Winter Semester 2019/20

Lecture 9: Variations of m-Calculus

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Recap: The Monadic m-Calculus

Outline of Lecture 9

Recap: The Monadic m-Calculus

RWTH

20f 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Recap: The Monadic w-Calculus

Syntax of the Monadic m-Calculus

Definition (Syntax of monadic m-Calculus)
eletA={ab,c...,x,y,z, ...} be aset of names.
e The set of action prefixes is given by

= x(y) (receive y along x)
| X(y) (send y along x)

| T (unobservable action)
e The set Prc”™ of m-Calculus process expressions is defined by the following syntax:
P:u=> . m.P; (guarded sum)
| Py || P2 (parallel composition)
| newxP (restriction)
| P (replication)
(where [finite index set, x € A)
Conventions: nil :=) . m.P;, new xq, ..., X, P := new x; (...newx, P)
30f15 Concurrency Theory
Winter Semester 2019/20 o Software Modeling Rm
‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Recap: The Monadic m-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = Q, if one can be transformed
into the other by applying the following operations and equations:

1. renaming of bound names (a-conversion)
2. reordering of terms in a summation (commutativity of +)
B.P|lQ=Q| P, P|(Q] R=(P] Q)| R,P | nil= P (Abelian monoid laws for ||)
4. new x nil = nil, newx,y P=new y, x P,
P | newx Q=newx (P || Q)if x ¢ fn(P) (scope extension)
5. 1P = P ||!P (unfolding)

RWTH

4 of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Recap: The Monadic w-Calculus

A Standard Form

Theorem (Standard form)

Every process expression is structurally congruent to a process of the standard form
newxi, ..., xk(Py || ... || Pn '@ || ... [|'Qn)

where each P; is a non-empty sum, and each Q; is in standard form.

(If m = n = 0:nil; if k = 0: restriction absent)

Proof.
by induction on the structure of R € Prc” (on the board)]
50f 15 Concurrency Theory
Winter Semester 2019/20 o Software Modeling Rm
‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Recap: The Monadic w-Calculus

The Reaction Relation

Thanks to Theorem 8.7, only processes in standard form need to be considered for
defining the operational semantics:

Definition
The reaction relation — C Prc™ X Prc” is generated by the rules:

(Tau

TP+Q— P

(x(y)-P+R) || (x(2).Q+S) — Plz/y] || @

| P— P - P— P
PlQ— P | Q new x P — new x P’

(React)

(Par

/
sae——F_ itp=Qand P = @
Q— Q

e P[z/y] replaces every free occurrence of y in P by .
e In (React), the pair (x(y), x(z)) is called a redex.

RWTH

6 of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Example Reactions

Outline of Lecture 9

Example Reactions

7 of 15 Concurrency Theory
Winter Semester 2019/20

Lecture 9: Variations of 7-Calculus

.

4

Software Modeling
Il and Verification Chair

RWTH

Example Reactions

The Printer Server Revisited
Example 9.1

1. Printer server (cf. Example 8.1):

B<a8>.8’ | a(elz.P’ | p(c).aédycj’ — S || P || a{d).C'[a/c]

S'|| Pl ald).C'la/c] — S’ || P'[d/€] || C'la/c]
(on the board)

RWTH

8 of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Example Reactions

The Printer Server Revisited
Example 9.1

1. Printer server (cf. Example 8.1):

B<a8>.8’ | a(elz.P’ | p(c).ééd).cj’ — S || P || a{d).C'[a/c]

S'|| Pl ald).C'la/c] — S’ || P'[d/e] || C'la/c]
(on the board)
2. With scope extension (P || new x Q = new x (P || Q) if x & fn(P)):

new b (new a(b(a).S' || a(e).P’) || b(c).c{d).C)
—newa,b(S' || a(e).P || a(d).C'[a/c])

(on the board)

RWTH

8 of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Example Reactions

Mobile Clients Revisited

Example 9.2

e System specification (cf. Example 8.2):
System, = new L (Client, || Station, || Idle, || Controly)
System, = new L (Client, || Idley || Station, || Control,)
Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).ldle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
Controly = losey (talky, switchy).gain, (talky, switch,).Control,
Control, = losex(talky, switchy).gain, (talk, switchy).Control,
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)
L = (talk;, switch;, gain;, lose; | i € {1,2})

RWTH

9of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 9: Variations of 7-Calculus ‘ Bl and Verification Chair

Example Reactions

Mobile Clients Revisited

Example 9.2
e System specification (cf. Example 8.2):
System; = new L (Client, || Station, || Idle, || Control,)
System, = new L (Client, || Idley || Station, || Control,)
Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).ldle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
Controly = losey (talky, switchy).gain, (talky, switch,).Control,
Control, = losex(talky, switchy).gain, (talk, switchy).Control,
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)
L = (talk;, switch;, gain;, lose; | i € {1,2})
e Use additional reaction rule for polyadic communication:

