
Concurrency Theory
Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms &
Value-Passing CCS

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/


Modelling Mutual Exclusion Algorithms

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

2 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Peterson’s Mutual Exclusion Algorithm

• Goal: ensuring exclusive access to non-shared resources
• Here: two competing processes P1,P2 and shared variables

– b1, b2 (Boolean, initially false) – bi indicates that Pi wants to enter critical section
– k (in {1, 2}, arbitrary initial value) – index of prioritised process

• Pi uses local variable j := 2− i (index of other process)

Algorithm 7.1 (Peterson’s algorithm for Pi)

while true do
“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

3 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Peterson’s Mutual Exclusion Algorithm

• Goal: ensuring exclusive access to non-shared resources
• Here: two competing processes P1,P2 and shared variables

– b1, b2 (Boolean, initially false) – bi indicates that Pi wants to enter critical section
– k (in {1, 2}, arbitrary initial value) – index of prioritised process

• Pi uses local variable j := 2− i (index of other process)

Algorithm 7.1 (Peterson’s algorithm for Pi)

while true do
“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

3 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Representing Shared Variables in CCS

• Not directly expressible in CCS (communication by message passing)
• Idea: consider variables as processes that communicate with environment by processing

read/write requests

Example 7.2 (Shared variables in Peterson’s algorithm)

• Encoding of b1 with two (process) states B1t (value tt) and B1f (ff)
• Read access along ports b1rt (in state B1t) and b1rf (in state B1f )
• Write access along ports b1wt and b1wf (in both states)
• Possible behaviours: B1f = b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t = b1rt .B1t + b1wf .B1f + b1wt .B1t

• Similarly for b2 and k : B2f = b2rf .B2f + b2wf .B2f + b2wt .B2t

B2t = b2rt .B2t + b2wf .B2f + b2wt .B2t

K1 = kr1.K1 + kw1.K1 + kw2.K2

K2 = kr2.K2 + kw1.K1 + kw2.K2

4 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Representing Shared Variables in CCS

• Not directly expressible in CCS (communication by message passing)
• Idea: consider variables as processes that communicate with environment by processing

read/write requests

Example 7.2 (Shared variables in Peterson’s algorithm)

• Encoding of b1 with two (process) states B1t (value tt) and B1f (ff)
• Read access along ports b1rt (in state B1t) and b1rf (in state B1f )
• Write access along ports b1wt and b1wf (in both states)

• Possible behaviours: B1f = b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t = b1rt .B1t + b1wf .B1f + b1wt .B1t

• Similarly for b2 and k : B2f = b2rf .B2f + b2wf .B2f + b2wt .B2t

B2t = b2rt .B2t + b2wf .B2f + b2wt .B2t

K1 = kr1.K1 + kw1.K1 + kw2.K2

K2 = kr2.K2 + kw1.K1 + kw2.K2

4 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Representing Shared Variables in CCS

• Not directly expressible in CCS (communication by message passing)
• Idea: consider variables as processes that communicate with environment by processing

read/write requests

Example 7.2 (Shared variables in Peterson’s algorithm)

• Encoding of b1 with two (process) states B1t (value tt) and B1f (ff)
• Read access along ports b1rt (in state B1t) and b1rf (in state B1f )
• Write access along ports b1wt and b1wf (in both states)
• Possible behaviours: B1f = b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t = b1rt .B1t + b1wf .B1f + b1wt .B1t

• Similarly for b2 and k : B2f = b2rf .B2f + b2wf .B2f + b2wt .B2t

B2t = b2rt .B2t + b2wf .B2f + b2wt .B2t

K1 = kr1.K1 + kw1.K1 + kw2.K2

K2 = kr2.K2 + kw1.K1 + kw2.K2

4 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Representing Shared Variables in CCS

• Not directly expressible in CCS (communication by message passing)
• Idea: consider variables as processes that communicate with environment by processing

read/write requests

Example 7.2 (Shared variables in Peterson’s algorithm)

