

Concurrency Theory

- Winter Semester 2019/20
- **Lecture 5: Fixed-Point Theory**
- Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Exam in Concurrency Theory

- Written exam
- Date: Fri 14 Feb 08:30-10:30
- Registration via RWTHonline by 15 Jan
- No specific requirements for admission

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

3 of 18

Introducing Recursion

Solution: employ recursion!

- $Inv(\langle a \rangle tt) \equiv \langle a \rangle tt \land [a] Inv(\langle a \rangle tt)$
- $Pos([a]ff) \equiv [a]ff \lor \langle a \rangle Pos([a]ff)$

Interpretation: the sets of states $X, Y \subseteq S$ satisfying the respective formula should solve the corresponding equation, i.e.,

- $X = \langle \cdot a \cdot \rangle(S) \cap [\cdot a \cdot](X)$
- $Y = [\cdot a \cdot](\emptyset) \cup \langle \cdot a \cdot \rangle(Y)$

Open questions

- Do such recursive equations (always) have solutions?
- If so, are they unique?
- How can we decide whether a process satisfies a recursive formula ("model checking")?

Recap: Hennessy-Milner Logic with Recursion

Syntax of HML with One Recursive Variable

Initially: only one variable (for simplicity)

Later: mutual recursion

Definition (Syntax of HML with one variable)

F

The set HMF_X of Hennessy-Milner formulae with one variable X over a set of actions *Act* is defined by the following syntax:

$$\begin{array}{ll} ::= X & (variable) \\ | tt & (true) \\ | ff & (false) \\ | F_1 \wedge F_2 & (conjunction) \\ | F_1 \vee F_2 & (disjunction) \\ | \langle \alpha \rangle F & (diamond) \\ | [\alpha]F & (box) \end{array}$$

where $\alpha \in Act$.

5 of 18

Semantics of HML with One Recursive Variable I

So far: $\llbracket F \rrbracket \subseteq S$ for $F \in HMF$ and LTS $(S, Act, \longrightarrow)$

Now: semantics of formula depends on states that (are assumed to) satisfy X

Definition (Semantics of HML with one variable)

Let (S, Act, \rightarrow) be an LTS and $F \in HMF_X$. The semantics of F,

 $\llbracket F \rrbracket : 2^S \to 2^S,$

is defined by

$$\begin{bmatrix} X \end{bmatrix} (T) := T \\ \begin{bmatrix} \text{[tt]} (T) := S \\ \end{bmatrix} [\text{ff} \end{bmatrix} (T) := \emptyset \\ \begin{bmatrix} F_1 \land F_2 \end{bmatrix} (T) := \begin{bmatrix} F_1 \end{bmatrix} (T) \cap \begin{bmatrix} F_2 \end{bmatrix} (T) \\ \begin{bmatrix} F_1 \lor F_2 \end{bmatrix} (T) := \begin{bmatrix} F_1 \end{bmatrix} (T) \cup \begin{bmatrix} F_2 \end{bmatrix} (T) \\ \begin{bmatrix} \langle \alpha \rangle F \end{bmatrix} (T) := \langle \cdot \alpha \cdot \rangle (\llbracket F \rrbracket (T)) \\ \\ \begin{bmatrix} [\alpha] F \end{bmatrix} (T) := [\cdot \alpha \cdot] (\llbracket F \rrbracket (T)) \end{bmatrix}$$

6 of 18

Semantics of HML with One Recursive Variable II

• Idea underlying the definition of

 $\llbracket . \rrbracket : HMF_X
ightarrow (2^S
ightarrow 2^S) :$

if $T \subseteq S$ gives the set of states that satisfy X, then $[\![F]\!](T)$ will be the set of states that satisfy F

- How to determine this *T*?
- According to previous discussion: as solution of recursive equation of the form $X = F_X$ where $F_X \in HMF_X$
- But: solution not unique; therefore write:

 $X \stackrel{\min}{=} F_X$ or $X \stackrel{\max}{=} F_X$

- In the following we will see:
 - 1. Equation $X = F_X$ always solvable
 - 2. Least and greatest solutions are unique and can be obtained by fixed-point iteration

Complete Lattices

Definition (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\bot := \bigsqcup \emptyset \ (= \bigsqcup D) \qquad \text{and} \qquad \top := \bigsqcup \emptyset \ (= \bigsqcup D)$$

respectively denote the least and greatest element of *D*.

