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Recap: Fixed-Point Theory

The Fixed-Point Theorem

Alfred Tarski (1901-1983)
Theorem (Tarski’s fixed-point theorem)

(
Let (D, C) be a complete lattice and f : D — D monotonic. Then f has a least fixed
point fix(f) and a greatest fixed point FIX(f) given by

fix(f)=[1]{d € D| f(d) E d}  (GLB of all pre-fixed points of f)
FIX(f)=||{de D|dC f(d)} (LUB ofall post-fixed points of f)

Proof.
on the board ]
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Recap: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

Theorem (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()

for some m, M € N where f°(d) :=d and f*"'(d) := f(f*(d)).

Proof.

on the board
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Recap: Fixed-Point Theory

Application to HML with Recursion

Lemma

Let (S, Act,—) be an LTS and F € HMF x. Then
1. [F] : 2° — 2% is monotonic w.r.t. (25, C)

2. fix([F]) = (HT < S| [FI(T) € T}

3. FIX([F]) =U{TCS|TCJF|(T)}

If, in addition, S is finite, then

4. fix([F]) = [F]™(0) for some m € N

5. FIX([F]) = [F]™(S) for some M € N

Proof.

1. by induction on the structure of F (details omitted)
2. by Lemma 4.15 and Theorem 5.5

3. by Lemma 4.15 and Theorem 5.5

4. by Lemma 4.15 and Theorem 5.7

5. by Lemma 4.15 and Theorem 5.7
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Fixed Points and System Properties

Outline of Lecture 6

Fixed Points and System Properties
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Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) = F A [Act]Inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
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Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) = F A [Act]inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
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Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) Z F A [Act]inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
e Letinv:2%5 — 25: T+ [F] N[-Act](T) be the corresponding semantic function

e By Lemma 5.9, FIX(inv) = J{T C S| T C inv(T)}
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Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) = F A [Act]inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
e Letinv:2%5 — 25: T+ [F] N[-Act](T) be the corresponding semantic function
e By Lemma 5.9, FIX(inv) = {T C S| T Cinv(T)}
e Direct formulation of invariance property:

Inv={s€cS|YwecAct'secS: ss = §c[F]}
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Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) = F A [Act]inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
e Letinv:2%5 — 25: T+ [F] N[-Act](T) be the corresponding semantic function
e By Lemma 5.9, FIX(inv) = {T C S| T Cinv(T)}
e Direct formulation of invariance property:

Inv={s€cS|YwecAct'secS: ss = §c[F]}

Theorem 6.1
For every LTS (S, Act, — ), Inv = FIX(inv) holds.
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Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) = F A [Act]inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
e Letinv:2%5 — 25: T+ [F] N[-Act](T) be the corresponding semantic function
e By Lemma 5.9, FIX(inv) = {T C S| T Cinv(T)}
e Direct formulation of invariance property:

Inv={s€cS|YwecAct'secS: ss = §c[F]}

Theorem 6.1
For every LTS (S, Act, — ), Inv = FIX(inv) holds.

Proof.

on the board
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Fixed Points and System Properties

Least Fixed Points and Possibilities
e Possibilities (cf. Example 4.5):

min

— Pos(F) = F V (Act)Pos(F)
— s |= Pos(F) if a state satisfying F is reachable from s
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Fixed Points and System Properties

Least Fixed Points and Possibilities
e Possibilities (cf. Example 4.5):

— Pos(F) = F V (Act)Pos(F)
— s |= Pos(F) if a state satisfying F is reachable from s

e Now: formalise argument and prove its correctness (for arbitrary LTSs)
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Fixed Points and System Properties

Least Fixed Points and Possibilities
e Possibilities (cf. Example 4.5):

— Pos(F) = F V (Act)Pos(F)
— s |= Pos(F) if a state satisfying F is reachable from s
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
o Let pos:2° — 2°: T+ [F] U (-Act-)(T) be the corresponding semantic function

e By Lemma 5.9, fix(pos) = ({T € S| pos(T) C T}
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Fixed Points and System Properties

Least Fixed Points and Possibilities
e Possibilities (cf. Example 4.5):

— Pos(F) = F V (Act)Pos(F)

— s |= Pos(F) if a state satisfying F is reachable from s
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
o Let pos:2° — 2°: T+ [F] U (-Act-)(T) be the corresponding semantic function
e By Lemma 5.9, fix(pos) = ({T € S| pos(T) C T}

e Direct formulation of possibility property:

Pos={sec S|3we Act',s € [F]: s — &'}
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Fixed Points and System Properties

