

Concurrency Theory

Winter Semester 2019/20

Lecture 4: Hennessy-Milner Logic with Recursion

Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Outline of Lecture 4

Recap: Hennessy-Milner Logic and Process Traces

Adding Recursion to HML

HML with One Recursive Variable

Algebraic Foundations

Syntax of HML

Definition (Syntax of HML)

The set *HMF* of Hennessy-Milner formulae over a set of actions *Act* is defined by the following syntax:

F ::= tt (true) | ff (false) | $F_1 \wedge F_2$ (conjunction) | $F_1 \vee F_2$ (disjunction) | $\langle \alpha \rangle F$ (diamond) | $[\alpha] F$ (box)

where $\alpha \in Act$.

Abbreviations for $L = \{\alpha_1, \ldots, \alpha_n\}$ $(n \in \mathbb{N})$:

- $\langle L \rangle F := \langle \alpha_1 \rangle F \vee \ldots \vee \langle \alpha_n \rangle F$
- $[L]F := [\alpha_1]F \wedge \ldots \wedge [\alpha_n]F$
- In particular, $\langle \emptyset \rangle F := \text{ff and } [\emptyset] F := \text{tt}$

Semantics of HML

Definition (Semantics of HML)

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF$. The set of processes in S that satisfy F, $\llbracket F \rrbracket \subseteq S$, is defined by: $\llbracket \operatorname{tt} \rrbracket := S$ $\llbracket \operatorname{ff} \rrbracket := \emptyset$ $\llbracket F_1 \wedge F_2 \rrbracket := \llbracket F_1 \rrbracket \cap \llbracket F_2 \rrbracket$ $\llbracket F_1 \vee F_2 \rrbracket := \llbracket F_1 \rrbracket \cup \llbracket F_2 \rrbracket$ $\llbracket (\alpha)F \rrbracket := [\cdot \alpha \cdot](\llbracket F \rrbracket)$

where $\langle \cdot \alpha \cdot \rangle$, $[\cdot \alpha \cdot] : 2^S \to 2^S$ are given by

$$\langle \cdot \alpha \cdot \rangle (T) := \{ s \in S \mid \exists s' \in T : s \xrightarrow{\alpha} s' \}$$

 $[\cdot \alpha \cdot](T) := \{ s \in S \mid \forall s' \in S : s \xrightarrow{\alpha} s' \implies s' \in T \}$

We write $s \models F$ iff $s \in [F]$. Two HML formulae are equivalent (written $F \equiv G$) iff they are satisfied by the same processes in every LTS.

Closure under Negation

Observation: negation is not one of the HML constructs

Reason: HML is closed under negation

Lemma

For every $F \in HMF$ there exists $F^c \in HMF$ such that $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ for every LTS $(S, Act, \longrightarrow)$.

Proof.

Definition of F^c :

$$\begin{array}{ll} \operatorname{tt}^c := \operatorname{ff} & \operatorname{ff}^c := \operatorname{tt} \\ (F_1 \wedge F_2)^c := F_1^c \vee F_2^c & (F_1 \vee F_2)^c := F_1^c \wedge F_2^c \\ (\langle \alpha \rangle F)^c := [\alpha] F^c & ([\alpha] F)^c := \langle \alpha \rangle F^c \end{array}$$

Process Traces

Goal: reduce processes to the action sequences they can perform

Definition (Trace language)

For every $P \in Prc$, let

$$Tr(P) := \{ w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P' \}$$

be the trace language of P (where $\stackrel{w}{\longrightarrow} := \stackrel{a_1}{\longrightarrow} \circ \ldots \circ \stackrel{a_n}{\longrightarrow}$ for $w = a_1 \ldots a_n$).

 $P, Q \in Prc$ are called trace equivalent if Tr(P) = Tr(Q).

Example (One-place buffer)

$$B = in.\overline{out}.B$$

$$\implies$$
 $Tr(B) = (in \cdot \overline{out})^* \cdot (in + \varepsilon)$

HML and Process Traces

Lemma

Let $(Prc, Act, \longrightarrow)$ be an LTS, and let $P, Q \in Prc$ satisfy the same HMF (i.e., $\forall F \in HMF : P \models F \iff Q \models F$). Then Tr(P) = Tr(Q).

