

Concurrency Theory

Winter Semester 2019/20

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Outline of Lecture 7

- Modelling Mutual Exclusion Algorithms
- Evaluating the CCS Model
- Model Checking Mutual Exclusion
- **Alternative Verification Approaches**
- Syntax of Value-Passing CCS
- Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

2 of 28 Concurr Winter S

Peterson's Mutual Exclusion Algorithm

- Goal: ensuring exclusive access to non-shared resources
- Here: two competing processes P_1 , P_2 and shared variables
 - $-b_1, b_2$ (Boolean, initially false) $-b_i$ indicates that P_i wants to enter critical section
 - -k (in $\{1, 2\}$, arbitrary initial value) index of prioritised process
- P_i uses local variable j := 2 i (index of other process)

Peterson's Mutual Exclusion Algorithm

- Goal: ensuring exclusive access to non-shared resources
- Here: two competing processes P_1 , P_2 and shared variables
 - $-b_1$, b_2 (Boolean, initially false) $-b_i$ indicates that P_i wants to enter critical section
 - -k (in $\{1, 2\}$, arbitrary initial value) index of prioritised process
- P_i uses local variable j := 2 i (index of other process)

Algorithm 7.1 (Peterson's algorithm for P_i)

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := false;

end
```

3 of 28

- Not directly expressible in CCS (communication by message passing)
- Idea: consider variables as processes that communicate with environment by processing read/write requests

- Not directly expressible in CCS (communication by message passing)
- Idea: consider variables as processes that communicate with environment by processing read/write requests

Example 7.2 (Shared variables in Peterson's algorithm)

- Encoding of b_1 with two (process) states B_{1t} (value tt) and B_{1f} (ff)
- Read access along ports b1rt (in state B_{1t}) and b1rf (in state B_{1f})
- Write access along ports *b1wt* and *b1wf* (in both states)

- Not directly expressible in CCS (communication by message passing)
- Idea: consider variables as processes that communicate with environment by processing read/write requests

Example 7.2 (Shared variables in Peterson's algorithm)

- Encoding of b_1 with two (process) states B_{1t} (value tt) and B_{1f} (ff)
- Read access along ports b1rt (in state B_{1t}) and b1rf (in state B_{1f})
- Write access along ports *b1wt* and *b1wf* (in both states)
- Possible behaviours: $B_{1f} = \overline{b1rf} \cdot B_{1f} + b1wf \cdot B_{1f} + b1wt \cdot B_{1t}$

 $B_{1t} = \overline{b1rt}.B_{1t} + b1wf.B_{1f} + b1wt.B_{1t}$

- Not directly expressible in CCS (communication by message passing)
- Idea: consider variables as processes that communicate with environment by processing read/write requests

Example 7.2 (Shared variables in Peterson's algorithm)

- Encoding of b_1 with two (process) states B_{1t} (value tt) and B_{1f} (ff)
- Read access along ports b1rt (in state B_{1t}) and b1rf (in state B_{1f})
- Write access along ports b1wt and b1wf (in both states)
- Possible behaviours: $B_{1f} = \overline{b1rf}.B_{1f} + b1wf.B_{1f} + b1wt.B_{1t}$

 $B_{1t} = b1rt.B_{1t} + b1wf.B_{1f} + b1wt.B_{1t}$

• Similarly for b_2 and k: $B_{2f} = \overline{b2rf} \cdot B_{2f} + b2wf \cdot B_{2f} + b2wt \cdot B_{2t}$

$$B_{2t} = b2rt.B_{2t} + b2wf.B_{2f} + b2wt.B_{2t}$$

$$K_1 = \overline{kr1}.K_1 + kw1.K_1 + kw2.K_2$$
$$K_2 = \overline{kr2}.K_2 + kw1.K_1 + kw2.K_2$$

4 of 28 Concurrency Theory

Winter Semester 2019/20

Modelling Mutual Exclusion Algorithms

Modelling the Processes in CCS

Assumption: P_i cannot fail or terminate within critical section

```
Peterson's algorithm

while true do

"non-critical section";

b_i := \text{true};

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := \text{false};

end
```


Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := false;

end
```

