

Concurrency Theory

- Winter Semester 2019/20
- Lecture 6: Mutually Recursive Equational Systems
- Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University
- https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Outline of Lecture 6

Recap: Fixed-Point Theory

Fixed Points and System Properties

Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

The Fixed-Point Theorem

Alfred Tarski (1901–1983)

Theorem (Tarski's fixed-point theorem)

Let (D, \sqsubseteq) be a complete lattice and $f : D \rightarrow D$ monotonic. Then f has a least fixed point fix(f) and a greatest fixed point FIX(f) given by

 $fix(f) = \prod \{ d \in D \mid f(d) \sqsubseteq d \}$ (GLB of all pre-fixed points of f) $FIX(f) = | \{ d \in D \mid d \sqsubseteq f(d) \}$ (LUB of all post-fixed points of f)

Proof.

on the board

The Fixed-Point Theorem for Finite Lattices

Theorem (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f : D \to D$ monotonic. Then $fix(f) = f^m(\bot)$ and $FIX(f) = f^M(\top)$ for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

Application to HML with Recursion

Lemma

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then 1. $\llbracket F \rrbracket : 2^S \rightarrow 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$ 2. fix $(\llbracket F \rrbracket) = \bigcap \{T \subseteq S \mid \llbracket F \rrbracket (T) \subseteq T\}$ 3. FIX $(\llbracket F \rrbracket) = \bigcup \{T \subseteq S \mid T \subseteq \llbracket F \rrbracket (T)\}$ If, in addition, S is finite, then 4. fix $(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(\emptyset)$ for some $m \in \mathbb{N}$ 5. FIX $(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(S)$ for some $M \in \mathbb{N}$

Proof.

5 of 19

- 1. by induction on the structure of *F* (details omitted)
- 2. by Lemma 4.15 and Theorem 5.5
- 3. by Lemma 4.15 and Theorem 5.5
- 4. by Lemma 4.15 and Theorem 5.7
- 5. by Lemma 4.15 and Theorem 5.7

Outline of Lecture 6

Recap: Fixed-Point Theory

Fixed Points and System Properties

Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Greatest Fixed Points and Invariants

- Invariants (cf. Example 4.5):
 - $Inv(F) \stackrel{{}_{max}}{=} F \land [Act] Inv(F)$ for $F \in HMF$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F

Software Modeling

Greatest Fixed Points and Invariants

- Invariants (cf. Example 4.5):
 - $Inv(F) \stackrel{{}_{max}}{=} F \land [Act] Inv(F)$ for $F \in HMF$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalise argument and prove its correctness (for arbitrary LTSs)

Greatest Fixed Points and Invariants

- Invariants (cf. Example 4.5):
 - *Inv*(F) $\stackrel{_{max}}{=}$ $F \land [Act]$ *Inv*(F) for $F \in HMF$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalise argument and prove its correctness (for arbitrary LTSs)
- Let $inv : 2^S \to 2^S : T \mapsto [[F]] \cap [Act \cdot](T)$ be the corresponding semantic function
- By Lemma 5.9, $FIX(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$

7 of 19

Greatest Fixed Points and Invariants

- Invariants (cf. Example 4.5):
 - *Inv*(F) $\stackrel{_{max}}{=}$ $F \land [Act]$ *Inv*(F) for $F \in HMF$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalise argument and prove its correctness (for arbitrary LTSs)
- Let $inv : 2^S \to 2^S : T \mapsto [[F]] \cap [Act \cdot](T)$ be the corresponding semantic function
- By Lemma 5.9, $FIX(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$
- Direct formulation of invariance property:

$$\mathit{Inv} = \{ s \in S \mid \forall w \in \mathit{Act}^*, s' \in S : s \xrightarrow{w} s' \implies s' \in \llbracket F \rrbracket \}$$

7 of 19

Greatest Fixed Points and Invariants

- Invariants (cf. Example 4.5):
 - $Inv(F) \stackrel{\text{\tiny max}}{=} F \land [Act] Inv(F) \text{ for } F \in HMF$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalise argument and prove its correctness (for arbitrary LTSs)
- Let $inv : 2^S \to 2^S : T \mapsto [[F]] \cap [Act \cdot](T)$ be the corresponding semantic function
- By Lemma 5.9, $FIX(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$
- Direct formulation of invariance property:

$$\mathit{Inv} = \{ s \in S \mid \forall w \in \mathit{Act}^*, s' \in S : s \xrightarrow{w} s' \implies s' \in \llbracket F \rrbracket \}$$

Theorem 6.1

For every LTS (S, Act, \rightarrow), Inv = FIX(inv) holds.