• Encoding of b1 with two (process) states B1t (value tt) and B1f (ff)
• Read access along ports b1rt (in state B1t) and b1rf (in state B1f )
• Write access along ports b1wt and b1wf (in both states)
• Possible behaviours: B1f = b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t = b1rt .B1t + b1wf .B1f + b1wt .B1t

• Similarly for b2 and k : B2f = b2rf .B2f + b2wf .B2f + b2wt .B2t

B2t = b2rt .B2t + b2wf .B2f + b2wt .B2t

K1 = kr1.K1 + kw1.K1 + kw2.K2

K2 = kr2.K2 + kw1.K1 + kw2.K2

4 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm
while true do

“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
for L = {b1rf , b1rt, b1wf , b1wt,

b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}

5 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm
while true do

“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
for L = {b1rf , b1rt, b1wf , b1wt,

b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}

5 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm
while true do

“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
for L = {b1rf , b1rt, b1wf , b1wt,

b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}

5 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm
while true do

“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
for L = {b1rf , b1rt, b1wf , b1wt,

b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}

5 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm
while true do

“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
for L = {b1rf , b1rt, b1wf , b1wt,

b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}

5 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm
while true do

“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
for L = {b1rf , b1rt, b1wf , b1wt,

b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}

5 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm
while true do

“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
for L = {b1rf , b1rt, b1wf , b1wt,

b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}

5 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: Pi cannot fail or terminate within critical section

Peterson’s algorithm
while true do

“non-critical section”;
bi := true;
k := j;
while bj ∧ k = j do skip end;
“critical section”;
bi := false;

end

CCS representation

P1 = b1wt.kw2.P11

P11 = b2rf .P12 +
b2rt.(kr1.P12 + kr2.P11)

P12 = enter1.exit1.b1wf .P1

P2 = b2wt.kw1.P21

P21 = b1rf .P22 +
b1rt.(kr1.P21 + kr2.P22)

P22 = enter2.exit2.b2wf .P2

Peterson = (P1 ‖ P2 ‖ B1f ‖ B2f ‖ K1) \ L
for L = {b1rf , b1rt, b1wf , b1wt,

b2rf , b2rt, b2wf , b2wt,
kr1, kr2, kw1, kw2}

5 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Evaluating the CCS Model

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

6 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Evaluating the CCS Model

Obtaining the LTS I

Alternatives:
• By hand (really painful)
• By tools:

– CAAL (Concurrency Workbench, Aalborg Edition): http://caal.cs.aau.dk
� smart editor
� visualisation of generated LTS
� equivalence checking w.r.t. several bisimulation, simulation and trace equivalences
� generation of distinguishing formulae for nonequivalent processes
� model checking of recursive HML formulae
� (bi)simulation and model checking games.
� CCS specification of Peterson’s algorithm available as example
� yields LTS with 50 states (see following slides)

– [e]TAPAs (Tool for the Analysis of Process Algebras): http://etapas.sourceforge.net/
� Eclipse plug-in
� stand-alone version not supported any more

– CWB (Edinburgh Concurrency Workbench): http://homepages.inf.ed.ac.uk/perdita/cwb/
� somewhat outdated

7 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

http://caal.cs.aau.dk
http://etapas.sourceforge.net/
http://homepages.inf.ed.ac.uk/perdita/cwb/


Evaluating the CCS Model

Obtaining the LTS II

8 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Evaluating the CCS Model

Obtaining the LTS III

9 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Model Checking Mutual Exclusion

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

10 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Model Checking Mutual Exclusion

The Mutual Exclusion Property

• Done: formal description of Peterson’s algorithm
• To do: analysing its behaviour (manually or with tool support)
• Question: what does “ensuring mutual exclusion” formally mean?

Mutual exclusion

At no point in the execution of the algorithm, processes P1 and P2 will both be in their
critical section at the same time.