(React’) - P —
(x(¥)-P+R) || (x(2).Q+S) — P[z/y] || Q
e Use additional congruence rule for process calls: if A(X) = Pa, then A(y) = Pa[y/X]

RWTH

9of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Example Reactions

Mobile Clients Revisited

Example 9.2
e System specification (cf. Example 8.2):
System; = new L (Client, || Station, || Idle, || Control,)
System, = new L (Client, || Idley || Station, || Control,)
Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).ldle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
Controly = losey (talky, switchy).gain, (talky, switch,).Control,
Control, = losex(talky, switchy).gain, (talk, switchy).Control,
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)
L = (talk;, switch;, gain;, lose; | i € {1,2})
e Use additional reaction rule for polyadic communication:
WP+ R (X(2).0+8) — P/ @
e Use additional congruence rule for process calls: if A(X) = Pa, then A(y) = Pa[y/X]
e Show System, —" System, (on the board)

RWTH

9of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

The Polyadic m-Calculus

Outline of Lecture 9

The Polyadic m-Calculus

10 of 15 Concurrency Theory
Winter Semester 2019/20

Lecture 9: Variations of 7-Calculus

.

4

Software Modeling
Il and Verification Chair

RWTH

The Polyadic m-Calculus

Polyadic Communication |

e So far: messages with exactly one name
e Now: arbitrary number

RWTH

11 0of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

The Polyadic m-Calculus

Polyadic Communication |

e So far: messages with exactly one name
e Now: arbitrary number
e New types of action prefixes:
x(vi,....ya) and

where n € N and all y; distinct

X{zy, ...

, Zp)

11 0of 15 Concurrency Theory
Winter Semester 2019/20

Lecture 9: Variations of 7-Calculus

n

4

Software Modeling
Il and Verification Chair

RWTH

The Polyadic m-Calculus

Polyadic Communication |

e So far: messages with exactly one name
e Now: arbitrary number
e New types of action prefixes:

x(Y1,---,¥a) and X(zy,...,Zp)

where n € N and all y; distinct
e Expected behaviour (cf. Example 9.2):

(React’)

(x(¥)-P+ R) || (x(2).Q+ S) — P[Z/y] || Q
(replacement of free names)

RWTH

11 0of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

The Polyadic m-Calculus

Polyadic Communication |

e So far: messages with exactly one name
e Now: arbitrary number
e New types of action prefixes:

x(Y1,---,¥a) and X(zy,...,Zp)

where n € N and all y; distinct
e Expected behaviour (cf. Example 9.2):

(React’)

(x(¥).-P+ R) || (x(2).Q+S) — P[Z/y] | Q
(replacement of free names)
e Obvious attempt for encoding:

X1, ¥n)-P = x(y1) ... x(yn).P
X(z1,...,Zn). Q= X(Z1) ... X(Z).Q

RWTH

11 0of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

The Polyadic m-Calculus

Polyadic Communication Il

e But consider the following counterexample.
Polyadic representation: x(y1,y0).P || X{(z1,22).Q || x(Z}, 2}).Q

N
Plzi/y1, 22/ o] | Q| X(21,25). Q" Plzi/y1, 23/ ¥e] || X(21,22).Q || @

RWTH

12 of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

The Polyadic m-Calculus

Polyadic Communication Il

e But consider the following counterexample.

Polyadic representation: x(y1,y0).P || X{(z1,22).Q || x(Z}, 2}).Q
YN
Plzi/y1, 22/ ye] || Q|| X(21,25). Q" Plzi/y1,25/y2] || X{z1,22).Q || Q'
Monadic encoding: Plzi/yi,z2/yo] || ... v PlZi/y1,25/y0] || ...
N2 e
xX(y1)-x(y2)-P || X(z1) . X(22).Q || X(z7).X(2).Q'
2 2
Plzi/y1, 2y /ol || ... & Plzi/yvi.zi/ye] || .. 4
12 of 1 Concurrency Theory ‘nm
) Winter Semester 2019/20 ? Software Modeling n

Lecture 9: Variations of 7-Calculus

The Polyadic m-Calculus

Polyadic Communication Il

e But consider the following counterexample.

