

Concurrency Theory

- Winter Semester 2019/20
- Lecture 8: The π -Calculus
- Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

2 of 26

Recap: Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS

Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := false;

end
```

CCS representation $P_1 = b1wt.kw2.P_{11}$ $P_{11} = b2rf.P_{12} + b2rf.$ $b2rt.(kr1.P_{12} + kr2.P_{11})$ $P_{12} = enter1.exit1.b1wf.P_{1}$ $P_2 = b2wt.kw1.P_{21}$ $P_{21} = b1rf.P_{22} + b1rf.P_{22}$ $b1rt.(kr1.P_{21} + kr2.P_{22})$ $P_{22} = enter2.exit2.b2wf.P_2$ $Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L$ for $L = \{b1rf, b1rt, b1wf, b1wt, b$ b2rf, b2rt, b2wf, b2wt, *kr1*, *kr2*, *kw1*, *kw2*}

Concurrency Theory Winter Semester 2019/20 Lecture 8: The π -Calculus

Recap: Modelling Mutual Exclusion Algorithms

Obtaining the LTS I

CAAL	Project 👻 Edit Explore Verify Games 👻		About Syn	itax 🖂	G
Peter	son's Algorithm	Parse	CCS TCCS	16 🔹	
1 2 3	* Peterson's algorithm for mutual exclusion.* See Chapter 7 of "Reactive Systems" for a full description.				
4 5	$B1f = \frac{'b1rf}{.B1f} B1f + b1wf.B1f + b1wt.B1t;$ B1t = $\frac{'b1rt}{.B1t} + b1wf.B1f + b1wt.B1t;$				
7	$B2f = \overline{b2rf}.B2f + b2wf.B2f + b2wt.B2t;$ $B2t = \overline{b2rt}.B2t + b2wf.B2f + b2wt.B2t;$				
10 11	$K1 = \frac{7}{kr1}.K1 + kw1.K1 + kw2.K2;$ $K2 = \frac{7}{kr2}.K2 + kw1.K1 + kw2.K2;$				
12 13 14	P1 = 'b1wt.'kw2.P11; P11 = b2rf.P12 + b2rt.(kr2.P11 + kr1.P12);				
15 16 17	P12 = enter1.exit1.'blwf.P1; P2 = 'b2wt.'kw1.P21;				
18 19 20	<pre>P21 = b1rf.P22 + b1rt.(kr1.P21 + kr2.P22); P22 = enter2.exit2.'b2wf.P2;</pre>				
21 22 23	<pre>set L = {b1rf, b2rf, b1rt, b2rt, b1wf, b2wf, b1wt, b2wt, kr1, kr2, kw1, kw2}; Peterson = (P1 P2 B1f B2f K1) \ L;</pre>				
24	<pre>Spec = enter1.exit1.Spec + enter2.exit2.Spec;</pre>				

Recap: Modelling Mutual Exclusion Algorithms

Concurrency Theory Winter Semester 2019/20 Lecture 8: The π -Calculus

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

6 of 26

Syntax of Value-Passing CCS I

Definition (Syntax of value-passing CCS)

• Let A, \overline{A} , *Pid* (ranked) as in Definition 2.1.

P

- Let e and b be integer and Boolean expressions, resp., built from integer variables x, y, \ldots
- The set *Prc*⁺ of value-passing process expressions is defined by:

::= nil	(inaction)
a(x).P	(input prefixing)
<u>a</u> (e).P	(output prefixing)
τ. Ρ	($ au$ prefixing)
$ P_1 + P_2$	(choice)
$ P_1 P_2$	(parallel composition)
$ P \setminus L$	(restriction)
<i>P</i> [<i>f</i>]	(relabelling)
if <i>b</i> then <i>P</i>	(conditional)
$C(e_1,\ldots,e_n)$	(process call)

where $a \in A$, $L \subseteq A$, $C \in Pid$ (of rank $n \in \mathbb{N}$), and $f : A \to A$.

