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Recap: Fixed-Point Theory

The Fixed-Point Theorem

Alfred Tarski (1901–1983)

Theorem (Tarski’s fixed-point theorem)

Let (D,v) be a complete lattice and f : D → D monotonic. Then f has a least fixed
point fix(f ) and a greatest fixed point FIX(f ) given by

fix(f ) =
d
{d ∈ D | f (d) v d} (GLB of all pre-fixed points of f )

FIX(f ) =
⊔
{d ∈ D | d v f (d)} (LUB of all post-fixed points of f )

Proof.

on the board
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Recap: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

Theorem (Fixed-point theorem for finite lattices)

Let (D,v) be a finite complete lattice and f : D → D monotonic. Then

fix(f ) = f m(⊥) and FIX(f ) = f M(>)
for some m,M ∈ N where f 0(d) := d and f k+1(d) := f (f k(d)).

Proof.

on the board

Example

• Let f : 2{0,1,2} → 2{0,1,2} : T 7→ T ∪ {1} \ {2} (monotonic on (2{0,1,2},⊆))
• f 0(⊥) = ∅, f 1(⊥) = {1}, f 2(⊥) = {1} = f 1(⊥)

=⇒ fix(f ) = {1} after m = 1 iterations
• f 0(>) = {0, 1, 2}, f 1(>) = {0, 1}, f 2(>) = {0, 1} = f 1(>)

=⇒ FIX(f ) = {0, 1} after M = 1 iterations
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Recap: Fixed-Point Theory

Application to HML with Recursion

Lemma

Let (S,Act,−→) be an LTS and F ∈ HMF X . Then
1. JFK : 2S → 2S is monotonic w.r.t. (2S,⊆)
2. fix(JFK) =

⋂
{T ⊆ S | JFK(T ) ⊆ T}

3. FIX(JFK) =
⋃
{T ⊆ S | T ⊆ JFK(T )}

If, in addition, S is finite, then
4. fix(JFK) = JFKm(∅) for some m ∈ N
5. FIX(JFK) = JFKM(S) for some M ∈ N

Proof.
1. by induction on the structure of F (details omitted)
2. by Lemma 4.15 and Theorem 5.5
3. by Lemma 4.15 and Theorem 5.5
4. by Lemma 4.15 and Theorem 5.7
5. by Lemma 4.15 and Theorem 5.7
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Fixed Points and System Properties
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Fixed Points and System Properties

Greatest Fixed Points and Invariants

• Invariants (cf. Example 4.5):
– Inv(F)

max
= F ∧ [Act]Inv(F) for F ∈ HMF

– s |= Inv(F) if all states reachable from s satisfy F

• Now: formalise argument and prove its correctness (for arbitrary LTSs)
• Let inv : 2S → 2S : T 7→ JFK ∩ [·Act ·](T ) be the corresponding semantic function
• By Lemma 5.9, FIX(inv) =

⋃
{T ⊆ S | T ⊆ inv(T )}

• Direct formulation of invariance property:

Inv = {s ∈ S | ∀w ∈ Act∗, s′ ∈ S : s w−→ s′ =⇒ s′ ∈ JFK}

Theorem 6.1

For every LTS (S,Act,−→), Inv = FIX(inv) holds.

Proof.

on the board
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Fixed Points and System Properties

Least Fixed Points and Possibilities

• Possibilities (cf. Example 4.5):
– Pos(F)

min
= F ∨ 〈Act〉Pos(F)

– s |= Pos(F) if a state satisfying F is reachable from s

• Now: formalise argument and prove its correctness (for arbitrary LTSs)
• Let pos : 2S → 2S : T 7→ JFK ∪ 〈·Act ·〉(T ) be the corresponding semantic function
• By Lemma 5.9, fix(pos) =

⋂
{T ⊆ S | pos(T ) ⊆ T}

• Direct formulation of possibility property:

Pos = {s ∈ S | ∃w ∈ Act∗, s′ ∈ JFK : s w−→ s′}

Theorem 6.2

For every LTS (S,Act,−→), Pos = fix(pos) holds.

Proof.

similar to Theorem 6.1
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Mutually Recursive Equational Systems

Introducing Several Variables

Sometimes necessary: using more than one variable

Example 6.3
“It is always the case that a process can perform an a-labelled transition leading
to a state where b-transitions can be executed forever.”

can be specified by

Inv(〈a〉Forever(b))

where

Inv(F)
max
= F ∧ [Act]Inv(F) (cf. Theorem 6.1)

Forever(b)
max
= 〈b〉Forever(b)
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Mutually Recursive Equational Systems

Syntax of Mutually Recursive Equational Systems

Definition 6.4 (Syntax of mutually recursive equational systems)

Let X = {X1, . . . ,Xn} be a set of variables. The set HMFX of Hennessy-Milner
formulae over X is defined by the following syntax:

F ::= Xi (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where 1 ≤ i ≤ n and α ∈ Act . A mutually recursive equational system has the form
(Xi = FXi | 1 ≤ i ≤ n)

where FXi ∈ HMFX for every 1 ≤ i ≤ n.
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Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems I

As before: semantics of formula depends on states satisfying the variables

Definition 6.5 (Semantics of mutually recursive equational systems)

