Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms &
Value-Passing CCS

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Modelling Mutual Exclusion Algorithms

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

RWTH

20f 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Peterson’s Mutual Exclusion Algorithm

e Goal: ensuring exclusive access to non-shared resources

e Here: two competing processes P;, P> and shared variables
— by, b (Boolean, initially false) — b; indicates that P; wants to enter critical section
— k (in {1, 2}, arbitrary initial value) — index of prioritised process

e P; uses local variable j := 2 — i (index of other process)

RWTH

3 0of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Peterson’s Mutual Exclusion Algorithm

e Goal: ensuring exclusive access to non-shared resources

e Here: two competing processes P;, P> and shared variables
— by, b (Boolean, initially false) — b; indicates that P; wants to enter critical section
— k (in {1, 2}, arbitrary initial value) — index of prioritised process

e P; uses local variable j := 2 — i (index of other process)

Algorithm 7.1 (Peterson’s algorithm for P;)

while true do
“non-critical section”:
b; := true;
5=
while b; A\ k = j do skip end,
“critical section”:
b; := false;
end
T s s 2 — RWTH

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Representing Shared Variables in CCS

e Not directly expressible in CCS (communication by message passing)
e |dea: consider variables as processes that communicate with environment by processing
read/write requests

RWTH

4 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Representing Shared Variables in CCS

e Not directly expressible in CCS (communication by message passing)
e |dea: consider variables as processes that communicate with environment by processing
read/write requests

Example 7.2 (Shared variables in Peterson’s algorithm)

e Encoding of by with two (process) states By; (value tt) and By (ff)
e Read access along ports birt (in state By;) and b1rf (in state Byy)
e Write access along ports b1wt and b1wf (in both states)

RWTH

4 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Representing Shared Variables in CCS

e Not directly expressible in CCS (communication by message passing)
e |dea: consider variables as processes that communicate with environment by processing
read/write requests

Example 7.2 (Shared variables in Peterson’s algorithm)

e Encoding of by with two (process) states By; (value tt) and By (ff)
e Read access along ports birt (in state By;) and b1rf (in state Byy)
e Write access along ports b1wt and b1wf (in both states)
e Possible behaviours: By = b1rf.Bis + b1wf.Bys + b1wt.By;

B1t — W.B” + b1WfB1f + b1WtB1t

RWTH

4 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Representing Shared Variables in CCS

e Not directly expressible in CCS (communication by message passing)
e |dea: consider variables as processes that communicate with environment by processing
read/write requests

Example 7.2 (Shared variables in Peterson’s algorithm)

e Encoding of by with two (process) states By; (value tt) and By (ff)
e Read access along ports birt (in state By;) and b1rf (in state Byy)
e Write access along ports b1wt and b1wf (in both states)
e Possible behaviours: By = b1rf.Bis + b1wf.Bys + b1wt.By;
B1t — W.B” + b1WfB1f + b1WtB1t
e Similarly for b, and k: Bo; = b2rf.By; + b2wf.Bos + b2wt.Bo;
By = b2rt.Bo; + b2wf.Bo + b2wt. By,

K, = kr1.Ky + kw1.K; + kw2. K>
K> = EKQ + kwil. Ky + kw2. Ko

RWTH

4 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: P; cannot fail or terminate within critical section

Peterson’s algorithm

while true do
“non-critical section™

=
while b; A\ k = j do skip end,;
“critical section”,

b; = false;
end
5of 28 Concurrency Theory o Rm
Winter Semester 2019/20 Software Modeling
‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: P; cannot fail or terminate within critical section

Peterson’s algorithm CCS representation
while true do P, = biwt.kw2.P;4
“non-critical section”, Pi1 = b2rf.Pys +
b; .= true; b2l’t.(kl’1.P12 + kf2.P11)
K .= P,> = enter1.exit1.b1wf.P;
while b; A\ k = j do skip end,; P, — b2wt kwl.Ps;
“cr./tica/ se?t/on”; Py, = b1rf.Pyy +
zj = false, b1rt.(kr1.P21 + kr2.P22)
en

