Winter Semester 2019/20

Lecture 8: The m-Calculus

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Recap: Modelling Mutual Exclusion Algorithms

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

RWTH

2 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Recap: Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: P; cannot fail or terminate within critical section

Peterson’s algorithm CCS representation
while true do P, = biwt.kw2.P;4
“non-critical section”, Pi1 = b2rf.Pys +
b; .= true; b2l’t.(kl’1.P12 + kf2.P11)
K .= P,> = enter1.exit1.b1wf.P;
while b; A\ k = j do skip end,; P, — b2wt kwl.Ps;
“cr./tica/ se?t/on”; Py, = b1rf.Pyy +
zj = false, b1rt.(kr1.P21 + kr2.P22)
en

P>, = enter2.exit2.b2wf . P,
Peterson = (P1 H P2 H B1f || Bzf H K1) \ L

for L= {b1rf, birt, b1wf, biwt,
b2rf, b2rt, b2wf, b2wt,
kri, kr2, kw1, kw2}

RWTH

3 0of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 8: The m-Calculus

Recap: Modelling Mutual Exclusion Algorithms

Obtaining the LTS |

CAAL

Project ~ Edit

Peterson's Algorithm

Explore

Verify

Games ~

* Peterson's algorithm for mutual exclusion.

* See Chapter 7 of "Reactive Systems” for a full description.

B1f = 'b1rf.B1f + blwf.B1f + blwt.B1t;
B1t = 'birt.B1t + blwf.B1f + blwt.B1t;

B2f = 'bzrf.B2f + b2wf.B2f + b2wt.B2t;
B2t = 'b2rt.B2t + b2wf.B2f + b2wt.B2t;

K1 = 'kr1.K1 + kwl.K1 + kw2.K2;
K2 = 'kr2.K2 + kwl.K1 + kw2.K2;

P1 = 'biwt. 'kw2.P11;
P11 = b2rf.P12 + b2rt.(kr2.P11 + kr1.P12);
P12 = enterl.exitl. 'biwf.P1;

P2 = 'b2wt. 'kwl.P21;
P21 = birf.P22 + birt.(kr1.P21 + kr2.P22);
P22 = enter2.exit2. 'b2wf.P2;

set L = {birf, b2rf, birt, b2rt, biwf, b2wf, biwt, b2wt, krl, kr2, kwl, kw2};

Peterson = (P1 | P2 | B1f | B2f | K1) \ L;

Spec = enterl.exitl.Spec + enter2.exit2.Spec;

Parse

About

CCs TCCS

Syntax

&M 0

16 :J

4 of 26

Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

.

‘ Il and Verification Chair

Software Modeling

RWTH

Recap: Modelling Mutual Exclusion Algorithm

S

H H enter2
Obtaining the LTS Il w e
ﬂ ‘ enter2 tau Tm exit2
tau tau - 5 e 123 emtrze)n(itZ A
enter. tau
P‘ tau i .y tau
4 4
tau m tau exit2 4 tau
tau , - . m
« tau o exit2 ¥
w s
tau
tau ?y tau_iay
tau n 4
’ e 4 teu ‘B - - -é‘ U tau
AP
* tau tau
tau rm‘g tau B’k
tau YA | tau
tau v 'Y
fau A
w D
m’_ tau Y A tau tau
tau Lauvl‘mu tau tau tau
A
o ‘o
tau ¥ L tau v
4y tau au
o L B b
33 tau n tau
4 tau tau‘ Pexit 4 A fau
tau b
. YB3 exit] tﬁ'* vﬂ
u » tau ':' ﬂi Y
¥ B A enter1 y, = tau
A - anter ¥ tau tau
A . s ta, me enterl v, “ tau ,a
m tau tau 7 tau

g »

4
[12

Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

5 of 26

.

4

Software Modeling
Il and Verification Chair

Recap: Value-Passing CCS

Outline of Lecture 8

Recap: Value-Passing CCS

6 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

)

4

Software Modeling
Il and Verification Chair

RWTH

Recap: Value-Passing CCS

Syntax of Value-Passing CCS |

Definition (Syntax of value-passing CCS)
o Let A, A, Pid (ranked) as in Definition 2.1.

e Let e and b be integer and Boolean expressions, resp., built from integer variables x. y, . ..

e The set Prc* of value-passing process expressions is defined by:

P ::=nil
a(x).P
ale).P
T.P
Py + P>

P\ L
Pf]

if bthen P

|
|
|
|
| Pi || P2
|
|
|
|

C(e1,...

