Winter Semester 2019/20

Lecture 6: Mutually Recursive Equational Systems

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Recap: Fixed-Point Theory

Outline of Lecture 6

Recap: Fixed-Point Theory

RWTH

20f19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Recap: Fixed-Point Theory

The Fixed-Point Theorem

Alfred Tarski (1901-1983)
Theorem (Tarski’s fixed-point theorem)

(
Let (D, C) be a complete lattice and f : D — D monotonic. Then f has a least fixed
point fix(f) and a greatest fixed point FIX(f) given by

fix(f)=[1]{d € D| f(d) E d} (GLB of all pre-fixed points of f)
FIX(f)=||{de D|dC f(d)} (LUB ofall post-fixed points of f)

Proof.
on the board]

30f19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

RWTH

Lecture 6: Mutually Recursive Equational Systems

Recap: Fixed-Point Theory

The Fixed-Point Theorem for Finite Lattices

Theorem (Fixed-point theorem for finite lattices)

Let (D, C) be a finite complete lattice and f : D — D monotonic. Then
fix(f) = f"(L) and FIX(f) = ()

for some m, M € N where f°(d) :=d and f*"'(d) := f(f*(d)).

Proof.

on the board

RWTH

40f 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Recap: Fixed-Point Theory

Application to HML with Recursion

Lemma

Let (S, Act,—) be an LTS and F € HMF x. Then
1. [F] : 2° — 2% is monotonic w.r.t. (25, C)

2. fix([F]) = (HT < S| [FI(T) € T}

3. FIX([F]) =U{TCS|TCJF|(T)}

If, in addition, S is finite, then

4. fix([F]) = [F]™(0) for some m € N

5. FIX([F]) = [F]™(S) for some M € N

Proof.

1. by induction on the structure of F (details omitted)
2. by Lemma 4.15 and Theorem 5.5

3. by Lemma 4.15 and Theorem 5.5

4. by Lemma 4.15 and Theorem 5.7

5. by Lemma 4.15 and Theorem 5.7

RWTH

50f 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Outline of Lecture 6

Fixed Points and System Properties

6 of 19 Concurrency Theory
Winter Semester 2019/20

Lecture 6: Mutually Recursive Equational Systems

.

4

Software Modeling
Il and Verification Chair

RWTH

Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) = F A [Act]Inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F

RWTH

7 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) = F A [Act]inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
e Now: formalise argument and prove its correctness (for arbitrary LTSs)

RWTH

7 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) Z F A [Act]inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
e Letinv:2%5 — 25: T+ [F] N[-Act](T) be the corresponding semantic function

e By Lemma 5.9, FIX(inv) = J{T C S| T C inv(T)}

RWTH

7 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) = F A [Act]inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
e Letinv:2%5 — 25: T+ [F] N[-Act](T) be the corresponding semantic function
e By Lemma 5.9, FIX(inv) = {T C S| T Cinv(T)}
e Direct formulation of invariance property:

Inv={s€cS|YwecAct'secS: ss = §c[F]}

RWTH

7 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) = F A [Act]inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
e Letinv:2%5 — 25: T+ [F] N[-Act](T) be the corresponding semantic function
e By Lemma 5.9, FIX(inv) = {T C S| T Cinv(T)}
e Direct formulation of invariance property:

Inv={s€cS|YwecAct'secS: ss = §c[F]}

Theorem 6.1
For every LTS (S, Act, —), Inv = FIX(inv) holds.

RWTH

7 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Greatest Fixed Points and Invariants

e Invariants (cf. Example 4.5):
— Inv(F) = F A [Act]inv(F) for F € HMF
— s = Inv(F) if all states reachable from s satisfy F
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
e Letinv:2%5 — 25: T+ [F] N[-Act](T) be the corresponding semantic function
e By Lemma 5.9, FIX(inv) = {T C S| T Cinv(T)}
e Direct formulation of invariance property:

Inv={s€cS|YwecAct'secS: ss = §c[F]}

Theorem 6.1
For every LTS (S, Act, —), Inv = FIX(inv) holds.