P>, = enter2.exit2.b2wf . P,
Peterson = (P1 H P2 H B1f || Bzf H K1) \ L

for L= {b1rf, birt, b1wf, biwt,
b2rf, b2rt, b2wf, b2wt,
kri, kr2, kw1, kw2}

RWTH

5 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: P; cannot fail or terminate within critical section

Peterson’s algorithm CCS representation
while true do P, = biwt.kw2.P;4
“non-critical section”, Pi1 = b2rf.Pys +
b; == true; b2l’t.(kl’1.P12 + kf2.P11)
K .= P,> = enter1.exit1.b1wf.P;
while b; A\ k = j do skip end,; P, — b2wt kw1.Ps;
“cr./tica/ se?t/on”; Py, = b1rf.Pyy +
zj = false, b1rt.(kr1.P21 + kr2.P22)
en

P>, = enter2.exit2.b2wf . P,
Peterson = (P1 H P2 H B1f || Bzf H K1) \ L

for L= {b1rf, birt, b1wf, biwt,
b2rf, b2rt, b2wf, b2wt,
kri, kr2, kw1, kw2}

RWTH

5 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: P; cannot fail or terminate within critical section

Peterson’s algorithm CCS representation
while true do P, = biwt.kw2.P;,
“non-critical section”, Pi1 = b2rf.Pys +
b; .= true; b2l’t.(kl’1.P12 + kf2.P11)
K .= P,> = enter1.exit1.b1wf.P;
while b; A\ k = j do skip end,; P, — b2wt kw1.Ps;
“cr./tica/ se?t/on”; Py, = b1rf.Pyy +
zj = false, b1rt.(kr1.P21 + kr2.P22)
en

P>, = enter2.exit2.b2wf . P,
Peterson = (P1 H P2 H B1f || Bzf H K1) \ L

for L= {b1rf, birt, b1wf, biwt,
b2rf, b2rt, b2wf, b2wt,
kri, kr2, kw1, kw2}

RWTH

5 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: P; cannot fail or terminate within critical section

Peterson’s algorithm CCS representation
while true do P, = biwt.kw2.P;4
“non-critical section”, Py = b2rf.Pys +
b; .= true; b2l’t.(kl’1.P12 + kf2.P11)
K .= P,> = enter1.exit1.b1wf.P;
while b; A\ k = j do skip end, P, — b2wt kwl.Ps;
“cr./tica/ se?t/on”; Py, = b1rf.Pyy +
zj = false, b1rt.(kr1.P21 + kr2.P22)
en

P>, = enter2.exit2.b2wf . P,
Peterson = (P1 H P2 H B1f || Bzf H K1) \ L

for L= {b1rf, birt, b1wf, biwt,
b2rf, b2rt, b2wf, b2wt,
kri, kr2, kw1, kw2}

RWTH

5 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: P; cannot fail or terminate within critical section

Peterson’s algorithm CCS representation
while true do P, = biwt.kw2.P;4
“non-critical section”, Pi1 = b2rf.Pys +
b; .= true; b2l’t.(kl’1.P12 + kf2.P11)
K .= P,> = enter1.exit1.b1wf.P;
while b; A\ k = j do skip end,; P, — b2wt kwl.Ps;
“cr./tica/ se?t/on”; Py, = b1rf.Pyy +
zj = false, b1rt.(kr1.P21 + kr2.P22)
en

P>, = enter2.exit2.b2wf . P,
Peterson = (P1 H P2 H B1f || Bzf H K1) \ L

for L= {b1rf, birt, b1wf, biwt,
b2rf, b2rt, b2wf, b2wt,
kri, kr2, kw1, kw2}

RWTH

5 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: P; cannot fail or terminate within critical section

Peterson’s algorithm CCS representation
while true do P, = biwt.kw2.P;4
“non-critical section”, Pi1 = b2rf.Pys +
b; .= true; b2l’t.(kl’1.P12 + kf2.P11)
K .= P,> = enter1.exit1.b1wf.P;
while b; A\ k = j do skip end,; P, — b2wt kwl.Ps;
“cr./tica/ se?t/on”; Py, = b1rf.Pyy +
zj = false, b1rt.(kr1.P21 + kr2.P22)
en