, €n)

inaction)

input prefixing)

output prefixing)

T prefixing)

choice)

parallel composition)

restriction)

relabelling)
onditional)

process call)

(
(i
(
(
(
(
(
(
(c
(

whereace A, L C A, C € Pid (ofrank n € N),and f : A — A.

7 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

: Software Modeling

‘ Il and Verification Chair

Recap: Value-Passing CCS

Semantics of Value-Passing CCS |

Definition (Semantics of value-passing CCS)

A value-passing process definition (Ci(xy, ..., x,) = P; | 1 < i < k) determines the
LTS (Prc™, Act, —) with Act := (AU A) x Z U {7} whose transitions can be
inferred from the following rules (P, P', Q, Q' € Prc*, a € A, x; integer variables, e;/b
integer/Boolean expressions, z € Z, o € Act, A € (AU A) X Z):

(z value of e)

(In) (Out) — (Tau) P
a(x).P 224 plz/x] a(e).p 2 p TP — P
P 5 P wQ — @
P+Q— P P+Q— Q
P P Q-5 PP Q-5 a

(Pary (Pa (Com

) r2)) =
Pla-=PFP|a Pl P| @ PlQ—PFP| &

8 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

RWTH

Lecture 8: The m-Calculus

Recap: Value-Passing CCS

Semantics of Value-Passing CCS Il

Definition (Semantics of value-passing CCS; continued)

p_ pl PP (a¢(LUL) x 7Z)
(Rel) (Res) o
PiA] X Py P\L— P\ L

Plzi /X1, ..., 2Zn)Xn] — P’

P -5 P (btrue) (C(xq,...,x,) = P, zvalue of &;)

(If) (Call)
if bthen P — P’ Cler,...,e,) — P
Remarks:
e Plzy/x1, ..., 2,/ x,| denotes the substitution of each free (i.e., unbound) occurrence of x; by
zi(1<i<n)

e Operations on actions ignore values:

a(z):=3a(z) alz):=a(z) f(a(z)):=f(a)z) f(a(z)):=f(a)z) (and f(r):=r7)

Software Modeling
and Verification Chair

9 of 26 Concurrency Theory o Rm
Winter Semester 2019/20
=

Lecture 8: The m-Calculus

Recap: Value-Passing CCS

Translation of Value-Passing into Pure CCS Il

Definition (Translation of value-passing into pure CCS)

For each P € Prc* without free variables, its translated form P e Prcis given by

nil == nil T.P:=T.P
a(x).P:=>_,.,a;.Plz/x] a(e).P:=a,.P (zvalue of e)
Pi+ Py =P+ P Pi|| Po:=Pi | P2
P\L:=P\{a,|aclL zeZ} P[f] .= P[f] (f(a,) := f(a);)
L P if btrue =
if bthen P:=< _ C(er,...,€n) :=C, .- (z valueof &)
nil otherwise

Moreover, each defining equation C(x4, ..., x,) = P of a process identifier is
translated into the indexed collection of process definitions

(021,-..,zn = Plzy/x1, ..., z0/X%p0) | 215,20 € Z)

RWTH

10 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 8: The m-Calculus

Modelling Mobile Concurrent Systems

Outline of Lecture 8

Modelling Mobile Concurrent Systems

11 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

)

4

Software Modeling
Il and Verification Chair

RWTH

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems |

Observation: CCS imposes static communication structures: if P, Q € Prc want to
communicate, then both must syntactically refer to the same action name

RWTH

12 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems |

Observation: CCS imposes static communication structures: if P, Q € Prc want to
communicate, then both must syntactically refer to the same action name

—> every potential communication partner known beforehand,
no dynamic passing of communication links

RWTH

12 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems |

Observation: CCS imposes static communication structures: if P, Q € Prc want to
communicate, then both must syntactically refer to the same action name

—> every potential communication partner known beforehand,
no dynamic passing of communication links

= lack of modelling capabilities for mobility

RWTH

12 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems |

Observation: CCS imposes static communication structures: if P, Q € Prc want to
communicate, then both must syntactically refer to the same action name

—> every potential communication partner known beforehand,
no dynamic passing of communication links

= lack of modelling capabilities for mobility

Goal: develop calculus in the spirit of CCS which supports mobility

— m-Calculus

RWTH

12 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems Il

Example 8.1 (Dynamic access to resources)

e Server S controls access to printer P
e Client C wishes to use P

13 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

.