Proof.

on the board

Remark: the converse does <u>not</u> hold.

Example

- Let $P := a.(b.\text{nil} + c.\text{nil}) \in Prc$, $Q := a.b.\text{nil} + a.c.\text{nil} \in Prc$
- Then $Tr(P) = Tr(Q) = \{\varepsilon, a, ab, ac\}$
- Let $F := [a](\langle b \rangle \mathsf{tt} \wedge \langle c \rangle \mathsf{tt}) \in \mathit{HMF}$
- Then $P \models F$ but $Q \not\models F$
- [Later: P, Q ∈ Prc HML-equivalent iff bismilar]

Outline of Lecture 4

Recap: Hennessy-Milner Logic and Process Traces

Adding Recursion to HML

HML with One Recursive Variable

Algebraic Foundations

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour

- each modal operator ([.], \langle .\rangle) talks about one step
- only finite nesting of operators (modal depth)

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour

- each modal operator ([.], \langle .\rangle) talks about one step
- only finite nesting of operators (modal depth)

Example 4.1

- $F := (\langle a \rangle [a] ff) \vee \langle b \rangle tt \in HMF$ has modal depth 2
- Checking F involves analysis of all behaviours of length ≤ 2

Finiteness of HML

Observation: HML formulae only describe finite part of process behaviour

- each modal operator ([.], \langle .\rangle) talks about one step
- only finite nesting of operators (modal depth)

Example 4.1

- $F := (\langle a \rangle [a] ff) \vee \langle b \rangle tt \in HMF$ has modal depth 2
- Checking F involves analysis of all behaviours of length ≤ 2

But: sometimes necessary to refer to arbitrarily long computations (e.g., "no deadlock state reachable"

possible solution: support infinite conjunctions and disjunctions

Infinite Conjunctions

Example 4.2

- Let C = a.C, D = a.D + a.nil
- Then $C \models [a]\langle a \rangle$ tt but $D \not\models [a]\langle a \rangle$ tt (i.e., C and D distinguishable by formula of depth 2)

Infinite Conjunctions

Example 4.2

- Let C = a.C, D = a.D + a.nil
- Then $C \models [a]\langle a \rangle$ tt but $D \not\models [a]\langle a \rangle$ tt (i.e., C and D distinguishable by formula of depth 2)
- Now redefine D as $D_n = a.D_n + a.E_n$ where $n \in \mathbb{N}$, $E_k = a.E_{k-1}$ (1 $\leq k \leq n$), $E_0 = \text{nil}$
- Then (for $[\alpha]^k F := [\alpha] \dots [\alpha] F$ where $F \in HMF$):
 - $-C \models [a]^k \langle a \rangle$ tt for all $k \in \mathbb{N}$
 - $-D_n \models [a]^k \langle a \rangle$ tt for all $0 \le k \le n$
 - $-D_n \not\models [a]^k \langle a \rangle$ tt for all k > n

Infinite Conjunctions

Example 4.2

- Let C = a.C, D = a.D + a.nil
- Then $C \models [a]\langle a \rangle$ tt but $D \not\models [a]\langle a \rangle$ tt (i.e., C and D distinguishable by formula of depth 2)
- Now redefine D as $D_n = a.D_n + a.E_n$ where $n \in \mathbb{N}$, $E_k = a.E_{k-1}$ (1 $\leq k \leq n$), $E_0 = \text{nil}$
- Then (for $[\alpha]^k F := [\alpha] \dots [\alpha] F$ where $F \in HMF$):
 - $-C \models [a]^k \langle a \rangle$ tt for all $k \in \mathbb{N}$
 - $-D_n \models [a]^k \langle a \rangle$ tt for all $0 \le k \le n$
 - $-D_n \not\models [a]^k \langle a \rangle$ tt for all k > n
- Conclusion: no single HML formula can distinguish C and all D_n
 - unsatisfactory as behaviour clearly different
- Generally: invariant property "always (a)tt" not expressible
- Requires infinite conjunction:

$$Inv(\langle a \rangle tt) = \langle a \rangle tt \wedge [a] \langle a \rangle tt \wedge [a] [a] \langle a \rangle tt \wedge \ldots = \bigwedge_{k \in \mathbb{N}} [a]^k \langle a \rangle tt$$