P>, = enter2.exit2.b2wf . P,
Peterson = (P1 H P2 H B1f || Bzf H K1) \ L

for L= {b1rf, birt, b1wf, biwt,
b2rf, b2rt, b2wf, b2wt,
kri, kr2, kw1, kw2}

RWTH

5 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS
Assumption: P; cannot fail or terminate within critical section

Peterson’s algorithm CCS representation
while true do P, = biwt.kw2.P;4
“non-critical section”, Pi1 = b2rf.Pys +
b; .= true; b2l’t.(kl’1.P12 + kf2.P11)
K .= P,> = enter1.exit1.b1wf.P;
while b; A\ k = j do skip end,; P, — b2wt kwl.Ps;
“cr./tica/ se?t/on”; Py, = b1rf.Pyy +
zj = false, b1rt.(kr1.P21 + kr2.P22)
en

P>, = enter2.exit2.b2wf . P,
Peterson = (P1 H P2 H B1f || Bzf H K1) \ L

for L= {b1rf, birt, b1wf, biwt,
b2rf, b2rt, b2wf, b2wt,
kri, kr2, kw1, kw2}

RWTH

5 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Evaluating the CCS Model

Outline of Lecture 7

Evaluating the CCS Model

RWTH

6 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Evaluating the CCS Model

Obtaining the LTS |

Alternatives:

e By hand (really painful)
e By tools:
— CAAL (Concurrency Workbench, Aalborg Edition): http://caal.cs.aau.dk
m smart editor
m visualisation of generated LTS
m equivalence checking w.r.t. several bisimulation, simulation and trace equivalences
m generation of distinguishing formulae for nonequivalent processes
m model checking of recursive HML formulae
m (bi)simulation and model checking games.
m CCS specification of Peterson’s algorithm available as example
m yields LTS with 50 states (see following slides)
— [e]TAPAs (Tool for the Analysis of Process Algebras): http://etapas.sourceforge.net/
m Eclipse plug-in
m stand-alone version not supported any more
— CWB (Edinburgh Concurrency Workbench): http://homepages.inf.ed.ac.uk/perdita/cwb/
m somewhat outdated

RWTH

7 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

http://caal.cs.aau.dk
http://etapas.sourceforge.net/
http://homepages.inf.ed.ac.uk/perdita/cwb/

Evaluating the CCS Model

Obtaining the LTS I

CAAL

Project ~ Edit Explore Verify Games ~

Peterson's Algorithm

* Peterson's algorithm for mutual exclusion.
* See Chapter 7 of "Reactive Systems” for a full description.

B1f = 'b1rf.B1f + blwf.B1f + blwt.B1t;
B1t = 'birt.B1t + blwf.B1f + blwt.B1t;

B2f = 'bzrf.B2f + b2wf.B2f + b2wt.B2t;
B2t = 'b2rt.B2t + b2wf.B2f + b2wt.B2t;

K1 = 'kr1.K1 + kwl.K1 + kw2.K2;
K2 = 'kr2.K2 + kwl.K1 + kw2.K2;

P1 = 'biwt. 'kw2.P11;
P11 = b2rf.P12 + b2rt.(kr2.P11 + kr1.P12);
P12 = enterl.exitl. 'biwf.P1;

P2 = 'b2wt. 'kwl.P21;
P21 = birf.P22 + birt.(kr1.P21 + kr2.P22);
P22 = enter2.exit2. 'b2wf.P2;

set L = {birf, b2rf, birt, b2rt, biwf, b2wf, biwt, b2wt, krl, kr2, kwl, kw2};

Peterson = (P1 | P2 | B1f | B2f | K1) \ L;

Spec = enterl.exitl.Spec + enter2.exit2.Spec;