Least Fixed Points and Possibilities
e Possibilities (cf. Example 4.5):

— Pos(F) = F V (Act)Pos(F)

— s |= Pos(F) if a state satisfying F is reachable from s
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
o Let pos:2° — 2°: T+ [F] U (-Act-)(T) be the corresponding semantic function
e By Lemma 5.9, fix(pos) = ({T € S| pos(T) C T}

e Direct formulation of possibility property:

Pos={sec S|3we Act',s € [F]: s — &'}

Theorem 6.2
For every LTS (S, Act, —), Pos = fix(pos) holds.
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Fixed Points and System Properties

Least Fixed Points and Possibilities

e Possibilities (cf. Example 4.5):
— Pos(F) = F V (Act)Pos(F)
— s |= Pos(F) if a state satisfying F is reachable from s
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
o Let pos:2° — 2°: T+ [F] U (-Act-)(T) be the corresponding semantic function
e By Lemma 5.9, fix(pos) = ({T € S| pos(T) C T}

e Direct formulation of possibility property:

Pos={sec S|3we Act',s € [F]: s — &'}

Theorem 6.2
For every LTS (S, Act, —), Pos = fix(pos) holds.

Proof.

similar to Theorem 6.1

RWTH

8 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems



Mutually Recursive Equational Systems

Outline of Lecture 6

Mutually Recursive Equational Systems
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Mutually Recursive Equational Systems

Introducing Several Variables

Sometimes necessary: using more than one variable

Example 6.3

“It is always the case that a process can perform an a-labelled transition leading
to a state where b-transitions can be executed forever.”
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Mutually Recursive Equational Systems

Introducing Several Variables

Sometimes necessary: using more than one variable

Example 6.3

“It is always the case that a process can perform an a-labelled transition leading
to a state where b-transitions can be executed forever.”

can be specified by
Inv({a) Forever(b))

where

Inv(F) = F A [Act]inv(F)  (cf. Theorem 6.1)
Forever(b) = (b) Forever(b)
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Mutually Recursive Equational Systems

Syntax of Mutually Recursive Equational Systems

Definition 6.4 (Syntax of mutually recursive equational systems)

Let X = {X;,..., X,} be a set of variables. The set HMF y of Hennessy-Milner
formulae over X is defined by the following syntax:

F. =X (variable)
tt (true)
ff (false)
Fi N\ Fo (conjunction)
FiV F (disjunction)
(a)F (diamond)
o] F (box)

where 1 </ < nand a € Act. A mutually recursive equational system has the form
(Xi=Fx |1 <i<n)
where Fx. € HMF y forevery 1 </ < n.
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Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems |
As before: semantics of formula depends on states satisfying the variables
Definition 6.5 (Semantics of mutually recursive equational systems)

Let (S, Act, —) bean LTS and E = (X; = Fx | 1 < i < n) a mutually recursive
equational system. The semantics of E, [E] : (2°)" — (2°)", is defined by

IEI(T4, .. Tn) == ([Fx,](Tas-- s Tn)s - - - [Fx (T4, - - ., Th))

where HX,-:(T1,. 77_”) _T
(T, ..., 7)) =8
(T, ..., T,) =0
[Fi ATy, ..., To) =[RI(T, ..., To) N [RJ(Ty,..., Ty)
[FiVv R(Ty,....T,) =[RI(T, ..., T,) U[RI(T,..., T
ﬂ(a}F:(Th.  Th) = {-a-_>([[F]](T1,...,T,,))
alFI(T, .o To) = [ |([FI(T3s - - -, Ta))

Winter Semester 2019/20
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Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems i

Lemma 6.6

Let (S, Act,—) be a finite LTS and E = (X; = Fx. | 1 < i < n) a mutually

recursive equational system. Let (D, C) be given by D := (2°)" and
(Tq,...,T) C(T{,..., T})

iff T, C T forevery1 < i < n.
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Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems i

Lemma 6.6

Let (S, Act,—) be a finite LTS and E = (X; = Fx, | 1 < i < n) a mutually

recursive equational system. Let (D, C) be given by D := (2°)" and
(Th,..., T,)C(Ty,..., T))

iff T, C T forevery1 < i < n.

