
Concurrency Theory
Winter Semester 2019/20

Lecture 8: The π-Calculus

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/


Recap: Modelling Mutual Exclusion Algorithms

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

2 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Recap: Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm
while true do

“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
for L = {b1rf , b1rt, b1wf , b1wt,

b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}

3 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Recap: Modelling Mutual Exclusion Algorithms

Obtaining the LTS I

4 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Recap: Modelling Mutual Exclusion Algorithms

Obtaining the LTS II

5 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Recap: Value-Passing CCS

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

6 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Recap: Value-Passing CCS

Syntax of Value-Passing CCS I

Definition (Syntax of value-passing CCS)
• Let A, A, Pid (ranked) as in Definition 2.1.
• Let e and b be integer and Boolean expressions, resp., built from integer variables x , y , . . .
• The set Prc+ of value-passing process expressions is defined by:

P ::= nil (inaction)
| a(x).P (input prefixing)
| a(e).P (output prefixing)
| τ.P (τ prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| if b then P (conditional)
| C(e1, . . . , en) (process call)

where a ∈ A, L ⊆ A, C ∈ Pid (of rank n ∈ N), and f : A→ A.

7 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Recap: Value-Passing CCS

Semantics of Value-Passing CCS I

Definition (Semantics of value-passing CCS)

A value-passing process definition (Ci(x1, . . . , xni) = Pi | 1 ≤ i ≤ k) determines the
LTS (Prc+,Act,−→) with Act := (A ∪ A)× Z ∪ {τ} whose transitions can be
inferred from the following rules (P,P ′,Q,Q′ ∈ Prc+, a ∈ A, xi integer variables, ei /b
integer/Boolean expressions, z ∈ Z, α ∈ Act , λ ∈ (A ∪ A)× Z):

(In)

a(x).P
a(z)−→ P[z/x]

(Out)

(z value of e)

a(e).P
a(z)−→ P

(Tau)

τ.P
τ−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q′

P + Q
α−→ Q′

(Par1)
P

α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(Par2)
Q

α−→ Q′

P ‖ Q
α−→ P ‖ Q′

(Com)
P

λ−→ P ′ Q
λ−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

8 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Recap: Value-Passing CCS

Semantics of Value-Passing CCS II

Definition (Semantics of value-passing CCS; continued)

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Res)

P
α−→ P ′ (α /∈ (L ∪ L)× Z)

P \ L
α−→ P ′ \ L

(If)

P
α−→ P ′ (b true)

if b then P
α−→ P ′

(Call)

P[z1/x1, . . . , zn/xn]
α−→ P ′

(C(x1, . . . , xn) = P, zi value of ei)

C(e1, . . . , en)
α−→ P ′

Remarks:
• P[z1/x1, . . . , zn/xn] denotes the substitution of each free (i.e., unbound) occurrence of xi by

zi (1 ≤ i ≤ n)
• Operations on actions ignore values:

a(z) := a(z) a(z) := a(z) f (a(z)) := f (a)(z) f (a(z)) := f (a)(z) (and f (τ ) := τ )

9 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Recap: Value-Passing CCS

Translation of Value-Passing into Pure CCS II

Definition (Translation of value-passing into pure CCS)

For each P ∈ Prc+ without free variables, its translated form P̂ ∈ Prc is given by

n̂il := nil τ̂.P := τ.P̂

â(x).P :=
∑

z∈Z az.P̂[z/x] â(e).P := az.P̂ (z value of e)

P̂1 + P2 := P̂1 + P̂2 P̂1 ‖ P2 := P̂1 ‖ P̂2

P̂ \ L := P̂ \ {az | a ∈ L, z ∈ Z} P̂[f ] := P̂ [̂f ] (̂f (az) := f (a)z)

̂if b then P :=

{
P̂ if b true

nil otherwise
̂C(e1, . . . , en) := Cz1,...,zn (zi value of ei)

Moreover, each defining equation C(x1, . . . , xn) = P of a process identifier is
translated into the indexed collection of process definitions(

