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Recap: Hennessy-Milner Logic and Process Traces

Syntax of HML

Definition (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is defined by the
following syntax:

F ::= tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act .

Abbreviations for L = {α1, . . . , αn} (n ∈ N):
• 〈L〉F := 〈α1〉F ∨ . . . ∨ 〈αn〉F
• [L]F := [α1]F ∧ . . . ∧ [αn]F
• In particular, 〈∅〉F := ff and [∅]F := tt
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Recap: Hennessy-Milner Logic and Process Traces

Semantics of HML

Definition (Semantics of HML)

Let (S,Act,−→) be an LTS and F ∈ HMF . The set of processes in S that satisfy F ,
JFK ⊆ S, is defined by: JttK := S JffK := ∅

JF1 ∧ F2K := JF1K ∩ JF2K JF1 ∨ F2K := JF1K ∪ JF2K
J〈α〉FK := 〈·α·〉(JFK) J[α]FK := [·α·](JFK)

where 〈·α·〉, [·α·] : 2S → 2S are given by

〈·α·〉(T ) := {s ∈ S | ∃s′ ∈ T : s
α−→ s′}

[·α·](T ) := {s ∈ S | ∀s′ ∈ S : s
α−→ s′ =⇒ s′ ∈ T}

We write s |= F iff s ∈ JFK. Two HML formulae are equivalent (written F ≡ G) iff
they are satisfied by the same processes in every LTS.

Example (〈·α·〉, [·α·] operators)

on the board
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Recap: Hennessy-Milner Logic and Process Traces

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma

For every F ∈ HMF there exists F c ∈ HMF such that JF cK = S \ JFK for every LTS
(S,Act,−→).

Proof.

Definition of F c:
ttc := ff ffc := tt

(F1 ∧ F2)c := F c
1 ∨ F c

2 (F1 ∨ F2)c := F c
1 ∧ F c

2
(〈α〉F)c := [α]F c ([α]F)c := 〈α〉F c

JF cK = S \ JFK: on the board
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Recap: Hennessy-Milner Logic and Process Traces

Process Traces

Goal: reduce processes to the action sequences they can perform

Definition (Trace language)

For every P ∈ Prc, let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→ P ′}

be the trace language of P (where
w−→ :=

a1−→ ◦ . . . ◦ an−→ for w = a1 . . . an).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example (One-place buffer)

B = in.out.B

=⇒ Tr(B) = (in · out)∗ · (in + ε)
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Recap: Hennessy-Milner Logic and Process Traces

HML and Process Traces

Lemma

Let (Prc,Act,−→) be an LTS, and let P,Q ∈ Prc satisfy the same HMF (i.e.,
∀F ∈ HMF : P |= F ⇐⇒ Q |= F). Then Tr(P) = Tr(Q).

Proof.

on the board

Remark: the converse does not hold.

Example

• Let P := a.(b.nil + c.nil) ∈ Prc, Q := a.b.nil + a.c.nil ∈ Prc
• Then Tr(P) = Tr(Q) = {ε, a, ab, ac}
• Let F := [a](〈b〉tt ∧ 〈c〉tt) ∈ HMF
• Then P |= F but Q 6|= F
• [Later: P,Q ∈ Prc HML-equivalent iff bismilar]
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Adding Recursion to HML

Outline of Lecture 4
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Adding Recursion to HML

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour
• each modal operator ([.], 〈.〉) talks about one step
• only finite nesting of operators (modal depth)

Example 4.1

• F := (〈a〉[a]ff) ∨ 〈b〉tt ∈ HMF has modal depth 2
• Checking F involves analysis of all behaviours of length ≤ 2

But: sometimes necessary to refer to arbitrarily long computations
(e.g., “no deadlock state reachable”
• possible solution: support infinite conjunctions and disjunctions
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Adding Recursion to HML

Infinite Conjunctions

Example 4.2

• Let C = a.C, D = a.D + a.nil
• Then C |= [a]〈a〉tt but D 6|= [a]〈a〉tt (i.e., C and D distinguishable by formula of depth 2)

• Now redefine D as Dn = a.Dn + a.En where n ∈ N, Ek = a.Ek−1 (1 ≤ k ≤ n), E0 = nil
• Then (for [α]kF := [α] . . . [α]︸ ︷︷ ︸

k times

F where F ∈ HMF ):