Polyadic representation: x(y1,¥2).P || X{z1, 20).Q || X{Z}, 2}).Q
N\
Plzi/y1, z2/yel || Q || X(231,25).Q Plzi/y1, 23/ yel || X(21, 22).Q || @
Monadic encoding: Plzi/yi,z2/yo] || ... v PlZi/y1,25/y0] || ...
N ?
x(y1)-x(y2)-P || X(z1) X(22).Q || X(27).X(2;).Q
2 2
Plzi/yr, 21 /2] || .. & Plzi/yr.zi/yo] || ... ¢

e Solution: avoid interferences by first introducing a fresh communication channel:

X(Y1, -, ¥n).P—=x(w).w(yr)...w(yy).P
X{z1,...,27).Q = neww (X{(w).w(zy) ... wW(z,).Q)

where w & fn(Q)U{y1, ..., Vn Z1,- .., 2Zn}

RWTH

12 of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

The Polyadic m-Calculus

Polyadic Communication Il

e But consider the following counterexample.

Polyadic representation: x(y1,¥2).P || X{z1, 20).Q || X{Z}, 2}).Q
N\
Plzi/y1, z2/yel || Q || X(231,25).Q Plzi/y1, 23/ yel || X(21, 22).Q || @
Monadic encoding: Plzi/yi,z2/yo] || ... v PlZi/y1,25/y0] || ...
N ?
x(y1)-x(y2)-P || X(z1) X(22).Q || X(27).X(2;).Q
2 2
Plzi/yr, 21 /2] || .. & Plzi/yr.zi/yo] || ... ¢

e Solution: avoid interferences by first introducing a fresh communication channel:

X(Y1, -, ¥n).P—=x(w).w(yr)...w(yy).P
X{z1,...,27).Q = neww (X{(w).w(zy) ... wW(z,).Q)

where w & fn(Q)U{y1, ..., Vn Z1,- .., 2Zn}
e Correctness: see exercises

RWTH

12 of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Adding Recursive Process Calls

Outline of Lecture 9

Adding Recursive Process Calls

RWTH

13 0of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Adding Recursive Process Calls

Recursive Process Calls |

e So far: process replication P
e Now: parametric process definitions of the form

A(X1,...,Xpn) = Pa

where A € Pid is a process identifier and P, € Prc”™ a process expression containing calls
of A (and possibly other parametric processes)

RWTH

14 of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Adding Recursive Process Calls

Recursive Process Calls |

e So far: process replication P
e Now: parametric process definitions of the form

A(X1,...,Xpn) = Pa

where A € Pid is a process identifier and P, € Prc”™ a process expression containing calls
of A (and possibly other parametric processes)

e Semantic interpretation by new congruence rule (cf. Example 9.2):

Ayt Yn) = Palys/xa, o Yo/ Xl

RWTH

14 of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Adding Recursive Process Calls

Recursive Process Calls |

e So far: process replication P
e Now: parametric process definitions of the form

A(X1,...,Xpn) = Pa
where A € Pid is a process identifier and P, € Prc”™ a process expression containing calls

of A (and possibly other parametric processes)
e Semantic interpretation by new congruence rule (cf. Example 9.2):

Ayt Yn) = Palys/xa, o Yo/ Xl

e Again: possible to simulate in basic calculus by using
— message passing to model parameter passing to A
— replication to model the multiple activations of A
— restriction to model the scope of the definition of A

RWTH

14 of 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Adding Recursive Process Calls

Recursive Process Calls Il

The encoding
e of a process definition A(X) = Pa
e with right-hand side Py = ... A(d)... A(V)... € Prc™
e for main process Q = ... A(y)...A(Z)... € Prc"

is defined as follows:

RWTH

150f 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Adding Recursive Process Calls

Recursive Process Calls Il

The encoding
e of a process definition A(X) = Pa
e with right-hand side Py = ... A(d)... A(V)... € Prc™
e for main process Q = ... A(y)...A(Z)... € Prc"
is defined as follows:
1. Let a € A be a new name (standing for A).
2. For any process R, let R be the result of replacing every call A(w) by a{w).nil.
3. Replace Qby @ := new a(Q || !a(x).Pa).
(In the presence of more than one process identifier, Q" will contain a replicated
component for each definition.)

RWTH

15 0f 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

Adding Recursive Process Calls

Recursive Process Calls Il

The encoding
e of a process definition A(X) = Pa
e with right-hand side Py = ... A(d)... A(V)... € Prc™
e for main process Q = ... A(y)...A(Z)... € Prc"
is defined as follows:
1. Let a € A be a new name (standing for A).
2. For any process R, let R be the result of replacing every call A(w) by a(w).nil.
3. Replace Qby @ := new a(Q || !a(x).Pa).
(In the presence of more than one process identifier, Q" will contain a replicated
component for each definition.)

Example 9.3

e One-place buffer: B(in, out) = in(x).out(x).B(in, out)
e Main process: Q := in{y).nil || B(in, out) || out(z).nil
(encoding on the board)

RWTH

15 0f 15 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 9: Variations of 7-Calculus

	Recap: The Monadic -Calculus
	Example Reactions
	The Polyadic -Calculus
	Adding Recursive Process Calls