Cz1,...,zn =
̂P[z1/x1, . . . , zn/xn] | z1, . . . , zn ∈ Z

)
10 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

11 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems I

Observation: CCS imposes static communication structures: if P,Q ∈ Prc want to
communicate, then both must syntactically refer to the same action name

⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

⇒ lack of modelling capabilities for mobility

Goal: develop calculus in the spirit of CCS which supports mobility

⇒ π-Calculus

12 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems I

Observation: CCS imposes static communication structures: if P,Q ∈ Prc want to
communicate, then both must syntactically refer to the same action name

⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

⇒ lack of modelling capabilities for mobility

Goal: develop calculus in the spirit of CCS which supports mobility

⇒ π-Calculus

12 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems I

Observation: CCS imposes static communication structures: if P,Q ∈ Prc want to
communicate, then both must syntactically refer to the same action name

⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

⇒ lack of modelling capabilities for mobility

Goal: develop calculus in the spirit of CCS which supports mobility

⇒ π-Calculus

12 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems I

Observation: CCS imposes static communication structures: if P,Q ∈ Prc want to
communicate, then both must syntactically refer to the same action name

⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

⇒ lack of modelling capabilities for mobility

Goal: develop calculus in the spirit of CCS which supports mobility

⇒ π-Calculus

12 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

• Server S controls access to printer P
• Client C wishes to use P

• In CCS: P and C must share some action name a
⇒ C could access P without being granted it by S
• In π-Calculus:

– initially only S has access to P (using link a)
– using another link b, C can request access to P

• Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C′[a/c] ‖ a(e).P ′
τ−→ S′ ‖ C′[a/c] ‖ P ′[d/e]

– a: link to P
– b: link between S and C
– c: “placeholder” for a
– d : data to be printed
– e: “placeholder” for d

13 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

• Server S controls access to printer P
• Client C wishes to use P
• In CCS: P and C must share some action name a
⇒ C could access P without being granted it by S

• In π-Calculus:
– initially only S has access to P (using link a)
– using another link b, C can request access to P

• Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C′[a/c] ‖ a(e).P ′
τ−→ S′ ‖ C′[a/c] ‖ P ′[d/e]

– a: link to P
– b: link between S and C
– c: “placeholder” for a
– d : data to be printed
– e: “placeholder” for d

13 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

• Server S controls access to printer P
• Client C wishes to use P
• In CCS: P and C must share some action name a
⇒ C could access P without being granted it by S
• In π-Calculus:

– initially only S has access to P (using link a)
– using another link b, C can request access to P

• Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C′[a/c] ‖ a(e).P ′
τ−→ S′ ‖ C′[a/c] ‖ P ′[d/e]

– a: link to P
– b: link between S and C
– c: “placeholder” for a
– d : data to be printed
– e: “placeholder” for d

13 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

• Server S controls access to printer P
• Client C wishes to use P
• In CCS: P and C must share some action name a
⇒ C could access P without being granted it by S
• In π-Calculus:

– initially only S has access to P (using link a)
– using another link b, C can request access to P

• Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C′[a/c] ‖ a(e).P ′
τ−→ S′ ‖ C′[a/c] ‖ P ′[d/e]

– a: link to P
– b: link between S and C
– c: “placeholder” for a
– d : data to be printed
– e: “placeholder” for d

13 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

• Server S controls access to printer P
• Client C wishes to use P
• In CCS: P and C must share some action name a
⇒ C could access P without being granted it by S
• In π-Calculus:

– initially only S has access to P (using link a)
– using another link b, C can request access to P

• Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C′[a/c] ‖ a(e).P ′

τ−→ S′ ‖ C′[a/c] ‖ P ′[d/e]

– a: link to P
– b: link between S and C
– c: “placeholder” for a
– d : data to be printed
– e: “placeholder” for d

13 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems II

Example 8.1 (Dynamic access to resources)

• Server S controls access to printer P
• Client C wishes to use P
• In CCS: P and C must share some action name a
⇒ C could access P without being granted it by S
• In π-Calculus:

– initially only S has access to P (using link a)
– using another link b, C can request access to P

• Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C′[a/c] ‖ a(e).P ′
τ−→ S′ ‖ C′[a/c] ‖ P ′[d/e]

