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Recap: Hennessy-Milner Logic and Process Traces

Syntax of HML
Definition (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is defined by the
following syntax:

F .=t (true)
ff (false)
Fi N\ Fo (conjunction)
FiV F (disjunction)
(a)F (diamond)
[a]F (box)

where o € Act.

Abbreviations for L = {a,...,a,} (n € N):
o (L)F = (a1)FV ...V {apF
o [L|F :=[a]F N ... A o] F
e In particular, (0)F := ff and [(]F := tt
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Recap: Hennessy-Milner Logic and Process Traces

Semantics of HML
Definition (Semantics of HML)

Let (S, Act, —) be an LTS and F € HMF. The set of processes in S that satisfy F,
[F] C S, is defined by: [tt] .= S [ff] =0
HF1 VAN FQ]] = [[F1]] M [[Fg]] HF1 V Fg]] = [[F1]] U [[Fg]]
[(e) F] == (-a)([F]) lle]F] = [-a]([F])

where (-a-), [-a-] : 25 — 25 are given by

(a)(T)={s€S|IcT:s 5}

[a](T) ={s€cS|V§€S:s——+§ = §cT}
We write s = F iff s € | F]. Two HML formulae are equivalent (written F = G) iff
they are satisfied by the same processes in every LTS.
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Recap: Hennessy-Milner Logic and Process Traces

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma

For every F € HMF there exists F° € HMF such that [F°]| = S\ [F] for every LTS
(S, Act, —>).

Proof.
Definition of F°:

tt€ = ff ff¢ .= tt
(FiAF)°:=FEV FS  (FiV Fa)°:= FS A FS
((a)F)° = o] F° ([a]F)° = () F°
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Recap: Hennessy-Milner Logic and Process Traces

Process Traces

Goal: reduce processes to the action sequences they can perform
Definition (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P € Prc such that P —— P’}

be the trace language of P (where = T oo Mforw = as...ap).
P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example (One-place buffer)
B = in.out.B
—> Tr(B) = (in- out)* - (in+ ¢)
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Recap: Hennessy-Milner Logic and Process Traces

HML and Process Traces

Lemma
Let (Prc, Act,—) be an LTS, and let P, Q € Prc satisfy the same HMF (i.e.,
VF € HMF : P = F <= Q= F). Then Tr(P) = Tr(Q).

Proof.
on the board

Remark: the converse does not hold.
Example

e Let P := a.(b.nil + c.nil) € Prc, Q := a.b.nil + a.c.nil € Prc
e Then Tr(P) = Tr(Q) = {¢, a, ab, ac}

o Let F:= [a]((b)tt A (C)tt) € HMF

e Then P = FbutQ |~ F

e [Later: P, Q € Prc HML-equivalent iff bismilar]
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Adding Recursion to HML

Outline of Lecture 4

Adding Recursion to HML
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Adding Recursion to HML

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour
e each modal operator ([.], (.)) talks about one step
e only finite nesting of operators (modal depth)
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Adding Recursion to HML

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour
e each modal operator ([.], (.)) talks about one step
e only finite nesting of operators (modal depth)

Example 4.1

o F := ((a)[a|ff) vV (b)tt € HMF has modal depth 2
e Checking F involves analysis of all behaviours of length < 2
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Adding Recursion to HML

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour
e each modal operator ([.], (.)) talks about one step
e only finite nesting of operators (modal depth)

Example 4.1

o F := ((a)[a|ff) vV (b)tt € HMF has modal depth 2
e Checking F involves analysis of all behaviours of length < 2

But: sometimes necessary to refer to arbitrarily long computations
(e.g., “no deadlock state reachable”

e possible solution: support infinite conjunctions and disjunctions
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Adding Recursion to HML

Infinite Conjunctions

Example 4.2

eletC=acC,D=aD-+ anil
e Then C |~ [a](a)tt but D £ [a](a)tt (i.e., C and D distinguishable by formula of depth 2)
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Adding Recursion to HML

Infinite Conjunctions

Example 4.2

eletC=acC,D=aD-+ anil
e Then C |~ [a](a)tt but D £ [a](a)tt (i.e., C and D distinguishable by formula of depth 2)
e Now redefine Das D, = a.D,+ a.E,where n € N, Ex = a.Ex_1 (1 < k <n), Ey = nil
e Then (for [o]*F := [a] ... [a] F where F € HMF):