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.3

- Let C = a.C, D = a.D + a.nil as before
- C has no possibility to terminate
- D has the option to terminate (i.e., to eventually satisfy [a]ff) at any time by choosing the anil branch

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.3

- Let C = a.C, D = a.D + a.nil as before
- C has no possibility to terminate
- D has the option to terminate (i.e., to eventually satisfy [a]ff) at any time by choosing the a.nil branch
- Representable by infinite disjunction:

$$Pos([a]ff) = [a]ff \lor \langle a \rangle [a]ff \lor \langle a \rangle \langle a \rangle [a]ff \lor \ldots = \bigvee_{k \in \mathbb{N}} \langle a \rangle^k [a]ff$$

Winter Semester 2019/20

Infinite Disjunctions

Dually: possibility properties expressible by infinite disjunctions

Example 4.3

- Let C = a.C, D = a.D + a.nil as before
- C has no possibility to terminate
- D has the option to terminate (i.e., to eventually satisfy [a]ff) at any time by choosing the a.nil branch
- Representable by infinite disjunction:

$$Pos([a]ff) = [a]ff \lor \langle a \rangle [a]ff \lor \langle a \rangle \langle a \rangle [a]ff \lor \ldots = \bigvee_{k \in \mathbb{N}} \langle a \rangle^k [a]ff$$

Problem: infinite formulae not easy to handle

Introducing Recursion

Solution: employ recursion!

- $Inv(\langle a \rangle tt) \equiv \langle a \rangle tt \wedge [a] Inv(\langle a \rangle tt)$
- $Pos([a]ff) \equiv [a]ff \lor \langle a \rangle Pos([a]ff)$

Introducing Recursion

Solution: employ recursion!

- $Inv(\langle a \rangle tt) \equiv \langle a \rangle tt \wedge [a] Inv(\langle a \rangle tt)$
- $Pos([a]ff) \equiv [a]ff \lor \langle a \rangle Pos([a]ff)$

Interpretation: the sets of states $X, Y \subseteq S$ satisfying the respective formula should solve the corresponding equation, i.e.,

- $X = \langle \cdot a \cdot \rangle(S) \cap [\cdot a \cdot](X)$
- $Y = [\cdot a \cdot](\emptyset) \cup \langle \cdot a \cdot \rangle(Y)$

Introducing Recursion

Solution: employ recursion!

- $Inv(\langle a \rangle tt) \equiv \langle a \rangle tt \wedge [a] Inv(\langle a \rangle tt)$
- $Pos([a]ff) \equiv [a]ff \lor \langle a \rangle Pos([a]ff)$

Interpretation: the sets of states $X, Y \subseteq S$ satisfying the respective formula should solve the corresponding equation, i.e.,

- $X = \langle \cdot a \cdot \rangle(S) \cap [\cdot a \cdot](X)$
- $Y = [\cdot a \cdot](\emptyset) \cup \langle \cdot a \cdot \rangle(Y)$

Open questions

- Do such recursive equations (always) have solutions?
- If so, are they unique?
- How can we decide whether a process satisfies a recursive formula ("model checking")?

Existence of Solutions

Example 4.4

• Consider again C = a.C, D = a.D + a.nil

Existence of Solutions

Example 4.4

- Consider again C = a.C, D = a.D + a.nil
- Invariant: $X \equiv \langle a \rangle \mathsf{tt} \wedge [a] X$
 - $-X = \emptyset$ is a solution (as no process can satisfy both $\langle a \rangle$ tt and [a]ff)
 - but we expect $C \in X$ (as C can perform a invariantly)
 - in fact, $X = \{C\}$ also solves the equation (and is the greatest solution w.r.t. \subseteq)

```
\implies write X \stackrel{\text{max}}{=} \langle a \rangle \text{tt} \wedge [a] X
```