Recap: Hennessy-Milner Logic with Recursion

Application to HML with Recursion

Lemma

Let
$$(S, Act, \longrightarrow)$$
 be an LTS. Then $(2^S, \subseteq)$ is a complete lattice with
• $\bigsqcup \mathcal{T} = \bigcup \mathcal{T} = \bigcup_{T \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^S$
• $\bigsqcup \mathcal{T} = \bigcap \mathcal{T} = \bigcap_{T \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^S$
• $\bot = \bigsqcup \emptyset = \bigsqcup 2^S = \emptyset$
• $\top = \bigsqcup \emptyset = \bigsqcup 2^S = S$

Proof.

omitted

9 of 18 Concurrency Theory Winter Semester 201

Winter Semester 2019/20 Lecture 5: Fixed-Point Theory

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

Fixed Points

Definition 5.1 (Fixed point)

Let *D* be some domain, $d \in D$, and $f : D \to D$. If

f(d) = d

then *d* is called a fixed point of *f*.

Fixed Points

Definition 5.1 (Fixed point)

Let *D* be some domain, $d \in D$, and $f : D \to D$. If

f(d) = d

then d is called a fixed point of f.

Example 5.2

1. The (only) fixed points of $f_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n^2$ are 0 and 1

Fixed Points

Definition 5.1 (Fixed point)

Let *D* be some domain, $d \in D$, and $f : D \to D$. If

f(d) = d

then d is called a fixed point of f.

Example 5.2

- 1. The (only) fixed points of $f_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n^2$ are 0 and 1
- 2. A subset $T \subseteq \mathbb{N}$ is a fixed point of $f_2 : 2^{\mathbb{N}} \to 2^{\mathbb{N}} : T \mapsto T \cup \{1, 2\}$ iff $\{1, 2\} \subseteq T$

Definition 5.3 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f : D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

 $d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$

Definition 5.3 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f : D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

 $d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$

Example 5.4

```
1. f_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n^2 is monotonic w.r.t. (\mathbb{N}, \leq)
```


Definition 5.3 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f : D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

 $d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$

Example 5.4

```
1. f_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n^2 is monotonic w.r.t. (\mathbb{N}, \leq)
2. f_2 : 2^{\mathbb{N}} \to 2^{\mathbb{N}} : T \mapsto T \cup \{1, 2\} is monotonic w.r.t. (2^{\mathbb{N}}, \subseteq)
```


Definition 5.3 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f : D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

 $d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$

Example 5.4

1.
$$f_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n^2$$
 is monotonic w.r.t. (\mathbb{N}, \leq)
2. $f_2 : 2^{\mathbb{N}} \to 2^{\mathbb{N}} : T \mapsto T \cup \{1, 2\}$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$
3. Let $\mathcal{T} := \{T \subseteq \mathbb{N} \mid T \text{ finite}\}$.
Then $f_3 : \mathcal{T} \to \mathbb{N} : T \mapsto \sum_{n \in T} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq)

Definition 5.3 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders. A function $f : D \to D'$ is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

 $d_1 \sqsubseteq d_2 \implies f(d_1) \sqsubseteq' f(d_2).$

Example 5.4

1.
$$f_1 : \mathbb{N} \to \mathbb{N} : n \mapsto n^2$$
 is monotonic w.r.t. (\mathbb{N}, \leq)
2. $f_2 : 2^{\mathbb{N}} \to 2^{\mathbb{N}} : T \mapsto T \cup \{1, 2\}$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$
3. Let $\mathcal{T} := \{T \subseteq \mathbb{N} \mid T \text{ finite}\}$.
Then $f_3 : \mathcal{T} \to \mathbb{N} : T \mapsto \sum_{n \in T} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .
4. $f_4 : 2^{\mathbb{N}} \to 2^{\mathbb{N}} : T \mapsto \mathbb{N} \setminus T$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$
(since, e.g., $\emptyset \subseteq \mathbb{N}$ but $f_4(\emptyset) = \mathbb{N} \not\subseteq f_4(\mathbb{N}) = \emptyset$).