N——

k times

~ C [ [a]*{a)ttforall k € N
— D, = [a]*(a)ttforall 0 < k < n
— D, [~ [a]*(a)ttforall k > n
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Adding Recursion to HML

Infinite Conjunctions

Example 4.2

eletC=acC,D=aD-+ anil
e Then C |~ [a](a)tt but D £ [a](a)tt (i.e., C and D distinguishable by formula of depth 2)
e Now redefine Das D, = a.D,+ a.E,where n € N, Ex = a.Ex_1 (1 < k < n), Ey = nil
e Then (for [o]*F := [a] ... [a] F where F € HMF):

N——

k times

~ C [ [a]*{a)ttforall k € N
— D, = [a*(a)ttforall 0 < k < n
— D, £ [a]*(a)ttforall k > n
e Conclusion: no single HML formula can distinguish C and all D,
— unsatisfactory as behaviour clearly different
e Generally: invariant property “always (a)tt” not expressible

e Requires infinite conjunction:

Inv({a)tt) = (a)tt A [al(a)tt A [allal(att A ... = /\ [a"(att
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Adding Recursion to HML

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions
Example 4.3

eletC=acC,D=aD -+ a.nil as before
e C has no possibility to terminate

e D has the option to terminate (i.e., to eventually satisfy [a]ff) at any time by choosing the
a.nil branch
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Adding Recursion to HML

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions
Example 4.3

eletC=acC,D=aD -+ a.nil as before
e C has no possibility to terminate

e D has the option to terminate (i.e., to eventually satisfy [a]ff) at any time by choosing the
a.nil branch

e Representable by infinite disjunction:

Pos([alff) = [alff v (a)[alff v (a)(a)[alff v ... = \/ (a)"[a]ff
keN
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Adding Recursion to HML

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions
Example 4.3

eletC=acC,D=aD -+ a.nil as before
e C has no possibility to terminate

e D has the option to terminate (i.e., to eventually satisfy [a]ff) at any time by choosing the
a.nil branch

e Representable by infinite disjunction:

Pos([alff) = [alff v (a)[alff v (a)(a)[alff v ... = \/ (a)"[a]ff
keN

Problem: infinite formulae not easy to handle
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Adding Recursion to HML

Introducing Recursion

Solution: employ recursion!

e Inv((a)tt) = (a)tt A [a] Inv({a)tt)
e Pos([a]ff) = [4]ff v (a) Pos([a]ff)
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Adding Recursion to HML

Introducing Recursion

Solution: employ recursion!

e Inv((a)tt) = (a)tt A [a] Inv({a)tt)

e Pos([a]ff) = [4]ff vV (a) Pos([a]ff)
Interpretation: the sets of states X, Y C S satisfying the respective formula should
solve the corresponding equation, i.e.,

o X = (-a)(S)N[a](X)

o Y =[a]@)u(a)(Y)
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Adding Recursion to HML

Introducing Recursion

Solution: employ recursion!

e Inv((a)tt) = (a)tt A [a] Inv({a)tt)

e Pos([a]ff) = [4]ff vV (a) Pos([a]ff)
Interpretation: the sets of states X, Y C S satisfying the respective formula should
solve the corresponding equation, i.e.,

o X = (-a)(S)N[a](X)

o Y =[a]@)u(a)(Y)

Open questions

e Do such recursive equations (always) have solutions?
e If so, are they unique?
e How can we decide whether a process satisfies a recursive formula (“model checking”)?
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Adding Recursion to HML

Existence of Solutions
Example 4.4

e Consider again C = a.C, D = a.D + a.nil
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Adding Recursion to HML

Existence of Solutions
Example 4.4

e Consider again C = a.C, D = a.D + a.nil

e Invariant: X = (a)tt A [a] X
— X = () is a solution (as no process can satisfy both (a)tt and [a]ff)
— but we expect C € X (as C can perform a invariantly)

— in fact, X = {C} also solves the equation (and is the greatest solution w.r.t. C)
— write X = (a)tt A [g] X
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Adding Recursion to HML

Existence of Solutions
Example 4.4

e Consider again C = a.C, D = a.D + a.nil
e Invariant: X = (a)tt A [a] X
— X = () is a solution (as no process can satisfy both (a)tt and [a]ff)
— but we expect C € X (as C can perform a invariantly)
— in fact, X = {C} also solves the equation (and is the greatest solution w.r.t. C)
— write X = (a)tt A [g] X
e Possibility: Y = [a]ff V (a) Y
— greatest solution: Y = {C, D, nil}
— but we expect C ¢ Y (as C cannot terminate at all)
— here: least solution w.r.t. C: Y = {D, nil}