Proof.

on the board

RWTH

7 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Least Fixed Points and Possibilities
e Possibilities (cf. Example 4.5):

min

— Pos(F) = F V (Act)Pos(F)
— s |= Pos(F) if a state satisfying F is reachable from s

RWTH

8 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Least Fixed Points and Possibilities
e Possibilities (cf. Example 4.5):

— Pos(F) = F V (Act)Pos(F)
— s |= Pos(F) if a state satisfying F is reachable from s

e Now: formalise argument and prove its correctness (for arbitrary LTSs)

RWTH

8 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Least Fixed Points and Possibilities
e Possibilities (cf. Example 4.5):

— Pos(F) = F V (Act)Pos(F)
— s |= Pos(F) if a state satisfying F is reachable from s
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
o Let pos:2° — 2°: T+ [F] U (-Act-)(T) be the corresponding semantic function

e By Lemma 5.9, fix(pos) = ({T € S| pos(T) C T}

RWTH

8 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Least Fixed Points and Possibilities
e Possibilities (cf. Example 4.5):

— Pos(F) = F V (Act)Pos(F)

— s |= Pos(F) if a state satisfying F is reachable from s
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
o Let pos:2° — 2°: T+ [F] U (-Act-)(T) be the corresponding semantic function
e By Lemma 5.9, fix(pos) = ({T € S| pos(T) C T}

e Direct formulation of possibility property:

Pos={sec S|3we Act',s € [F]: s — &'}

RWTH

8 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Least Fixed Points and Possibilities
e Possibilities (cf. Example 4.5):

— Pos(F) = F V (Act)Pos(F)

— s |= Pos(F) if a state satisfying F is reachable from s
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
o Let pos:2° — 2°: T+ [F] U (-Act-)(T) be the corresponding semantic function
e By Lemma 5.9, fix(pos) = ({T € S| pos(T) C T}

e Direct formulation of possibility property:

Pos={sec S|3we Act',s € [F]: s — &'}

Theorem 6.2
For every LTS (S, Act, —), Pos = fix(pos) holds.

RWTH

8 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Fixed Points and System Properties

Least Fixed Points and Possibilities

e Possibilities (cf. Example 4.5):
— Pos(F) = F V (Act)Pos(F)
— s |= Pos(F) if a state satisfying F is reachable from s
e Now: formalise argument and prove its correctness (for arbitrary LTSs)
o Let pos:2° — 2°: T+ [F] U (-Act-)(T) be the corresponding semantic function
e By Lemma 5.9, fix(pos) = ({T € S| pos(T) C T}

e Direct formulation of possibility property:

Pos={sec S|3we Act',s € [F]: s — &'}

Theorem 6.2
For every LTS (S, Act, —), Pos = fix(pos) holds.

Proof.

similar to Theorem 6.1

RWTH

8 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mutually Recursive Equational Systems

Outline of Lecture 6

Mutually Recursive Equational Systems

RWTH

90f 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mutually Recursive Equational Systems

Introducing Several Variables

Sometimes necessary: using more than one variable

Example 6.3

“It is always the case that a process can perform an a-labelled transition leading
to a state where b-transitions can be executed forever.”

RWTH

10 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mutually Recursive Equational Systems

Introducing Several Variables

Sometimes necessary: using more than one variable

Example 6.3

“It is always the case that a process can perform an a-labelled transition leading
to a state where b-transitions can be executed forever.”

can be specified by
Inv({a) Forever(b))

where

Inv(F) = F A [Act]inv(F) (cf. Theorem 6.1)
Forever(b) = (b) Forever(b)

RWTH

10 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mutually Recursive Equational Systems

Syntax of Mutually Recursive Equational Systems

Definition 6.4 (Syntax of mutually recursive equational systems)

Let X = {X;,..., X,} be a set of variables. The set HMF y of Hennessy-Milner
formulae over X is defined by the following syntax:

F. =X (variable)
tt (true)
ff (false)
Fi N\ Fo (conjunction)
FiV F (disjunction)
(a)F (diamond)
o] F (box)

where 1 </ < nand a € Act. A mutually recursive equational system has the form
(Xi=Fx |1 <i<n)
where Fx. € HMF y forevery 1 </ < n.

RWTH

11 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 6: Mutually Recursive Equational Systems Bl and Verification Chair

Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems |
As before: semantics of formula depends on states satisfying the variables
Definition 6.5 (Semantics of mutually recursive equational systems)

Let (S, Act, —) bean LTS and E = (X; = Fx | 1 < i < n) a mutually recursive
equational system. The semantics of E, [E] : (2°)" — (2°)", is defined by

IEI(T4, .. Tn) == ([Fx,](Tas-- s Tn)s - - - [Fx (T4, - - ., Th))

where HX,-:(T1,. 77_”) _T
(T, ..., 7)) =8
(T, ..., T,) =0
[Fi ATy, ..., To) =[RI(T, ..., To) N [RJ(Ty,..., Ty)
[FiVv R(Ty,....T,) =[RI(T, ..., T,) U[RI(T,..., T
ﬂ(a}F:(Th. Th) = {-a-_>([[F]](T1,...,T,,))
alFI(T, .o To) = [|([FI(T3s - - -, Ta))

Winter Semester 2019/20

12 0of 19 Concurrency Theory o Rm
Software Modeling

Lecture 6: Mutually Recursive Equational Systems Bl and Verification Chair

Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems i

Lemma 6.6

Let (S, Act,—) be a finite LTS and E = (X; = Fx. | 1 < i < n) a mutually

recursive equational system. Let (D, C) be given by D := (2°)" and
(Tq,...,T) C(T{,..., T})

iff T, C T forevery1 < i < n.

