

Concurrency Theory

Winter Semester 2019/20
Lecture 8: The π-Calculus
Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University
https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Recap: Modelling Mutual Exclusion Algorithms

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

Recap: Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS

Assumption: P_{i} cannot fail or terminate within critical section

Peterson's algorithm

while true do
"non-critical section";
$b_{i}:=$ true;
$k:=j$;
while $b_{j} \wedge k=j$ do skip end; "critical section";
$b_{i}:=$ false;
end

CCS representation

$$
\begin{aligned}
P_{1}= & \overline{b 1 w t} \cdot \overline{k w 2} \cdot P_{11} \\
P_{11}= & \text { b2rf. } P_{12}+ \\
& \text { b2rt. }\left(k r 1 . P_{12}+k r 2 . P_{11}\right) \\
P_{12}= & \text { enter1.exit1. } 161 w f . P_{1} \\
P_{2}= & \overline{b 2 w t} \cdot \overline{k w 1} \cdot P_{21} \\
P_{21}= & b 1 r f . P_{22}+ \\
& \text { b1rt. }\left(k r 1 \cdot P_{21}+k r 2 . P_{22}\right) \\
P_{22}= & \text { enter2.exit2.b2wf. } P_{2} \\
\text { Peterson }= & \left(P_{1}\left\|P_{2}\right\| B_{1 f}\left\|B_{2 f}\right\| K_{1}\right) \backslash L \\
\text { for } L= & \{b 1 r f, b 1 r t, b 1 w f, b 1 w t, \\
& \text { b2rf, b2rt, b2wf,b2wt, } \\
& k r 1, k r 2, k w 1, k w 2\}
\end{aligned}
$$

Recap: Modelling Mutual Exclusion Algorithms

Obtaining the LTS I

CAAL Project * Edit Explore Verify Games © Syntax \square About

Peterson's Algorithm \quad| Parse | CCS |
| :---: | :---: |

```
* Peterson's algorithm for mutual exclusion.
* See Chapter 7 of "Reactive Systems" for a full description.
B1f = 'b1rf.B1f + b1wf.B1f + b1wt.B1t;
B1t = 'b1rt.B1t + b1wf.B1f + b1wt.B1t;
B2f = 'b2rf.B2f + b2wf.B2f + b2wt.B2t;
B2t = 'b2rt.B2t + b2wf.B2f + b2wt.B2t;
K1 = 'kr1.K1 + kw1.K1 + kw2.K2;
K2 = ''kr2.K2 + kw1.K1 + kw2.K2;
P1 = 'b1wt. ''kw2.P11;
P11 = b2rf.P12 + b2rt.(kr2.P11 + kr1.P12);
P12 = enter1.exit1.''b1wf.P1;
P2 = 'b2wt. ''kw1.P21;
P21 = b1rf.P22 + b1rt.(kr1.P21 + kr2.P22);
P22 = enter2.exit2.''b2wf.P2;
set L = {b1rf, b2rf, b1rt, b2rt, b1wf, b2wf, b1wt, b2wt, kr1, kr2, kw1, kw2};
Peterson = (P1 | P2 | B1f | B2f | K1) \ L;
Spec = enter1.exit1.Spec + enter2.exit2.Spec;
```


Recap: Modelling Mutual Exclusion Algorithms

Obtaining the LTS II

Recap: Value-Passing CCS

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

Recap: Value-Passing CCS

Syntax of Value-Passing CCS I

Definition (Syntax of value-passing CCS)

- Let A, \bar{A}, Pid (ranked) as in Definition 2.1.
- Let e and b be integer and Boolean expressions, resp., built from integer variables x, y, \ldots
- The set Pr^{+}of value-passing process expressions is defined by:

$P::=$ nil	(inaction)	
$\mid a(x) . P$	(input prefixing)	
$\mid \bar{a}(e) . P$	(output prefixing)	
$\tau . P$	(τ prefixing)	
$P_{1}+P_{2}$	(choice)	
\| $P_{1} \\| P_{2}$	(parallel composition)	
$\mid P \backslash L$	(restriction)	
\| P[f]	(relabelling)	
\| if b then P	(conditional)	
$C\left(e_{1}, \ldots, e_{n}\right)$	(process call)	

where $a \in A, L \subseteq A, C \in \operatorname{Pid}$ (of rank $n \in \mathbb{N}$), and $f: A \rightarrow A$.