Greatest Fixed Points and Invariants

- Invariants (cf. Example 4.5):
 - $Inv(F) \stackrel{\text{\tiny max}}{=} F \land [Act] Inv(F)$ for $F \in HMF$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Now: formalise argument and prove its correctness (for arbitrary LTSs)
- Let $inv : 2^S \to 2^S : T \mapsto [[F]] \cap [Act \cdot](T)$ be the corresponding semantic function
- By Lemma 5.9, $FIX(inv) = \bigcup \{T \subseteq S \mid T \subseteq inv(T)\}$
- Direct formulation of invariance property:

$$Inv = \{ s \in S \mid \forall w \in Act^*, s' \in S : s \xrightarrow{w} s' \implies s' \in \llbracket F \rrbracket \}$$

Theorem 6.1

For every LTS
$$(S, Act, \rightarrow)$$
, $Inv = FIX(inv)$ holds.

Proof.

on the board

Least Fixed Points and Possibilities

- Possibilities (cf. Example 4.5):
 - $\mathit{Pos}(\mathit{F}) \stackrel{\scriptscriptstyle{min}}{=} \mathit{F} \lor \langle \mathit{Act}
 angle \mathit{Pos}(\mathit{F})$
 - $-s \models Pos(F)$ if a state satisfying F is reachable from s

Least Fixed Points and Possibilities

- Possibilities (cf. Example 4.5):
 - $\operatorname{Pos}(F) \stackrel{{}_{\operatorname{min}}}{=} F \lor \langle \operatorname{Act}
 angle \operatorname{Pos}(F)$
 - $-s \models Pos(F)$ if a state satisfying F is reachable from s
- Now: formalise argument and prove its correctness (for arbitrary LTSs)

- Possibilities (cf. Example 4.5):
 - $\operatorname{Pos}(F) \stackrel{\min}{=} F \lor \langle \operatorname{Act} \rangle \operatorname{Pos}(F)$
 - $-s \models Pos(F)$ if a state satisfying F is reachable from s
- Now: formalise argument and prove its correctness (for arbitrary LTSs)
- Let $pos : 2^S \to 2^S : T \mapsto \llbracket F \rrbracket \cup \langle Act \cdot \rangle(T)$ be the corresponding semantic function
- By Lemma 5.9, $fix(pos) = \bigcap \{T \subseteq S \mid pos(T) \subseteq T\}$

- Possibilities (cf. Example 4.5):
 - $\operatorname{Pos}(F) \stackrel{\scriptscriptstyle{min}}{=} F \lor \langle \operatorname{Act} \rangle \operatorname{Pos}(F)$
 - $-s \models Pos(F)$ if a state satisfying F is reachable from s
- Now: formalise argument and prove its correctness (for arbitrary LTSs)
- Let $pos : 2^S \to 2^S : T \mapsto \llbracket F \rrbracket \cup \langle Act \cdot \rangle(T)$ be the corresponding semantic function
- By Lemma 5.9, $fix(pos) = \bigcap \{T \subseteq S \mid pos(T) \subseteq T\}$
- Direct formulation of possibility property:

$$\textit{Pos} = \{ s \in S \mid \exists w \in \textit{Act}^*, s' \in \llbracket F \rrbracket : s \stackrel{w}{\longrightarrow} s' \}$$

8 of 19

- Possibilities (cf. Example 4.5):
 - $\operatorname{Pos}(F) \stackrel{\scriptscriptstyle{min}}{=} F \lor \langle \operatorname{Act} \rangle \operatorname{Pos}(F)$
 - $-s \models Pos(F)$ if a state satisfying F is reachable from s
- Now: formalise argument and prove its correctness (for arbitrary LTSs)
- Let $pos: 2^S \to 2^S: T \mapsto \llbracket F \rrbracket \cup \langle Act \cdot \rangle(T)$ be the corresponding semantic function
- By Lemma 5.9, $fix(pos) = \bigcap \{T \subseteq S \mid pos(T) \subseteq T\}$
- Direct formulation of possibility property:

$$\textit{Pos} = \{ s \in S \mid \exists w \in \textit{Act}^*, s' \in \llbracket F \rrbracket : s \stackrel{w}{\longrightarrow} s' \}$$

Theorem 6.2

For every LTS (S, Act, \rightarrow) , Pos = fix(pos) holds.

