ Impl

Definition 11.1 (Equivalence)

A binary relation ≡ ⊆ S × S over a set S is an equivalence if
• it is reflexive: s ≡ s for every s ∈ S,
• it is symmetric: s ≡ t implies t ≡ s for every s, t ∈ S,
• it is transitive: s ≡ t and t ≡ u implies s ≡ u for every s, t , u ∈ S.

Remark: equivalences induce quotient structures with equivalence classes as
elements
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Preliminaries

Isomorphism: An Example Behavioural Equivalence

Definition 11.2 (LTS isomorphism)

Two LTSs T1 = (S1,Act1,−→1) and T2 = (S2,Act2,−→2) are isomorphic, denoted
T1 ≡iso T2, if there exists a bijection f : S1 → S2 such that

s
α−→ 1 t if and only if f (s)

α−→ 2 f (t).

It follows immediately that ≡iso is an equivalence. (Why?)

Example 11.3 (Abelian monoid laws for + and ‖)
For all CCS processes P,Q ∈ Prc,
1. LTS(P + Q) ≡iso LTS(Q + P), LTS(P ‖ Q) ≡iso LTS(Q ‖ P)

2. LTS((P + Q) + R) ≡iso LTS(P + (Q + R)), LTS((P ‖ Q) ‖ R) ≡iso LTS(P ‖ (Q ‖ R))

3. LTS(P + nil) ≡iso LTS(P ‖ nil) ≡iso LTS(P)
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Preliminaries

Isomorphism II

Assumption

From now on, we will consider processes modulo isomorphism, i.e., we do not
distinguish CCS processes with isomorphic LTSs.

Caveat

But: isomorphism is very distinctive. For instance,

X = a.X and Y = a.a.Y

are distinguished although both can (only) execute infinitely many a-actions and
should thus be considered equivalent.
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Requirements on Behavioural Equivalences

The Wish List for Behavioural Equivalences

1. Less distinctive than isomorphism: an equivalence should distinguish less processes than
LTS isomorphism does, i.e., ≡ should be coarser than LTS isomorphism:

LTS(P) ≡iso LTS(Q) =⇒ P ≡ Q.

2. More distinctive than trace equivalence: an equivalence should distinguish more processes
than trace equivalence does, i.e., ≡ should be finer than trace equivalence:

P ≡ Q =⇒ Tr(P) = Tr(Q).

3. Congruence property: the equivalence must be substitutive with respect to all CCS
operators (see next slide).

4. Deadlock preservation: equivalent processes should have the same deadlock behaviour,
i.e., equivalent process can either both deadlock, or both cannot.1

5. Optional: the coarsest possible equivalence: there should be no less discriminating
equivalence satisfying all these requirements.

1Later, we will generalise this to a set of properties that can be expressed in a logic.
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Requirements on Behavioural Equivalences

What is a Congruence?

CCS contexts informally

A CCS context is a CCS process fragment with a “hole” in it (examples on the board).

CCS congruences informally

Relation ≡ is a CCS congruence whenever P ≡ Q implies C(P) ≡ C(Q) for every
CCS context C.
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Requirements on Behavioural Equivalences

The Importance of Congruences

CCS congruences informally

Relation ≡ is a congruence whenever P ≡ Q implies C(P) ≡ C(Q) for every CCS
context C.

Example 11.4 (Congruence)

Let a ≡ b for a, b ∈ Z whenever a mod k = b mod k , for some k ∈ N+.
Equivalence relation ≡ is a congruence for addition and multiplication.

Important motivations of requiring ≡ to be a congruence on processes:
1. Model-based development through refinement: replacing an abstract model Spec by a

more detailed model Impl
2. Optimisation: replacing an implementation Impl by a more efficient implementation Impl ′.
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Requirements on Behavioural Equivalences

CCS Congruences Formally

Definition 11.5 (CCS congruence)

An equivalence relation ≡ ⊆ Prc × Prc is a CCS congruence if it is preserved by all
CCS constructs, i.e., if P,Q ∈ Prc with P ≡ Q then:

α.P ≡ α.Q for every α ∈ Act
P + R ≡ Q + R for every R ∈ Prc
P ‖ R ≡ Q ‖ R for every R ∈ Prc
P \ L ≡ Q \ L for every L ⊆ A

P[f ] ≡ Q[f ] for every f : A→ A

Thus, a CCS congruence is substitutive for all possible CCS contexts.
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Requirements on Behavioural Equivalences

Deadlocks

Definition 11.6 (Deadlock)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w−→ Q and Q 6−→. Then Q is called a

w-deadlock of P.

Example 11.7

P = a.b.nil + a.nil has an a-deadlock, whereas Q = a.b.nil has not.

Such properties are important as it can be crucial that a certain action is eventually
possible.

Definition 11.8 (Deadlock sensitivity)

Relation ≡ ⊆ Prc × Prc is deadlock sensitive whenever:

P ≡ Q implies (∀w ∈ Act∗.P has a w-deadlock iff Q has a w-deadlock) .
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Trace Equivalence Revisited

Trace Equivalence

Trace language (Definition 3.2)

The trace language of P ∈ Prc is defined by:

Tr(P) := {w ∈ Act∗ | ∃P ′ ∈ Prc.P
w−→ P ′}.