Equivalently:
It is always the case that either P1 or P2 or both are not in their critical section.

11 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Model Checking Mutual Exclusion

The Mutual Exclusion Property

• Done: formal description of Peterson’s algorithm
• To do: analysing its behaviour (manually or with tool support)
• Question: what does “ensuring mutual exclusion” formally mean?

Mutual exclusion

At no point in the execution of the algorithm, processes P1 and P2 will both be in their
critical section at the same time.

Equivalently:
It is always the case that either P1 or P2 or both are not in their critical section.

11 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Model Checking Mutual Exclusion

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P1 or P2 or both are not in their critical section.

Observations:
• Mutual exclusion is an invariance property (“always”)
• Pi is in its critical section iff action exit i is enabled

Mutual exclusion in HML

MutEx := Inv(F)
Inv(F)

max
= F ∧ [Act]Inv(F) (cf. Theorem 6.1)

F := [exit1]ff ∨ [exit2]ff

12 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Model Checking Mutual Exclusion

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P1 or P2 or both are not in their critical section.

Observations:
• Mutual exclusion is an invariance property (“always”)
• Pi is in its critical section iff action exit i is enabled

Mutual exclusion in HML

MutEx := Inv(F)
Inv(F)

max
= F ∧ [Act]Inv(F) (cf. Theorem 6.1)

F := [exit1]ff ∨ [exit2]ff

12 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Model Checking Mutual Exclusion

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P1 or P2 or both are not in their critical section.

Observations:
• Mutual exclusion is an invariance property (“always”)
• Pi is in its critical section iff action exit i is enabled

Mutual exclusion in HML

MutEx := Inv(F)
Inv(F)

max
= F ∧ [Act]Inv(F) (cf. Theorem 6.1)

F := [exit1]ff ∨ [exit2]ff

12 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Model Checking Mutual Exclusion

Model Checking Mutual Exclusion

• Using CAAL Tool
• Supports property specifications by recursive HML formulae:

MutEx max= ([[exit1]]ff or [[exit2]]ff) and [-]MutEx;

13 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Alternative Verification Approaches

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

14 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Alternative Verification Approaches

Verification by Bisimulation Checking

• Alternative to logic-based approaches
• Idea: establish equivalence between (concrete) “implementation” and (abstract)

“specification”

Example 7.3 (Two-place buffers (cf. Example 2.5))

1. Sequential specification: B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

2. Parallel implementation: B‖ = (B[f ] ‖ B[g]) \ com
B = in.out .B

where f := [out 7→ com] and g := [in 7→ com]

Later: (1) and (2) are “weakly bisimilar” (i.e., bisimilar up to τ -transitions)

15 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Alternative Verification Approaches

Verification by Bisimulation Checking

• Alternative to logic-based approaches
• Idea: establish equivalence between (concrete) “implementation” and (abstract)

“specification”

Example 7.3 (Two-place buffers (cf. Example 2.5))

1. Sequential specification: B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

2. Parallel implementation: B‖ = (B[f ] ‖ B[g]) \ com
B = in.out .B

where f := [out 7→ com] and g := [in 7→ com]

Later: (1) and (2) are “weakly bisimilar” (i.e., bisimilar up to τ -transitions)

15 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Alternative Verification Approaches

Specifying Mutual Exclusion in CCS

• Goal: express desired behaviour of mutual exclusion algorithm as an “abstract” CCS
process

• Intuitively:
1. initially, either P1 or P2 can enter its critical section
2. once this happened, the other process cannot enter the critical section before the first has exited it

Mutual exclusion in CCS

MutExSpec = enter1.exit1.MutExSpec + enter2.exit2.MutExSpec

Again: Peterson and MutExSpec are “weakly bisimilar”

16 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Alternative Verification Approaches

Specifying Mutual Exclusion in CCS

• Goal: express desired behaviour of mutual exclusion algorithm as an “abstract” CCS
process
• Intuitively:

1. initially, either P1 or P2 can enter its critical section
2. once this happened, the other process cannot enter the critical section before the first has exited it

Mutual exclusion in CCS

MutExSpec = enter1.exit1.MutExSpec + enter2.exit2.MutExSpec

Again: Peterson and MutExSpec are “weakly bisimilar”

16 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Alternative Verification Approaches

Specifying Mutual Exclusion in CCS

• Goal: express desired behaviour of mutual exclusion algorithm as an “abstract” CCS
process
• Intuitively:

1. initially, either P1 or P2 can enter its critical section
2. once this happened, the other process cannot enter the critical section before the first has exited it

Mutual exclusion in CCS

MutExSpec = enter1.exit1.MutExSpec + enter2.exit2.MutExSpec

Again: Peterson and MutExSpec are “weakly bisimilar”

16 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Alternative Verification Approaches

Specifying Mutual Exclusion in CCS

• Goal: express desired behaviour of mutual exclusion algorithm as an “abstract” CCS
process
• Intuitively:

1. initially, either P1 or P2 can enter its critical section
2. once this happened, the other process cannot enter the critical section before the first has exited it

Mutual exclusion in CCS

MutExSpec = enter1.exit1.MutExSpec + enter2.exit2.MutExSpec

Again: Peterson and MutExSpec are “weakly bisimilar”

16 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Syntax of Value-Passing CCS

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

17 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Syntax of Value-Passing CCS

Value-Passing CCS

• So far: pure CCS
– communication = mere synchronisation
– no (explicit) exchange of data

• But: processes usually do pass around data

⇒ Value-passing CCS
• Introduced in Robin Milner: Communication and Concurrency , Prentice-Hall, 1989
• Assumption (for simplicity): only integers as data type

Example 7.4 (One-place buffer with data (cf. Example 2.5))

One-place buffer that outputs successor of stored value:

B = in(x).B′(x)
B′(x) = out(x + 1).B

18 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Syntax of Value-Passing CCS

Value-Passing CCS

• So far: pure CCS
– communication = mere synchronisation
– no (explicit) exchange of data

• But: processes usually do pass around data
⇒ Value-passing CCS
• Introduced in Robin Milner: Communication and Concurrency , Prentice-Hall, 1989
• Assumption (for simplicity): only integers as data type

Example 7.4 (One-place buffer with data (cf. Example 2.5))

One-place buffer that outputs successor of stored value:

B = in(x).B′(x)
B′(x) = out(x + 1).B

18 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Syntax of Value-Passing CCS

Value-Passing CCS

• So far: pure CCS
– communication = mere synchronisation
– no (explicit) exchange of data

• But: processes usually do pass around data
⇒ Value-passing CCS
• Introduced in Robin Milner: Communication and Concurrency , Prentice-Hall, 1989
• Assumption (for simplicity): only integers as data type

Example 7.4 (One-place buffer with data (cf. Example 2.5))

One-place buffer that outputs successor of stored value:

B = in(x).B′(x)
B′(x) = out(x + 1).B

18 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Syntax of Value-Passing CCS

Syntax of Value-Passing CCS I

Definition 7.5 (Syntax of value-passing CCS)
• Let A, A, Pid (ranked) as in Definition 2.1.

• Let e and b be integer and Boolean expressions, resp., built from integer variables x , y , . . .
• The set Prc+ of value-passing process expressions is defined by:

P ::= nil (inaction)
| a(x).P (input prefixing)
| a(e).P (output prefixing)
| τ.P (τ prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| if b then P (conditional)
| C(e1, . . . , en) (process call)

where a ∈ A, L ⊆ A, C ∈ Pid (of rank n ∈ N), and f : A→ A.

19 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Syntax of Value-Passing CCS

Syntax of Value-Passing CCS I

Definition 7.5 (Syntax of value-passing CCS)
• Let A, A, Pid (ranked) as in Definition 2.1.
• Let e and b be integer and Boolean expressions, resp., built from integer variables x , y , . . .