Recap: Value-Passing CCS

Semantics of Value-Passing CCS I

Definition (Semantics of value-passing CCS)

A value-passing process definition $\left(C_{i}\left(x_{1}, \ldots, x_{n_{i}}\right)=P_{i} \mid 1 \leq i \leq k\right)$ determines the LTS $\left(\right.$ Prc $\left.^{+}, A c t, \longrightarrow\right)$ with Act $:=(A \cup \bar{A}) \times \mathbb{Z} \cup\{\tau\}$ whose transitions can be inferred from the following rules ($P, P^{\prime}, Q, Q^{\prime} \in \operatorname{Prc}^{+}, a \in A, x_{i}$ integer variables, e_{i} / b integer/Boolean expressions, $z \in \mathbb{Z}, \alpha \in A c t, \lambda \in(A \cup \bar{A}) \times \mathbb{Z})$:

$$
\begin{aligned}
& a(x) \cdot P \xrightarrow{a(z)} P[z / x] \\
& \underset{\text { (out) }}{\frac{(z \text { value of } e)}{\bar{a}(e) \cdot P \xrightarrow{\bar{a}(z)} P}} \\
& \text { (Sume }) \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P+Q \xrightarrow{\alpha} Q^{\prime}} \\
& { }^{\text {(Pari) })} \xrightarrow{P \| Q \xrightarrow{\alpha} P^{\prime}} P^{\prime} \| Q \\
& { }^{(\text {Para })} \frac{Q \xrightarrow{\alpha} Q^{\prime}}{P\|Q \xrightarrow{\alpha} P\| Q^{\prime}} \\
& \text { (com) } \xrightarrow[{P\left\|Q \xrightarrow{P} P^{\prime} Q \xrightarrow{\bar{\lambda}} P^{\prime}\right\| Q^{\prime}}]{P}
\end{aligned}
$$

Recap: Value-Passing CCS

Semantics of Value-Passing CCS II

Definition (Semantics of value-passing CCS; continued)

$$
\begin{aligned}
& \text { (Ra) }_{\text {(Ra) }} \frac{P \xrightarrow{\alpha} P^{\prime}}{P[f] \xrightarrow{f(\alpha)} P^{\prime}[f]} \\
& (\text { Ras }) \xrightarrow{P \xrightarrow{\alpha} P^{\prime}(\alpha \notin(L \cup \bar{L}) \times \mathbb{Z})} \underset{P \backslash L \xrightarrow{\alpha} P^{\prime} \backslash L}{L} \\
& P\left[z_{1} / x_{1}, \ldots, z_{n} / x_{n}\right] \xrightarrow{\alpha} P^{\prime} \\
& { }_{\text {(1n }} \xrightarrow{P \xrightarrow{\alpha} P^{\prime}(b \text { true })} \quad \text { (call) } \frac{\left(C\left(x_{1}, \ldots, x_{n}\right)=P, z_{i} \text { value of } e_{i}\right)}{C\left(e_{1}, \ldots, e_{n}\right) \xrightarrow{\alpha} P^{\prime}}
\end{aligned}
$$

Remarks:

- $P\left[z_{1} / x_{1}, \ldots, z_{n} / x_{n}\right]$ denotes the substitution of each free (i.e., unbound) occurrence of x_{i} by $z_{i}(1 \leq i \leq n)$
- Operations on actions ignore values:

$$
\overline{a(z)}:=\bar{a}(z) \quad \overline{\bar{a}(z)}:=a(z) \quad f(a(z)):=f(a)(z) \quad f(\bar{a}(z)):=\overline{f(a)}(z) \quad(\text { and } f(\tau):=\tau)
$$