The Fixed-Point Theorem I

Alfred Tarski (1901–1983)

Theorem 5.5 (Tarski's fixed-point theorem)

Let (D, \sqsubseteq) be a complete lattice and $f : D \rightarrow D$ monotonic. Then f has a least fixed point fix(f) and a greatest fixed point FIX(f) given by

 $fix(f) = \prod \{ d \in D \mid f(d) \sqsubseteq d \}$ $FIX(f) = \mid \{ d \in D \mid d \sqsubset f(d) \}$

 $fix(f) = \prod \{ d \in D \mid f(d) \sqsubseteq d \}$ (GLB of all pre-fixed points of f)

 $FIX(f) = \bigsqcup \{ d \in D \mid d \sqsubseteq f(d) \}$ (LUB of all post-fixed points of f)

The Fixed-Point Theorem I

Alfred Tarski (1901–1983)

Theorem 5.5 (Tarski's fixed-point theorem)

Let (D, \sqsubseteq) be a complete lattice and $f : D \rightarrow D$ monotonic. Then f has a least fixed point fix(f) and a greatest fixed point FIX(f) given by

 $fix(f) = \prod \{ d \in D \mid f(d) \sqsubseteq d \}$ (GLB of all pre-fixed points of f) $FIX(f) = \bigsqcup \{ d \in D \mid d \sqsubseteq f(d) \}$ (LUB of all post-fixed points of f)

Proof.

on the board

The Fixed-Point Theorem II

Example 5.6 (cf. Example 5.2)

- Let $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto T \cup \{1, 2\}$
- As seen in Example 5.2: f(T) = T iff $\{1, 2\} \subseteq T$

The Fixed-Point Theorem II

Example 5.6 (cf. Example 5.2)

- Let $f: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: T \mapsto T \cup \{1, 2\}$
- As seen in Example 5.2: f(T) = T iff $\{1, 2\} \subseteq T$
- Theorem 5.5 for fix: $fix(f) = \prod \{ d \in D \mid f(d) \sqsubseteq d \}$

$$= \bigcap \{T \subseteq \mathbb{N} \mid f(T) \subseteq T\} \\= \bigcap \{T \subseteq \mathbb{N} \mid T \cup \{1, 2\} \subseteq T\} \\= \bigcap \{T \subseteq \mathbb{N} \mid \{1, 2\} \subseteq T\} \\= \{1, 2\}$$

(Lemma 4.15) (Def. *f*)

The Fixed-Point Theorem II

Example 5.6 (cf. Example 5.2)

Outline of Lecture 5

Recap: Hennessy-Milner Logic with Recursion

The Fixed-Point Theorem

The Fixed-Point Theorem for Finite Lattices

Theorem 5.7 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f : D \to D$ monotonic. Then $fix(f) = f^m(\bot)$ and $FIX(f) = f^M(\top)$ for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

The Fixed-Point Theorem for Finite Lattices

Theorem 5.7 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f : D \to D$ monotonic. Then $fix(f) = f^m(\bot)$ and $FIX(f) = f^M(\top)$ for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

The Fixed-Point Theorem for Finite Lattices

Theorem 5.7 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f : D \to D$ monotonic. Then $fix(f) = f^m(\bot)$ and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

Example 5.8

• Let $f : 2^{\{0,1,2\}} \to 2^{\{0,1,2\}} : T \mapsto T \cup \{1\} \setminus \{2\}$ (monotonic on $(2^{\{0,1,2\}}, \subseteq)$)

The Fixed-Point Theorem for Finite Lattices

Theorem 5.7 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f : D \rightarrow D$ monotonic. Then

 $fix(f) = f^m(\perp)$ and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

Example 5.8

• Let $f: 2^{\{0,1,2\}} \to 2^{\{0,1,2\}}: T \mapsto T \cup \{1\} \setminus \{2\}$ (monotonic on $(2^{\{0,1,2\}}, \subseteq)$)

• $f^0(\perp) = \emptyset$, $f^1(\perp) = \{1\}$, $f^2(\perp) = \{1\} = f^1(\perp)$ \implies fix $(f) = \{1\}$ after m = 1 iterations

The Fixed-Point Theorem for Finite Lattices

Theorem 5.7 (Fixed-point theorem for finite lattices)

Let (D, \sqsubseteq) be a finite complete lattice and $f : D \rightarrow D$ monotonic. Then

 $fix(f) = f^m(\perp)$ and $FIX(f) = f^M(\top)$

for some $m, M \in \mathbb{N}$ where $f^0(d) := d$ and $f^{k+1}(d) := f(f^k(d))$.