Concurrency Theory

Winter Semester 2019/20

5 of 28

CCS representation $P_1 = b1wt.kw2.P_{11}$ $P_{11} = b2rf.P_{12} + b2rf.$ $b2rt.(kr1.P_{12} + kr2.P_{11})$ $P_{12} = enter1.exit1.b1wf.P_{1}$ $P_2 = b2wt.kw1.P_{21}$ $P_{21} = b1rf.P_{22} + b1rf.P_{22}$ $b1rt.(kr1.P_{21} + kr2.P_{22})$ $P_{22} = enter2.exit2.b2wf.P_2$ $Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L$ for $L = \{b1rf, b1rt, b1wf, b1wt, b$ b2rf, b2rt, b2wf, b2wt, *kr1*, *kr2*, *kw1*, *kw2*}

Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := \text{true};

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := \text{false};

end
```

Concurrency Theory

Winter Semester 2019/20

CCS representation $P_1 = b1wt.kw2.P_{11}$ $P_{11} = b2rf.P_{12} + b2rf.$ $b2rt.(kr1.P_{12} + kr2.P_{11})$ $P_{12} = enter1.exit1.b1wf.P_{1}$ $P_2 = \overline{b2wt}.kw1.P_{21}$ $P_{21} = b1rf.P_{22} + b1rf.P_{22}$ $b1rt.(kr1.P_{21} + kr2.P_{22})$ $P_{22} = enter2.exit2.b2wf.P_2$ $Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L$ for $L = \{b1rf, b1rt, b1wf, b1wt, b$ b2rf, b2rt, b2wf, b2wt, *kr1*, *kr2*, *kw1*, *kw2*}

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

5 of 28

Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := \text{true};

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := \text{false};

end
```

Concurrency Theory

Winter Semester 2019/20

5 of 28

CCS representation $P_1 = b1wt.kw2.P_{11}$ $P_{11} = b2rf.P_{12} + b2rf.$ $b2rt.(kr1.P_{12} + kr2.P_{11})$ $P_{12} = enter1.exit1.b1wf.P_{1}$ $P_2 = b2wt.kw1.P_{21}$ $P_{21} = b1rf.P_{22} + b1rf.P_{22}$ $b1rt.(kr1.P_{21} + kr2.P_{22})$ $P_{22} = enter2.exit2.b2wf.P_2$ $Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L$ for $L = \{b1rf, b1rt, b1wf, b1wt, b$ b2rf, b2rt, b2wf, b2wt, *kr1*, *kr2*, *kw1*, *kw2*}

Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := false;

end
```

Concurrency Theory

Winter Semester 2019/20

5 of 28

CCS representation $P_1 = b1wt.kw2.P_{11}$ $P_{11} = b2rf.P_{12} + bracket$ $b2rt.(kr1.P_{12} + kr2.P_{11})$ $P_{12} = enter1.exit1.b1wf.P_{1}$ $P_2 = b2wt.kw1.P_{21}$ $P_{21} = b1rf.P_{22} + b1rf.P_{22}$ $b1rt.(kr1.P_{21} + kr2.P_{22})$ $P_{22} = enter2.exit2.b2wf.P_2$ $Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L$ for $L = \{b1rf, b1rt, b1wf, b1wt, b$ b2rf, b2rt, b2wf, b2wt, *kr1*, *kr2*, *kw1*, *kw2*}

Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \wedge k = j do skip end;

"critical section";

b_i := false;

end
```

Concurrency Theory

Winter Semester 2019/20

5 of 28

CCS representation $P_1 = b1wt.kw2.P_{11}$ $P_{11} = b2rf.P_{12} + b2rf.$ $b2rt.(kr1.P_{12} + kr2.P_{11})$ $P_{12} = enter1.exit1.b1wf.P_{1}$ $P_2 = b2wt.kw1.P_{21}$ $P_{21} = b1rf.P_{22} + b1rf.P_{22}$ $b1rt.(kr1.P_{21} + kr2.P_{22})$ $P_{22} = enter2.exit2.b2wf.P_2$ $Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L$ for $L = \{b1rf, b1rt, b1wf, b1wt, b$ b2rf, b2rt, b2wf, b2wt, *kr1*, *kr2*, *kw1*, *kw2*}

Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \wedge k = j do skip end;

"critical section";

b_i := false;

end
```

Concurrency Theory

Winter Semester 2019/20

5 of 28

CCS representation $P_1 = b1wt.kw2.P_{11}$ $P_{11} = b2rf.P_{12} + b2rf.$ $b2rt.(kr1.P_{12} + kr2.P_{11})$ $P_{12} = enter1.exit1.b1wf.P_{1}$ $P_2 = b2wt.kw1.P_{21}$ $P_{21} = b1rf.P_{22} + b1rf.P_{22}$ $b1rt.(kr1.P_{21} + kr2.P_{22})$ $P_{22} = enter2.exit2.b2wf.P_2$ $Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L$ for $L = \{b1rf, b1rt, b1wf, b1wt, b$ b2rf, b2rt, b2wf, b2wt, *kr1*, *kr2*, *kw1*, *kw2*}

Assumption: P_i cannot fail or terminate within critical section

Peterson's algorithm