1. (D, C) is a complete lattice with

(T, ) e = (UL lie ... ,U{T, | iel})
(T, T liely=({T{liel},...., {Tiliel})
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Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems i

Lemma 6.6

Let (S, Act,—) be a finite LTS and E = (X; = Fx, | 1 < i < n) a mutually
recursive equational system. Let (D, C) be given by D := (2°)" and
(Th,..., T,)C(Ty,..., T))
iff T, C T forevery1 < i < n.
1. (D, C) is a complete lattice with
(T, ) e = (UL lie ... ,U{T, | iel})
(T, T liely=({T{liel},...., {Tiliel})

2. |E] is monotonic w.r.t. (D,C)
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Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems i

Lemma 6.6

Let (S, Act,—) be a finite LTS and E = (X; = Fx, | 1 < i < n) a mutually

recursive equational system. Let (D, C) be given by D := (2°)" and
(Th,..., T,)C(Ty,..., T))

iff T, C T forevery1 < i < n.

1. (D, C) is a complete lattice with

(T, ) e = (UL lie ... ,U{T, | iel})
(T, T liely=({T{liel},...., {Tiliel})
2. |E] is monotonic w.r.t. (D, C)
3. fix([E]) = [E]™(®,...,0) for some m € N
4. FIX([E]) = [E]™(S, ..., S) for some M € N
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Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems i

Lemma 6.6

Let (S, Act,—) be a finite LTSand E = (X; = Fx | 1 < i

recursive equational system. Let (D, ) be given by D :=
(T4,..., T,)C(T,,..., T,

iff T, C T forevery1 < i < n.

1. (D, C) is a complete lattice with

(T, ) e = (UL lie ... ,U{T, | iel})
(T, T liely=({T{liel},...., {Tiliel})
2. |E] is monotonic w.r.t. (D, C)
3. fix([E]) = [E]™(®,...,0) for some m € N
4. FIX([E]) = [E]™(S, ..., S) for some M € N

< n) a mutually
)" and

(2

v

Proof.

omitted
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Mutually Recursive Equational Systems

A Mutually Recursive Specification

Example 6.7

e Let S:= {s, 51, 5,53} and E given by

X ={(aY Al[aY A [b]ff
Y = (B)X A [b]X A [a]ff
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Mutually Recursive Equational Systems

A Mutually Recursive Specification

Example 6.7

e Let S:= {s, 51, 5,53} and E given by

X ={(aY Al[aY A [b]ff
Y = (B)X A [b]X A [a]ff

e Interpretation:

— X: "has no b-successor and > 1 a-successors that all satisfy Y”
— Y: “has no a-successor and > 1 b-successors that all satisfy X”
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Mutually Recursive Equational Systems

A Mutually Recursive Specification

Example 6.7

e Let S:= {s, 51, 5,53} and E given by

X ={(aY Al[aY A [b]ff
Y = (b)X A [b]X A [a]ff

e Interpretation:
— X: "has no b-successor and > 1 a-successors that all satisfy Y”

— Y: “has no a-successor and > 1 b-successors that all satisfy X”
= expected: X = {s}, Y = {s;}
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Mutually Recursive Equational Systems

A Mutually Recursive Specification

Example 6.7

e Let S:= {s, 51, 5,53} and E given by

X ={(aY Al[aY A [b]ff
Y = (b)X A [b]X A [a]ff

e Interpretation:

— X: "has no b-successor and > 1 a-successors that all satisfy Y”
— Y: “has no a-successor and > 1 b-successors that all satisfy X”
= expected: X = {s}, Y = {s;}

e Computation of FIX([E]): on the board
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Mixing Least and Greatest Fixed Points

Outline of Lecture 6

Mixing Least and Greatest Fixed Points
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points |

e So far: least/greatest fixed point of overall system
e But: too restrictive
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points |

e So far: least/greatest fixed point of overall system
e But: too restrictive
Example 6.8

“It is possible for the system to reach a state which has a livelock (i.e., an infinite
sequence of internal steps).”
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points |
e So far: least/greatest fixed point of overall system
e But: too restrictive

Example 6.8

“It is possible for the system to reach a state which has a livelock (i.e., an infinite
sequence of internal steps).”

can be specified by
Pos( Livelock)

where

Pos(F) = F \/ (Act)Pos(F)  (cf. Theorem 6.2)
Livelock = (7) Livelock

(thus, Livelock = Forever(7) [cf. Example 6.3])
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9
min
E:X=Y
max
Y=X
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

E:X=ZY

Y= X
Fixed-point iteration:
(J—7 T) — (®7 S)
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour
Example 6.9

i

3
5

3
<

a

E:X=Y
Y =X

Fixed-point iteration:

(L, T) = (0,5) = (s,0)
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour
Example 6.9

Fixed-point iteration:

RWTH

17 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems



Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

1

3
5

3
<

a

E:X=Y
Y =X

Fixed-point iteration:

(L, T)=(0,9)

E] 1E IE

(S,0)~ (0,8) — ...