Semantics of Value-Passing CCS I

Definition (Semantics of value-passing CCS)

A value-passing process definition $(C_i(x_1, ..., x_{n_i}) = P_i \mid 1 \le i \le k)$ determines the LTS $(Prc^+, Act, \longrightarrow)$ with $Act := (A \cup \overline{A}) \times \mathbb{Z} \cup \{\tau\}$ whose transitions can be inferred from the following rules $(P, P', Q, Q' \in Prc^+, a \in A, x_i \text{ integer variables, } e_i/b$ integer/Boolean expressions, $z \in \mathbb{Z}, \alpha \in Act, \lambda \in (A \cup \overline{A}) \times \mathbb{Z}$):

8 of 26

Semantics of Value-Passing CCS II

Definition (Semantics of value-passing CCS; continued)

$$\begin{array}{c}
\begin{array}{c}
P \xrightarrow{\alpha} P' \\
\hline P[f] \xrightarrow{f(\alpha)} P'[f] \\
\hline P[f] \xrightarrow{\alpha} P' \\
\hline$$

Remarks:

- P[z₁/x₁,..., z_n/x_n] denotes the substitution of each free (i.e., unbound) occurrence of x_i by z_i (1 ≤ i ≤ n)
- Operations on actions ignore values:

 $\overline{a(z)} := \overline{a}(z) \quad \overline{\overline{a}(z)} := a(z) \quad f(a(z)) := f(a)(z) \quad f(\overline{a}(z)) := \overline{f(a)}(z) \quad (\text{and } f(\tau) := \tau)$

9 of 26

Translation of Value-Passing into Pure CCS II

Definition (Translation of value-passing into pure CCS)

For each $P \in Prc^+$ without free variables, its translated form $\widehat{P} \in Prc$ is given by

$$\widehat{\mathsf{nil}} := \mathsf{nil} \qquad \qquad \widehat{\tau \cdot P} := \tau \cdot \widehat{P} \\ \widehat{a(x) \cdot P} := \sum_{z \in \mathbb{Z}} a_z \cdot \widehat{P[z/x]} \qquad \qquad \widehat{\overline{a(e) \cdot P}} := \overline{a_z} \cdot \widehat{P} \quad (z \text{ value of } e) \\ \widehat{P_1 + P_2} := \widehat{P_1} + \widehat{P_2} \qquad \qquad \widehat{\overline{P(1 + P_2)}} := \widehat{P_1} \parallel \widehat{P_2} \\ \widehat{P \setminus L} := \widehat{P} \setminus \{a_z \mid a \in L, z \in \mathbb{Z}\} \qquad \qquad \widehat{P[f]} := \widehat{P[f]} \quad (\widehat{f}(a_z) := f(a)_z) \\ \widehat{if \ b \ then \ P} := \begin{cases} \widehat{P} \quad \text{if } b \ true \\ \mathsf{nil} \quad \text{otherwise} \end{cases} \qquad \qquad \widehat{c(e_1, \dots, e_n)} := C_{z_1, \dots, z_n} \quad (z_i \text{ value of } e_i) \end{cases}$$

Moreover, each defining equation $C(x_1, \ldots, x_n) = P$ of a process identifier is translated into the indexed collection of process definitions

$$\left(C_{z_1,\ldots,z_n}=P[z_1/x_1,\ldots,z_n/x_n]\mid z_1,\ldots,z_n\in\mathbb{Z}\right)$$

Concurrency Theory Winter Semester 2019/20 Lecture 8: The π -Calculus

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

Observation: CCS imposes static communication structures: if $P, Q \in Prc$ want to communicate, then both must syntactically refer to the same action name

Observation: CCS imposes static communication structures: if $P, Q \in Prc$ want to communicate, then both must syntactically refer to the same action name

 \Rightarrow every potential communication partner known beforehand, no dynamic passing of communication links

Observation: CCS imposes static communication structures: if $P, Q \in Prc$ want to communicate, then both must syntactically refer to the same action name

- \Rightarrow every potential communication partner known beforehand, no dynamic passing of communication links
- \Rightarrow lack of modelling capabilities for mobility

Observation: CCS imposes static communication structures: if $P, Q \in Prc$ want to communicate, then both must syntactically refer to the same action name

- \Rightarrow every potential communication partner known beforehand, no dynamic passing of communication links
- \Rightarrow lack of modelling capabilities for mobility

Goal: develop calculus in the spirit of CCS which supports mobility