```
while true do

"non-critical section";

b_i := true;

k := j;

while b_j \land k = j do skip end;

"critical section";

b_i := false;

end
```

Concurrency Theory

Winter Semester 2019/20

5 of 28

CCS representation $P_1 = b1wt.kw2.P_{11}$ $P_{11} = b2rf.P_{12} + b2rf.$ $b2rt.(kr1.P_{12} + kr2.P_{11})$ $P_{12} = enter1.exit1.b1wf.P_1$ $P_2 = b2wt.kw1.P_{21}$ $P_{21} = b1rf.P_{22} + b1rf.P_{22}$ $b1rt.(kr1.P_{21} + kr2.P_{22})$ $P_{22} = enter2.exit2.b2wf.P_2$ $Peterson = (P_1 \parallel P_2 \parallel B_{1f} \parallel B_{2f} \parallel K_1) \setminus L$ for $L = \{b1rf, b1rt, b1wf, b1wt, b$ b2rf, b2rt, b2wf, b2wt, *kr1*, *kr2*, *kw1*, *kw2*}

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

6 of 28

Concurrency Theory Winter Semester 2019/20 Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Obtaining the LTS I

Alternatives:

- By hand (really painful)
- By tools:
 - CAAL (Concurrency Workbench, Aalborg Edition): http://caal.cs.aau.dk
 - smart editor
 - visualisation of generated LTS
 - equivalence checking w.r.t. several bisimulation, simulation and trace equivalences
 - generation of distinguishing formulae for nonequivalent processes
 - model checking of recursive HML formulae
 - (bi)simulation and model checking games.
 - CCS specification of Peterson's algorithm available as example
 - yields LTS with 50 states (see following slides)
 - [e]TAPAs (Tool for the Analysis of Process Algebras): http://etapas.sourceforge.net/
 - Eclipse plug-in
 - stand-alone version not supported any more
 - CWB (Edinburgh Concurrency Workbench): http://homepages.inf.ed.ac.uk/perdita/cwb/
 - somewhat outdated

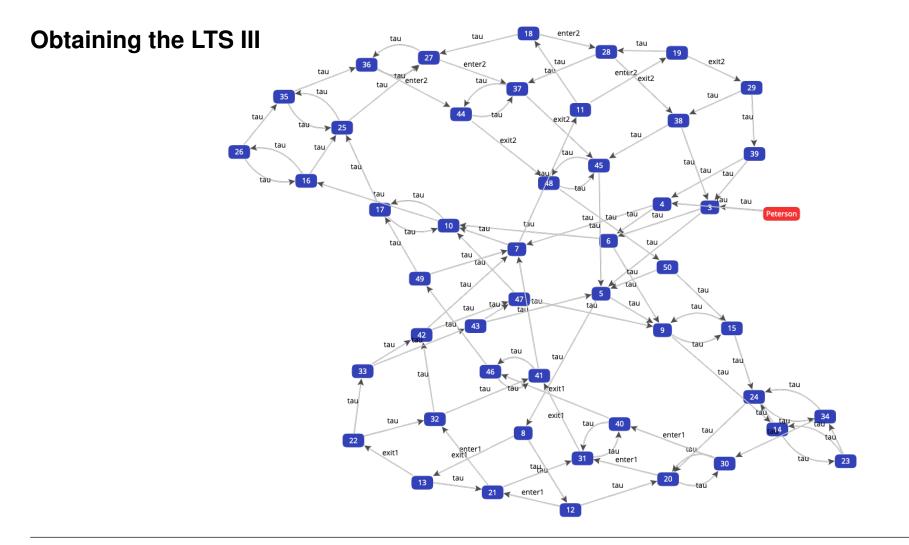
Concurrency Theory Winter Semester 2019/20

7 of 28

Obtaining the LTS II

AL	Project 🔻 Edit Explore Verify Games 👻	About Syntax 🖂
Pet	erson's Algorithm Parse	CCS TCCS 16 •
	1 * Peterson's algorithm for mutual exclusion.	
	2 * See Chapter 7 of "Reactive Systems" for a full description.	
	3 4 B1f = /b1rf.B1f + b1wf.B1f + b1wt.B1t;	
	5 $B1t = 'b1rt.B1t + b1wf.B1f + b1wt.B1t;$	
	6	
	7 $B2f = b2rf.B2f + b2wf.B2f + b2wt.B2t;$	
	8 B2t = 'b2rt. B2t + b2wf. B2f + b2wt. B2t ;	
1	$\mathbf{K1} = \frac{1}{\mathbf{K1}} \mathbf{K1} + \mathbf{K1} \mathbf{K1} + \mathbf{K2} \mathbf{K2};$	
	$1 K2 = \frac{1}{1} kr^2 K^2 + kw^1 K^1 + kw^2 K^2;$	
1	2	
1	3 $P1 = ib1wt.ikw2.P11;$	
1	4 P11 = b2rf.P12 + b2rt.(kr2.P11 + kr1.P12);	
	5 P12 = enter1.exit1.'b1wf.P1;	
	7 $P2 = \frac{1}{2}b^2wt.\frac{1}{kw1}.P21;$ 8 $P21 = b1rf.P22 + b1rt.(kr1.P21 + kr2.P22);$	
	9 P22 = enter2.exit2. $(b2wf.P2;$	
	0	
	1 set L = {b1rf, b2rf, b1rt, b2rt, b1wf, b2wf, b1wt, b2wt, kr1, kr2, kw1, kw2};	
2	2 Peterson = (P1 P2 B1f B2f K1) \ L;	
2	3	
2	4 Spec = enter1.exit1.Spec + enter2.exit2.Spec;	

Evaluating the CCS Model



Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

 10 of 28
 Concurrency Theory

 Winter Semester 2019/20
 Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

The Mutual Exclusion Property

- **Done:** formal description of Peterson's algorithm
- To do: analysing its behaviour (manually or with tool support)
- Question: what does "ensuring mutual exclusion" formally mean?

The Mutual Exclusion Property

- **Done:** formal description of Peterson's algorithm
- To do: analysing its behaviour (manually or with tool support)
- Question: what does "ensuring mutual exclusion" formally mean?