– a: link to P
– b: link between S and C
– c: “placeholder” for a
– d : data to be printed
– e: “placeholder” for d

13 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems III

Example 8.1 (Dynamic access to resources; continued)

• Different rôles of action name a:
– in interaction between S and C: object transferred from S to C
– in interaction between C and P: name of communication link

• Intuitively, names represent access rights:
– a: to P
– b: to S
– d : to data to be printed

• If a is only way to access P
⇒ P “moves” from S to C

14 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems III

Example 8.1 (Dynamic access to resources; continued)

• Different rôles of action name a:
– in interaction between S and C: object transferred from S to C
– in interaction between C and P: name of communication link

• Intuitively, names represent access rights:
– a: to P
– b: to S
– d : to data to be printed

• If a is only way to access P
⇒ P “moves” from S to C

14 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Modelling Mobile Concurrent Systems

Mobility in Concurrent Systems III

Example 8.1 (Dynamic access to resources; continued)

• Different rôles of action name a:
– in interaction between S and C: object transferred from S to C
– in interaction between C and P: name of communication link

• Intuitively, names represent access rights:
– a: to P
– b: to S
– d : to data to be printed

• If a is only way to access P
⇒ P “moves” from S to C

14 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Another Example: Mobile Clients

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

15 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Another Example: Mobile Clients

Mobile Clients I

Example 8.2 (Hand-over protocol)

Scenario:
• client devices moving around (phones, PCs, sensors, ...)
• each radio-connected to some base station
• stations wired to central control
• some event (e.g., signal fading) may cause a client to be switched to another station
• essential: specification of switching process (“hand-over protocol”)

Simplest configuration:
two stations, one client

Client

Station Idle

Control

talk1

switch1

gain1

lose1
gain2

lose2

16 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Another Example: Mobile Clients

Mobile Clients I

Example 8.2 (Hand-over protocol)

Scenario:
• client devices moving around (phones, PCs, sensors, ...)
• each radio-connected to some base station
• stations wired to central control
• some event (e.g., signal fading) may cause a client to be switched to another station
• essential: specification of switching process (“hand-over protocol”)

Simplest configuration:
two stations, one client

Client

Station Idle

Control

talk1

switch1

gain1

lose1
gain2

lose2

16 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Another Example: Mobile Clients

Mobile Clients II

Example 8.2 (Hand-over protocol; continued)

• Every station is in one of two modes: Station (active; four links) or Idle (inactive; two links)

• Client can talk via Station, and at any time Control can request Station/Idle to lose/gain
Client :

Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +
lose(t , s).switch〈t , s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t , s).Station(t , s, gain, lose)

• If Control decides Station to lose Client , it issues a new pair of channels to be shared by
Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

• Client can either talk or, if requested, switch to a new pair of channels:

Client(talk , switch) = talk .Client(talk , switch) + switch(t , s).Client(t , s)

17 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Another Example: Mobile Clients

Mobile Clients II

Example 8.2 (Hand-over protocol; continued)

• Every station is in one of two modes: Station (active; four links) or Idle (inactive; two links)
• Client can talk via Station, and at any time Control can request Station/Idle to lose/gain

Client :

Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +
lose(t , s).switch〈t , s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t , s).Station(t , s, gain, lose)

• If Control decides Station to lose Client , it issues a new pair of channels to be shared by
Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

• Client can either talk or, if requested, switch to a new pair of channels:

Client(talk , switch) = talk .Client(talk , switch) + switch(t , s).Client(t , s)

17 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Another Example: Mobile Clients

Mobile Clients II

Example 8.2 (Hand-over protocol; continued)

• Every station is in one of two modes: Station (active; four links) or Idle (inactive; two links)
• Client can talk via Station, and at any time Control can request Station/Idle to lose/gain

Client :

Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +
lose(t , s).switch〈t , s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t , s).Station(t , s, gain, lose)

• If Control decides Station to lose Client , it issues a new pair of channels to be shared by
Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

• Client can either talk or, if requested, switch to a new pair of channels:

Client(talk , switch) = talk .Client(talk , switch) + switch(t , s).Client(t , s)

17 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Another Example: Mobile Clients