- Possibilities (cf. Example 4.5):
 - $\operatorname{Pos}(F) \stackrel{\scriptscriptstyle{min}}{=} F \lor \langle \operatorname{Act} \rangle \operatorname{Pos}(F)$
 - $-s \models Pos(F)$ if a state satisfying F is reachable from s
- Now: formalise argument and prove its correctness (for arbitrary LTSs)
- Let $pos : 2^S \to 2^S : T \mapsto \llbracket F \rrbracket \cup \langle Act \cdot \rangle(T)$ be the corresponding semantic function
- By Lemma 5.9, $fix(pos) = \bigcap \{T \subseteq S \mid pos(T) \subseteq T\}$
- Direct formulation of possibility property:

$$\textit{Pos} = \{ s \in S \mid \exists w \in \textit{Act}^*, s' \in \llbracket F \rrbracket : s \stackrel{w}{\longrightarrow} s' \}$$

Theorem 6.2

For every LTS (S, Act, \rightarrow) , Pos = fix(pos) holds.

Proof.

similar to Theorem 6.1

Outline of Lecture 6

Recap: Fixed-Point Theory

Fixed Points and System Properties

Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Introducing Several Variables

Sometimes necessary: using more than one variable

Example 6.3

"It is always the case that a process can perform an a-labelled transition leading to a state where b-transitions can be executed forever."

Introducing Several Variables

Sometimes necessary: using more than one variable

Example 6.3

"It is always the case that a process can perform an a-labelled transition leading to a state where b-transitions can be executed forever." can be specified by

 $Inv(\langle a \rangle Forever(b))$

where

 $Inv(F) \stackrel{\text{max}}{=} F \land [Act] Inv(F) \quad (cf. \text{ Theorem 6.1})$ Forever(b) $\stackrel{\text{max}}{=} \langle b \rangle Forever(b)$

 10 of 19
 Concurrency Theory

 Winter Semester 2019/20
 Lecture 6: Mutually Recursive Equational Systems

Syntax of Mutually Recursive Equational Systems

Definition 6.4 (Syntax of mutually recursive equational systems)

Let $\mathcal{X} = \{X_1, \dots, X_n\}$ be a set of variables. The set $HMF_{\mathcal{X}}$ of Hennessy-Milner formulae over \mathcal{X} is defined by the following syntax:

$F ::= X_i$	(variable)
tt	(true)
ff	(false)
$ F_1 \wedge F_2$	(conjunction)
$ F_1 \vee F_2$	(disjunction)
$ \langle \alpha \rangle F$	(diamond)
$\mid [\alpha]F$	(box)

where $1 \le i \le n$ and $\alpha \in Act$. A mutually recursive equational system has the form $(X_i = F_{X_i} \mid 1 \le i \le n)$ where $F_{X_i} \in HMF_{\mathcal{X}}$ for every $1 \le i \le n$.

 11 of 19
 Concurrency Theory

 Winter Semester 2019/20
 Lecture 6: Mutually Recursive Equational Systems

As before: semantics of formula depends on states satisfying the variables

Definition 6.5 (Semantics of mutually recursive equational systems)

Let $(S, Act, \longrightarrow)$ be an LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. The semantics of E, $[\![E]\!] : (2^S)^n \to (2^S)^n$, is defined by

$$\llbracket E \rrbracket (T_1, \ldots, T_n) := (\llbracket F_{X_1} \rrbracket (T_1, \ldots, T_n), \ldots, \llbracket F_{X_n} \rrbracket (T_1, \ldots, T_n))$$

where

$$\begin{split} & [X_i][(T_1, \dots, T_n) := T_i \\ & [[tt]](T_1, \dots, T_n) := S \\ & [[ff]](T_1, \dots, T_n) := \emptyset \\ \\ & [F_1 \wedge F_2][(T_1, \dots, T_n) := [[F_1]](T_1, \dots, T_n) \cap [[F_2]](T_1, \dots, T_n) \\ & [F_1 \vee F_2][(T_1, \dots, T_n) := [[F_1]](T_1, \dots, T_n) \cup [[F_2]](T_1, \dots, T_n) \\ & [[\langle \alpha \rangle F]](T_1, \dots, T_n) := \langle \cdot \alpha \cdot \rangle ([[F]](T_1, \dots, T_n)) \\ & [[\alpha] F]](T_1, \dots, T_n) := [\cdot \alpha \cdot] ([[F]](T_1, \dots, T_n)) \end{split}$$