Recap: Value-Passing CCS

Translation of Value-Passing into Pure CCS II

Definition (Translation of value-passing into pure CCS)

For each $P \in \operatorname{Prc}^{+}$without free variables, its translated form $\widehat{P} \in \operatorname{Prc}$ is given by

$$
\begin{array}{rlrl}
\widehat{\text { nil }} & :=\text { nil } & \widehat{\widehat{\tau \cdot P}}: & :=\tau \cdot \widehat{P} \\
\widehat{a(x) \cdot P} & :=\sum_{z \in \mathbb{Z}} a_{z} \cdot \widehat{P[z / x]} & \widehat{\bar{a}(e) \cdot P} & :=\overline{a_{z}} \widehat{P} \\
\widehat{P_{1}+P_{2}} & :=\widehat{P}_{1}+\widehat{P}_{2} & (z \text { value of } e) \\
\widehat{P \backslash L} & :=\widehat{P} \backslash\left\{a_{z} \mid a \in L, z \in \mathbb{Z}\right\} & \widehat{P} \mid f] & :=\widehat{P} \mid \hat{P}]
\end{array} \quad\left(\widehat{f}\left(a_{z}\right):=f(a)_{z}\right)
$$

Moreover, each defining equation $C\left(x_{1}, \ldots, x_{n}\right)=P$ of a process identifier is translated into the indexed collection of process definitions

$$
\left(C_{z_{1}, \ldots, z_{n}}=P\left[z_{1} / \widehat{x_{1}, \ldots,}, z_{n} / x_{n}\right] \mid z_{1}, \ldots, z_{n} \in \mathbb{Z}\right)
$$

Modelling Mobile Concurrent Systems

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms
Recap: Value-Passing CCS
Modelling Mobile Concurrent Systems
Another Example: Mobile Clients
Syntax of the Monadic π-Calculus
Semantics of the Monadic π-Calculus

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems I

Observation: CCS imposes static communication structures: if $P, Q \in \operatorname{Prc}$ want to communicate, then both must syntactically refer to the same action name

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems I

Observation: CCS imposes static communication structures: if $P, Q \in \operatorname{Prc}$ want to communicate, then both must syntactically refer to the same action name
\Rightarrow every potential communication partner known beforehand, no dynamic passing of communication links

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems I

Observation: CCS imposes static communication structures: if $P, Q \in \operatorname{Prc}$ want to communicate, then both must syntactically refer to the same action name
\Rightarrow every potential communication partner known beforehand, no dynamic passing of communication links
\Rightarrow lack of modelling capabilities for mobility

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems I

Observation: CCS imposes static communication structures: if $P, Q \in \operatorname{Prc}$ want to communicate, then both must syntactically refer to the same action name
\Rightarrow every potential communication partner known beforehand, no dynamic passing of communication links
\Rightarrow lack of modelling capabilities for mobility
Goal: develop calculus in the spirit of CCS which supports mobility
$\Rightarrow \pi$-Calculus

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: P and C must share some action name a $\Rightarrow C$ could access P without being granted it by S

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: P and C must share some action name a $\Rightarrow C$ could access P without being granted it by S
- In π-Calculus:
- initially only S has access to P (using link a)
- using another link b, C can request access to P

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: P and C must share some action name a
$\Rightarrow C$ could access P without being granted it by S
- $\ln \pi$-Calculus:
- initially only S has access to P (using link a)
- using another link b, C can request access to P
- Formally:

- a: link to P
- b: link between S and C
- c: "placeholder" for a
- d: data to be printed
- e: "placeholder" for d

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: P and C must share some action name a $\Rightarrow C$ could access P without being granted it by S
- $\ln \pi$-Calculus:
- initially only S has access to P (using link a)
- using another link b, C can request access to P
- Formally:

- a: link to P
- b: link between S and C
- c: "placeholder" for a
- d: data to be printed
- e: "placeholder" for d

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: P and C must share some action name a $\Rightarrow C$ could access P without being granted it by S
- $\ln \pi$-Calculus:
- initially only S has access to P (using link a)
- using another link b, C can request access to P
- Formally:

- a: link to P
- b: link between S and C
- c: "placeholder" for a
- d: data to be printed
- e: "placeholder" for d

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems III

Example 8.1 (Dynamic access to resources; continued)

- Different rôles of action name a:
- in interaction between S and C : object transferred from S to C
- in interaction between C and P : name of communication link

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems III

Example 8.1 (Dynamic access to resources; continued)

- Different rôles of action name a:
- in interaction between S and C : object transferred from S to C
- in interaction between C and P : name of communication link
- Intuitively, names represent access rights:
- a: to P
- b: to S
$-d$: to data to be printed

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems III

Example 8.1 (Dynamic access to resources; continued)

- Different rôles of action name a:
- in interaction between S and C : object transferred from S to C
- in interaction between C and P : name of communication link
- Intuitively, names represent access rights:
- a: to P
- b: to S
$-d$: to data to be printed
- If a is only way to access P
$\Rightarrow P$ "moves" from S to C

Another Example: Mobile Clients

Outline of Lecture 8

```
Recap: Modelling Mutual Exclusion Algorithms
Recap: Value-Passing CCS
Modelling Mobile Concurrent Systems
Another Example: Mobile Clients
```

Syntax of the Monadic π-Calculus
Semantics of the Monadic π-Calculus

Another Example: Mobile Clients

Mobile Clients I

Example 8.2 (Hand-over protocol)

Scenario:

- client devices moving around (phones, PCs, sensors, ...)
- each radio-connected to some base station
- stations wired to central control
- some event (e.g., signal fading) may cause a client to be switched to another station
- essential: specification of switching process ("hand-over protocol")

Another Example: Mobile Clients

Mobile Clients I

Example 8.2 (Hand-over protocol)

Scenario:

- client devices moving around (phones, PCs, sensors, ...)
- each radio-connected to some base station
- stations wired to central control
- some event (e.g., signal fading) may cause a client to be switched to another station
- essential: specification of switching process ("hand-over protocol")

Simplest configuration:

two stations, one client

Another Example: Mobile Clients

Mobile Clients II

Example 8.2 (Hand-over protocol; continued)

- Every station is in one of two modes: Station (active; four links) or Idle (inactive; two links)

Another Example: Mobile Clients

Mobile Clients II

Example 8.2 (Hand-over protocol; continued)

- Every station is in one of two modes: Station (active; four links) or Idle (inactive; two links)
- Client can talk via Station, and at any time Control can request Station/Idle to lose/gain Client:

$$
\begin{aligned}
\text { Station }(\text { talk, switch, gain, lose })= & \text { talk. Station }(\text { talk, switch, gain, lose })+ \\
& \text { lose }(t, s) \cdot \overline{\text { switch }\langle t, s\rangle . \text { Idle }(\text { gain, lose })} \\
\text { Idle }(\text { gain, lose })= & \text { gain }(t, s) . \text { Station }(t, s, \text { gain, lose })
\end{aligned}
$$

Software Modeling

Another Example: Mobile Clients

Mobile Clients II

Example 8.2 (Hand-over protocol; continued)

- Every station is in one of two modes: Station (active; four links) or Idle (inactive; two links)
- Client can talk via Station, and at any time Control can request Station/Idle to lose/gain Client:

$$
\begin{aligned}
\text { Station (talk, switch, gain, lose })= & \text { talk. Station }(\text { talk, switch, gain, lose })+ \\
& \text { lose }(t, s) \cdot \overline{\text { switch }\langle t, s\rangle . \text { Idle }(\text { gain, lose })} \\
\text { Idle }(\text { gain, lose })= & \text { gain }(t, s) . \text { Station }(t, s, \text { gain, lose })
\end{aligned}
$$