Mobile Clients II

Example 8.2 (Hand-over protocol; continued)

• Every station is in one of two modes: Station (active; four links) or Idle (inactive; two links)
• Client can talk via Station, and at any time Control can request Station/Idle to lose/gain

Client :

Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +
lose(t , s).switch〈t , s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t , s).Station(t , s, gain, lose)

• If Control decides Station to lose Client , it issues a new pair of channels to be shared by
Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

• Client can either talk or, if requested, switch to a new pair of channels:

Client(talk , switch) = talk .Client(talk , switch) + switch(t , s).Client(t , s)

17 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Another Example: Mobile Clients

Mobile Clients III

Example 8.2 (Hand-over protocol; continued)

• As usual, the whole system is a restricted composition of processes:

System1 = new L (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)

where Client i := Client(talk i , switchi)
Stationi := Station(talk i , switchi , gaini , losei)

Idlei := Idle(gaini , losei)
L := (talk i , switchi , gaini , losei | i ∈ {1, 2})

• After having formally defined the π-Calculus we will see that this protocol is correct, i.e., that
the hand-over does indeed occur:

System1 −→∗ System2

where

System2 = new L (Idle1 ‖ Client2 ‖ Station2 ‖ Control2)

18 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Another Example: Mobile Clients

Mobile Clients III

Example 8.2 (Hand-over protocol; continued)

• As usual, the whole system is a restricted composition of processes:

System1 = new L (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)

where Client i := Client(talk i , switchi)
Stationi := Station(talk i , switchi , gaini , losei)

Idlei := Idle(gaini , losei)
L := (talk i , switchi , gaini , losei | i ∈ {1, 2})

• After having formally defined the π-Calculus we will see that this protocol is correct, i.e., that
the hand-over does indeed occur:

System1 −→∗ System2

where

System2 = new L (Idle1 ‖ Client2 ‖ Station2 ‖ Control2)

18 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

19 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Introduction

Literature on π-Calculus:
• Initial research paper:

R. Milner, J. Parrow, D. Walker: A calculus of mobile processes, Part I/II. Journal of Inf. &
Comp., 100:1–77, 1992
• Overview article:

J. Parrow: An introduction to the π-Calculus. Chapter 8 of Handbook of Process Algebra,
479–543, Elsevier, 2001
• Textbook:

R. Milner: Communicating and mobile systems: the π-Calculus. Cambridge University
Press, 1999

To simplify the presentation (as in Milner’s book):
1. Monadic π-Calculus with replication (message = one name, no process identifiers)
2. Extension to polyadic calculus
3. Extension by process equations

20 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Introduction

Literature on π-Calculus:
• Initial research paper:

R. Milner, J. Parrow, D. Walker: A calculus of mobile processes, Part I/II. Journal of Inf. &
Comp., 100:1–77, 1992
• Overview article:

J. Parrow: An introduction to the π-Calculus. Chapter 8 of Handbook of Process Algebra,
479–543, Elsevier, 2001
• Textbook:

R. Milner: Communicating and mobile systems: the π-Calculus. Cambridge University
Press, 1999

To simplify the presentation (as in Milner’s book):
1. Monadic π-Calculus with replication (message = one name, no process identifiers)
2. Extension to polyadic calculus
3. Extension by process equations

20 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Syntax of the Monadic π-Calculus

Definition 8.3 (Syntax of monadic π-Calculus)

• Let A = {a, b, c . . . , x , y , z, . . .} be a set of names.

• The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

• The set Prcπ of π-Calculus process expressions is defined by the following syntax:

P ::=
∑

i∈I πi .Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new x P (restriction)
| !P (replication)

(where I finite index set, x ∈ A)

Conventions: nil :=
∑

i∈∅ πi.Pi , new x1, . . . , xn P := new x1 (. . . new xn P)

21 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Syntax of the Monadic π-Calculus

Definition 8.3 (Syntax of monadic π-Calculus)

• Let A = {a, b, c . . . , x , y , z, . . .} be a set of names.
• The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

• The set Prcπ of π-Calculus process expressions is defined by the following syntax:

P ::=
∑

i∈I πi .Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new x P (restriction)
| !P (replication)