Proof.

on the board

Example 5.8

- Let $f : 2^{\{0,1,2\}} \to 2^{\{0,1,2\}} : T \mapsto T \cup \{1\} \setminus \{2\}$ (monotonic on $(2^{\{0,1,2\}}, \subseteq)$)
- $f^{0}(\bot) = \emptyset, f^{1}(\bot) = \{1\}, f^{2}(\bot) = \{1\} = f^{1}(\bot)$
 - \implies fix(f) = {1} after m = 1 iterations

•
$$f^0(\top) = \{0, 1, 2\}, f^1(\top) = \{0, 1\}, f^2(\top) = \{0, 1\} = f^1(\top)$$

 \implies FIX(f) = {0, 1} after M = 1 iterations

Application to HML with Recursion

Lemma 5.9

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then 1. $\llbracket F \rrbracket : 2^S \rightarrow 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$

Application to HML with Recursion

Lemma 5.9

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then 1. $\llbracket F \rrbracket : 2^S \rightarrow 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$ 2. fix $(\llbracket F \rrbracket) = \bigcap \{T \subseteq S \mid \llbracket F \rrbracket (T) \subseteq T\}$ 3. FIX $(\llbracket F \rrbracket) = \bigcup \{T \subseteq S \mid T \subseteq \llbracket F \rrbracket (T)\}$

Application to HML with Recursion

Lemma 5.9

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then 1. $\llbracket F \rrbracket : 2^S \to 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$ 2. $fix(\llbracket F \rrbracket) = \bigcap \{T \subseteq S \mid \llbracket F \rrbracket(T) \subseteq T\}$ 3. $FIX(\llbracket F \rrbracket) = \bigcup \{T \subseteq S \mid T \subseteq \llbracket F \rrbracket(T)\}$ If, in addition, S is finite, then 4. $fix(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(\emptyset)$ for some $m \in \mathbb{N}$ 5. $FIX(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(S)$ for some $M \in \mathbb{N}$

Application to HML with Recursion

Lemma 5.9

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. Then 1. $\llbracket F \rrbracket : 2^S \rightarrow 2^S$ is monotonic w.r.t. $(2^S, \subseteq)$ 2. $fix(\llbracket F \rrbracket) = \bigcap \{T \subseteq S \mid \llbracket F \rrbracket(T) \subseteq T\}$ 3. $FIX(\llbracket F \rrbracket) = \bigcup \{T \subseteq S \mid T \subseteq \llbracket F \rrbracket(T)\}$ If, in addition, S is finite, then 4. $fix(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(\emptyset)$ for some $m \in \mathbb{N}$ 5. $FIX(\llbracket F \rrbracket) = \llbracket F \rrbracket^m(S)$ for some $M \in \mathbb{N}$

Proof.

- 1. by induction on the structure of *F* (details omitted)
- 2. by Lemma 4.15 and Theorem 5.5
- 3. by Lemma 4.15 and Theorem 5.5
- 4. by Lemma 4.15 and Theorem 5.7
- 5. by Lemma 4.15 and Theorem 5.7

An Example

Example 5.10

Let $S := \{s, s_1, s_2, t, t_1\}.$

An Example

Example 5.10

Let
$$S := \{s, s_1, s_2, t, t_1\}.$$

1. Solution of

 $X \stackrel{{}_{\scriptscriptstyle{max}}}{=} \langle b \rangle$ tt $\wedge [b]X$

("all *b**-successors have a *b*-successor"): on the board

An Example

Example 5.10

Let
$$S := \{s, s_1, s_2, t, t_1\}.$$

1. Solution of

 $X \stackrel{{}_{\scriptscriptstyle{{\scriptscriptstyle{}}}}}{=} \langle b \rangle$ tt $\wedge [b]X$

("all *b**-successors have a *b*-successor"): on the board

2. Solution of

 $Y \stackrel{\scriptscriptstyle{\textit{min}}}{=} \langle b \rangle$ tt $\lor \langle \{a, b\} \rangle Y$

("a *b*-transition is reachable"): on the board