 $\Rightarrow \pi$ -Calculus

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: P and C must share some action name a
 - \Rightarrow C could access P without being granted it by S

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: P and C must share some action name a
 C could access P without being granted it by S
- In π -Calculus:
 - initially only S has access to P (using link a)
 - using another link b, C can request access to P

Concurrency Theory Winter Semester 2019/20 Lecture 8: The π -Calculus

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: *P* and *C* must share some action name *a* ⇒ *C* could access *P* without being granted it by *S*
- In π -Calculus:
 - initially only S has access to P (using link a)
 - using another link b, C can request access to P
- Formally:

$$\underbrace{\overline{b}\langle a\rangle.S'}_{S} \parallel \underbrace{b(c).\overline{c}\langle d\rangle.C'}_{C} \parallel \underbrace{a(e).P'}_{P}$$

- a: link to P
- -b: link between S and C
- c: "placeholder" for a
- d: data to be printed
- e: "placeholder" for d

Concurrency Theory Winter Semester 2019/20 Lecture 8: The π -Calculus

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: *P* and *C* must share some action name *a* ⇒ *C* could access *P* without being granted it by *S*
- In π -Calculus:
 - initially only S has access to P (using link a)
 - using another link b, C can request access to P
- Formally:

- a: link to P
- -b: link between S and C
- c: "placeholder" for a
- d: data to be printed
- e: "placeholder" for d

Concurrency Theory Winter Semester 2019/20 Lecture 8: The π-Calculus

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

- Server S controls access to printer P
- Client C wishes to use P
- In CCS: *P* and *C* must share some action name *a* ⇒ *C* could access *P* without being granted it by *S*
- In π -Calculus:
 - initially only S has access to P (using link a)
 - using another link b, C can request access to P
- Formally:

- a: link to P
- -b: link between S and C
- c: "placeholder" for a
- d: data to be printed
- e: "placeholder" for d

Concurrency Theory Winter Semester 2019/20 Lecture 8: The π -Calculus

Mobility in Concurrent Systems III

Example 8.1 (Dynamic access to resources; continued)

- Different rôles of action name a:
 - in interaction between S and C: object transferred from S to C
 - in interaction between C and P: name of communication link

Winter Semester 2019/20 Lecture 8: The π -Calculus

Mobility in Concurrent Systems III

Example 8.1 (Dynamic access to resources; continued)

- Different rôles of action name a:
 - in interaction between S and C: object transferred from S to C
 - in interaction between C and P: name of communication link
- Intuitively, names represent access rights:
 - *a*: to *P*
 - *b*: to *S*
 - d: to data to be printed

Mobility in Concurrent Systems III

Example 8.1 (Dynamic access to resources; continued)

- Different rôles of action name a:
 - in interaction between S and C: object transferred from S to C
 - in interaction between C and P: name of communication link
- Intuitively, names represent access rights:
 - *a*: to *P*
 - *b*: to *S*
 - d: to data to be printed
- If a is only way to access P
 - \Rightarrow *P* "moves" from *S* to *C*

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

Example 8.2 (Hand-over protocol)

Scenario:

- client devices moving around (phones, PCs, sensors, ...)
- each radio-connected to some base station
- stations wired to central control
- some event (e.g., signal fading) may cause a client to be switched to another station
- essential: specification of switching process ("hand-over protocol")

Example 8.2 (Hand-over protocol)

Scenario:

- client devices moving around (phones, PCs, sensors, ...)