Semantics of Recursive Equational Systems II

Lemma 6.6

Let (S, Act, \rightarrow) be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$

iff $T_i \subseteq T'_i$ for every $1 \le i \le n$.

Lemma 6.6

Let (S, Act, \rightarrow) be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$

iff $T_i \subseteq T'_i$ for every $1 \le i \le n$.

1. (D, \sqsubseteq) is a complete lattice with

$$\bigcup\{(T_1^i, \dots, T_n^i) \mid i \in I\} = (\bigcup\{T_1^i \mid i \in I\}, \dots, \bigcup\{T_n^i \mid i \in I\}) \\ \bigcap\{(T_1^i, \dots, T_n^i) \mid i \in I\} = (\bigcap\{T_1^i \mid i \in I\}, \dots, \bigcap\{T_n^i \mid i \in I\})$$

Lemma 6.6

Let (S, Act, \rightarrow) be a finite LTS and $E = (X_i = F_{X_i} | 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$ iff $T_i \subseteq T'_i$ for every $1 \le i \le n$. 1. (D, \sqsubseteq) is a complete lattice with

$$\bigcup \{ (T_1^i, \dots, T_n^i) \mid i \in I \} = (\bigcup \{ T_1^i \mid i \in I \}, \dots, \bigcup \{ T_n^i \mid i \in I \})$$

$$\bigcap \{ (T_1^i, \dots, T_n^i) \mid i \in I \} = (\bigcap \{ T_1^i \mid i \in I \}, \dots, \bigcap \{ T_n^i \mid i \in I \})$$

2. $\llbracket E \rrbracket$ is monotonic w.r.t. (D, \sqsubseteq)

Lemma 6.6

Let $(S, Act, \longrightarrow)$ be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$ iff $T_i \subseteq T'_i$ for every $1 \le i \le n$. 1. (D, \sqsubseteq) is a complete lattice with $\bigsqcup\{(T_1^i, \ldots, T_n^i) \mid i \in I\} = (\bigcup\{T_1^i \mid i \in I\}, \ldots, \bigcup\{T_n^i \mid i \in I\})$ $\sqcap\{(T_1^i, \ldots, T_n^i) \mid i \in I\} = (\bigcap\{T_1^i \mid i \in I\}, \ldots, \bigcap\{T_n^i \mid i \in I\})$ 2. $\llbracket E \rrbracket$ is monotonic w.r.t. (D, \sqsubset)

2. $\llbracket E \rrbracket$ is monotonic w.r.t. (D, \sqsubseteq) 3. $\operatorname{fix}(\llbracket E \rrbracket) = \llbracket E \rrbracket^m(\emptyset, \dots, \emptyset)$ for some $m \in \mathbb{N}$ 4. $\operatorname{FIX}(\llbracket E \rrbracket) = \llbracket E \rrbracket^M(S, \dots, S)$ for some $M \in \mathbb{N}$

Lemma 6.6

Let (S, Act, \rightarrow) be a finite LTS and $E = (X_i = F_{X_i} \mid 1 \le i \le n)$ a mutually recursive equational system. Let (D, \sqsubseteq) be given by $D := (2^S)^n$ and $(T_1, \ldots, T_n) \sqsubseteq (T'_1, \ldots, T'_n)$ iff $T_i \subseteq T'_i$ for every $1 \le i \le n$.