4

Software Modeling
Il and Verification Chair

RWTH

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems Il

Example 8.1 (Dynamic access to resources)

e Server S controls access to printer P
e Client C wishes to use P

e [In CCS: P and C must share some action name a
= C could access P without being granted it by S

13 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

n

4

Software Modeling
Il and Verification Chair

RWTH

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems Il

Example 8.1 (Dynamic access to resources)

e Server S controls access to printer P
e Client C wishes to use P

e [In CCS: P and C must share some action name a
= C could access P without being granted it by S
e |In m-Calculus:

— initially only S has access to P (using link a)
— using another link b, C can request access to P

13 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

n

4

Software Modeling
Il and Verification Chair

RWTH

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems Il

Example 8.1 (Dynamic access to resources)

e Server S controls access to printer P
e Client C wishes to use P

e [In CCS: P and C must share some action name a
= C could access P without being granted it by S
e |In m-Calculus:

— initially only S has access to P (using link a)
— using another link b, C can request access to P

e Formally:
b(a).S || b(c).c(d).C" || a(e).P’ - alinkto P
T ~ ~ o \ﬁpz—/ — b: link between S and C

— c: “placeholder” for a
— d: data to be printed
— e: “placeholder” for d

RWTH

13 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems Il

Example 8.1 (Dynamic access to resources)

e Server S controls access to printer P
e Client C wishes to use P

e [In CCS: P and C must share some action name a
= C could access P without being granted it by S
e |In m-Calculus:

— initially only S has access to P (using link a)
— using another link b, C can request access to P

e Formally:
b(a).S' || b(c).c(d).C" || a(e).P’ - alinkto P
—s e e — b: link between S and C
SN S’ || a(d).C'la/c] || a(e).P’ — c: “placeholder” for a

— d: data to be printed
— e: “placeholder” for d

RWTH

13 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems Il

Example 8.1 (Dynamic access to resources)

e Server S controls access to printer P
e Client C wishes to use P

e [In CCS: P and C must share some action name a
= C could access P without being granted it by S
e |In m-Calculus:

— initially only S has access to P (using link a)
— using another link b, C can request access to P

e Formally:
b(a).S' || b(c).c(d).C’ || a(e).P’ - e o2
s % 5 — b link between S and C
SN S' || a(d).C'la/c] || a(e).P’ — c: “placeholder” for a
N S | C'la/c] || P'[d/é] — d: data to be printed
— e: “placeholder” for d
13 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The m-Calculus

: Software Modeling

‘ Il and Verification Chair

RWTH

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems il

Example 8.1 (Dynamic access to resources; continued)

e Different roles of action name a:

— in interaction between S and C: object transferred from Sto C
— in interaction between C and P: name of communication link

14 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

n

4

Software Modeling
Il and Verification Chair

RWTH

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems il

Example 8.1 (Dynamic access to resources; continued)

e Different réles of action name a:
— in interaction between S and C: object transferred from Sto C
— in interaction between C and P: name of communication link
e Intuitively, names represent access rights:
—a.toP
— b:to S
— d: to data to be printed

14 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

n

4

Software Modeling
Il and Verification Chair

RWTH

Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems il

Example 8.1 (Dynamic access to resources; continued)

e Different roles of action name a:

— in interaction between S and C: object transferred from Sto C
— in interaction between C and P: name of communication link

e Intuitively, names represent access rights:
—atoP
—b:to S
— d: to data to be printed
e If ais only way to access P
= P “moves” from Sto C

14 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

n

4

Software Modeling
Il and Verification Chair

RWTH

Another Example: Mobile Clients

Outline of Lecture 8

Another Example: Mobile Clients

15 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

)

4

Software Modeling
Il and Verification Chair

RWTH

Another Example: Mobile Clients

Mobile Clients |

Example 8.2 (Hand-over protocol)

Scenario:

e client devices moving around (phones, PCs, sensors, ...)

e each radio-connected to some base station

e stations wired to central control

e some event (e.g., signal fading) may cause a client to be switched to another station
e essential: specification of switching process (“hand-over protocol”)

RWTH

16 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Another Example: Mobile Clients

Mobile Clients |
Example 8.2 (Hand-over protocol)