- each radio-connected to some base station
- stations wired to central control
- some event (e.g., signal fading) may cause a client to be switched to another station
- essential: specification of switching process ("hand-over protocol")

Simplest configuration:

two stations, one client

Concurrency Theory Winter Semester 2019/20 Lecture 8: The π -Calculus

Example 8.2 (Hand-over protocol; continued)

• Every station is in one of two modes: *Station* (active; four links) or *Idle* (inactive; two links)

Example 8.2 (Hand-over protocol; continued)

- Every station is in one of two modes: *Station* (active; four links) or *Idle* (inactive; two links)
- *Client* can talk via *Station*, and at any time *Control* can request *Station/Idle* to lose/gain *Client*:

 $\begin{aligned} \textit{Station(talk, switch, gain, lose)} &= \textit{talk.Station(talk, switch, gain, lose)} + \\ \textit{lose(t, s)}.\overline{\textit{switch}} \langle t, s \rangle.\textit{Idle(gain, lose)} \\ \textit{Idle(gain, lose)} &= \textit{gain(t, s)}.\textit{Station(t, s, gain, lose)} \end{aligned}$

Concurrency Theory Winter Semester 2019/20 Lecture 8: The π -Calculus

Example 8.2 (Hand-over protocol; continued)

- Every station is in one of two modes: *Station* (active; four links) or *Idle* (inactive; two links)
- *Client* can talk via *Station*, and at any time *Control* can request *Station/Idle* to lose/gain *Client*:

 $\begin{aligned} \textit{Station(talk, switch, gain, lose)} &= \textit{talk.Station(talk, switch, gain, lose)} + \\ \textit{lose(t, s)}.\overline{\textit{switch}} \langle t, s \rangle.\textit{Idle(gain, lose)} \\ \textit{Idle(gain, lose)} &= \textit{gain(t, s)}.\textit{Station(t, s, gain, lose)} \end{aligned}$

• If *Control* decides *Station* to lose *Client*, it issues a new pair of channels to be shared by *Client* and *Idle*:

 $\begin{array}{l} \textit{Control}_1 = \overline{\textit{lose}_1} \langle \textit{talk}_2, \textit{switch}_2 \rangle . \overline{\textit{gain}_2} \langle \textit{talk}_2, \textit{switch}_2 \rangle . \textit{Control}_2 \\ \textit{Control}_2 = \overline{\textit{lose}_2} \langle \textit{talk}_1, \textit{switch}_1 \rangle . \overline{\textit{gain}_1} \langle \textit{talk}_1, \textit{switch}_1 \rangle . \textit{Control}_1 \end{array}$

Concurrency Theory Winter Semester 2019/20 Lecture 8: The π -Calculus

Example 8.2 (Hand-over protocol; continued)

- Every station is in one of two modes: *Station* (active; four links) or *Idle* (inactive; two links)
- *Client* can talk via *Station*, and at any time *Control* can request *Station/Idle* to lose/gain *Client*:

 $\begin{aligned} \textit{Station(talk, switch, gain, lose)} &= \textit{talk.Station(talk, switch, gain, lose)} + \\ \textit{lose(t, s)}.\overline{\textit{switch}} \langle t, s \rangle.\textit{Idle(gain, lose)} \\ \textit{Idle(gain, lose)} &= \textit{gain(t, s)}.\textit{Station(t, s, gain, lose)} \end{aligned}$

• If *Control* decides *Station* to lose *Client*, it issues a new pair of channels to be shared by *Client* and *Idle*:

 $\begin{array}{l} \textit{Control}_1 = \overline{\textit{lose}_1} \langle \textit{talk}_2, \textit{switch}_2 \rangle . \overline{\textit{gain}_2} \langle \textit{talk}_2, \textit{switch}_2 \rangle . \textit{Control}_2 \\ \textit{Control}_2 = \overline{\textit{lose}_2} \langle \textit{talk}_1, \textit{switch}_1 \rangle . \overline{\textit{gain}_1} \langle \textit{talk}_1, \textit{switch}_1 \rangle . \textit{Control}_1 \end{array}$