(where I finite index set, x ∈ A)

Conventions: nil :=
∑

i∈∅ πi.Pi , new x1, . . . , xn P := new x1 (. . . new xn P)

21 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Syntax of the Monadic π-Calculus

Definition 8.3 (Syntax of monadic π-Calculus)

• Let A = {a, b, c . . . , x , y , z, . . .} be a set of names.
• The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

• The set Prcπ of π-Calculus process expressions is defined by the following syntax:

P ::=
∑

i∈I πi .Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new x P (restriction)
| !P (replication)

(where I finite index set, x ∈ A)

Conventions: nil :=
∑

i∈∅ πi.Pi , new x1, . . . , xn P := new x1 (. . . new xn P)

21 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Syntax of the Monadic π-Calculus

Definition 8.3 (Syntax of monadic π-Calculus)

• Let A = {a, b, c . . . , x , y , z, . . .} be a set of names.
• The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

• The set Prcπ of π-Calculus process expressions is defined by the following syntax:

P ::=
∑

i∈I πi .Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new x P (restriction)
| !P (replication)

(where I finite index set, x ∈ A)

Conventions: nil :=
∑

i∈∅ πi.Pi , new x1, . . . , xn P := new x1 (. . . new xn P)

21 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 8.4 (Free and bound names)

• The input prefix x(y) and the restriction new y P both bind y .

• Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is free.
• The set of bound/free names of a process expressions P ∈ Prcπ is respectively denoted by

bn(P)/fn(P).

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 8.5

For P = new x (x(y).nil ‖ z〈y〉.nil):

bn(P) = {x, y}, fn(P) = {y , z}

22 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 8.4 (Free and bound names)

• The input prefix x(y) and the restriction new y P both bind y .
• Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is free.

• The set of bound/free names of a process expressions P ∈ Prcπ is respectively denoted by
bn(P)/fn(P).

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 8.5

For P = new x (x(y).nil ‖ z〈y〉.nil):

bn(P) = {x, y}, fn(P) = {y , z}

22 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 8.4 (Free and bound names)

• The input prefix x(y) and the restriction new y P both bind y .
• Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is free.
• The set of bound/free names of a process expressions P ∈ Prcπ is respectively denoted by

bn(P)/fn(P).

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 8.5

For P = new x (x(y).nil ‖ z〈y〉.nil):

bn(P) = {x, y}, fn(P) = {y , z}

22 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 8.4 (Free and bound names)

• The input prefix x(y) and the restriction new y P both bind y .
• Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is free.
• The set of bound/free names of a process expressions P ∈ Prcπ is respectively denoted by

bn(P)/fn(P).

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 8.5

For P = new x (x(y).nil ‖ z〈y〉.nil):

bn(P) = {x, y}, fn(P) = {y , z}

22 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Syntax of the Monadic π-Calculus

Free and Bound Names

Definition 8.4 (Free and bound names)

• The input prefix x(y) and the restriction new y P both bind y .
• Every other occurrence of a name (i.e., x in x(y) and x , y in x〈y〉) is free.
• The set of bound/free names of a process expressions P ∈ Prcπ is respectively denoted by

bn(P)/fn(P).

Remark: bn(P) ∩ fn(P) 6= ∅ is possible

Example 8.5

For P = new x (x(y).nil ‖ z〈y〉.nil):

bn(P) = {x, y}, fn(P) = {y , z}

22 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Semantics of the Monadic π-Calculus

Outline of Lecture 8

Recap: Modelling Mutual Exclusion Algorithms

Recap: Value-Passing CCS

Modelling Mobile Concurrent Systems

Another Example: Mobile Clients

Syntax of the Monadic π-Calculus

Semantics of the Monadic π-Calculus

23 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be transformed
into the other by applying the following operations and equations:
1. renaming of bound names (α-conversion)
2. reordering of terms in a summation (commutativity of +)
3. P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P (Abelian monoid laws for ‖)
4. new x nil ≡ nil, new x , y P ≡ new y , x P,

P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)
5. !P ≡ P ‖!P (unfolding)

24 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be transformed
into the other by applying the following operations and equations:
1. renaming of bound names (α-conversion)