Existence of Solutions

Example 4.4

- Consider again C = a.C, D = a.D + a.nil
- Invariant: $X \equiv \langle a \rangle \text{tt} \wedge [a] X$
 - $-X = \emptyset$ is a solution (as no process can satisfy both $\langle a \rangle$ tt and [a]ff)
 - but we expect $C \in X$ (as C can perform a invariantly)
 - in fact, $X = \{C\}$ also solves the equation (and is the greatest solution w.r.t. \subseteq)
- \implies write $X \stackrel{max}{=} \langle a \rangle$ tt $\wedge [a]X$
- Possibility: $Y \equiv [a] \text{ff} \lor \langle a \rangle Y$
 - greatest solution: $Y = \{C, D, \text{nil}\}$
 - but we expect C ∉ Y (as C cannot terminate at all)
 - here: least solution w.r.t. \subseteq : $Y = \{D, \text{nil}\}$
- \implies write $Y \stackrel{\text{min}}{=} [a] \text{ff } \vee \langle a \rangle Y$

Uniqueness of Solutions

Uniqueness of solutions

- Use greatest solutions for properties that hold unless the process has a finite computation that disproves it.
- Use least solutions for properties that hold if the process has a finite computation that proves it.

Uniqueness of Solutions

Uniqueness of solutions

- Use greatest solutions for properties that hold unless the process has a finite computation that disproves it.
- Use least solutions for properties that hold if the process has a finite computation that proves it.

Example 4.5

Let $(S, Act, \longrightarrow)$ be an LTS, $s \in S$, and $F \in HMF$.

- Invariant: $Inv(F) \equiv X$ for $X \stackrel{max}{=} F \wedge [Act]X$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F

Uniqueness of Solutions

Uniqueness of solutions

- Use greatest solutions for properties that hold unless the process has a finite computation that disproves it.
- Use least solutions for properties that hold if the process has a finite computation that proves it.

Example 4.5

Let $(S, Act, \longrightarrow)$ be an LTS, $s \in S$, and $F \in HMF$.

- Invariant: $Inv(F) \equiv X$ for $X \stackrel{\text{max}}{=} F \land [Act]X$ - $s \models Inv(F)$ if all states reachable from s satisfy F
- Possibility: $Pos(F) \equiv Y$ for $Y \stackrel{min}{=} F \lor \langle Act \rangle Y$ - $s \models Pos(F)$ if a state satisfying F is reachable from s

Uniqueness of Solutions

Uniqueness of solutions

- Use greatest solutions for properties that hold unless the process has a finite computation that disproves it.
- Use least solutions for properties that hold if the process has a finite computation that proves it.

Example 4.5

Let $(S, Act, \longrightarrow)$ be an LTS, $s \in S$, and $F \in HMF$.

- Invariant: $Inv(F) \equiv X$ for $X \stackrel{max}{=} F \wedge [Act]X$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Possibility: $Pos(F) \equiv Y$ for $Y \stackrel{min}{=} F \vee \langle Act \rangle Y$
 - $-s \models Pos(F)$ if a state satisfying F is reachable from s
- Safety: $Safe(F) \equiv X$ for $X \stackrel{\text{max}}{=} F \land ([Act]ff \lor \langle Act \rangle X)$
 - $-s \models Safe(F)$ if s has a complete (i.e., infinite or terminating) transition sequence where each state satisfies F

Uniqueness of Solutions

Uniqueness of solutions

- Use greatest solutions for properties that hold unless the process has a finite computation that disproves it.
- Use least solutions for properties that hold if the process has a finite computation that proves it.

Example 4.5

Let $(S, Act, \longrightarrow)$ be an LTS, $s \in S$, and $F \in HMF$.