RWTH

13 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 6: Mutually Recursive Equational Systems W and Verification Chair

Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems i

Lemma 6.6

Let (S, Act,—) be a finite LTS and E = (X; = Fx, | 1 < i < n) a mutually

recursive equational system. Let (D, C) be given by D := (2°)" and
(Th,..., T,)C(Ty,..., T))

iff T, C T forevery1 < i < n.

1. (D, C) is a complete lattice with

(T,) e = (UL lie ... ,U{T, | iel})
(T, T liely=({T{liel},...., {Tiliel})

RWTH

13 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 6: Mutually Recursive Equational Systems W and Verification Chair

Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems i

Lemma 6.6

Let (S, Act,—) be a finite LTS and E = (X; = Fx, | 1 < i < n) a mutually
recursive equational system. Let (D, C) be given by D := (2°)" and
(Th,..., T,)C(Ty,..., T))
iff T, C T forevery1 < i < n.
1. (D, C) is a complete lattice with
(T,) e = (UL lie ... ,U{T, | iel})
(T, T liely=({T{liel},...., {Tiliel})

2. |E] is monotonic w.r.t. (D,C)

RWTH

13 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 6: Mutually Recursive Equational Systems B and Verification Chair

Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems i

Lemma 6.6

Let (S, Act,—) be a finite LTS and E = (X; = Fx, | 1 < i < n) a mutually

recursive equational system. Let (D, C) be given by D := (2°)" and
(Th,..., T,)C(Ty,..., T))

iff T, C T forevery1 < i < n.

1. (D, C) is a complete lattice with

(T,) e = (UL lie ... ,U{T, | iel})
(T, T liely=({T{liel},...., {Tiliel})
2. |E] is monotonic w.r.t. (D, C)
3. fix([E]) = [E]™(®,...,0) for some m € N
4. FIX([E]) = [E]™(S, ..., S) for some M € N

RWTH

13 0of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mutually Recursive Equational Systems

Semantics of Recursive Equational Systems i

Lemma 6.6

Let (S, Act,—) be a finite LTSand E = (X; = Fx | 1 < i

recursive equational system. Let (D,) be given by D :=
(T4,..., T,)C(T,,..., T,

iff T, C T forevery1 < i < n.

1. (D, C) is a complete lattice with

(T,) e = (UL lie ... ,U{T, | iel})
(T, T liely=({T{liel},...., {Tiliel})
2. |E] is monotonic w.r.t. (D, C)
3. fix([E]) = [E]™(®,...,0) for some m € N
4. FIX([E]) = [E]™(S, ..., S) for some M € N

< n) a mutually
)" and

(2

v

Proof.

omitted

RWTH

13 0f 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mutually Recursive Equational Systems

A Mutually Recursive Specification

Example 6.7

e Let S:= {s, 51, 5,53} and E given by

X ={(aY Al[aY A [b]ff
Y = (B)X A [b]X A [a]ff

14 of 19 Concurrency Theory o
Winter Semester 2019/20

4

Lecture 6: Mutually Recursive Equational Systems

Software Modeling
Il and Verification Chair

RWTH

Mutually Recursive Equational Systems

A Mutually Recursive Specification

Example 6.7

e Let S:= {s, 51, 5,53} and E given by

X ={(aY Al[aY A [b]ff
Y = (B)X A [b]X A [a]ff

e Interpretation:

— X: "has no b-successor and > 1 a-successors that all satisfy Y”
— Y: “has no a-successor and > 1 b-successors that all satisfy X”

RWTH

14 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mutually Recursive Equational Systems

A Mutually Recursive Specification

Example 6.7

e Let S:= {s, 51, 5,53} and E given by

X ={(aY Al[aY A [b]ff
Y = (b)X A [b]X A [a]ff

e Interpretation:
— X: "has no b-successor and > 1 a-successors that all satisfy Y”

— Y: “has no a-successor and > 1 b-successors that all satisfy X”
= expected: X = {s}, Y = {s;}

RWTH

14 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mutually Recursive Equational Systems