Parse

About Syntax

CCs TCCS

&M 0

16 :J

8 of 28

Concurrency Theory
Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

4

: Software Modeling

Il and Verification Chair

RWTH

Evaluating the CCS Model

Obtaining the LTS llI o G w

»
» -4 [28)
Ym = enter2 tau v exit2
- s
tan entt:rze

tau u
enter2 tau ' Y A

1a Xit2 A

% “

< A
tau 2 - exiQP hA tau

gy
tau
tau
/

tau YA MB‘ tau

Y tau
" & N
tau ‘ tau t tau
tau ¥ tall au tau
4 & 4
tau
B ‘o
v tau v
tau >
4y tau
A tau tau

tau s

tau tau ¥ Pexit

a exitl
- = ¥ 6 Ve inv enter1 Y
22

enter1 ré t@au &
e enter1

exitl exitl
« tahy LS

tau A
m n e\ tau id tau
[12]

9 of 28

Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS ‘ 8 and Verification Chair

RWTH

Model Checking Mutual Exclusion

Outline of Lecture 7

Model Checking Mutual Exclusion

RWTH

10 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Model Checking Mutual Exclusion

The Mutual Exclusion Property

e Done: formal description of Peterson’s algorithm
e To do: analysing its behaviour (manually or with tool support)
e Question: what does “ensuring mutual exclusion” formally mean?

RWTH

11 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Model Checking Mutual Exclusion

The Mutual Exclusion Property

e Done: formal description of Peterson’s algorithm
e To do: analysing its behaviour (manually or with tool support)
e Question: what does “ensuring mutual exclusion” formally mean?

Mutual exclusion

At no point in the execution of the algorithm, processes P; and P» will both be in their
critical section at the same time.

Equivalently:
It is always the case that either P; or P, or both are not in their critical section.

RWTH

11 0of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Model Checking Mutual Exclusion

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P; or P> or both are not in their critical section.

RWTH

12 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS ‘ Ml and Verification Chair

Model Checking Mutual Exclusion

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P; or P> or both are not in their critical section.

Observations:
e Mutual exclusion is an invariance property (“always”)
e P, is in its critical section iff action exit_i is enabled

RWTH

12 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS ‘ Ml and Verification Chair

Model Checking Mutual Exclusion

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P; or P> or both are not in their critical section.

Observations:
e Mutual exclusion is an invariance property (“always”)
e P, is in its critical section iff action exit_i is enabled

Mutual exclusion in HML

MutEx := Inv(F)
Inv(F) = F A [Act|Inv(F) (cf. Theorem 6.1)
F .= [exit]ff \VV [exit2]ff

RWTH

12 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS ‘ Bl and Verification Chair

Model Checking Mutual Exclusion

Model Checking Mutual Exclusion

e Using CAAL Tool
e Supports property specifications by recursive HML formulae:
MutEx max= ([[exitl]]ff or [[exit2]]ff) and [-]MutEx;

CAAL Project ~ Edit Explore Verify Games ~ About Syntax A)
Add Property Stop | Verify All
Status Time Property Verify Edit Delete Options
Peterson = MutEx
> —
© e MutEx max= ([[exit1]Iff or [[exit2]]ff) and [-IMutEx > L4 o -
13 of 28 Concurrency Theory o Rm
Winter Semester 2019/20 Software Modeling
‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Alternative Verification Approaches

Outline of Lecture 7

Alternative Verification Approaches

RWTH

14 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Alternative Verification Approaches

Verification by Bisimulation Checking

e Alternative to logic-based approaches

e Idea: establish equivalence between (concrete) “implementation” and (abstract)
“specification”

RWTH

15 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Alternative Verification Approaches

Verification by Bisimulation Checking

e Alternative to logic-based approaches

e Idea: establish equivalence between (concrete) “implementation” and (abstract)
“specification”

Example 7.3 (Two-place buffers (cf. Example 2.5))

1. Sequential specification: By = in.B;
B = ﬁBo + in.Bo
B, = out.B;

2. Parallel implementation: By = (B|[f] || B|g]) \ com
B = in.out.B

where f := [out — com| and g := [in — com|
Later: (1) and (2) are “weakly bisimilar” (i.e., bisimilar up to 7-transitions)

RWTH

15 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Alternative Verification Approaches

Specifying Mutual Exclusion in CCS

e Goal: express desired behaviour of mutual exclusion algorithm as an “abstract” CCS
process