- Invariant: $Inv(F) \equiv X$ for $X \stackrel{max}{=} F \wedge [Act]X$
 - $-s \models Inv(F)$ if all states reachable from s satisfy F
- Possibility: $Pos(F) \equiv Y$ for $Y \stackrel{min}{=} F \vee \langle Act \rangle Y$
 - $-s \models Pos(F)$ if a state satisfying F is reachable from s
- Safety: $Safe(F) \equiv X$ for $X \stackrel{\textit{max}}{=} F \land ([Act]ff \lor \langle Act \rangle X)$
 - $-s \models Safe(F)$ if s has a complete (i.e., infinite or terminating) transition sequence where each state satisfies F
- Eventuality: $Evt(F) \equiv Y$ for $Y \stackrel{min}{=} F \vee (\langle Act \rangle tt \wedge [Act] Y)$
 - $-s \models Evt(F)$ if each complete transition sequence starting in s contains a state satisfying F

Outline of Lecture 4

Recap: Hennessy-Milner Logic and Process Traces

Adding Recursion to HML

HML with One Recursive Variable

Algebraic Foundations

Syntax of HML with One Recursive Variable

Initially: only one variable (for simplicity)

Later: mutual recursion

Syntax of HML with One Recursive Variable

Initially: only one variable (for simplicity)

Later: mutual recursion

Definition 4.6 (Syntax of HML with one variable)

The set HMF_X of Hennessy-Milner formulae with one variable X over a set of actions Act is defined by the following syntax:

$$F ::= X \qquad \text{(variable)}$$

$$\mid \text{ tt} \qquad \text{(true)}$$

$$\mid \text{ ff} \qquad \text{(false)}$$

$$\mid F_1 \wedge F_2 \qquad \text{(conjunction)}$$

$$\mid F_1 \vee F_2 \qquad \text{(disjunction)}$$

$$\mid \langle \alpha \rangle F \qquad \text{(diamond)}$$

$$\mid [\alpha] F \qquad \text{(box)}$$

where $\alpha \in Act$.

Semantics of HML with One Recursive Variable I

So far: $\llbracket F \rrbracket \subseteq S$ for $F \in HMF$ and LTS $(S, Act, \longrightarrow)$

Now: semantics of formula depends on states that (are assumed to) satisfy X

Semantics of HML with One Recursive Variable I

So far: $\llbracket F \rrbracket \subseteq S$ for $F \in HMF$ and LTS $(S, Act, \longrightarrow)$

Now: semantics of formula depends on states that (are assumed to) satisfy X

Definition 4.7 (Semantics of HML with one variable)

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF_X$. The semantics of F,

$$\llbracket F \rrbracket : 2^S \to 2^S,$$

is defined by

Semantics of HML with One Recursive Variable II

Example 4.8

Let $S := \{s_1, s_2, s_3\}.$

Semantics of HML with One Recursive Variable II

Example 4.8

Let
$$S := \{s_1, s_2, s_3\}$$
.
• $[\![\langle a \rangle X]\!](\{s_1\}) = \{s_3\}$

Semantics of HML with One Recursive Variable II

Example 4.8

Let
$$S := \{s_1, s_2, s_3\}.$$

- $\bullet \ \llbracket \langle a \rangle X \rrbracket (\{s_1\}) = \{s_3\}$
- $[\![\langle a \rangle X]\!](\{s_1, s_2\}) = \{s_1, s_3\}$

Semantics of HML with One Recursive Variable II

Example 4.8

Let
$$S := \{s_1, s_2, s_3\}.$$

- $\bullet \ \llbracket \langle a \rangle X \rrbracket (\{s_1\}) = \{s_3\}$
- $[\![\langle a \rangle X]\!](\{s_1, s_2\}) = \{s_1, s_3\}$
- $[[b]X](\{s_2\}) = \{s_2, s_3\}$

Semantics of HML with One Recursive Variable III

Idea underlying the definition of

$$\llbracket .
rbracket$$
: $HMF_X
ightarrow (2^S
ightarrow 2^S)$:

if $T \subseteq S$ gives the set of states that satisfy X, then $[\![F]\!](T)$ will be the set of states that satisfy F

Semantics of HML with One Recursive Variable III

Idea underlying the definition of

$$\llbracket . \rrbracket : \mathit{HMF}_X o (2^S o 2^S) :$$

if $T \subseteq S$ gives the set of states that satisfy X, then $[\![F]\!](T)$ will be the set of states that satisfy F

- How to determine this T?
- According to previous discussion: as solution of recursive equation of the form $X = F_X$ where $F_X \in HMF_X$