A Mutually Recursive Specification

Example 6.7

e Let S:= {s, 51, 5,53} and E given by

X ={(aY Al[aY A [b]ff
Y = (b)X A [b]X A [a]ff

e Interpretation:

— X: "has no b-successor and > 1 a-successors that all satisfy Y”
— Y: “has no a-successor and > 1 b-successors that all satisfy X”
= expected: X = {s}, Y = {s;}

e Computation of FIX([E]): on the board

RWTH

14 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Outline of Lecture 6

Mixing Least and Greatest Fixed Points

RWTH

15 0f 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points |

e So far: least/greatest fixed point of overall system
e But: too restrictive

RWTH

16 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points |

e So far: least/greatest fixed point of overall system
e But: too restrictive
Example 6.8

“It is possible for the system to reach a state which has a livelock (i.e., an infinite
sequence of internal steps).”

RWTH

16 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points |
e So far: least/greatest fixed point of overall system
e But: too restrictive

Example 6.8

“It is possible for the system to reach a state which has a livelock (i.e., an infinite
sequence of internal steps).”

can be specified by
Pos(Livelock)

where

Pos(F) = F \/ (Act)Pos(F) (cf. Theorem 6.2)
Livelock = (7) Livelock

(thus, Livelock = Forever(7) [cf. Example 6.3])

RWTH

16 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour

RWTH

17 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9
min
E:X=Y
max
Y=X
17 of 19 Concurrency Theory o Rm
Winter Semester 2019/20 ‘ Software Modeling
Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

E:X=ZY

Y= X
Fixed-point iteration:
(J—7 T) — (®7 S)
17 of 19 Concurrency Theory
Winter Semester 2019/20 2 Software Modeling Rm
and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour
Example 6.9

i

3
5

3
<

a

E:X=Y
Y =X

Fixed-point iteration:

(L, T) = (0,5) = (s,0)

17 of 19 Concurrency Theory o
Winter Semester 2019/20

Lecture 6: Mutually Recursive Equational Systems

‘ Software Modeling
Il and Verification Chair

RWTH

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour
Example 6.9

Fixed-point iteration:

RWTH

17 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

1

3
5

3
<

a

E:X=Y
Y =X

Fixed-point iteration:

(L, T)=(0,9)

E] 1E IE

(S,0)~ (0,8) — ...

Solution: nesting of specifications by partitioning equations into a sequence of
blocks such that all equations in one block

e are of same type (either min or max) and

e use only variables defined in the same or subsequent blocks

RWTH

17 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Caveat: arbitrary mixing can entail non-monotonic behaviour

Example 6.9

3
5

i

E:X=Y
Y =X

3
<

a

Fixed-point iteration:
E]

(L,T)=(0,5) 5 (s,0) & 0,5 .

Solution: nesting of specifications by partitioning equations into a sequence of
blocks such that all equations in one block

e are of same type (either min or max) and

e use only variables defined in the same or subsequent blocks

— bottom-up, block-wise evaluation by fixed-point iteration

RWTH

17 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (T) Livelock

s & p T g T,
U
T

RWTH

18 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (T) Livelock

s & p T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T +— (-7-)(T):

T=S={s,p.q,r}

RWTH

18 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (T) Livelock

s & p T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T +— (-7-)(T):

T=8={s,p,q,r}—{pq}

18 of 19 Concurrency Theory o
Winter Semester 2019/20

Lecture 6: Mutually Recursive Equational Systems

Software Modeling
Il and Verification Chair

RWTH

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (T) Livelock

s & p T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T +— (-7-)(T):

T=8={s,pq,r}—{p,q} — {p}

18 of 19 Concurrency Theory o
Winter Semester 2019/20

Lecture 6: Mutually Recursive Equational Systems

Software Modeling
Il and Verification Chair

RWTH

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (T) Livelock

s & p T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T +— (-7-)(T):

T=S={s,pq,r}— {p,q}— {p}— {p}

18 of 19 Concurrency Theory o
Winter Semester 2019/20

Lecture 6: Mutually Recursive Equational Systems

Software Modeling
Il and Verification Chair

RWTH

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (7) Livelock

s & 5 T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T — (-7+)(T):
T=8={s,p,q,r}—{p,q} — {p} — {p}
2. Least fixed-point iteration for PosLL : T — {p} U (-Act-)(T):
1 =40

18 of 19 Concurrency Theory o
Winter Semester 2019/20

Lecture 6: Mutually Recursive Equational Systems

Software Modeling
Il and Verification Chair

RWTH

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (7) Livelock

s & 5 T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T — (-7+)(T):
T=8=1{sp,qr; = {p,q} = {p}; = {P}
2. Least fixed-point iteration for PosLL : T — {p} U (-Act-)(T):
L =0~ {p}