Trace equivalence (Definition 3.2)

P,Q ∈ Prc are called trace equivalent iff Tr(P) = Tr(Q).

Trace equivalence is evidently an equivalence relation and is less discriminative than
isomorphism.
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Trace Equivalence Revisited

Trace Equivalence is a Congruence

Theorem 11.9

Trace equivalence is a CCS congruence.

Proof.

By structural induction over the syntax of CCS processes.
For + this proceeds as follows:
• Let P,Q ∈ Prc with Tr(P) = Tr(Q).
• Then for R ∈ Prc it holds:

Tr(P + R) = Tr(P) ∪ Tr(R) = Tr(Q) ∪ Tr(R) = Tr(Q + R).

• Thus, P + R and Q + R are trace equivalent.

For the other CCS constructs, the proof goes along similar lines.
Exercise: do the proof for ‖.
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Trace Equivalence Revisited

Two Coffee/Tea Machines

Example 11.10

Consider the coffee/tea machines CTM and its variant CTM’:

CTM = coin.
(
coffee.CTM + tea.CTM

)
CTM’ = coin.coffee.CTM’ + coin.tea.CTM’.

Note the difference between the two processes. Nevertheless:

Tr(CTM) = Tr(CTM’).

Are we satisfied? No, as CTM and CTM’ differ in the context:

C(·) = ( ·︸︷︷︸
hole
‖ CA) \ {coin, coffee, tea} with CA = coin.coffee.CA.

Why? C(CTM’) may yield a deadlock, but C(CTM) does not.
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Trace Equivalence Revisited

Checking Trace Equivalence

Traces by automata

For finite-state P, the trace language Tr(P) of process P is accepted by the
(non-deterministic) finite automaton obtained from the LTS of P with initial state P
and making all states accepting (final).

Theorem 11.11

Checking trace equivalence of two finite processes is PSPACE-complete.

Proof.

Checking whether Tr(P) = Tr(Q), for finite-state P and Q, boils down to deciding
whether their non-deterministic automata accept the same language. As this problem
in automata theory is PSPACE-complete, it follows that checking Tr(P) = Tr(Q) is
PSPACE-complete.
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Trace Equivalence Revisited

Traces and Deadlocks

Example 11.12 (Traces and deadlocks)

Traces and deadlocks are independent in the following sense:

P Q P Q
a↙↘ a ↓ a a↙↘ b a↙↘ c
b ↓ ↓ b 	 b 	 c

same traces different traces
different deadlocks same deadlocks

But: processes with finite trace sets and identical deadlocks are trace equivalent
(since every trace is a prefix of some deadlock).
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Other Forms of Trace Equivalence
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Other Forms of Trace Equivalence

Completed Trace Equivalence

Definition 11.13 (Completed traces)

A completed trace of P ∈ Prc is a sequence w ∈ Act∗ such that:

P
w−→ Q and Q 6−→

for some Q ∈ Prc.

The completed traces of process P may be seen as capturing its deadlock behaviour,
as they are precisely the action sequences that can lead to a process from which no
transition is possible (i.e., is a deadlock).

Exercise

Check whether completed trace equivalence is a congruence for restriction.
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Other Forms of Trace Equivalence

Further Variations of Trace Equivalence

Definition 11.14 (Ready trace equivalence) (Baeten et al.)

A sequence A0α0A1α1 . . . αnAn with Ai ⊆ Act and αi ∈ Act (i ∈ N) is a ready trace of
process P if P = P0

α0−→ P1
α1−→ . . .

αn−→ Pn such that Ai = {α ∈ Act | Pi
α−→}. Processes

P and Q are ready-trace equivalent if they have exactly the same set of ready traces.

Definition 11.15 (Failure trace equivalence) (Reed and Roscoe)

A sequence A0α0A1α1 . . . αnAn with Ai ⊆ Act and αi ∈ Act (i ∈ N) is a failure trace of
process P if P = P0

α0−→ P1
α1−→ . . .

αn−→ Pn such that Ai ∩ {α ∈ Act | Pi
α−→} = ∅.

Processes P and Q are failure-trace equivalent if they have exactly the same set of failure
traces.

Example 11.16

P := a.b + a.c and Q := a.(b + c) are
• trace equivalent: Tr(P) = {ε, a, ab, ac} = Tr(Q), but
• not ready equivalent: {a} a {b, c} b ∅ ∈ rTr(Q) \ rTr(P)
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Summary

Summary

1. Behavioural equivalences should be
i. less distinctive than isomorphism
ii. more distinctive than trace equivalence
iii. a CCS congruence
iv. deadlock sensitive

2. Trace equivalence
i. equates processes that have the same traces, i.e., action sequences
ii. is implied by LTS isomorphism
iii. is a CCS congruence
iv. is not deadlock sensitive
v. checking trace equivalence is PSPACE-complete

3. Variations: completed, ready, and failure traces
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