2. reordering of terms in a summation (commutativity of +)
3. P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P (Abelian monoid laws for ‖)
4. new x nil ≡ nil, new x , y P ≡ new y , x P,

P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)
5. !P ≡ P ‖!P (unfolding)

24 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be transformed
into the other by applying the following operations and equations:
1. renaming of bound names (α-conversion)
2. reordering of terms in a summation (commutativity of +)

3. P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P (Abelian monoid laws for ‖)
4. new x nil ≡ nil, new x , y P ≡ new y , x P,

P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)
5. !P ≡ P ‖!P (unfolding)

24 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be transformed
into the other by applying the following operations and equations:
1. renaming of bound names (α-conversion)
2. reordering of terms in a summation (commutativity of +)
3. P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P (Abelian monoid laws for ‖)

4. new x nil ≡ nil, new x , y P ≡ new y , x P,
P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)

5. !P ≡ P ‖!P (unfolding)

24 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be transformed
into the other by applying the following operations and equations:
1. renaming of bound names (α-conversion)
2. reordering of terms in a summation (commutativity of +)
3. P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P (Abelian monoid laws for ‖)
4. new x nil ≡ nil, new x , y P ≡ new y , x P,

P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)

5. !P ≡ P ‖!P (unfolding)

24 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Semantics of the Monadic π-Calculus

Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely syntactic”
differences between processes

Definition 8.6 (Structural congruence)

P,Q ∈ Prcπ are structurally congruent, written P ≡ Q, if one can be transformed
into the other by applying the following operations and equations:
1. renaming of bound names (α-conversion)
2. reordering of terms in a summation (commutativity of +)
3. P ‖ Q ≡ Q ‖ P, P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P (Abelian monoid laws for ‖)
4. new x nil ≡ nil, new x , y P ≡ new y , x P,

P ‖ new x Q ≡ new x (P ‖ Q) if x /∈ fn(P) (scope extension)
5. !P ≡ P ‖!P (unfolding)

24 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Semantics of the Monadic π-Calculus

A Standard Form

Theorem 8.7 (Standard form)

Every process expression is structurally congruent to a process of the standard form

new x1, . . . , xk (P1 ‖ . . . ‖ Pm ‖ !Q1 ‖ . . . ‖ !Qn)

where each Pi is a non-empty sum, and each Qj is in standard form.

(If m = n = 0: nil; if k = 0: restriction absent)

Proof.

by induction on the structure of R ∈ Prcπ (on the board)

25 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Semantics of the Monadic π-Calculus

A Standard Form

Theorem 8.7 (Standard form)

Every process expression is structurally congruent to a process of the standard form

new x1, . . . , xk (P1 ‖ . . . ‖ Pm ‖ !Q1 ‖ . . . ‖ !Qn)

where each Pi is a non-empty sum, and each Qj is in standard form.

(If m = n = 0: nil; if k = 0: restriction absent)

Proof.

by induction on the structure of R ∈ Prcπ (on the board)

25 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus



Semantics of the Monadic π-Calculus

The Reaction Relation

Thanks to Theorem 8.7, only processes in standard form need to be considered for
defining the operational semantics:

Definition 8.8

The reaction relation −→⊆ Prcπ × Prcπ is generated by the rules:

(Tau)

τ.P + Q −→ P
(React)

(x(y).P + R) ‖ (x〈z〉.Q + S) −→ P[z/y ] ‖ Q

(Par)
P −→ P ′

P ‖ Q −→ P ′ ‖ Q
(Res)

P → P ′

new x P −→ new x P ′

(Struct)
P −→ P ′

Q −→ Q′
if P ≡ Q and P ′ ≡ Q′

• P[z/y ] replaces every free occurrence of y in P by z.
• In (React), the pair (x(y), x〈z〉) is called a redex.

26 of 26 Concurrency Theory

Winter Semester 2019/20

Lecture 8: The π-Calculus


	Recap: Modelling Mutual Exclusion Algorithms
	Recap: Value-Passing CCS
	Modelling Mobile Concurrent Systems
	Another Example: Mobile Clients
	Syntax of the Monadic -Calculus
	Semantics of the Monadic -Calculus