Mutual exclusion

At no point in the execution of the algorithm, processes P_1 and P_2 will both be in their critical section at the same time.

Equivalently:

It is always the case that either P_1 or P_2 or both are not in their critical section.

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P_1 or P_2 or both are not in their critical section.

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P_1 or P_2 or both are not in their critical section.

Observations:

- Mutual exclusion is an invariance property ("always")
- *P_i* is in its critical section iff action *exit_i* is enabled

Specifying Mutual Exclusion in HML

Mutual exclusion

It is always the case that either P_1 or P_2 or both are not in their critical section.

Observations:

- Mutual exclusion is an invariance property ("always")
- *P_i* is in its critical section iff action *exit_i* is enabled

Mutual exclusion in HML

MutEx := Inv(F) $Inv(F) \stackrel{\text{max}}{=} F \land [Act] Inv(F) \quad (cf. \text{ Theorem 6.1})$ $F := [exit1] \text{ff} \lor [exit2] \text{ff}$

Winter Semester 2019/20

Concurrency Theory

12 of 28

Model Checking Mutual Exclusion

Model Checking Mutual Exclusion

- Using CAAL Tool
- Supports property specifications by recursive HML formulae:

MutEx max= ([[exit1]]ff or [[exit2]]ff) and [-]MutEx;

CAAL	Projec	t 👻 Edi	t Explore	Verify	Games 👻				About S	yntax 🖂	0
	Add Proper	ty							Stop	Verify All	
	Status	Time	Property				Verify	Edit	Delete	Options	
	۲	102 ms	Peterson ⊨ MutEx MutEx max= ([[exit1]]ff or [[exit2]]ff) and [-]MutEx				0	(and	Û	≡	

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

 14 of 28
 Concurrency Theory

 Winter Semester 2019/20
 Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Verification by Bisimulation Checking

- Alternative to logic-based approaches
- Idea: establish equivalence between (concrete) "implementation" and (abstract) "specification"

Verification by Bisimulation Checking

- Alternative to logic-based approaches
- Idea: establish equivalence between (concrete) "implementation" and (abstract) "specification"

Example 7.3 (Two-place buffers (cf. Example 2.5))

1. Sequential specification:

$$B_0 = In.B_1$$

 $B_1 = \overline{out}.B_0 + in.B_2$
 $B_2 = \overline{out}.B_1$

2. Parallel implementation:

 $egin{aligned} B_2 &= \overline{out}.B_1\ B_\parallel &= (B[f] \parallel B[g]) \setminus com\ B &= in.\overline{out}.B \end{aligned}$

where $f := [out \mapsto com]$ and $g := [in \mapsto com]$

Later: (1) and (2) are "weakly bisimilar" (i.e., bisimilar up to τ -transitions)

Concurrency Theory Winter Semester 2019/20

15 of 28

Specifying Mutual Exclusion in CCS

 Goal: express desired behaviour of mutual exclusion algorithm as an "abstract" CCS process

Specifying Mutual Exclusion in CCS

- Goal: express desired behaviour of mutual exclusion algorithm as an "abstract" CCS process
- Intuitively:
 - 1. initially, either P_1 or P_2 can enter its critical section
 - 2. once this happened, the other process cannot enter the critical section before the first has exited it

Specifying Mutual Exclusion in CCS

- Goal: express desired behaviour of mutual exclusion algorithm as an "abstract" CCS process
- Intuitively:
 - 1. initially, either P_1 or P_2 can enter its critical section