• *Client* can either talk or, if requested, switch to a new pair of channels:

 $Client(talk, switch) = \overline{talk}.Client(talk, switch) + switch(t, s).Client(t, s)$

Example 8.2 (Hand-over protocol; continued)

• As usual, the whole system is a restricted composition of processes:

 $System_1 = \text{new } L(Client_1 \parallel Station_1 \parallel Idle_2 \parallel Control_1)$

where

18 of 26

 $Client_i := Client(talk_i, switch_i)$ $Station_i := Station(talk_i, switch_i, gain_i, lose_i)$ $Idle_i := Idle(gain_i, lose_i)$ $L := (talk_i, switch_i, gain_i, lose_i | i \in \{1, 2\})$

Example 8.2 (Hand-over protocol; continued)

• As usual, the whole system is a restricted composition of processes:

 $System_1 = \text{new } L(Client_1 \parallel Station_1 \parallel Idle_2 \parallel Control_1)$

where

 $Client_i := Client(talk_i, switch_i)$ $Station_i := Station(talk_i, switch_i, gain_i, lose_i)$ $Idle_i := Idle(gain_i, lose_i)$ $L := (talk_i, switch_i, gain_i, lose_i | i \in \{1, 2\})$

• After having formally defined the π -Calculus we will see that this protocol is correct, i.e., that the hand-over does indeed occur:

 $System_1 \longrightarrow^* System_2$

where

18 of 26

 $System_2 = \text{new } L(Idle_1 \parallel Client_2 \parallel Station_2 \parallel Control_2)$

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

Introduction

Literature on π -Calculus:

• Initial research paper:

R. Milner, J. Parrow, D. Walker: *A calculus of mobile processes*, Part I/II. Journal of Inf. & Comp., 100:1–77, 1992

Overview article:

J. Parrow: *An introduction to the* π *-Calculus*. Chapter 8 of *Handbook of Process Algebra*, 479–543, Elsevier, 2001

• Textbook:

R. Milner: *Communicating and mobile systems: the* π *-Calculus*. Cambridge University Press, 1999

Introduction

Literature on π -Calculus:

Initial research paper:

R. Milner, J. Parrow, D. Walker: *A calculus of mobile processes*, Part I/II. Journal of Inf. & Comp., 100:1–77, 1992

Overview article:

J. Parrow: An introduction to the π -Calculus. Chapter 8 of Handbook of Process Algebra, 479–543, Elsevier, 2001

Textbook:

R. Milner: *Communicating and mobile systems: the* π *-Calculus*. Cambridge University Press, 1999

To simplify the presentation (as in Milner's book):

- 1. Monadic π -Calculus with replication (message = one name, no process identifiers)
- 2. Extension to polyadic calculus
- 3. Extension by process equations

Syntax of the Monadic π -Calculus

Definition 8.3 (Syntax of monadic π -Calculus)

• Let $A = \{a, b, c \dots, x, y, z, \dots\}$ be a set of names.

Winter Semester 2019/20 Lecture 8: The π -Calculus

Definition 8.3 (Syntax of monadic π -Calculus)

- Let $A = \{a, b, c \dots, x, y, z, \dots\}$ be a set of names.
- The set of action prefixes is given by

 $\pi ::= x(y) \qquad (\text{receive } y \text{ along } x)$ $| \overline{x}\langle y \rangle \quad (\text{send } y \text{ along } x) \\ | \tau \quad (\text{unobservable action})$

Definition 8.3 (Syntax of monadic π -Calculus)

- Let $A = \{a, b, c \dots, x, y, z, \dots\}$ be a set of names.