- If Control decides Station to lose Client, it issues a new pair of channels to be shared by Client and Idle:

$$
\begin{aligned}
& \text { Control }_{1}=\overline{\text { ose }_{1}}\left\langle\text { talk }_{2}, \text { switch }_{2}\right\rangle \cdot \overline{\text { gain }_{2}}\left\langle\text { talk }_{2}, \text { switch }_{2}\right\rangle . \text { Control }_{2} \\
& \text { Control }_{2}={\overline{\text { lose }_{2}}\left\langle\text { talk }_{1}, \text { switch }_{1}\right\rangle \cdot \overline{\text { gain }}_{1}\left\langle\text { talk }_{1}, \text { switch }_{1}\right\rangle . \text { Control }_{1}}^{\text {and }} \text {. }
\end{aligned}
$$

Another Example: Mobile Clients

Mobile Clients II

Example 8.2 (Hand-over protocol; continued)

- Every station is in one of two modes: Station (active; four links) or Idle (inactive; two links)
- Client can talk via Station, and at any time Control can request Station/Idle to lose/gain Client:

$$
\begin{aligned}
\text { Station }(\text { talk, switch, gain, lose })= & \text { talk. Station }(\text { talk, switch, gain, lose })+ \\
& \text { lose }(t, s) \cdot \overline{\text { switch }\langle t, s\rangle . \text { Idle }(\text { gain, lose })} \\
\text { Idle }(\text { gain, lose })= & \text { gain }(t, s) . \text { Station }(t, s, \text { gain, lose })
\end{aligned}
$$

- If Control decides Station to lose Client, it issues a new pair of channels to be shared by Client and Idle:

$$
\begin{aligned}
& \text { Control }_{1}=\overline{\text { ose }_{1}}\left\langle\text { talk }_{2}, \text { switch }_{2}\right\rangle \cdot \overline{\text { gain }_{2}}\left\langle\text { talk }_{2}, \text { switch }_{2}\right\rangle . \text { Control }_{2} \\
& \text { Control }_{2}={\overline{\text { lose }_{2}}\left\langle\text { talk }_{1}, \text { switch }_{1}\right\rangle \cdot \overline{\text { gain }}_{1}\left\langle\text { talk }_{1}, \text { switch }_{1}\right\rangle . \text { Control }_{1}}^{\text {and }} \text {. }
\end{aligned}
$$

- Client can either talk or, if requested, switch to a new pair of channels:

$$
\text { Client }(\text { talk }, \text { switch })=\overline{\text { talk. Client }(t a l k, ~ s w i t c h) ~}+\operatorname{switch}(t, s) . \operatorname{Client}(t, s)
$$

UNIVERSITY

Another Example: Mobile Clients

Mobile Clients III

Example 8.2 (Hand-over protocol; continued)

- As usual, the whole system is a restricted composition of processes:

$$
\text { System }_{1}=\text { new } L\left(\text { Client }_{1} \| \text { Station }_{1} \| \text { Idle }_{2} \| \text { Control }_{1}\right)
$$

where \quad Client $_{i}:=$ Client $_{\text {talk }}^{i}$, switch $_{i}$)

$$
\text { Station }_{i}:=\text { Station }\left(\text { talk }_{i}, \text { switch }_{i}, \text { gain }_{i}, \text { lose }_{i}\right)
$$

$$
I d l e_{i}:=I d l e\left(\text { gain }_{i}, \text { lose }_{i}\right)
$$

$$
L:=\left(\text { talk }_{i}, \text { switch }_{i}, \text { gain }_{i}, \text { lose }_{i} \mid i \in\{1,2\}\right)
$$

Software Modeling

Another Example: Mobile Clients

Mobile Clients III

Example 8.2 (Hand-over protocol; continued)