• The set Prc+ of value-passing process expressions is defined by:

P ::= nil (inaction)
| a(x).P (input prefixing)
| a(e).P (output prefixing)
| τ.P (τ prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| if b then P (conditional)
| C(e1, . . . , en) (process call)

where a ∈ A, L ⊆ A, C ∈ Pid (of rank n ∈ N), and f : A→ A.

19 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Syntax of Value-Passing CCS

Syntax of Value-Passing CCS I

Definition 7.5 (Syntax of value-passing CCS)
• Let A, A, Pid (ranked) as in Definition 2.1.
• Let e and b be integer and Boolean expressions, resp., built from integer variables x , y , . . .
• The set Prc+ of value-passing process expressions is defined by:

P ::= nil (inaction)
| a(x).P (input prefixing)
| a(e).P (output prefixing)
| τ.P (τ prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| if b then P (conditional)
| C(e1, . . . , en) (process call)

where a ∈ A, L ⊆ A, C ∈ Pid (of rank n ∈ N), and f : A→ A.

19 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Syntax of Value-Passing CCS

Syntax of Value-Passing CCS II

Definition 7.5 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form

(Ci(x1, . . . , xni) = Pi | 1 ≤ i ≤ k)

where
• k ≥ 1,
• Ci ∈ Pid of rank ni (pairwise distinct),
• Pi ∈ Prc+ (with process identifiers from {C1, . . . ,Ck}), and
• all occurrences of an integer variable y in each Pi are bound, i.e., y ∈ {x1, . . . , xni} or y is in

the scope of an input prefix of the form a(y) (to ensure well-definedness of values).

Example 7.6

1. C(x) = a(x + 1).b(y).C(y) is allowed
2. C(x) = a(x + 1).a(y + 2).nil is disallowed as y is not bound

20 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Syntax of Value-Passing CCS

Syntax of Value-Passing CCS II

Definition 7.5 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form

(Ci(x1, . . . , xni) = Pi | 1 ≤ i ≤ k)

where
• k ≥ 1,
• Ci ∈ Pid of rank ni (pairwise distinct),
• Pi ∈ Prc+ (with process identifiers from {C1, . . . ,Ck}), and
• all occurrences of an integer variable y in each Pi are bound, i.e., y ∈ {x1, . . . , xni} or y is in

the scope of an input prefix of the form a(y) (to ensure well-definedness of values).

Example 7.6

1. C(x) = a(x + 1).b(y).C(y) is allowed

2. C(x) = a(x + 1).a(y + 2).nil is disallowed as y is not bound

20 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Syntax of Value-Passing CCS

Syntax of Value-Passing CCS II

Definition 7.5 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form

(Ci(x1, . . . , xni) = Pi | 1 ≤ i ≤ k)

where
• k ≥ 1,
• Ci ∈ Pid of rank ni (pairwise distinct),
• Pi ∈ Prc+ (with process identifiers from {C1, . . . ,Ck}), and
• all occurrences of an integer variable y in each Pi are bound, i.e., y ∈ {x1, . . . , xni} or y is in

the scope of an input prefix of the form a(y) (to ensure well-definedness of values).

Example 7.6

1. C(x) = a(x + 1).b(y).C(y) is allowed
2. C(x) = a(x + 1).a(y + 2).nil is disallowed as y is not bound

20 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Semantics of Value-Passing CCS

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

21 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Semantics of Value-Passing CCS

Semantics of Value-Passing CCS I

Definition 7.7 (Semantics of value-passing CCS)

A value-passing process definition (Ci(x1, . . . , xni) = Pi | 1 ≤ i ≤ k) determines the
LTS (Prc+,Act,−→) with Act := (A ∪ A)× Z ∪ {τ} whose transitions can be
inferred from the following rules (P,P ′,Q,Q′ ∈ Prc+, a ∈ A, xi integer variables, ei /b
integer/Boolean expressions, z ∈ Z, α ∈ Act , λ ∈ (A ∪ A)× Z):