18 of 19 Concurrency Theory o
Winter Semester 2019/20

Lecture 6: Mutually Recursive Equational Systems

Software Modeling
Il and Verification Chair

RWTH

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (7) Livelock

s & 5 T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T — (-7+)(T):
T=8=1{sp,qr; = {p,q} = {p}; = {P}
2. Least fixed-point iteration for PosLL : T — {p} U (-Act-)(T):
L =0~ {p}— {s,p}

18 of 19 Concurrency Theory o
Winter Semester 2019/20

Lecture 6: Mutually Recursive Equational Systems

Software Modeling
Il and Verification Chair

RWTH

Mixing Least and Greatest Fixed Points

Mixing Least and Greatest Fixed Points Il

Example 6.10 (cf. Example 6.8)

PosLL = Livelock \/ (Act)PosLL
Livelock = (7) Livelock

s & 5 T g T,
U
T

1. Greatest fixed-point iteration for Livelock : T — (-7+)(T):
T=8=1{sp,qr; = {p,q} = {p}; = {P}
2. Least fixed-point iteration for PosLL : T — {p} U (-Act-)(T):
L =0 {p} = {s,p} = {s,p}

18 of 19 Concurrency Theory o
Winter Semester 2019/20

Lecture 6: Mutually Recursive Equational Systems

Software Modeling
Il and Verification Chair

RWTH

Mixing Least and Greatest Fixed Points

The Modal ;-Calculus

e Logic that supports free mixing of least and greatest fixed points:
— D. Kozen: Results on the Propositional j1-Calculus, Theoretical Computer Science 27, 1983,

19 of 19 Concurrency Theory o Rm
Winter Semester 2019/20 Software Modeling
‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1016/B978-044482830-9/50027-8
https://doi.org/10.1016/B978-044482830-9/50027-8

Mixing Least and Greatest Fixed Points

The Modal ;-Calculus

e Logic that supports free mixing of least and greatest fixed points:
— D. Kozen: Results on the Propositional j1-Calculus, Theoretical Computer Science 27, 1983,
333—-354
e HML variants are fragments thereof
e Expressivity increases with alternation of least and greatest fixed points:

— J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict, Theoretical Computer Science
195(2), 1998, 133-153

RWTH

19 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1016/B978-044482830-9/50027-8
https://doi.org/10.1016/B978-044482830-9/50027-8

Mixing Least and Greatest Fixed Points

The Modal ;-Calculus

e Logic that supports free mixing of least and greatest fixed points:
— D. Kozen: Results on the Propositional j1-Calculus, Theoretical Computer Science 27, 1983,
333—-354
e HML variants are fragments thereof
e Expressivity increases with alternation of least and greatest fixed points:
— J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict, Theoretical Computer Science
195(2), 1998, 133-153
e Decidable model-checking problem for finite LTSs
(in NP M co-NP; linear for HML with one variable)

e Generally undecidable for infinite LTSs and HML with one variable (CCS, Petri nets, ...)

RWTH

19 of 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1016/B978-044482830-9/50027-8
https://doi.org/10.1016/B978-044482830-9/50027-8

Mixing Least and Greatest Fixed Points

The Modal ;-Calculus

e Logic that supports free mixing of least and greatest fixed points:
— D. Kozen: Results on the Propositional j1-Calculus, Theoretical Computer Science 27, 1983,
333—-354
e HML variants are fragments thereof
e Expressivity increases with alternation of least and greatest fixed points:
— J.C. Bradfield: The Modal Mu-Calculus Alternation Hierarchy is Strict, Theoretical Computer Science
195(2), 1998, 133-153
e Decidable model-checking problem for finite LTSs
(in NP M co-NP; linear for HML with one variable)

e Generally undecidable for infinite LTSs and HML with one variable (CCS, Petri nets, ...)

e Overview paper:

— O. Burkart, D. Caucal, F. Moller, B. Steffen: Verification on Infinite Structures, Chapter 9 of
Handbook of Process Algebra, Elsevier, 2001, 545-623

RWTH

19 0f 19 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 6: Mutually Recursive Equational Systems

https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1016/S0304-3975(97)00217-X
https://doi.org/10.1016/B978-044482830-9/50027-8
https://doi.org/10.1016/B978-044482830-9/50027-8

	Recap: Fixed-Point Theory
	Fixed Points and System Properties
	Mutually Recursive Equational Systems
	Mixing Least and Greatest Fixed Points