- The set of action prefixes is given by
 - $\pi ::= x(y) \qquad (\text{receive } y \text{ along } x) \\ \mid \overline{x} \langle y \rangle \qquad (\text{send } y \text{ along } x) \\ \mid \tau \qquad (\text{unobservable action})$
- The set Prc^{π} of π -Calculus process expressions is defined by the following syntax:

$\boldsymbol{P} ::= \sum_{i \in I} \pi_i . \boldsymbol{P}_i$	(guarded sum)
$ P_1 P_2$	(parallel composition)
new x P	(restriction)
! <i>P</i>	(replication)

(where *I* finite index set, $x \in A$)

Definition 8.3 (Syntax of monadic π -Calculus)

- Let $A = \{a, b, c \dots, x, y, z, \dots\}$ be a set of names.
- The set of action prefixes is given by
 - $\pi ::= x(y) \qquad (\text{receive } y \text{ along } x) \\ \mid \overline{x} \langle y \rangle \qquad (\text{send } y \text{ along } x) \\ \mid \tau \qquad (\text{unobservable action})$
- The set Prc^{π} of π -Calculus process expressions is defined by the following syntax:
 - $P ::= \sum_{i \in I} \pi_i . P_i \quad (guarded sum)$ $\mid P_1 \parallel P_2 \quad (parallel composition)$ $\mid new x P \quad (restriction)$ $\mid !P \quad (replication)$

(where *I* finite index set, $x \in A$)

Conventions: nil := $\sum_{i \in \emptyset} \pi_i P_i$, new $x_1, \ldots, x_n P$:= new $x_1 (\ldots$ new $x_n P)$

 21 of 26
 Concurrency Theory

 Winter Semester 2019/20

 Lecture 8: The π-Calculus

Definition 8.4 (Free and bound names)

• The input prefix x(y) and the restriction new y P both bind y.

Definition 8.4 (Free and bound names)

- The input prefix x(y) and the restriction new y P both bind y.
- Every other occurrence of a name (i.e., x in x(y) and x, y in $\overline{x}\langle y \rangle$) is free.

Definition 8.4 (Free and bound names)

- The input prefix x(y) and the restriction new y P both bind y.
- Every other occurrence of a name (i.e., x in x(y) and x, y in $\overline{x}\langle y \rangle$) is free.
- The set of bound/free names of a process expressions P ∈ Prc^π is respectively denoted by bn(P)/fn(P).

Definition 8.4 (Free and bound names)

- The input prefix x(y) and the restriction new y P both bind y.
- Every other occurrence of a name (i.e., x in x(y) and x, y in $\overline{x}\langle y \rangle$) is free.
- The set of bound/free names of a process expressions P ∈ Prc^π is respectively denoted by bn(P)/fn(P).

Remark: $bn(P) \cap fn(P) \neq \emptyset$ is possible

Definition 8.4 (Free and bound names)

- The input prefix x(y) and the restriction new y P both bind y.
- Every other occurrence of a name (i.e., x in x(y) and x, y in $\overline{x}\langle y \rangle$) is free.
- The set of bound/free names of a process expressions P ∈ Prc^π is respectively denoted by bn(P)/fn(P).