(In)

a(x).P
a(z)−→ P[z/x]

(Out)

(z value of e)

a(e).P
a(z)−→ P

(Tau)

τ.P
τ−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q′

P + Q
α−→ Q′

(Par1)
P

α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(Par2)
Q

α−→ Q′

P ‖ Q
α−→ P ‖ Q′

(Com)
P

λ−→ P ′ Q
λ−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

22 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Semantics of Value-Passing CCS

Semantics of Value-Passing CCS II

Definition 7.7 (Semantics of value-passing CCS; continued)

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Res)

P
α−→ P ′ (α /∈ (L ∪ L)× Z)

P \ L
α−→ P ′ \ L

(If)

P
α−→ P ′ (b true)

if b then P
α−→ P ′

(Call)

P[z1/x1, . . . , zn/xn]
α−→ P ′

(C(x1, . . . , xn) = P, zi value of ei)

C(e1, . . . , en)
α−→ P ′

Remarks:
• P[z1/x1, . . . , zn/xn] denotes the substitution of each free (i.e., unbound) occurrence of xi by

zi (1 ≤ i ≤ n)
• Operations on actions ignore values:

a(z) := a(z) a(z) := a(z) f (a(z)) := f (a)(z) f (a(z)) := f (a)(z) (and f (τ ) := τ )

23 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Semantics of Value-Passing CCS

Semantics of Value-Passing CCS II

Definition 7.7 (Semantics of value-passing CCS; continued)

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Res)

P
α−→ P ′ (α /∈ (L ∪ L)× Z)

P \ L
α−→ P ′ \ L

(If)

P
α−→ P ′ (b true)

if b then P
α−→ P ′

(Call)

P[z1/x1, . . . , zn/xn]
α−→ P ′

(C(x1, . . . , xn) = P, zi value of ei)

C(e1, . . . , en)
α−→ P ′

Remarks:
• P[z1/x1, . . . , zn/xn] denotes the substitution of each free (i.e., unbound) occurrence of xi by

zi (1 ≤ i ≤ n)
• Operations on actions ignore values:

a(z) := a(z) a(z) := a(z) f (a(z)) := f (a)(z) f (a(z)) := f (a)(z) (and f (τ ) := τ )

23 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Semantics of Value-Passing CCS

Semantics of Value-Passing CCS III

Further remarks:
• The binding restriction ensures that all integer and Boolean expressions have a defined

value

• The two-armed conditional if b then P else Q can be defined by

(if b then P) + (if ¬b then Q)

Example 7.8

One-place buffer that outputs non-negative predecessor of stored value:

B = in(x).B′(x)
B′(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x − 1).B)

(processing of value “1”: on the board)

24 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Semantics of Value-Passing CCS

Semantics of Value-Passing CCS III

Further remarks:
• The binding restriction ensures that all integer and Boolean expressions have a defined

value
• The two-armed conditional if b then P else Q can be defined by

(if b then P) + (if ¬b then Q)

Example 7.8

One-place buffer that outputs non-negative predecessor of stored value:

B = in(x).B′(x)
B′(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x − 1).B)

(processing of value “1”: on the board)

24 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Semantics of Value-Passing CCS

Semantics of Value-Passing CCS III

Further remarks:
• The binding restriction ensures that all integer and Boolean expressions have a defined

value
• The two-armed conditional if b then P else Q can be defined by

(if b then P) + (if ¬b then Q)

Example 7.8

One-place buffer that outputs non-negative predecessor of stored value:

B = in(x).B′(x)
B′(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x − 1).B)

(processing of value “1”: on the board)

24 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Translation of Value-Passing into Pure CCS

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

25 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS I

• To show: value-passing process definitions can be represented in pure CCS
• Idea: each parametrised construct (a(x), a(e), C(e1, . . . , en)) corresponds to an indexed

family of constructs in pure CCS, one for each possible (combination of) integer value(s)
• Requires extension of pure CCS by infinite choices (“