— write Y = [4]ff V (a) Y
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Adding Recursion to HML

Uniqueness of Solutions

Uniqueness of solutions

e Use greatest solutions for properties that hold unless the process has a finite computation
that disproves it.

e Use least solutions for properties that hold if the process has a finite computation that
proves it.
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Adding Recursion to HML

Uniqueness of Solutions
Uniqueness of solutions

e Use greatest solutions for properties that hold unless the process has a finite computation
that disproves it.

e Use least solutions for properties that hold if the process has a finite computation that
proves it.

Example 4.5

Let (S, Act, —>) be an LTS, s € S, and F € HMF.

e Invariant: Inv(F) = X for X = F A [Act] X
— s = Inv(F) if all states reachable from s satisfy F
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Adding Recursion to HML

Uniqueness of Solutions
Uniqueness of solutions
e Use greatest solutions for properties that hold unless the process has a finite computation

that disproves it.

e Use least solutions for properties that hold if the process has a finite computation that
proves it.

Example 4.5

Let (S, Act, —>) be an LTS, s € S, and F € HMF.
e Invariant: Inv(F) = X for X = F A [Act] X
— s = Inv(F) if all states reachable from s satisfy F
e Possibility: Pos(F) = Y for Y = FV (Act)Y
— s |= Pos(F) if a state satisfying F is reachable from s
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Adding Recursion to HML

Uniqueness of Solutions
Uniqueness of solutions

e Use greatest solutions for properties that hold unless the process has a finite computation
that disproves it.

e Use least solutions for properties that hold if the process has a finite computation that
proves it.

Example 4.5

Let (S, Act, —>) be an LTS, s € S, and F € HMF.
e Invariant: Inv(F) = X for X = F A [Act] X
— s = Inv(F) if all states reachable from s satisfy F
e Possibility: Pos(F) = Y for Y = F V (Act) Y
— s |= Pos(F) if a state satisfying F is reachable from s
o Safety: Safe(F) = X for X = F A ([Act]ff v (Act) X)
— s |= Safe(F) if s has a complete (i.e., infinite or terminating) transition sequence where each state

satisfies F
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Adding Recursion to HML

Uniqueness of Solutions
Uniqueness of solutions

e Use greatest solutions for properties that hold unless the process has a finite computation
that disproves it.

e Use least solutions for properties that hold if the process has a finite computation that
proves it.

Example 4.5

Let (S, Act, —>) be an LTS, s € S, and F € HMF.

e Invariant: Inv(F) = X for X = F A [Act] X
— s = Inv(F) if all states reachable from s satisfy F
e Possibility: Pos(F) = Y for Y = FV (Act)Y
— s |= Pos(F) if a state satisfying F is reachable from s
o Safety: Safe(F) = X for X = F A ([Act]ff v (Act) X)
- S ): Safe(F) if s has a complete (i.e., infinite or terminating) transition sequence where each state
satisfies _
e Eventuality: Evt(F) = Y for Y = F \ ({Act)tt A [Act]Y)
— s |= Evi(F) if each complete transition sequence starting in s contains a state satisfying
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HML with One Recursive Variable

Outline of Lecture 4

HML with One Recursive Variable
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HML with One Recursive Variable

Syntax of HML with One Recursive Variable

Initially: only one variable (for simplicity)
Later: mutual recursion
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HML with One Recursive Variable

Syntax of HML with One Recursive Variable

Initially: only one variable (for simplicity)
Later: mutual recursion

Definition 4.6 (Syntax of HML with one variable)

The set HMF x of Hennessy-Milner formulae with one variable X over a set of actions
Act is defined by the following syntax:

F:=X (
tt (
ff (
Fi N\ Fo (conjunction)
FiV F (
(@) F (
[a]F (

where o € Act.
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable |

So far: [F] € Sfor F € HMF and LTS (S, Act, —)
Now: semantics of formula depends on states that (are assumed to) satisfy X
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable |

So far: [F] € Sfor F € HMF and LTS (S, Act, —)
Now: semantics of formula depends on states that (are assumed to) satisfy X
Definition 4.7 (Semantics of HML with one variable)
Let (S, Act, —) be an LTS and F € HMF x. The semantics of F,
[F] : 2° — 2°,

is defined by IXI(T)
[tt](T)
[ff](T)
[Fi A FZ:(T) = [FR(T)N [R](T)
[Fi v R[(T): |