Remark: $bn(P) \cap fn(P) \neq \emptyset$ is possible

Example 8.5

For $P = \operatorname{new} x (x(y).\operatorname{nil} \parallel \overline{z} \langle y \rangle.\operatorname{nil})$:

$$\mathit{bn}(\mathit{P}) = \{x, y\}, \mathit{fn}(\mathit{P}) = \{y, z\}$$

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π -Calculus

Semantics of the Monadic π -Calculus

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 8.6 (Structural congruence)

 $P, Q \in Prc^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

1. renaming of bound names (α -conversion)

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 8.6 (Structural congruence)

 $P, Q \in Prc^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

- 1. renaming of bound names (α -conversion)
- 2. reordering of terms in a summation (commutativity of +)

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 8.6 (Structural congruence)

 $P, Q \in Prc^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

- 1. renaming of bound names (α -conversion)
- 2. reordering of terms in a summation (commutativity of +)

3. $P \parallel Q \equiv Q \parallel P, P \parallel (Q \parallel R) \equiv (P \parallel Q) \parallel R, P \parallel nil \equiv P$ (Abelian monoid laws for \parallel)

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 8.6 (Structural congruence)

 $P, Q \in Prc^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

- 1. renaming of bound names (α -conversion)
- 2. reordering of terms in a summation (commutativity of +)
- 3. $P \parallel Q \equiv Q \parallel P, P \parallel (Q \parallel R) \equiv (P \parallel Q) \parallel R, P \parallel nil \equiv P$ (Abelian monoid laws for \parallel)
- 4. new x nil \equiv nil, new x, y P \equiv new y, x P,
 - $P \parallel \text{new } x \ Q \equiv \text{new } x \ (P \parallel Q) \text{ if } x \notin fn(P) \text{ (scope extension)}$

Goal: simplify definition of operational semantics by ignoring "purely syntactic" differences between processes

Definition 8.6 (Structural congruence)

 $P, Q \in Prc^{\pi}$ are structurally congruent, written $P \equiv Q$, if one can be transformed into the other by applying the following operations and equations:

- 1. renaming of bound names (α -conversion)
- 2. reordering of terms in a summation (commutativity of +)
- 3. $P \parallel Q \equiv Q \parallel P, P \parallel (Q \parallel R) \equiv (P \parallel Q) \parallel R, P \parallel nil \equiv P$ (Abelian monoid laws for \parallel)
- 4. new x nil \equiv nil, new x, y P \equiv new y, x P,

 $P \parallel \text{new } x \ Q \equiv \text{new } x \ (P \parallel Q) \text{ if } x \notin fn(P) \text{ (scope extension)}$

5. $P \equiv P \parallel P$ (unfolding)

A Standard Form

Theorem 8.7 (Standard form)

Every process expression is structurally congruent to a process of the standard form $new x_1, \dots, x_k (P_1 \parallel \dots \parallel P_m \parallel !Q_1 \parallel \dots \parallel !Q_n)$ where each P_i is a non-empty sum, and each Q_j is in standard form. (If m = n = 0: nil; if k = 0: restriction absent)

A Standard Form

Theorem 8.7 (Standard form)

Every process expression is structurally congruent to a process of the standard form new $x_1, \ldots, x_k (P_1 \parallel \ldots \parallel P_m \parallel ! Q_1 \parallel \ldots \parallel ! Q_n)$ where each P_i is a non-empty sum, and each Q_j is in standard form.

(If m = n = 0: nil; if k = 0: restriction absent)

Proof.

by induction on the structure of $R \in Prc^{\pi}$ (on the board)

The Reaction Relation

Thanks to Theorem 8.7, only processes in standard form need to be considered for defining the operational semantics:

Definition 8.8

The reaction relation $\longrightarrow \subseteq Prc^{\pi} \times Prc^{\pi}$ is generated by the rules:

$$(\text{Tau)} \overline{\tau.P + Q \longrightarrow P}$$

$$(\text{React)} \overline{(x(y).P + R)} \parallel (\overline{x}\langle z \rangle.Q + S) \longrightarrow P[z/y] \parallel Q$$

$$(\text{Par)} \frac{P \longrightarrow P'}{P \parallel Q \longrightarrow P' \parallel Q} \xrightarrow{(\text{Res)} \frac{P \rightarrow P'}{\text{new } x P \longrightarrow \text{new } x P'}}{\text{new } x P \longrightarrow \text{new } x P'}$$

$$(\text{Struct)} \frac{P \longrightarrow P'}{Q \longrightarrow Q'} \quad \text{if } P \equiv Q \text{ and } P' \equiv Q'$$

- P[z/y] replaces every free occurrence of y in P by z.
- In (React), the pair $(x(y), \overline{x} \langle z \rangle)$ is called a redex.