 - 2. once this happened, the other process cannot enter the critical section before the first has exited it

Mutual exclusion in CCS

MutExSpec = *enter1.exit1.MutExSpec* + *enter2.exit2.MutExSpec*

Specifying Mutual Exclusion in CCS

- Goal: express desired behaviour of mutual exclusion algorithm as an "abstract" CCS process
- Intuitively:
 - 1. initially, either P_1 or P_2 can enter its critical section
 - 2. once this happened, the other process cannot enter the critical section before the first has exited it

Mutual exclusion in CCS

MutExSpec = *enter1.exit1.MutExSpec* + *enter2.exit2.MutExSpec*

Again: *Peterson* and *MutExSpec* are "weakly bisimilar"

Outline of Lecture 7

Modelling Mutual Exclusion Algorithms

Evaluating the CCS Model

Model Checking Mutual Exclusion

Alternative Verification Approaches

Syntax of Value-Passing CCS

Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

 17 of 28
 Concurrency Theory

 Winter Semester 2019/20
 Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Value-Passing CCS

- So far: pure CCS
 - communication = mere synchronisation
 - no (explicit) exchange of data
- But: processes usually do pass around data

Value-Passing CCS

- So far: pure CCS
 - communication = mere synchronisation
 - no (explicit) exchange of data
- But: processes usually do pass around data

\Rightarrow Value-passing CCS

- Introduced in Robin Milner: Communication and Concurrency, Prentice-Hall, 1989
- Assumption (for simplicity): only integers as data type

Value-Passing CCS

• So far: pure CCS

- communication = mere synchronisation
- no (explicit) exchange of data
- But: processes usually do pass around data

\Rightarrow Value-passing CCS

- Introduced in Robin Milner: Communication and Concurrency, Prentice-Hall, 1989
- Assumption (for simplicity): only integers as data type

Example 7.4 (One-place buffer with data (cf. Example 2.5))

One-place buffer that outputs successor of stored value:

 $B = \frac{in(x).B'(x)}{out}(x+1).B$

Concurrency Theory Winter Semester 2019/20

18 of 28

Software Modeling and Verification Chair

Syntax of Value-Passing CCS I

Definition 7.5 (Syntax of value-passing CCS)

• Let A, \overline{A} , *Pid* (ranked) as in Definition 2.1.

Syntax of Value-Passing CCS I

Definition 7.5 (Syntax of value-passing CCS)

- Let A, \overline{A} , *Pid* (ranked) as in Definition 2.1.
- Let e and b be integer and Boolean expressions, resp., built from integer variables x, y, \ldots

Syntax of Value-Passing CCS I

Definition 7.5 (Syntax of value-passing CCS)

P

- Let A, A, Pid (ranked) as in Definition 2.1.
- Let e and b be integer and Boolean expressions, resp., built from integer variables x, y, \ldots
- The set *Prc*⁺ of value-passing process expressions is defined by:

::= nil	(inaction)
a(x).P	(input prefixing)
ā(e).P	(output prefixing)
τ. Ρ	($ au$ prefixing)
$ P_1 + P_2$	(choice)
$ P_1 P_2$	(parallel composition)
$ P \setminus L$	(restriction)
<i>P</i> [<i>f</i>]	(relabelling)
if b then P	(conditional)
$ C(e_1,\ldots,e_n)$	(process call)

where $a \in A$, $L \subseteq A$, $C \in Pid$ (of rank $n \in \mathbb{N}$), and $f : A \to A$.

Concurrency Theory

19 of 28

Winter Semester 2019/20

Syntax of Value-Passing CCS II

Definition 7.5 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form

$$(C_i(x_1,\ldots,x_{n_i})=P_i\mid 1\leq i\leq k)$$

where

- $k \geq 1$,