 $1 \quad (D \ \Box) \text{ is a complete lattice with}$

1. (D, \sqsubseteq) is a complete lattice with

$$\bigcup\{(T_1^i, \dots, T_n^i) \mid i \in I\} = (\bigcup\{T_1^i \mid i \in I\}, \dots, \bigcup\{T_n^i \mid i \in I\}) \\ \bigcap\{(T_1^i, \dots, T_n^i) \mid i \in I\} = (\bigcap\{T_1^i \mid i \in I\}, \dots, \bigcap\{T_n^i \mid i \in I\})$$

2. $\llbracket E \rrbracket$ is monotonic w.r.t. (D, \sqsubseteq) 3. fix $(\llbracket E \rrbracket) = \llbracket E \rrbracket^m(\emptyset, \dots, \emptyset)$ for some $m \in \mathbb{N}$ 4. FIX $(\llbracket E \rrbracket) = \llbracket E \rrbracket^M(S, \dots, S)$ for some $M \in \mathbb{N}$

Proof.

omitted

A Mutually Recursive Specification

Example 6.7

$$s \stackrel{a}{\underset{b}{\frown}} s_1 \xleftarrow{a} s_2 \stackrel{a}{\longrightarrow} s_3 \supset b$$

• Let $S := \{s, s_1, s_2, s_3\}$ and E given by

 $egin{array}{lll} X = \langle a
angle Y \wedge [a] Y \wedge [b] ext{ff} \ Y = \langle b
angle X \wedge [b] X \wedge [a] ext{ff} \end{array}$

 14 of 19
 Concurrency Theory

 Winter Semester 2019/20
 Lecture 6: Mutually Recursive Equational Systems

A Mutually Recursive Specification

Example 6.7

$$s \stackrel{a}{\underset{b}{\longrightarrow}} s_1 \stackrel{a}{\underset{a}{\longleftarrow}} s_2 \stackrel{a}{\underset{b}{\longrightarrow}} s_3 \supset b$$

• Let $S := \{s, s_1, s_2, s_3\}$ and E given by

 $egin{array}{lll} X = \langle a
angle Y \wedge [a] Y \wedge [b] ext{ff} \ Y = \langle b
angle X \wedge [b] X \wedge [a] ext{ff} \end{array}$

• Interpretation:

- -X: "has no *b*-successor and $\geq 1 a$ -successors that all satisfy *Y*"
- Y: "has no *a*-successor and \geq 1 *b*-successors that all satisfy X"

A Mutually Recursive Specification

Example 6.7

$$s \stackrel{a}{\underset{b}{\longrightarrow}} s_1 \xleftarrow{a} s_2 \stackrel{a}{\longrightarrow} s_3 \supset b$$

• Let $S := \{s, s_1, s_2, s_3\}$ and E given by

 $egin{array}{lll} X = \langle a
angle Y \wedge [a] Y \wedge [b] ext{ff} \ Y = \langle b
angle X \wedge [b] X \wedge [a] ext{ff} \end{array}$

• Interpretation:

- -X: "has no *b*-successor and \geq 1 *a*-successors that all satisfy *Y*"
- Y: "has no a-successor and \geq 1 b-successors that all satisfy X"
- \Rightarrow expected: $X = \{s\}, Y = \{s_1\}$

A Mutually Recursive Specification

Example 6.7

$$s \stackrel{a}{\underset{b}{\longrightarrow}} s_1 \stackrel{a}{\underset{a}{\longleftarrow}} s_2 \stackrel{a}{\underset{a}{\longrightarrow}} s_3 \supset b$$

• Let $S := \{s, s_1, s_2, s_3\}$ and E given by

 $egin{array}{lll} X = \langle a
angle Y \wedge [a] Y \wedge [b] ext{ff} \ Y = \langle b
angle X \wedge [b] X \wedge [a] ext{ff} \end{array}$

• Interpretation:

- -X: "has no *b*-successor and \geq 1 *a*-successors that all satisfy *Y*"
- Y: "has no *a*-successor and \geq 1 *b*-successors that all satisfy X"
- \Rightarrow expected: $X = \{s\}, Y = \{s_1\}$
- Computation of FIX([[E]]): on the board

Outline of Lecture 6

Recap: Fixed-Point Theory

Fixed Points and System Properties

Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points I

- So far: least/greatest fixed point of overall system
- But: too restrictive

Mixing Least and Greatest Fixed Points I

- So far: least/greatest fixed point of overall system
- But: too restrictive

Example 6.8

"It is possible for the system to reach a state which has a livelock (i.e., an infinite sequence of internal steps)."