∑
. . .”), restrictions, and process

definitions

26 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS II

Definition 7.9 (Translation of value-passing into pure CCS)

For each P ∈ Prc+ without free variables, its translated form P̂ ∈ Prc is given by

n̂il := nil τ̂.P := τ.P̂

â(x).P :=
∑

z∈Z az.P̂[z/x] â(e).P := az.P̂ (z value of e)

P̂1 + P2 := P̂1 + P̂2 P̂1 ‖ P2 := P̂1 ‖ P̂2

P̂ \ L := P̂ \ {az | a ∈ L, z ∈ Z} P̂[f ] := P̂ [̂f ] (̂f (az) := f (a)z)

̂if b then P :=

{
P̂ if b true

nil otherwise
̂C(e1, . . . , en) := Cz1,...,zn (zi value of ei)

Moreover, each defining equation C(x1, . . . , xn) = P of a process identifier is
translated into the indexed collection of process definitions(

Cz1,...,zn =
̂P[z1/x1, . . . , zn/xn] | z1, . . . , zn ∈ Z

)

27 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS II

Definition 7.9 (Translation of value-passing into pure CCS)

For each P ∈ Prc+ without free variables, its translated form P̂ ∈ Prc is given by

n̂il := nil τ̂.P := τ.P̂

â(x).P :=
∑

z∈Z az.P̂[z/x] â(e).P := az.P̂ (z value of e)

P̂1 + P2 := P̂1 + P̂2 P̂1 ‖ P2 := P̂1 ‖ P̂2

P̂ \ L := P̂ \ {az | a ∈ L, z ∈ Z} P̂[f ] := P̂ [̂f ] (̂f (az) := f (a)z)

̂if b then P :=

{
P̂ if b true

nil otherwise
̂C(e1, . . . , en) := Cz1,...,zn (zi value of ei)

Moreover, each defining equation C(x1, . . . , xn) = P of a process identifier is
translated into the indexed collection of process definitions(

Cz1,...,zn =
̂P[z1/x1, . . . , zn/xn] | z1, . . . , zn ∈ Z

)
27 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS III

Example 7.10 (cf. Example 7.8)

B = in(x).B′(x)
B′(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x − 1).B)

(on the board)

Theorem 7.11 (Correctness of translation)

For all P,P ′ ∈ Prc+ and α ∈ Act,

P
α−→ P ′ ⇐⇒ P̂

α̂−→ P̂ ′

where â(z) := az, â(z) := az, and τ̂ := τ .

Proof.

by induction on the structure of P (omitted)

28 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS III

Example 7.10 (cf. Example 7.8)

B = in(x).B′(x)
B′(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x − 1).B)

(on the board)

Theorem 7.11 (Correctness of translation)

For all P,P ′ ∈ Prc+ and α ∈ Act,

P
α−→ P ′ ⇐⇒ P̂

α̂−→ P̂ ′

where â(z) := az, â(z) := az, and τ̂ := τ .

Proof.

by induction on the structure of P (omitted)

28 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS



Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS III

Example 7.10 (cf. Example 7.8)

B = in(x).B′(x)
B′(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x − 1).B)

(on the board)

Theorem 7.11 (Correctness of translation)

For all P,P ′ ∈ Prc+ and α ∈ Act,

P
α−→ P ′ ⇐⇒ P̂

α̂−→ P̂ ′

where â(z) := az, â(z) := az, and τ̂ := τ .

Proof.

by induction on the structure of P (omitted)

28 of 28 Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS


	Modelling Mutual Exclusion Algorithms
	Evaluating the CCS Model
	Model Checking Mutual Exclusion
	Alternative Verification Approaches
	Syntax of Value-Passing CCS
	Semantics of Value-Passing CCS
	Translation of Value-Passing into Pure CCS