- $C_i \in Pid$ of rank n_i (pairwise distinct),
- $P_i \in Prc^+$ (with process identifiers from $\{C_1, \ldots, C_k\}$), and
- all occurrences of an integer variable *y* in each *P_i* are bound, i.e., *y* ∈ {*x*₁,..., *x_{n_i}*} or *y* is in the scope of an input prefix of the form *a*(*y*) (to ensure well-definedness of values).

Syntax of Value-Passing CCS II

Definition 7.5 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form

$$(C_i(x_1,\ldots,x_{n_i})=P_i\mid 1\leq i\leq k)$$

where

- $k \geq 1$,
- $C_i \in Pid$ of rank n_i (pairwise distinct),
- $P_i \in Prc^+$ (with process identifiers from $\{C_1, \ldots, C_k\}$), and
- all occurrences of an integer variable *y* in each *P_i* are bound, i.e., *y* ∈ {*x*₁,..., *x_{n_i}*} or *y* is in the scope of an input prefix of the form *a*(*y*) (to ensure well-definedness of values).

Example 7.6

1. $C(x) = \overline{a}(x+1).b(y).C(y)$ is allowed

20 of 28 Concurrency Theory Winter Semester 2019/20 Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Syntax of Value-Passing CCS II

Definition 7.5 (Syntax of value-passing CCS; continued)

A value-passing process definition is an equation system of the form

$$(C_i(x_1,\ldots,x_{n_i})=P_i\mid 1\leq i\leq k)$$

where

- $k \geq 1$,
- $C_i \in Pid$ of rank n_i (pairwise distinct),
- $P_i \in Prc^+$ (with process identifiers from $\{C_1, \ldots, C_k\}$), and
- all occurrences of an integer variable *y* in each *P_i* are bound, i.e., *y* ∈ {*x*₁,..., *x_{n_i}*} or *y* is in the scope of an input prefix of the form *a*(*y*) (to ensure well-definedness of values).

Example 7.6

20 of 28

1. $C(x) = \overline{a}(x+1).b(y).C(y)$ is allowed 2. $C(x) = \overline{a}(x+1).\overline{a}(y+2)$.nil is disallowed as y is not bound

Concurrency Theory Winter Semester 2019/20

Outline of Lecture 7

- Modelling Mutual Exclusion Algorithms
- Evaluating the CCS Model
- Model Checking Mutual Exclusion
- **Alternative Verification Approaches**
- Syntax of Value-Passing CCS
- Semantics of Value-Passing CCS

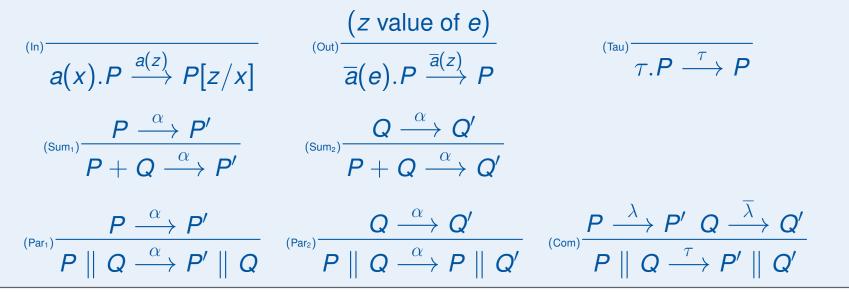
Translation of Value-Passing into Pure CCS

21 of 28 Concurrency Theory Winter Semester 2019/20

Semantics of Value-Passing CCS I

Definition 7.7 (Semantics of value-passing CCS)

A value-passing process definition $(C_i(x_1, \ldots, x_{n_i}) = P_i \mid 1 \le i \le k)$ determines the LTS $(Prc^+, Act, \longrightarrow)$ with $Act := (A \cup \overline{A}) \times \mathbb{Z} \cup \{\tau\}$ whose transitions can be inferred from the following rules $(P, P', Q, Q' \in Prc^+, a \in A, x_i \text{ integer variables, } e_i/b$ integer/Boolean expressions, $z \in \mathbb{Z}, \alpha \in Act, \lambda \in (A \cup \overline{A}) \times \mathbb{Z}$):



22 of 28 Concurrency Theory

Winter Semester 2019/20

Semantics of Value-Passing CCS II

Definition 7.7 (Semantics of value-passing CCS; continued)

$$\begin{array}{c} P \xrightarrow{\alpha} P' \\ \hline P[f] \xrightarrow{f(\alpha)} P'[f] \end{array} \xrightarrow{(\operatorname{Res})} P' (\alpha \notin (L \cup \overline{L}) \times \mathbb{Z}) \\ P \setminus L \xrightarrow{\alpha} P' \setminus L \end{array}$$

$$\begin{array}{c} P \xrightarrow{\alpha} P'(f) \xrightarrow{f(\alpha)} P'[f] \end{array} \xrightarrow{(\operatorname{Res})} P \setminus L \xrightarrow{\alpha} P' \setminus L \end{array} \xrightarrow{(\operatorname{Res})} P \setminus L \xrightarrow{\alpha} P' \setminus L \end{array}$$