Mixing Least and Greatest Fixed Points I

- So far: least/greatest fixed point of overall system
- But: too restrictive

Example 6.8

"It is possible for the system to reach a state which has a livelock (i.e., an infinite sequence of internal steps)."

can be specified by

Pos(Livelock)

where

```
Pos(F) \stackrel{\min}{=} F \lor \langle Act \rangle Pos(F) (cf. Theorem 6.2)
Livelock \stackrel{\max}{=} \langle \tau \rangle Livelock
```

(thus, *Livelock* \equiv *Forever*(τ) [cf. Example 6.3])

Caveat: arbitrary mixing can entail non-monotonic behaviour

Mixing Least and Greatest Fixed Points II

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

$$E: X \stackrel{\min}{=} Y$$
$$Y \stackrel{\max}{=} X$$

Mixing Least and Greatest Fixed Points II

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

$$E: X \stackrel{\min}{=} Y$$
$$Y \stackrel{\max}{=} X$$

Fixed-point iteration:

 $(\bot, \top) = (\emptyset, S)$

Mixing Least and Greatest Fixed Points II

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

$$E: X \stackrel{\min}{=} Y$$
$$Y \stackrel{\max}{=} X$$

Fixed-point iteration:

$$(\bot, \top) = (\emptyset, S) \stackrel{\llbracket E \rrbracket}{\mapsto} (S, \emptyset)$$

Mixing Least and Greatest Fixed Points II

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

$$E: X \stackrel{\min}{=} Y$$
$$Y \stackrel{\max}{=} X$$

Fixed-point iteration:

$$(\bot,\top) = (\emptyset, S) \stackrel{\llbracket E \rrbracket}{\mapsto} (S, \emptyset) \stackrel{\llbracket E \rrbracket}{\mapsto} (\emptyset, S) \stackrel{\llbracket E \rrbracket}{\mapsto} \dots$$

Mixing Least and Greatest Fixed Points II

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

$$E: X \stackrel{\min}{=} Y$$
$$Y \stackrel{\max}{=} X$$

Fixed-point iteration:

$$(\bot, \top) = (\emptyset, S) \stackrel{\llbracket E \rrbracket}{\mapsto} (S, \emptyset) \stackrel{\llbracket E \rrbracket}{\mapsto} (\emptyset, S) \stackrel{\llbracket E \rrbracket}{\mapsto} \dots$$

Solution: nesting of specifications by partitioning equations into a sequence of blocks such that all equations in one block

- are of same type (either *min* or *max*) and
- use only variables defined in the same or subsequent blocks

Mixing Least and Greatest Fixed Points II

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

$$E: X \stackrel{\min}{=} Y$$
$$Y \stackrel{\max}{=} X$$

Fixed-point iteration:

$$(\bot, \top) = (\emptyset, S) \stackrel{\llbracket E \rrbracket}{\mapsto} (S, \emptyset) \stackrel{\llbracket E \rrbracket}{\mapsto} (\emptyset, S) \stackrel{\llbracket E \rrbracket}{\mapsto} \dots$$

Solution: nesting of specifications by partitioning equations into a sequence of blocks such that all equations in one block

- are of same type (either *min* or *max*) and
- use only variables defined in the same or subsequent blocks
- ⇒ bottom-up, block-wise evaluation by fixed-point iteration

 17 of 19
 Concurrency Theory

 Winter Semester 2019/20
 Lecture 6: Mutually Recursive Equational Systems

Example 6.10 (cf. Example 6.8)

 $\begin{array}{l} \textit{PosLL} \stackrel{\tiny\textit{min}}{=} \textit{Livelock} \lor \langle \textit{Act} \rangle \textit{PosLL} \\ \textit{Livelock} \stackrel{\tiny\textit{max}}{=} \langle \tau \rangle \textit{Livelock} \end{array}$

$$s \xrightarrow{a} p \xrightarrow{\tau} q \xrightarrow{\tau} r$$
$$\bigcup_{\tau} \tau$$

Example 6.10 (cf. Example 6.8)

 $\begin{array}{l} \textit{PosLL} \stackrel{\tiny\textit{min}}{=} \textit{Livelock} \lor \langle \textit{Act} \rangle \textit{PosLL} \\ \textit{Livelock} \stackrel{\tiny\textit{max}}{=} \langle \tau \rangle \textit{Livelock} \end{array}$

$$s \xrightarrow{a} p \xrightarrow{\tau} q \xrightarrow{\tau} r$$

$$\bigcup_{\tau} \tau$$

1. Greatest fixed-point iteration for *Livelock* : $T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

 $op = S = \{s, p, q, r\}$

Example 6.10 (cf. Example 6.8)