Scenario:

e client devices moving around (phones, PCs, sensors, ...)
e each radio-connected to some base station
e stations wired to central control

e some event (e.g., signal fading) may cause a client to be switched to another station
e essential: specification of switching process (“hand-over protocol”)

Simplest configuration: , Client
two stations, one client SW’th%
talk
Station , Idle
gain,
.Nse//zsez
gain,
Control
16 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The m-Calculus

: Software Modeling

‘ Il and Verification Chair

Another Example: Mobile Clients

Mobile Clients Il
Example 8.2 (Hand-over protocol; continued)

e Every station is in one of two modes: Station (active; four links) or /dle (inactive; two links)

RWTH

17 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The w-Calculus

Another Example: Mobile Clients

Mobile Clients Il
Example 8.2 (Hand-over protocol; continued)

e Every station is in one of two modes: Station (active; four links) or /dle (inactive; two links)
e Client can talk via Station, and at any time Control can request Station/Idle to lose/gain
Client:
Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

RWTH

17 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The w-Calculus

Another Example: Mobile Clients

Mobile Clients Il
Example 8.2 (Hand-over protocol; continued)

e Every station is in one of two modes: Station (active; four links) or /dle (inactive; two links)
e Client can talk via Station, and at any time Control can request Station/Idle to lose/gain
Client:
Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

e If Control decides Station to lose Client, it issues a new pair of channels to be shared by
Client and Idle:

Controly = lose(talko, switch,).gain, (talk., switch,).Control,
Control, = loses(talky, switchy).gain, (talky, switchy).Control,

RWTH

17 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The w-Calculus

Another Example: Mobile Clients

Mobile Clients Il
Example 8.2 (Hand-over protocol; continued)

e Every station is in one of two modes: Station (active; four links) or /dle (inactive; two links)

e Client can talk via Station, and at any time Control can request Station/Idle to lose/gain
Client:

Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

e If Control decides Station to lose Client, it issues a new pair of channels to be shared by
Client and Idle:

Controly = lose(talko, switch,).gain, (talk., switch,).Control,
Control, = loses(talky, switchy).gain, (talky, switchy).Control,

e Client can either talk or, if requested, switch to a new pair of channels:

Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

RWTH

17 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Another Example: Mobile Clients

Mobile Clients lli
Example 8.2 (Hand-over protocol; continued)

e As usual, the whole system is a restricted composition of processes:
System, = new L (Client; || Station; || Idle, || Control)

where Client; := Client(talk;, switch;)
Station; := Station(talk;, switch;, gain;, lose;)
Idle; := Idle(gain;, lose;)
L := (talk;, switch;, gain;, lose; | i € {1,2})

RWTH

18 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Another Example: Mobile Clients

Mobile Clients lli
Example 8.2 (Hand-over protocol; continued)

e As usual, the whole system is a restricted composition of processes:
System, = new L (Client; || Station; || Idle, || Control)

where Client; := Client(talk;, switch;)
Station; := Station(talk;, switch;, gain;, lose;)
Idle; := Idle(gain;, lose;)
L := (talk;, switch;, gain;, lose; | i € {1,2})
e After having formally defined the 7-Calculus we will see that this protocol is correct, i.e., that
the hand-over does indeed occur:

System, —™* System,

where
System, = new L (/dle; || Client, || Station, || Control,)
18 of 26 Concurrency Theory
Winter Semester 2019/20 o Software Modeling Rm
‘ Il and Verification Chair

Lecture 8: The m-Calculus

Syntax of the Monadic m-Calculus

Outline of Lecture 8

Syntax of the Monadic m-Calculus

19 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

)

4

Software Modeling
Il and Verification Chair

RWTH

Syntax of the Monadic m-Calculus

Introduction

Literature on -Calculus:

e Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes, Part I/Il. Journal of Inf. &
Comp., 100:1-77, 1992

e Overview article:
J. Parrow: An introduction to the m-Calculus. Chapter 8 of Handbook of Process Algebra,
479-543, Elsevier, 2001

e Textbook:
R. Milner: Communicating and mobile systems: the m-Calculus. Cambridge University
Press, 1999

RWTH

20 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Syntax of the Monadic 7-Calculus

Introduction

Literature on -Calculus:

e Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes, Part I/Il. Journal of Inf. &
Comp., 100:1-77, 1992

e Overview article:
J. Parrow: An introduction to the m-Calculus. Chapter 8 of Handbook of Process Algebra,
479-543, Elsevier, 2001

e Textbook:
R. Milner: Communicating and mobile systems: the m-Calculus. Cambridge University
Press, 1999

To simplify the presentation (as in Milner’s book):

1. Monadic w-Calculus with replication (message = one name, no process identifiers)
2. Extension to polyadic calculus

3. Extension by process equations

RWTH

20 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Syntax of the Monadic m-Calculus

Syntax of the Monadic m-Calculus

Definition 8.3 (Syntax of monadic w-Calculus)

eletA={ab,c...,x,y,z, ...} be aset of names.