$$\begin{array}{c} P[z_1/x_1, \dots, z_n/x_n] \xrightarrow{\alpha} P' \\ \hline (C(x_1, \dots, x_n) = P, z_i \text{ value of } e_i) \end{array} \xrightarrow{(\operatorname{Call})} C(e_1, \dots, e_n) \xrightarrow{\alpha} P' \end{array}$$

23 of 28 Concurrency Theory Winter Semester 2019/20 Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Semantics of Value-Passing CCS II

Definition 7.7 (Semantics of value-passing CCS; continued)

Remarks:

- $P[z_1/x_1, \ldots, z_n/x_n]$ denotes the substitution of each free (i.e., unbound) occurrence of x_i by z_i ($1 \le i \le n$)
- Operations on actions ignore values:

 $\overline{a(z)} := \overline{a}(z) \quad \overline{\overline{a}(z)} := a(z) \quad f(a(z)) := f(a)(z) \quad f(\overline{a}(z)) := \overline{f(a)}(z) \quad (\text{and } f(\tau) := \tau)$

23 of 28 Concurrency Theory Winter Semester 2019/20

Semantics of Value-Passing CCS III

Further remarks:

 The binding restriction ensures that all integer and Boolean expressions have a defined value

Semantics of Value-Passing CCS III

Further remarks:

- The binding restriction ensures that all integer and Boolean expressions have a defined value
- The two-armed conditional if b then P else Q can be defined by

(if b then P) + (if $\neg b$ then Q)

Semantics of Value-Passing CCS III

Further remarks:

- The binding restriction ensures that all integer and Boolean expressions have a defined value
- The two-armed conditional if b then P else Q can be defined by

(if *b* then P) + (if $\neg b$ then Q)

Example 7.8

One-place buffer that outputs non-negative predecessor of stored value:

B = in(x).B'(x)B'(x) = (if x = 0 then $\overline{out}(0).B$) + (if x > 0 then $\overline{out}(x - 1).B$)

(processing of value "1": on the board)

24 of 28 Concurrency Theory Winter Semester 2019/20

Outline of Lecture 7

- Modelling Mutual Exclusion Algorithms
- Evaluating the CCS Model
- Model Checking Mutual Exclusion
- **Alternative Verification Approaches**
- Syntax of Value-Passing CCS
- Semantics of Value-Passing CCS

Translation of Value-Passing into Pure CCS

25 of 28 Concurrency Theory Winter Semester 2019/20 Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

Translation of Value-Passing into Pure CCS I

- To show: value-passing process definitions can be represented in pure CCS
- Idea: each parametrised construct (a(x), ā(e), C(e₁,..., e_n)) corresponds to an indexed family of constructs in pure CCS, one for each possible (combination of) integer value(s)
- Requires extension of pure CCS by infinite choices ("∑..."), restrictions, and process definitions

Translation of Value-Passing into Pure CCS II

Definition 7.9 (Translation of value-passing into pure CCS)

For each $P \in Prc^+$ without free variables, its translated form $\hat{P} \in Prc$ is given by

$$\widehat{\mathsf{nil}} := \mathsf{nil}$$

$$\widehat{a(x).P} := \sum_{z \in \mathbb{Z}} a_z.\widehat{P[z/x]}$$

$$\widehat{P_1 + P_2} := \widehat{P_1} + \widehat{P_2}$$

$$\widehat{P \setminus L} := \widehat{P} \setminus \{a_z \mid a \in L, z \in \mathbb{Z}\}$$
if \widehat{b} then $P := \begin{cases} \widehat{P} & \text{if } b \text{ true} \\ \mathsf{nil} & \text{otherwise} \end{cases}$

$$\widehat{\tau.P} := \tau.\widehat{P}$$

$$\widehat{\overline{a(e).P}} := \overline{a_z}.\widehat{P} \quad (z \text{ value of } e)$$