- As usual, the whole system is a restricted composition of processes:

$$
\text { System }_{1}=\text { new } L\left(\text { Client }_{1} \| \text { Station }_{1} \| \text { Idle }_{2} \| \text { Control }_{1}\right)
$$

where \quad Client $_{i}:=$ Client $_{\text {(talk }}^{i}$, switch $_{i}$)

$$
\begin{aligned}
& \text { Station }_{i}:={\text { Station }\left(\text { talk }_{i}, \text { switch }_{i}, \text { gain }_{i}, \text { lose }_{i}\right)}_{\text {Idle }_{i}}: \\
& L:=\text { Idle }^{\left(\text {gain }_{i}, \text { lose }_{i}\right)} \\
&\text { switch } \left._{i}, \text { gain }_{i}, \text { lose }_{i} \mid i \in\{1,2\}\right)
\end{aligned}
$$

- After having formally defined the π-Calculus we will see that this protocol is correct, i.e., that the hand-over does indeed occur:

$$
\text { System }_{1} \longrightarrow{ }^{*} \text { System }_{2}
$$

where

$$
\text { System }_{2}=\text { new } L\left(\text { Idle }_{1}| | \text { Client }_{2} \| \text { Station }_{2} \| \text { Control }_{2}\right)
$$

Syntax of the Monadic π-Calculus

Outline of Lecture 8

```
Recap: Modelling Mutual Exclusion Algorithms
Recap: Value-Passing CCS
Modelling Mobile Concurrent Systems
Another Example: Mobile Clients
```

Syntax of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

Syntax of the Monadic π-Calculus

Introduction

Literature on π-Calculus:

- Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes, Part I/II. Journal of Inf. \& Comp., 100:1-77, 1992
- Overview article:
J. Parrow: An introduction to the π-Calculus. Chapter 8 of Handbook of Process Algebra, 479-543, Elsevier, 2001
- Textbook:
R. Milner: Communicating and mobile systems: the π-Calculus. Cambridge University Press, 1999

Syntax of the Monadic π-Calculus

Introduction

Literature on π-Calculus:

- Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes, Part I/II. Journal of Inf. \& Comp., 100:1-77, 1992
- Overview article:
J. Parrow: An introduction to the π-Calculus. Chapter 8 of Handbook of Process Algebra, 479-543, Elsevier, 2001
- Textbook:
R. Milner: Communicating and mobile systems: the π-Calculus. Cambridge University Press, 1999

To simplify the presentation (as in Milner's book):

1. Monadic π-Calculus with replication (message $=$ one name, no process identifiers)
2. Extension to polyadic calculus
3. Extension by process equations

Syntax of the Monadic π-Calculus

Syntax of the Monadic π-Calculus

Definition 8.3 (Syntax of monadic π-Calculus)

- Let $A=\{a, b, c \ldots, x, y, z, \ldots\}$ be a set of names.

Syntax of the Monadic π-Calculus

Syntax of the Monadic π-Calculus

Definition 8.3 (Syntax of monadic π-Calculus)

- Let $A=\{a, b, c \ldots, x, y, z, \ldots\}$ be a set of names.
- The set of action prefixes is given by

$$
\begin{aligned}
& \pi::=x(y) \quad \text { (receive } y \text { along } x) \\
& \bar{x}\langle y\rangle \quad \text { (send } y \text { along } x \text {) } \\
& \tau \quad \text { (unobservable action) }
\end{aligned}
$$

Syntax of the Monadic π-Calculus

Syntax of the Monadic π-Calculus

Definition 8.3 (Syntax of monadic π-Calculus)

- Let $A=\{a, b, c \ldots, x, y, z, \ldots\}$ be a set of names.
- The set of action prefixes is given by

$\pi::=x(y)$		(receive y along $x)$	
\mid	$\bar{x}\langle y\rangle$		(send y along $x)$
	τ		(unobservable action)