RWTH

21 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Syntax of the Monadic m-Calculus

Syntax of the Monadic m-Calculus

Definition 8.3 (Syntax of monadic w-Calculus)

eletA={ab,c...,x,y,z, ...} be aset of names.
e The set of action prefixes is given by

= x(y) (receive y along x)
| X{y) (send y along x)
| T (unobservable action)
21 of 26 Concurrency Theory
Winter Semester 2019/20 ? Software Modeling Rm
Il and Verification Chair

Lecture 8: The m-Calculus

Syntax of the Monadic m-Calculus

Syntax of the Monadic m-Calculus

Definition 8.3 (Syntax of monadic w-Calculus)
eletA={ab,c...,x,y,z, ...} be aset of names.
e The set of action prefixes is given by

= x(y) (receive y along x)
| X(y) (send y along x)

| T (unobservable action)
e The set Prc”™ of m-Calculus process expressions is defined by the following syntax:
P:u=> . m.P; (guarded sum)
| Py || P2 (parallel composition)
| newxP (restriction)
| P (replication)
(where [finite index set, x € A)
21 of 26 Concurrency Theory
Winter Semester 2019/20 ? Software Modeling Rm
Il and Verification Chair

Lecture 8: The m-Calculus

Syntax of the Monadic m-Calculus

Syntax of the Monadic m-Calculus

Definition 8.3 (Syntax of monadic w-Calculus)
eletA={ab,c...,x,y,z, ...} be aset of names.
e The set of action prefixes is given by

= x(y) (receive y along x)
| X(y) (send y along x)

| T (unobservable action)
e The set Prc”™ of m-Calculus process expressions is defined by the following syntax:
P:u=> . m.P; (guarded sum)
| Py || P2 (parallel composition)
| newxP (restriction)
| P (replication)
(where [finite index set, x € A)
Conventions: nil :=) . m.P;, new xq, ..., X, P := new x; (...newx, P)
21 of 26 Concurrency Theory
Winter Semester 2019/20 o Software Modeling Rm
‘ Il and Verification Chair

Lecture 8: The m-Calculus

Syntax of the Monadic m-Calculus

Free and Bound Names
Definition 8.4 (Free and bound names)

e The input prefix x(y) and the restriction new y P both bind y.

RWTH

22 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Syntax of the Monadic m-Calculus

Free and Bound Names
Definition 8.4 (Free and bound names)

e The input prefix x(y) and the restriction new y P both bind y.
e Every other occurrence of a name (i.e., x in x(y) and x, y in X(y)) is free.

RWTH

22 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Syntax of the Monadic m-Calculus

Free and Bound Names
Definition 8.4 (Free and bound names)

e The input prefix x(y) and the restriction new y P both bind y.
e Every other occurrence of a name (i.e., x in x(y) and x, y in x(y)) is free.

e The set of bound/free names of a process expressions P € Prc” is respectively denoted by
bn(P)/fn(P).

RWTH

22 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The m-Calculus

Syntax of the Monadic m-Calculus

Free and Bound Names
Definition 8.4 (Free and bound names)

e The input prefix x(y) and the restriction new y P both bind y.
e Every other occurrence of a name (i.e., x in x(y) and x, y in x(y)) is free.

e The set of bound/free names of a process expressions P € Prc” is respectively denoted by
bn(P)/fn(P).

Remark: bn(P) N fn(P) # () is possible

RWTH

22 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 8: The w-Calculus ‘ Il and Verification Chair

Syntax of the Monadic m-Calculus

Free and Bound Names
Definition 8.4 (Free and bound names)

e The input prefix x(y) and the restriction new y P both bind y.
e Every other occurrence of a name (i.e., x in x(y) and x, y in x(y)) is free.

e The set of bound/free names of a process expressions P € Prc” is respectively denoted by
bn(P)/fn(P).