– C |= [a]k〈a〉tt for all k ∈ N
– Dn |= [a]k〈a〉tt for all 0 ≤ k ≤ n
– Dn 6|= [a]k〈a〉tt for all k > n

• Conclusion: no single HML formula can distinguish C and all Dn

– unsatisfactory as behaviour clearly different

• Generally: invariant property “always 〈a〉tt” not expressible
• Requires infinite conjunction:

Inv(〈a〉tt) = 〈a〉tt ∧ [a]〈a〉tt ∧ [a][a]〈a〉tt ∧ . . . =
∧
k∈N

[a]k〈a〉tt
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Adding Recursion to HML

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.3

• Let C = a.C, D = a.D + a.nil as before
• C has no possibility to terminate
• D has the option to terminate (i.e., to eventually satisfy [a]ff) at any time by choosing the

a.nil branch

• Representable by infinite disjunction:

Pos([a]ff) = [a]ff ∨ 〈a〉[a]ff ∨ 〈a〉〈a〉[a]ff ∨ . . . =
∨
k∈N

〈a〉k [a]ff

Problem: infinite formulae not easy to handle
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Adding Recursion to HML

Introducing Recursion

Solution: employ recursion!

• Inv(〈a〉tt) ≡ 〈a〉tt ∧ [a] Inv(〈a〉tt)
• Pos([a]ff) ≡ [a]ff ∨ 〈a〉Pos([a]ff)

Interpretation: the sets of states X ,Y ⊆ S satisfying the respective formula should
solve the corresponding equation, i.e.,
• X = 〈·a·〉(S) ∩ [·a·](X )

• Y = [·a·](∅) ∪ 〈·a·〉(Y )

Open questions

• Do such recursive equations (always) have solutions?
• If so, are they unique?
• How can we decide whether a process satisfies a recursive formula (“model checking”)?
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Adding Recursion to HML

Existence of Solutions

Example 4.4

• Consider again C = a.C, D = a.D + a.nil

• Invariant: X ≡ 〈a〉tt ∧ [a]X
– X = ∅ is a solution (as no process can satisfy both 〈a〉tt and [a]ff)
– but we expect C ∈ X (as C can perform a invariantly)
– in fact, X = {C} also solves the equation (and is the greatest solution w.r.t.⊆)

=⇒ write X
max
= 〈a〉tt ∧ [a]X

• Possibility: Y ≡ [a]ff ∨ 〈a〉Y
– greatest solution: Y = {C,D, nil}
– but we expect C /∈ Y (as C cannot terminate at all)
– here: least solution w.r.t.⊆: Y = {D, nil}

=⇒ write Y
min
= [a]ff ∨ 〈a〉Y
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Adding Recursion to HML

Uniqueness of Solutions
Uniqueness of solutions
• Use greatest solutions for properties that hold unless the process has a finite computation

that disproves it.
• Use least solutions for properties that hold if the process has a finite computation that

proves it.

Example 4.5

Let (S,Act,−→) be an LTS, s ∈ S, and F ∈ HMF .
• Invariant: Inv(F ) ≡ X for X max

= F ∧ [Act ]X
– s |= Inv(F) if all states reachable from s satisfy F

• Possibility: Pos(F ) ≡ Y for Y min
= F ∨ 〈Act〉Y

– s |= Pos(F) if a state satisfying F is reachable from s
• Safety: Safe(F ) ≡ X for X max

= F ∧ ([Act ]ff ∨ 〈Act〉X )
– s |= Safe(F) if s has a complete (i.e., infinite or terminating) transition sequence where each state

satisfies F
• Eventuality: Evt(F ) ≡ Y for Y min

= F ∨ (〈Act〉tt ∧ [Act ]Y )
– s |= Evt(F) if each complete transition sequence starting in s contains a state satisfying F
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HML with One Recursive Variable

Syntax of HML with One Recursive Variable

Initially: only one variable (for simplicity)
Later: mutual recursion

Definition 4.6 (Syntax of HML with one variable)

The set HMF X of Hennessy-Milner formulae with one variable X over a set of actions
Act is defined by the following syntax:

F ::= X (variable)
| tt (true)
| ff (false)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| 〈α〉F (diamond)
| [α]F (box)

where α ∈ Act .
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable I

So far: JFK ⊆ S for F ∈ HMF and LTS (S,Act,−→)