RWTH

16 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Alternative Verification Approaches

Specifying Mutual Exclusion in CCS

e Goal: express desired behaviour of mutual exclusion algorithm as an “abstract” CCS
process

e Intuitively:
1. initially, either Py or P, can enter its critical section
2. once this happened, the other process cannot enter the critical section before the first has exited it

RWTH

16 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Alternative Verification Approaches

Specifying Mutual Exclusion in CCS

e Goal: express desired behaviour of mutual exclusion algorithm as an “abstract” CCS
process

e Intuitively:
1. initially, either Py or P, can enter its critical section
2. once this happened, the other process cannot enter the critical section before the first has exited it

Mutual exclusion in CCS

MutExSpec = enter1.exit1.MutExSpec + enter2.exit2. MutExSpec

RWTH

16 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Alternative Verification Approaches

Specifying Mutual Exclusion in CCS

e Goal: express desired behaviour of mutual exclusion algorithm as an “abstract” CCS
process

e Intuitively:
1. initially, either Py or P, can enter its critical section
2. once this happened, the other process cannot enter the critical section before the first has exited it

Mutual exclusion in CCS

MutExSpec = enter1.exit1.MutExSpec + enter2.exit2. MutExSpec

Again: Peterson and MutExSpec are “weakly bisimilar”

RWTH

16 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS

Outline of Lecture 7

Syntax of Value-Passing CCS

RWTH

17 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS

Value-Passing CCS

e So far: pure CCS

— communication = mere synchronisation
— no (explicit) exchange of data

e But: processes usually do pass around data

RWTH

18 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS

Value-Passing CCS

e So far: pure CCS

— communication = mere synchronisation
— no (explicit) exchange of data

e But: processes usually do pass around data

= Value-passing CCS
e Introduced in Robin Milner: Communication and Concurrency, Prentice-Hall, 1989
e Assumption (for simplicity): only integers as data type

RWTH

18 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS

Value-Passing CCS

e So far: pure CCS

— communication = mere synchronisation
— no (explicit) exchange of data

e But: processes usually do pass around data

= Value-passing CCS
e Introduced in Robin Milner: Communication and Concurrency, Prentice-Hall, 1989
e Assumption (for simplicity): only integers as data type

Example 7.4 (One-place buffer with data (cf. Example 2.5))

One-place buffer that outputs successor of stored value:

B = in(x).B'(x)
B'(x) = out(x +1).B

RWTH

18 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS

Syntax of Value-Passing CCS |

Definition 7.5 (Syntax of value-passing CCS)
o Let A, A, Pid (ranked) as in Definition 2.1.

RWTH

19 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS

Syntax of Value-Passing CCS |

Definition 7.5 (Syntax of value-passing CCS)
e Let A, A, Pid (ranked) as in Definition 2.1.

e Let e and b be integer and Boolean expressions, resp., built from integer variables x. y, . ..

RWTH

19 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS

Syntax of Value-Passing CCS |

Definition 7.5 (Syntax of value-passing CCS)
o Let A, A, Pid (ranked) as in Definition 2.1.

e Let e and b be integer and Boolean expressions, resp., built from integer variables x. y, . ..

e The set Prc* of value-passing process expressions is defined by:

P ::= nil (inaction)
| a(x).P (input prefixing)
| a(e).P (output prefixing)
| T.P (7 prefixing)
| P + Ps (ChOlce)
| Pi || P2 (parallel composition)
| P\L (restriction)
| P|f] (relabelling)
| if bthen P (conditional)
| C(eq,...,en) (process call)
whereace A, L C A, C € Pid (ofrank n € N),and f : A — A.
T e st 2 — RWTH

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS

Syntax of Value-Passing CCS I

Definition 7.5 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form
(Ci(x1, ..., X)) =P |1 <i<k)

where
o k>1,
e C; € Pid of rank n; (pairwise distinct),
e P; € Prc™ (with process identifiers from {C;, ..., Cx}), and

e all occurrences of an integer variable y in each P; are bound, i.e., ¥y € {xq,..., Xy} or yisin
the scope of an input prefix of the form a(y) (to ensure well-definedness of values).