- The set Prc^{π} of π-Calculus process expressions is defined by the following syntax:

$$
\begin{array}{rll}
P::=\sum_{i \in l} \pi_{i} . P_{i} & \text { (guarded sum) } \\
\mid P_{1} \| P_{2} & \text { (parallel composition) } \\
\text { new } \times P & \text { (restriction) } \\
\mid P & \text { (replication) }
\end{array}
$$

(where / finite index set, $x \in A$)

Syntax of the Monadic π-Calculus

Syntax of the Monadic π-Calculus

Definition 8.3 (Syntax of monadic π-Calculus)

- Let $A=\{a, b, c \ldots, x, y, z, \ldots\}$ be a set of names.
- The set of action prefixes is given by

$\pi::=x(y)$		(receive y along $x)$
\mid	$\bar{x}\langle y\rangle$	
	(send y along $x)$	
	τ	(unobservable action)

- The set Prc^{π} of π-Calculus process expressions is defined by the following syntax:

$$
\begin{array}{rll}
P::=\sum_{i \in 1} \pi_{i} \cdot P_{i} & \text { (guarded sum) } \\
\mid P_{1} \| P_{2} & \text { (parallel composition) } \\
\text { new } \times P & \text { (restriction) } \\
\mid!P & \text { (replication) }
\end{array}
$$

(where / finite index set, $x \in A$)
Conventions: nil $:=\sum_{i \in \emptyset} \pi_{i} . P_{i}$, new $x_{1}, \ldots, x_{n} P:=$ new $x_{1}\left(\ldots\right.$ new $\left.x_{n} P\right)$

Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 8.4 (Free and bound names)

- The input prefix $x(y)$ and the restriction new $y P$ both bind y.

Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 8.4 (Free and bound names)

- The input prefix $x(y)$ and the restriction new $y P$ both bind y.
- Every other occurrence of a name (i.e., x in $x(y)$ and x, y in $\bar{x}\langle y\rangle)$ is free.

Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 8.4 (Free and bound names)

- The input prefix $x(y)$ and the restriction new $y P$ both bind y.
- Every other occurrence of a name (i.e., x in $x(y)$ and x, y in $\bar{x}\langle y\rangle)$ is free.
- The set of bound/free names of a process expressions $P \in \operatorname{Prc}^{\pi}$ is respectively denoted by $b n(P) / f n(P)$.

Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 8.4 (Free and bound names)

- The input prefix $x(y)$ and the restriction new $y P$ both bind y.
- Every other occurrence of a name (i.e., x in $x(y)$ and x, y in $\bar{x}\langle y\rangle)$ is free.
- The set of bound/free names of a process expressions $P \in \operatorname{Prc}^{\pi}$ is respectively denoted by $b n(P) / f n(P)$.

Remark: $b n(P) \cap f n(P) \neq \emptyset$ is possible

Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 8.4 (Free and bound names)

- The input prefix $x(y)$ and the restriction new $y P$ both bind y.
- Every other occurrence of a name (i.e., x in $x(y)$ and x, y in $\bar{x}\langle y\rangle)$ is free.
- The set of bound/free names of a process expressions $P \in \operatorname{Prc}^{\pi}$ is respectively denoted by $b n(P) / f n(P)$.

Remark: $b n(P) \cap f n(P) \neq \emptyset$ is possible

Example 8.5

For $P=$ new $x(x(y)$.nil $\| \bar{z}\langle y\rangle$.nil $)$:

$$
b n(P)=\{x, y\}, f n(P)=\{y, z\}
$$

Semantics of the Monadic π-Calculus

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 8.6 (Structural congruence)

$P, Q \in \operatorname{Prc}^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

1. renaming of bound names (α-conversion)

Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 8.6 (Structural congruence)

$P, Q \in \operatorname{Prc}^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

1. renaming of bound names (α-conversion)
2. reordering of terms in a summation (commutativity of +)

Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 8.6 (Structural congruence)

$P, Q \in \operatorname{Prc}^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