Now: semantics of formula depends on states that (are assumed to) satisfy X

Definition 4.7 (Semantics of HML with one variable)

Let (S,Act,−→) be an LTS and F ∈ HMF X . The semantics of F ,

JFK : 2S → 2S,

is defined by JXK(T ) := T
JttK(T ) := S
JffK(T ) := ∅

JF1 ∧ F2K(T ) := JF1K(T ) ∩ JF2K(T )
JF1 ∨ F2K(T ) := JF1K(T ) ∪ JF2K(T )

J〈α〉FK(T ) := 〈·α·〉(JFK(T ))
J[α]FK(T ) := [·α·](JFK(T ))
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable II

Example 4.8

s1

s2 s3

a ba

a

Let S := {s1, s2, s3}.

• J〈a〉XK({s1}) = {s3}
• J〈a〉XK({s1, s2}) = {s1, s3}
• J[b]XK({s2}) = {s2, s3}
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HML with One Recursive Variable

Semantics of HML with One Recursive Variable III

• Idea underlying the definition of

J.K : HMF X → (2S → 2S) :

if T ⊆ S gives the set of states that satisfy X , then JFK(T ) will be the set of states that
satisfy F

• How to determine this T?
• According to previous discussion: as solution of recursive equation of the form X = FX

where FX ∈ HMF X

• But: solution not unique; therefore write:

X min
= FX or X max

= FX

• In the following we will see:
1. Equation X = FX always solvable
2. Least and greatest solutions are unique and can be obtained by fixed-point iteration
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Algebraic Foundations

Outline of Lecture 4

Recap: Hennessy-Milner Logic and Process Traces

Adding Recursion to HML

HML with One Recursive Variable

Algebraic Foundations
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Algebraic Foundations

Partial Orders

Definition 4.9 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a relation
v ⊆ D × D such that, for every d1, d2, d3 ∈ D,
reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 4.10

1. (N,≤) is a total partial order
2. (N, <) is not a partial order (since not reflexive)
3. (2N,⊆) is a (non-total) partial order
4. (Σ∗,v) is a (non-total) partial order, where Σ is some alphabet and v denotes prefix

ordering (u v v ⇐⇒ ∃w ∈ Σ∗ : uw = v )
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Algebraic Foundations

Upper and Lower Bounds

Definition 4.11 ((Least) upper bounds and (greatest) lower bounds)

Let (D,v) be a partial order and T ⊆ D.
1. An element d ∈ D is called an upper bound of T if t v d for every t ∈ T (notation: T v d).

It is called least upper bound (LUB) (or supremum) of T if additionally d v d ′ for every
upper bound d ′ of T (notation: d =

⊔
T ).

2. An element d ∈ D is called an lower bound of T if d v t for every t ∈ T (notation: d v T ).
It is called greatest lower bound (GLB) (or infimum) of T if d ′ v d for every lower bound d ′

of T (notation: d =
d

T ).

Example 4.12

1. T ⊆ N has a LUB/GLB in (N,≤) iff it is finite/non-empty
2. In (2N,⊆), every subset T ⊆ 2N has an LUB and GLB:⊔

T =
⋃

T and
l

T =
⋂

T
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Algebraic Foundations

Complete Lattices

Definition 4.13 (Complete lattice)

A complete lattice is a partial order (D,v) such that all subsets of D have LUBs and
GLBs. In this case,

⊥ :=
⊔
∅ (=

l
D) and > :=

l
∅ (=

⊔
D)

respectively denote the least and greatest element of D.

Example 4.14

1. (N,≤) is not a complete lattice as, e.g., N does not have a LUB
2. (N ∪ {∞},≤) with n ≤ ∞ for all n ∈ N is a complete lattice
3. (2N,⊆) is a complete lattice
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Algebraic Foundations

Application to HML with Recursion

Lemma 4.15

Let (S,Act,−→) be an LTS. Then (2S,⊆) is a complete lattice with
•
⊔
T =

⋃
T =

⋃
T∈T T for all T ⊆ 2S

•
d
T =

⋂
T =

⋂
T∈T T for all T ⊆ 2S

• ⊥ =
⊔
∅ =

d
2S = ∅

• > =
d
∅ =

⊔
2S = S

Proof.

omitted
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