RWTH

20 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS

Syntax of Value-Passing CCS I

Definition 7.5 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form
(Ci(x1, ..., X)) =P |1 <i<k)

where
o k>1,
e C; € Pid of rank n; (pairwise distinct),
e P; € Prc™ (with process identifiers from {C;, ..., Cx}), and

e all occurrences of an integer variable y in each P; are bound, i.e., ¥y € {xq,..., Xy} or yisin
the scope of an input prefix of the form a(y) (to ensure well-definedness of values).

Example 7.6
1. C(x) = a(x +1).b(y).C(y) is allowed

RWTH

20 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS

Syntax of Value-Passing CCS I

Definition 7.5 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form
(Ci(x1, ..., X)) =P |1 <i<k)

where
o k>1,
e C; € Pid of rank n; (pairwise distinct),
e P; € Prc™ (with process identifiers from {C;, ..., Cx}), and

e all occurrences of an integer variable y in each P; are bound, i.e., ¥y € {xq,..., Xy} or yisin
the scope of an input prefix of the form a(y) (to ensure well-definedness of values).

Example 7.6
1. C(x) = a(x +1).b(y).C(y) is allowed
2. C(x) =a(x+1).a(y + 2).nil is disallowed as y is not bound
20 of 28 Concurrency Theor
Winter Semizster 20y1 9/20 ? Software Modeling Rm

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Semantics of Value-Passing CCS

Outline of Lecture 7

Semantics of Value-Passing CCS

RWTH

21 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Semantics of Value-Passing CCS

Semantics of Value-Passing CCS |

Definition 7.7 (Semantics of value-passing CCS)

A value-passing process definition (Ci(xy, ..., x,) = P; | 1 < i < k) determines the
LTS (Prc™, Act, —) with Act := (AU A) x Z U {7} whose transitions can be
inferred from the following rules (P, P', Q, Q' € Prc*, a € A, x; integer variables, e;/b
integer/Boolean expressions, z € Z, o € Act, A € (AU A) X Z):

(z value of e)

(In) (Out) (Tau)

a(x).P ﬂ P|z/x] ale).P ﬂ P T.P— P
o p_% p . Q- Q@
P+Q-5 P P+Q-—Q
(Par) P— P (Parz) Q— Q@ ()PLP’QQQ’
Pla-%Pla Pla--Pl@d Pla-P|Q
T D e, | TN

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS W and Verification Chair

Semantics of Value-Passing CCS

Semantics of Value-Passing CCS Il

Definition 7.7 (Semantics of value-passing CCS; continued)

p_ pl PP (a¢ (LUL) x Z)
(Rel) (Res) a
P[f]ﬂP’[f] P\L— P\ L

Plz /X1, ., 2o/ Xg) —> P’

P+ P' (btrue) (Cxi, ..., Xn) = P,z value of &)

(If) (Call)
if bthen P - P/ Cley,...,en) — P
e e e D s, | NTH

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS Bl and Verification Chair

Semantics of Value-Passing CCS

Semantics of Value-Passing CCS Il

Definition 7.7 (Semantics of value-passing CCS; continued)

p_% p PP (aé¢ (LUL) x Z)
(Rel) (Res) a
P[f]ﬂP’[f] P\L%P/\L
Plzi/Xt, -, Zo/Xa] — P’
P -5 P (btrue) (C(x1, ..., xn) = P, z value of &)
(If) (Call)
if bthen P —2 P’ Cler,...,en) — P

Remarks:
e Plzy/x1, ..., 2,/ x,| denotes the substitution of each free (i.e., unbound) occurrence of x; by
zi(1<i<n)
e Operations on actions ignore values:

a(z):=3a(z) alz):=a(z) f(a(z)):=f(a)z) f(a(z)):=f(a)z) (and f(r):=r7)

23 of 28 Concurrency Theory o Rm
Winter Semester 2019/20
=

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Software Modeling
and Verification Chair

Semantics of Value-Passing CCS

Semantics of Value-Passing CCS il

Further remarks:

e The binding restriction ensures that all integer and Boolean expressions have a defined
value