 $\begin{array}{l} \textit{PosLL} \stackrel{\tiny\textit{min}}{=} \textit{Livelock} \lor \langle \textit{Act} \rangle \textit{PosLL} \\ \textit{Livelock} \stackrel{\tiny\textit{max}}{=} \langle \tau \rangle \textit{Livelock} \end{array}$

$$s \xrightarrow{a} p \xrightarrow{\tau} q \xrightarrow{\tau} r$$

$$\bigcup_{\tau} \tau$$

1. Greatest fixed-point iteration for *Livelock* : $T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

 $\top = \textbf{\textit{S}} = \{\textbf{\textit{s}}, \textbf{\textit{p}}, \textbf{\textit{q}}, \textbf{\textit{r}}\} \mapsto \{\textbf{\textit{p}}, \textbf{\textit{q}}\}$

Example 6.10 (cf. Example 6.8)

 $\begin{array}{l} \textit{PosLL} \stackrel{\tiny\textit{min}}{=} \textit{Livelock} \lor \langle \textit{Act} \rangle \textit{PosLL} \\ \textit{Livelock} \stackrel{\tiny\textit{max}}{=} \langle \tau \rangle \textit{Livelock} \end{array}$

$$s \xrightarrow{a} p \xrightarrow{\tau} q \xrightarrow{\tau} r$$

$$\bigcup_{\tau} \tau$$

1. Greatest fixed-point iteration for *Livelock* : $T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

 $\top = S = \{s, p, q, r\} \mapsto \{p, q\} \mapsto \{p\}$

Example 6.10 (cf. Example 6.8)

 $\begin{array}{l} \textit{PosLL} \stackrel{\tiny\textit{min}}{=} \textit{Livelock} \lor \langle \textit{Act} \rangle \textit{PosLL} \\ \textit{Livelock} \stackrel{\tiny\textit{max}}{=} \langle \tau \rangle \textit{Livelock} \end{array}$

$$s \xrightarrow{a} p \xrightarrow{\tau} q \xrightarrow{\tau} r$$

$$\bigcup_{\tau} \tau$$

1. Greatest fixed-point iteration for *Livelock* : $T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

 $\top = S = \{s, p, q, r\} \mapsto \{p, q\} \mapsto \{p\} \mapsto \{p\}$

Example 6.10 (cf. Example 6.8)

 $\begin{array}{l} \textit{PosLL} \stackrel{\tiny\textit{min}}{=} \textit{Livelock} \lor \langle \textit{Act} \rangle \textit{PosLL} \\ \textit{Livelock} \stackrel{\tiny\textit{max}}{=} \langle \tau \rangle \textit{Livelock} \end{array}$

$$s \xrightarrow{a} p \xrightarrow{\tau} q \xrightarrow{\tau} r$$

$$\bigcup_{\tau} \tau$$

1. Greatest fixed-point iteration for *Livelock* : $T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

$$\top = S = \{s, p, q, r\} \mapsto \{p, q\} \mapsto \{p\} \mapsto \{p\}$$

2. Least fixed-point iteration for *PosLL* : $T \mapsto \{p\} \cup \langle Act \cdot \rangle(T)$:

 $\bot = \emptyset$

Example 6.10 (cf. Example 6.8)

 $\begin{array}{l} \textit{PosLL} \stackrel{\tiny\textit{min}}{=} \textit{Livelock} \lor \langle \textit{Act} \rangle \textit{PosLL} \\ \textit{Livelock} \stackrel{\tiny\textit{max}}{=} \langle \tau \rangle \textit{Livelock} \end{array}$

$$s \xrightarrow{a} p \xrightarrow{\tau} q \xrightarrow{\tau} r$$

$$\bigcup_{\tau} \tau$$

1. Greatest fixed-point iteration for *Livelock* : $T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

$$\top = S = \{s, p, q, r\} \mapsto \{p, q\} \mapsto \{p\} \mapsto \{p\}$$

2. Least fixed-point iteration for $PosLL : T \mapsto \{p\} \cup \langle Act \cdot \rangle(T)$:

 $\bot = \emptyset \mapsto \{ p \}$

 18 of 19
 Concurrency Theory

 Winter Semester 2019/20
 Lecture 6: Mutually Recursive Equational Systems

Example 6.10 (cf. Example 6.8)