(7)

(7)

[{a)F]

[l F]
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable Il

Example 4.8

Let S := {si, 52, S3}-

18 of 24 Concurrency Theory
Winter Semester 2019/20

Lecture 4: Hennessy-Milner Logic with Recursion

)

4

Software Modeling
Il and Verification Chair

RWTH



HML with One Recursive Variable

Semantics of HML with One Recursive Variable Il

Example 4.8

Let S := {si, 52, S3}-
o [(@X]({s1}) = {s3}

18 of 24 Concurrency Theory
Winter Semester 2019/20

Lecture 4: Hennessy-Milner Logic with Recursion

)

4

Software Modeling
Il and Verification Chair

RWTH



HML with One Recursive Variable

Semantics of HML with One Recursive Variable Il

Example 4.8

Let S := {si, 52, S3}-
o [(@)X]({s1}) = {ss}
o [(@)X]({s1,52}) = {s1, 53}
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable Il

Example 4.8

Let S := {si, S, S3}-
o [(@)X]({s1}) = {s3}
o [{(@)X]({s1,s2}) = {s1, 83}
o [[b]X]({s2}) = {s2, 83}
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable lll
e Idea underlying the definition of
[]: HMFx — (2° — 25) :

if T C S gives the set of states that satisfy X, then [F](T) will be the set of states that
satisfy F
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable Il

e Idea underlying the definition of
[]: HMFx — (2° — 25) :
if T C S gives the set of states that satisfy X, then [F](T) will be the set of states that
satisfy F
e How to determine this 77

e According to previous discussion: as solution of recursive equation of the form X = Fy
where Fxy € HMF x
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable Il

e Idea underlying the definition of
[]: HMFx — (2° — 25) :
if T C S gives the set of states that satisfy X, then [F](T) will be the set of states that
satisfy F
e How to determine this 77

e According to previous discussion: as solution of recursive equation of the form X = Fy
where Fxy € HMF x

e But: solution not unique; therefore write:

XZF, or XZF
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable Il

e Idea underlying the definition of
[]: HMFx — (2° — 25) :
if T C S gives the set of states that satisfy X, then [F](T) will be the set of states that
satisfy F
e How to determine this 77

e According to previous discussion: as solution of recursive equation of the form X = Fy
where Fxy € HMF x

e But: solution not unique; therefore write:

XZF, or XZF

e In the following we will see:

1. Equation X = Fy always solvable
2. Least and greatest solutions are unique and can be obtained by fixed-point iteration
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Algebraic Foundations

Outline of Lecture 4

Algebraic Foundations
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Algebraic Foundations

Partial Orders
Definition 4.9 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[ € D x D such that, for every d;, d>, d5 € D,

reflexivity: di T d;

transitivity: d1 E d2 and d2 E d3 — d1 E d3

antisymmetry: d1 E d2 and d2 |; d1 — d1 = d2

It is called total if, in addition, always d; L_ d»> or db L d.
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Algebraic Foundations

Partial Orders
Definition 4.9 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[ € D x D such that, for every d;, d>, dz € D,

reflexivity: di T d;

transitivity: d1 E d2 and d2 E d3 — d1 E d3

antisymmetry: d1 E d2 and d2 E d1 — d1 = d2

It is called total if, in addition, always d; L_ d»> or db L d.

Example 4.10

1. (N, <) is a total partial order
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Algebraic Foundations

Partial Orders
Definition 4.9 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[ € D x D such that, for every d;, d>, dz € D,

reflexivity: di T d;

transitivity: d1 E d2 and d2 E d3 — d1 E d3

antisymmetry: d1 E d2 and d2 E d1 — d1 = d2

It is called total if, in addition, always d; L_ d»> or db L d.

Example 4.10

1. (N, <) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
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Algebraic Foundations

Partial Orders
Definition 4.9 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[ € D x D such that, for every d;, d>, dz € D,

reflexivity: di T d;

transitivity: d1 E d2 and d2 E d3 — d1 E d3

antisymmetry: d1 E d2 and d2 E d1 — d1 = d2

It is called total if, in addition, always d; L_ d»> or db L d.