$$\widehat{P_1 \parallel P_2} := \widehat{P_1} \parallel \widehat{P_2}$$

$$\widehat{P[f]} := \widehat{P[f]} \quad (\widehat{f}(a_z) := f(a)_z)$$

$$\widehat{C(e_1, \dots, e_n)} := C_{z_1, \dots, z_n} \quad (z_i \text{ value of } e_i)$$

Lecture 7: Modelling and Analysing Mutual Exclusion Algorithms & Value-Passing CCS

27 of 28

Concurrency Theory Winter Semester 2019/20

Translation of Value-Passing into Pure CCS II

Definition 7.9 (Translation of value-passing into pure CCS)

For each $P \in Prc^+$ without free variables, its translated form $\hat{P} \in Prc$ is given by

$$\widehat{\mathsf{nil}} := \mathsf{nil} \qquad \qquad \widehat{\tau.P} := \tau.\widehat{P} \\ \widehat{a(x).P} := \sum_{z \in \mathbb{Z}} a_z.\widehat{P[z/x]} \qquad \qquad \widehat{\overline{a(e).P}} := \overline{a_z}.\widehat{P} \quad (z \text{ value of } e) \\ \widehat{P_1 + P_2} := \widehat{P_1} + \widehat{P_2} \qquad \qquad \widehat{P_1 + P_2} := \widehat{P_1} + \widehat{P_2} \\ \widehat{P \setminus L} := \widehat{P} \setminus \{a_z \mid a \in L, z \in \mathbb{Z}\} \qquad \qquad \widehat{P[f]} := \widehat{P[f]} \quad (\widehat{f}(a_z) := f(a)_z) \\ \widehat{f \text{ b then } P} := \begin{cases} \widehat{P} \quad \text{if } b \text{ true} \\ \mathsf{nil} \quad \text{otherwise} \end{cases} \qquad \qquad \widehat{C(e_1, \dots, e_n)} := C_{z_1, \dots, z_n} \quad (z_i \text{ value of } e_i) \end{cases}$$

Moreover, each defining equation $C(x_1, \ldots, x_n) = P$ of a process identifier is translated into the indexed collection of process definitions

$$\left(C_{z_1,\ldots,z_n}=P[z_1/x_1,\ldots,z_n/x_n]\mid z_1,\ldots,z_n\in\mathbb{Z}\right)$$

Concurrency Theory Winter Semester 2019/20

27 of 28

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS III

Example 7.10 (cf. Example 7.8)

B = in(x).B'(x)B'(x) = (if x = 0 then $\overline{out}(0).B$) + (if x > 0 then $\overline{out}(x - 1).B$) (on the board)

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS III

Example 7.10 (cf. Example 7.8)

$$B = in(x).B'(x)$$

B'(x) = (if x = 0 then $\overline{out}(0).B$) + (if x > 0 then $\overline{out}(x - 1).B$)
eard)

(on the board)

Theorem 7.11 (Correctness of translation)

For all $P, P' \in Prc^+$ and $\alpha \in Act$,

$$\mathbf{P} \stackrel{lpha}{\longrightarrow} \mathbf{P}' \iff \widehat{\mathbf{P}} \stackrel{\widehat{lpha}}{\longrightarrow} \widehat{\mathbf{P}}'$$

where $\widehat{a(z)} := a_z$, $\overline{\overline{a}(z)} := \overline{a}_z$, and $\widehat{\tau} := \tau$.

Winter Semester 2019/20

28 of 28

Concurrency Theory

Software Modeling and Verification Chair

Translation of Value-Passing into Pure CCS

Translation of Value-Passing into Pure CCS III

Example 7.10 (cf. Example 7.8)

$$B = in(x).B'(x)$$

B'(x) = (if x = 0 then $\overline{out}(0).B$) + (if x > 0 then $\overline{out}(x - 1).B$)

(on the board)

Theorem 7.11 (Correctness of translation)

For all $P, P' \in Prc^+$ and $\alpha \in Act$,

$$\mathbf{P} \stackrel{lpha}{\longrightarrow} \mathbf{P}' \iff \widehat{\mathbf{P}} \stackrel{\widehat{lpha}}{\longrightarrow} \widehat{\mathbf{P}}'$$

where $a(z) := a_z$, $\overline{\overline{a}(z)} := \overline{a}_z$, and $\widehat{\tau} := \tau$.

Proof.

by induction on the structure of *P* (omitted)

Concurrency Theory 28 of 28 Winter Semester 2019/20