RWTH

24 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Semantics of Value-Passing CCS

Semantics of Value-Passing CCS il

Further remarks:

e The binding restriction ensures that all integer and Boolean expressions have a defined
value
e The two-armed conditional if b then P else Q can be defined by

(if bthen P) + (if b then Q)

RWTH

24 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Semantics of Value-Passing CCS

Semantics of Value-Passing CCS il

Further remarks:

e The binding restriction ensures that all integer and Boolean expressions have a defined
value
e The two-armed conditional if b then P else Q can be defined by

(if bthen P) + (if b then Q)

Example 7.8

One-place buffer that outputs non-negative predecessor of stored value:

B=in(x).B'(x) -
B'(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x — 1).B)

(processing of value “1”: on the board)

RWTH

24 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Translation of Value-Passing into Pure CCS

Outline of Lecture 7

Translation of Value-Passing into Pure CCS

RWTH

25 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS |

e To show: value-passing process definitions can be represented in pure CCS

e Idea: each parametrised construct (a(x), a(e), C(ey, ..., e,)) corresponds to an indexed
family of constructs in pure CCS, one for each possible (combination of) integer value(s)

e Requires extension of pure CCS by infinite choices (“> . .."), restrictions, and process
definitions

RWTH

26 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS Il

Definition 7.9 (Translation of value-passing into pure CCS)

For each P € Prc* without free variables, its translated form P e Prcis given by

nil == nil ?\P — T.P
a(x).P := ZzEZ a,.P[z/x] a(e).P:=a,.P (zvalue of e)
P1i£-:P—I—P2 Pi|| Po:=Pi | P2
P\L:=P\{a,|aclL zeZ} P[f] := P[f] (f(a;) := f(a);)
L P if btrue —
if bthen P := { . . C(es,...,en) :=C,.. . (z valueof g)
nil otherwise

RWTH

27 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS Il

Definition 7.9 (Translation of value-passing into pure CCS)

For each P € Prc* without free variables, its translated form P e Prcis given by

nil == nil T.P:=T.P
a(x).P:=>_,.,a;.Plz/x] a(e).P:=a,.P (zvalue of e)
Pi+ Py =P+ P Pi|| Po:=Pi | P2
P\L:=P\{a,|acl,zeZ} P[f] := P[f] (f(a;) := f(a);)
L P if btrue =
if bthen P:=< _ C(er,...,€n) :=C, .- (z valueof &)
nil otherwise

Moreover, each defining equation C(x4, ..., x,) = P of a process identifier is
translated into the indexed collection of process definitions

(021,-..,zn = Plzy/x1, ..., z0/X%p0) | 215,20 € Z)

RWTH

27 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS il
Example 7.10 (cf. Example 7.8)

in(x).B'(x)

j
B'(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x — 1).B)
(on the board)

RWTH

28 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS Ml and Verification Chair

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS il

Example 7.10 (cf. Example 7.8)
B = in(x).B'(x)
B'(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x — 1).B)
(on the board)

Theorem 7.11 (Correctness of translation)
Forall P, P' € Prc™ and o € Act,
PP = P-4 P

e~ e~

where a(z) := a,, a(z) :== a,,and 7 := 7.

RWTH

28 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS Ml and Verification Chair

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS il

Example 7.10 (cf. Example 7.8)
B = in(x).B'(x)
B'(x) = (if x = 0 then out(0).B) + (if x > 0 then out(x — 1).B)
(on the board)

Theorem 7.11 (Correctness of translation)
Forall P, P' € Prc™ and o € Act,
PP = P-4 P

e~ e~

where a(z) := a,, a(z) :== a,,and 7 := 7.

Proof.

by induction on the structure of P (omitted)

RWTH

28 of 28 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

	Modelling Mutual Exclusion Algorithms
	Evaluating the CCS Model
	Model Checking Mutual Exclusion
	Alternative Verification Approaches
	Syntax of Value-Passing CCS
	Semantics of Value-Passing CCS
	Translation of Value-Passing into Pure CCS