Example 4.10

1. (N, <) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
3. (2%, €) is a (non-total) partial order
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Algebraic Foundations

Partial Orders
Definition 4.9 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a relation
[ € D x D such that, for every d;, d>, dz € D,

reflexivity: di T d;

transitivity: d1 E d2 and dg E d3 — d1 E d3

antisymmetry: d1 E d2 and d2 E d1 — d1 = d2

It is called total if, in addition, always d; L_ d»> or db L d.

Example 4.10

N, <) is a total partial order
, <) is not a partial order (since not reflexive)
2N C) is a (non-total) partial order
Y * ) is a (non-total) partial order, where ¥ is some alphabet and C denotes prefix
orderlng (uC I: V < dw el uw=v)
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Algebraic Foundations

Upper and Lower Bounds

Definition 4.11 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).

It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).
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Algebraic Foundations

Upper and Lower Bounds

Definition 4.11 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).

It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).

2. An element d € D is called an lower bound of T if d C ¢ for every t € T (notation: d C T).
It is called greatest lower bound (GLB) (or infimum) of T if @' C d for every lower bound @’
of T (notation: d =[] 7).
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Algebraic Foundations

Upper and Lower Bounds

Definition 4.11 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).
It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).

2. An element d € D is called an lower bound of T if d C ¢ for every t € T (notation: d C T).
It is called greatest lower bound (GLB) (or infimum) of T if @' C d for every lower bound @’
of T (notation: d =[] 7).

Example 4.12

1. T € N has a LUB/GLB in (N, <) iff it is finite/non-empty
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Algebraic Foundations

Upper and Lower Bounds

Definition 4.11 ((Least) upper bounds and (greatest) lower bounds)

Let (D, C) be a partial order and T C D.

1. An element d € D is called an upper bound of T if t C d for every t € T (notation: T C d).
It is called least upper bound (LUB) (or supremum) of T if additionally d C d’ for every
upper bound d’ of T (notation: d = | | T).

2. An element d € D is called an lower bound of T if d C ¢ for every t € T (notation: d C T).
It is called greatest lower bound (GLB) (or infimum) of T if @' C d for every lower bound @’
of T (notation: d =[] 7).

Example 4.12

1. T € N has a LUB/GLB in (N, <) iff it is finite/non-empty
2. In (2%, C), every subset T C 2" has an LUB and GLB:

|_|T:UT and |_|T:ﬂT
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Algebraic Foundations

Complete Lattices

Definition 4.13 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T:zl_l@(:LID)

respectively denote the least and greatest element of D.
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Algebraic Foundations

Complete Lattices

Definition 4.13 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T::H@(:UD)

respectively denote the least and greatest element of D.

Example 4.14

1. (N, <) is not a complete lattice as, e.g., N does not have a LUB
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Algebraic Foundations

Complete Lattices

Definition 4.13 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T::H@(:UD)

respectively denote the least and greatest element of D.

Example 4.14

1. (N, <) is not a complete lattice as, e.g., N does not have a LUB
2. (NU{oo}, <) with n < oo for all n € N is a complete lattice
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Algebraic Foundations

Complete Lattices

Definition 4.13 (Complete lattice)

A complete lattice is a partial order (D, C) such that all subsets of D have LUBs and
GLBs. In this case,

J_::|_|@(:|_|D) and T::H@(:UD)

respectively denote the least and greatest element of D.

Example 4.14

1. (N, <) is not a complete lattice as, e.g., N does not have a LUB
2. (NU{oo}, <) with n < oo for all n € N is a complete lattice
3. (24, ©) is a complete lattice
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Algebraic Foundations

Application to HML with Recursion

Lemma 4.15

Let (S, Act, —) be an LTS. Then (2°, C) is a complete lattice with
e |T=UT =Uses Tforall T C 2°
e[ 1T =NT =gy T forall T C 2°
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Algebraic Foundations

Application to HML with Recursion

Lemma 4.15

Let (S, Act, —) be an LTS. Then (2°, C) is a complete lattice with
e |T=UT =Uses Tforall T C 2°

e[ 1T =NT =gy T forall T C 2°

e Ll =||0=[]2°=0

QT:H@ZUZS:S
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Algebraic Foundations

Application to HML with Recursion

Lemma 4.15

Let (S, Act, —) be an LTS. Then (2°, C) is a complete lattice with
e |T=UT =Uses Tforall T C 2°

e[ 1T =NT =gy T forall T C 2°

e Ll =||0=[]2°=0

QT:H@ZUZS:S

Proof.
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