Remark: bn(P) N fn(P) # () is possible

Example 8.5
For P = new x (x(y).nil || Z(y).nil):
bn(P) = {x,y}, M(P) = {y, 2}

RWTH

22 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 8: The w-Calculus ‘ Il and Verification Chair

Semantics of the Monadic m-Calculus

Outline of Lecture 8

Semantics of the Monadic m-Calculus

23 of 26 Concurrency Theory
Winter Semester 2019/20

Lecture 8: The m-Calculus

)

4

Software Modeling
Il and Verification Chair

RWTH

Semantics of the Monadic m-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

RWTH

24 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The w-Calculus

Semantics of the Monadic m-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = Q, if one can be transformed
into the other by applying the following operations and equations:

1. renaming of bound names (a-conversion)

RWTH

24 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The w-Calculus

Semantics of the Monadic m-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = Q, if one can be transformed
into the other by applying the following operations and equations:

1. renaming of bound names (a-conversion)
2. reordering of terms in a summation (commutativity of +)

RWTH

24 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The w-Calculus

Semantics of the Monadic m-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = Q, if one can be transformed
into the other by applying the following operations and equations:

1. renaming of bound names (a-conversion)
2. reordering of terms in a summation (commutativity of +)
B.P|lQ=Q| P, P|(Q] R=(P] Q)| R,P | nil= P (Abelian monoid laws for ||)

RWTH

24 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The w-Calculus

Semantics of the Monadic m-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = Q, if one can be transformed
into the other by applying the following operations and equations:

1. renaming of bound names (a-conversion)
2. reordering of terms in a summation (commutativity of +)
B.P|lQ=Q| P, P|(Q] R=(P] Q)| R,P | nil= P (Abelian monoid laws for ||)
4. new x nil = nil, newx,y P=new y, x P,
P | newx Q=newx (P || Q)if x ¢ fn(P) (scope extension)

RWTH

24 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The w-Calculus

Semantics of the Monadic m-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P, Q € Prc™ are structurally congruent, written P = Q, if one can be transformed
into the other by applying the following operations and equations:

1. renaming of bound names (a-conversion)
2. reordering of terms in a summation (commutativity of +)
B.P|lQ=Q| P, P|(Q] R=(P] Q)| R,P | nil= P (Abelian monoid laws for ||)
4. new x nil = nil, newx,y P=new y, x P,
P | newx Q=newx (P || Q)if x ¢ fn(P) (scope extension)
5. 1P = P ||!P (unfolding)

RWTH

24 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 8: The w-Calculus

Semantics of the Monadic m-Calculus

A Standard Form

Theorem 8.7 (Standard form)

Every process expression is structurally congruent to a process of the standard form
newxi, ..., xk(Py || ... || Pn '@ || ... [|'Qn)

where each P; is a non-empty sum, and each Q; is in standard form.

(If m = n = 0:nil; if k = 0: restriction absent)

RWTH

25 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 8: The w-Calculus ‘ Il and Verification Chair

Semantics of the Monadic m-Calculus

A Standard Form
Theorem 8.7 (Standard form)

Every process expression is structurally congruent to a process of the standard form
newxi, ..., xk(Py || ... || Pn '@ || ... [|'Qn)
where each P; is a non-empty sum, and each Q; is in standard form.

(If m = n = 0:nil; if k = 0: restriction absent)

Proof.

by induction on the structure of R € Prc” (on the board)]

RWTH

25 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 8: The w-Calculus Il and Verification Chair

Semantics of the Monadic m-Calculus

The Reaction Relation

Thanks to Theorem 8.7, only processes in standard form need to be considered for
defining the operational semantics:

Definition 8.8
The reaction relation — C Prc™ X Prc” is generated by the rules:

(Tau

TP+Q— P

(x(y)-P+R) || (x(2).Q+S) — Plz/y] || @

| P— P - P— P
PlQ— P | Q new x P — new x P’

(React)

(Par

/
sae——F_ itp=Qand P = @
Q— Q

e P[z/y] replaces every free occurrence of y in P by .
e In (React), the pair (x(y), x(z)) is called a redex.

RWTH

26 of 26 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 8: The m-Calculus

	Recap: Modelling Mutual Exclusion Algorithms
	Recap: Value-Passing CCS
	Modelling Mobile Concurrent Systems
	Another Example: Mobile Clients
	Syntax of the Monadic -Calculus
	Semantics of the Monadic -Calculus