 $\begin{array}{l} \textit{PosLL} \stackrel{\tiny\textit{min}}{=} \textit{Livelock} \lor \langle \textit{Act} \rangle \textit{PosLL} \\ \textit{Livelock} \stackrel{\tiny\textit{max}}{=} \langle \tau \rangle \textit{Livelock} \end{array}$

$$s \xrightarrow{a} p \xrightarrow{\tau} q \xrightarrow{\tau} r$$

$$\bigcup_{\tau} \tau$$

1. Greatest fixed-point iteration for *Livelock* : $T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

$$\top = S = \{s, p, q, r\} \mapsto \{p, q\} \mapsto \{p\} \mapsto \{p\}$$

2. Least fixed-point iteration for $PosLL : T \mapsto \{p\} \cup \langle Act \cdot \rangle(T)$:

 $\bot = \emptyset \mapsto \{ \pmb{\rho} \} \mapsto \{ \pmb{s}, \pmb{\rho} \}$

Example 6.10 (cf. Example 6.8)

 $\begin{array}{l} \textit{PosLL} \stackrel{\tiny\textit{min}}{=} \textit{Livelock} \lor \langle \textit{Act} \rangle \textit{PosLL} \\ \textit{Livelock} \stackrel{\tiny\textit{max}}{=} \langle \tau \rangle \textit{Livelock} \end{array}$

$$s \xrightarrow{a} p \xrightarrow{\tau} q \xrightarrow{\tau} r$$

$$\bigcup_{\tau} \tau$$

1. Greatest fixed-point iteration for *Livelock* : $T \mapsto \langle \cdot \tau \cdot \rangle(T)$:

$$\top = S = \{s, p, q, r\} \mapsto \{p, q\} \mapsto \{p\} \mapsto \{p\}$$

2. Least fixed-point iteration for $PosLL : T \mapsto \{p\} \cup \langle Act \cdot \rangle(T)$:

$$\bot = \emptyset \mapsto \{ p \} \mapsto \{ s, p \} \mapsto \{ s, p \}$$

- Logic that supports free mixing of least and greatest fixed points:
 - D. Kozen: *Results on the Propositional μ-Calculus*, Theoretical Computer Science 27, 1983, 333–354

- Logic that supports free mixing of least and greatest fixed points:
 - D. Kozen: *Results on the Propositional μ-Calculus*, Theoretical Computer Science 27, 1983, 333–354
- HML variants are fragments thereof
- Expressivity increases with alternation of least and greatest fixed points:
 - J.C. Bradfield: *The Modal Mu-Calculus Alternation Hierarchy is Strict*, Theoretical Computer Science 195(2), 1998, 133–153

- Logic that supports free mixing of least and greatest fixed points:
 - D. Kozen: *Results on the Propositional μ-Calculus*, Theoretical Computer Science 27, 1983, 333–354
- HML variants are fragments thereof
- Expressivity increases with alternation of least and greatest fixed points:
 - J.C. Bradfield: *The Modal Mu-Calculus Alternation Hierarchy is Strict*, Theoretical Computer Science 195(2), 1998, 133–153
- Decidable model-checking problem for finite LTSs (in NP ∩ co-NP; linear for HML with one variable)
- Generally undecidable for infinite LTSs and HML with one variable (CCS, Petri nets, ...)

19 of 19

- Logic that supports free mixing of least and greatest fixed points:
 - D. Kozen: *Results on the Propositional μ-Calculus*, Theoretical Computer Science 27, 1983, 333–354
- HML variants are fragments thereof
- Expressivity increases with alternation of least and greatest fixed points:
 - J.C. Bradfield: *The Modal Mu-Calculus Alternation Hierarchy is Strict*, Theoretical Computer Science 195(2), 1998, 133–153
- Decidable model-checking problem for finite LTSs (in NP ∩ co-NP; linear for HML with one variable)
- Generally undecidable for infinite LTSs and HML with one variable (CCS, Petri nets, ...)
- Overview paper:
 - O. Burkart, D. Caucal, F. Moller, B. Steffen: *Verification on Infinite Structures*, Chapter 9 of *Handbook of Process Algebra*, Elsevier, 2001, 545–623