Let (S,Act,−→) be an LTS and E = (Xi = FXi | 1 ≤ i ≤ n) a mutually recursive
equational system. The semantics of E , JEK : (2S)n → (2S)n, is defined by

JEK(T1, . . . , Tn) := (JFX1K(T1, . . . , Tn), . . . , JFXnK(T1, . . . , Tn))

where
JXiK(T1, . . . , Tn) := Ti

JttK(T1, . . . , Tn) := S
JffK(T1, . . . , Tn) := ∅

JF1 ∧ F2K(T1, . . . , Tn) := JF1K(T1, . . . , Tn) ∩ JF2K(T1, . . . , Tn)
JF1 ∨ F2K(T1, . . . , Tn) := JF1K(T1, . . . , Tn) ∪ JF2K(T1, . . . , Tn)

J〈α〉FK(T1, . . . , Tn) := 〈·α·〉(JFK(T1, . . . , Tn))
J[α]FK(T1, . . . , Tn) := [·α·](JFK(T1, . . . , Tn))
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Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems II

Lemma 6.6

Let (S,Act,−→) be a finite LTS and E = (Xi = FXi | 1 ≤ i ≤ n) a mutually
recursive equational system. Let (D,v) be given by D := (2S)n and

(T1, . . . , Tn) v (T ′1, . . . , T
′
n)

iff Ti ⊆ T ′i for every 1 ≤ i ≤ n.

1. (D,v) is a complete lattice with⊔
{(T i

1, . . . ,T
i
n) | i ∈ I} =

(⋃
{T i

1 | i ∈ I}, . . . ,
⋃
{T i

n | i ∈ I}
)

d
{(T i

1, . . . ,T
i
n) | i ∈ I} =

(⋂
{T i

1 | i ∈ I}, . . . ,
⋂
{T i

n | i ∈ I}
)

2. JEK is monotonic w.r.t. (D,v)
3. fix(JEK) = JEKm(∅, . . . , ∅) for some m ∈ N
4. FIX(JEK) = JEKM(S, . . . ,S) for some M ∈ N

Proof.

omitted
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Mutually Recursive Equational Systems

A Mutually Recursive Specification

Example 6.7

s s1 s2 s3

a

b a
a

b

• Let S := {s, s1, s2, s3} and E given by

X = 〈a〉Y ∧ [a]Y ∧ [b]ff
Y = 〈b〉X ∧ [b]X ∧ [a]ff

• Interpretation:
– X : “has no b-successor and≥ 1 a-successors that all satisfy Y ”
– Y : “has no a-successor and≥ 1 b-successors that all satisfy X ”
⇒ expected: X = {s}, Y = {s1}
• Computation of FIX(JEK): on the board
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⇒ expected: X = {s}, Y = {s1}

• Computation of FIX(JEK): on the board
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Mixing Least and Greatest Fixed Points

Outline of Lecture 6

Recap: Fixed-Point Theory

Fixed Points and System Properties

Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points I

• So far: least/greatest fixed point of overall system
• But: too restrictive

Example 6.8
“It is possible for the system to reach a state which has a livelock (i.e., an infinite
sequence of internal steps).”

can be specified by

Pos(Livelock)

where

Pos(F)
min
= F ∨ 〈Act〉Pos(F) (cf. Theorem 6.2)

Livelock
max
= 〈τ〉Livelock

(thus, Livelock ≡ Forever(τ ) [cf. Example 6.3])
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points II

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

E : X
min
= Y

Y
max
= X

Fixed-point iteration:

(⊥,>) = (∅,S) JEK7→ (S, ∅) JEK7→ (∅,S) JEK7→ . . .

Solution: nesting of specifications by partitioning equations into a sequence of
blocks such that all equations in one block
• are of same type (either min or max) and
• use only variables defined in the same or subsequent blocks

=⇒ bottom-up, block-wise evaluation by fixed-point iteration
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Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points III

Example 6.10 (cf. Example 6.8)

PosLL
min
= Livelock ∨ 〈Act〉PosLL

Livelock
max
= 〈τ〉Livelock

s p q r
a τ τ

τ

1. Greatest fixed-point iteration for Livelock : T 7→ 〈·τ ·〉(T ):

> = S = {s, p, q, r} 7→ {p, q} 7→ {p} 7→ {p}

2. Least fixed-point iteration for PosLL : T 7→ {p} ∪ 〈·Act ·〉(T ):

⊥ = ∅ 7→ {p} 7→ {s, p} 7→ {s, p}
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Mixing Least and Greatest Fixed Points

The Modal µ-Calculus

• Logic that supports free mixing of least and greatest fixed points:
– D. Kozen: Results on the Propositional µ-Calculus, Theoretical Computer Science 27, 1983,

333–354

• HML variants are fragments thereof
• Expressivity increases with alternation of least and greatest fixed points:

– J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict , Theoretical Computer Science
195(2), 1998, 133–153

• Decidable model-checking problem for finite LTSs
(in NP ∩ co-NP; linear for HML with one variable)
• Generally undecidable for infinite LTSs and HML with one variable (CCS, Petri nets, ...)
• Overview paper:

– O. Burkart, D. Caucal, F. Moller, B. Steffen: Verification on Infinite Structures, Chapter 9 of
Handbook of Process Algebra, Elsevier, 2001, 545–623
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