Solution: nesting of specifications by partitioning equations into a sequence of
blocks such that all equations in one block

e are of same type (either min or max) and

e use only variables defined in the same or subsequent blocks
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

3
5

i

E:X=Y
Y =X

3
<

a

Fixed-point iteration:
E]

(L,T)=(0,5) 5 (s,0) & 0,5 .

Solution: nesting of specifications by partitioning equations into a sequence of
blocks such that all equations in one block

e are of same type (either min or max) and

e use only variables defined in the same or subsequent blocks

— bottom-up, block-wise evaluation by fixed-point iteration
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (T) Livelock

s & p T g T,
U
T
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (T) Livelock

s & p T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T +— (-7-)(T):

T=S={s,p.q,r}
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (T) Livelock

s & p T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T +— (-7-)(T):

T=8={s,p,q,r}—{pq}
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (T) Livelock

s & p T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T +— (-7-)(T):

T=8={s,pq,r}—{p,q} — {p}
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (T) Livelock

s & p T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T +— (-7-)(T):

T=S={s,pq,r}— {p,q}— {p}— {p}
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (7) Livelock

s & 5 T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T — (-7+)(T):
T=8={s,p,q,r}—{p,q} — {p} — {p}
2. Least fixed-point iteration for PosLL : T — {p} U (-Act-)(T):
1 =40
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (7) Livelock

s & 5 T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T — (-7+)(T):
T=8=1{sp,qr; = {p,q} = {p}; = {P}
2. Least fixed-point iteration for PosLL : T — {p} U (-Act-)(T):
L =0~ {p}
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (7) Livelock

s & 5 T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T — (-7+)(T):
T=8=1{sp,qr; = {p,q} = {p}; = {P}
2. Least fixed-point iteration for PosLL : T — {p} U (-Act-)(T):
L =0~ {p}— {s,p}
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (7) Livelock

s & 5 T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T — (-7+)(T):
T=8=1{sp,qr; = {p,q} = {p}; = {P}
2. Least fixed-point iteration for PosLL : T — {p} U (-Act-)(T):
L =0 {p} = {s,p} = {s,p}
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Mixing Least and Greatest Fixed Points

The Modal ;-Calculus

e Logic that supports free mixing of least and greatest fixed points:
— D. Kozen: Results on the Propositional j1-Calculus, Theoretical Computer Science 27, 1983,
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Mixing Least and Greatest Fixed Points

The Modal ;-Calculus

e Logic that supports free mixing of least and greatest fixed points:
— D. Kozen: Results on the Propositional j1-Calculus, Theoretical Computer Science 27, 1983,
333—-354
e HML variants are fragments thereof
e Expressivity increases with alternation of least and greatest fixed points:

— J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict, Theoretical Computer Science
195(2), 1998, 133-153
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Mixing Least and Greatest Fixed Points

The Modal ;-Calculus

e Logic that supports free mixing of least and greatest fixed points:
— D. Kozen: Results on the Propositional j1-Calculus, Theoretical Computer Science 27, 1983,
333—-354
e HML variants are fragments thereof
e Expressivity increases with alternation of least and greatest fixed points:
— J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict, Theoretical Computer Science
195(2), 1998, 133-153
e Decidable model-checking problem for finite LTSs
(in NP M co-NP; linear for HML with one variable)

e Generally undecidable for infinite LTSs and HML with one variable (CCS, Petri nets, ...)
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Mixing Least and Greatest Fixed Points

The Modal ;-Calculus

e Logic that supports free mixing of least and greatest fixed points:
— D. Kozen: Results on the Propositional j1-Calculus, Theoretical Computer Science 27, 1983,
333—-354
e HML variants are fragments thereof
e Expressivity increases with alternation of least and greatest fixed points:
— J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict, Theoretical Computer Science
195(2), 1998, 133-153
e Decidable model-checking problem for finite LTSs
(in NP M co-NP; linear for HML with one variable)

e Generally undecidable for infinite LTSs and HML with one variable (CCS, Petri nets, ...)

e Overview paper:

— O. Burkart, D. Caucal, F. Moller, B. Steffen: Verification on Infinite Structures, Chapter 9 of
Handbook of Process Algebra, Elsevier, 2001, 545-623
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