1. renaming of bound names (α-conversion)
2. reordering of terms in a summation (commutativity of +)
3. $P\|Q \equiv Q\| P, P\|(Q \| R) \equiv(P \| Q)\| R, P \|$ nil $\equiv P$ (Abelian monoid laws for $\|$)

Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 8.6 (Structural congruence)

$P, Q \in \operatorname{Prc}^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

1. renaming of bound names (α-conversion)
2. reordering of terms in a summation (commutativity of +)
3. $P\|Q \equiv Q\| P, P\|(Q \| R) \equiv(P \| Q)\| R, P \|$ nil $\equiv P$ (Abelian monoid laws for $\|$)
4. new x nil \equiv nil, new $x, y P \equiv$ new $y, x P$,
$P \|$ new $x Q \equiv$ new $x(P \| Q)$ if $x \notin f n(P)$ (scope extension)

Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 8.6 (Structural congruence)

$P, Q \in \operatorname{Prc}^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

1. renaming of bound names (α-conversion)
2. reordering of terms in a summation (commutativity of +)
3. $P\|Q \equiv Q\| P, P\|(Q \| R) \equiv(P \| Q)\| R, P \|$ nil $\equiv P$ (Abelian monoid laws for $\|$)
4. new x nil \equiv nil, new $x, y P \equiv$ new $y, x P$,
$P \|$ new $x Q \equiv$ new $x(P \| Q)$ if $x \notin f n(P)$ (scope extension)
5. $!P \equiv P \|!P$ (unfolding)

Semantics of the Monadic π-Calculus

A Standard Form

Theorem 8.7 (Standard form)

Every process expression is structurally congruent to a process of the standard form

$$
\text { new } x_{1}, \ldots, x_{k}\left(P_{1}\|\ldots\| P_{m}\left\|!Q_{1}\right\| \ldots \|!Q_{n}\right)
$$

where each P_{i} is a non-empty sum, and each Q_{j} is in standard form.
(If $m=n=0$: nil; if $k=0$: restriction absent)

Semantics of the Monadic π-Calculus

A Standard Form

Theorem 8.7 (Standard form)

Every process expression is structurally congruent to a process of the standard form

$$
\text { new } x_{1}, \ldots, x_{k}\left(P_{1}\|\ldots\| P_{m}\left\|!Q_{1}\right\| \ldots \|!Q_{n}\right)
$$

where each P_{i} is a non-empty sum, and each Q_{j} is in standard form.
(If $m=n=0$: nil; if $k=0$: restriction absent)

Proof.

by induction on the structure of $R \in \operatorname{Prc}^{\pi}$ (on the board)

Semantics of the Monadic π-Calculus

The Reaction Relation

Thanks to Theorem 8.7, only processes in standard form need to be considered for defining the operational semantics:

Definition 8.8

The reaction relation $\longrightarrow \subseteq \operatorname{Prc}^{\pi} \times \operatorname{Prc}^{\pi}$ is generated by the rules:

$$
\begin{aligned}
& \text { (rav) } \tau \cdot P+Q \longrightarrow P \\
& { }^{\text {Prasease }}(x(y) \cdot P+R)\|(\bar{x}\langle z\rangle \cdot Q+S) \longrightarrow P[z / y]\| Q \\
& { }^{P_{0 \times n}} \frac{P \longrightarrow P^{\prime}}{P\left\|Q \longrightarrow P^{\prime}\right\| Q} \quad \text { nenes } \frac{P \rightarrow P^{\prime}}{\operatorname{new} x P \longrightarrow \operatorname{new} x P^{\prime}} \\
& { }_{\text {strues }} \frac{P \longrightarrow P^{\prime}}{Q \longrightarrow Q^{\prime}} \text { if } P \equiv Q \text { and } P^{\prime} \equiv Q^{\prime}
\end{aligned}
$$

- $P[z / y]$ replaces every free occurrence of y in P by z.
- In (React), the pair $(x(y), \bar{x}\langle z\rangle)$ is called a redex.