Semantics of HML with One Recursive Variable III

Idea underlying the definition of

$$\llbracket .
rbracket$$
 : $\mathit{HMF}_X o (2^S o 2^S)$:

if $T \subseteq S$ gives the set of states that satisfy X, then [F](T) will be the set of states that satisfy *F*

- How to determine this T?
- According to previous discussion: as solution of recursive equation of the form $X = F_X$ where $F_X \in HMF_X$
- But: solution not unique; therefore write:

$$X \stackrel{\min}{=} F_X$$
 or $X \stackrel{\max}{=} F_X$

Semantics of HML with One Recursive Variable III

Idea underlying the definition of

$$\llbracket .
rbracket$$
 : $\mathit{HMF}_X o (2^S o 2^S)$:

if $T \subseteq S$ gives the set of states that satisfy X, then $[\![F]\!](T)$ will be the set of states that satisfy F

- How to determine this T?
- According to previous discussion: as solution of recursive equation of the form $X = F_X$ where $F_X \in HMF_X$
- But: solution not unique; therefore write:

$$X \stackrel{\min}{=} F_X$$
 or $X \stackrel{\max}{=} F_X$

- In the following we will see:
 - 1. Equation $X = F_X$ always solvable
 - 2. Least and greatest solutions are unique and can be obtained by fixed-point iteration

Outline of Lecture 4

Recap: Hennessy-Milner Logic and Process Traces

Adding Recursion to HML

HML with One Recursive Variable

Algebraic Foundations

Partial Orders

Definition 4.9 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Partial Orders

Definition 4.9 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 4.10

1. (\mathbb{N}, \leq) is a total partial order

Partial Orders

Definition 4.9 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 4.10

1. (\mathbb{N}, \leq) is a total partial order

Concurrency Theory

2. $(\mathbb{N}, <)$ is not a partial order (since not reflexive)

Lecture 4: Hennessy-Milner Logic with Recursion

Partial Orders

Definition 4.9 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 4.10

- 1. (\mathbb{N}, \leq) is a total partial order
- 2. $(\mathbb{N}, <)$ is not a partial order (since not reflexive)
- 3. $(2^{\mathbb{N}}, \subseteq)$ is a (non-total) partial order

Partial Orders

Definition 4.9 (Partial order)

A partial order (PO) (D, \sqsubseteq) consists of a set D, called domain, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \implies d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \implies d_1 = d_2$

It is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 4.10

- 1. (\mathbb{N}, \leq) is a total partial order
- 2. $(\mathbb{N}, <)$ is not a partial order (since not reflexive)
- 3. $(2^{\mathbb{N}}, \subseteq)$ is a (non-total) partial order
- 4. (Σ^*, \sqsubseteq) is a (non-total) partial order, where Σ is some alphabet and \sqsubseteq denotes prefix ordering ($u \sqsubseteq v \iff \exists w \in \Sigma^* : uw = v$)

Upper and Lower Bounds

Definition 4.11 ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

1. An element $d \in D$ is called an upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: d = | T|).

Upper and Lower Bounds

Definition 4.11 ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

- 1. An element $d \in D$ is called an upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: $d = \bigcup T$).
- 2. An element $d \in D$ is called an lower bound of T if $d \sqsubseteq t$ for every $t \in T$ (notation: $d \sqsubseteq T$). It is called greatest lower bound (GLB) (or infimum) of T if $d' \sqsubseteq d$ for every lower bound d' of T (notation: $d = \bigcap T$).

Upper and Lower Bounds

Definition 4.11 ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

- 1. An element $d \in D$ is called an upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: $d = \bigcup T$).
- 2. An element $d \in D$ is called an lower bound of T if $d \sqsubseteq t$ for every $t \in T$ (notation: $d \sqsubseteq T$). It is called greatest lower bound (GLB) (or infimum) of T if $d' \sqsubseteq d$ for every lower bound d' of T (notation: $d = \bigcap T$).

Example 4.12

1. $T \subseteq \mathbb{N}$ has a LUB/GLB in (\mathbb{N}, \leq) iff it is finite/non-empty

Upper and Lower Bounds

Definition 4.11 ((Least) upper bounds and (greatest) lower bounds)

Let (D, \sqsubseteq) be a partial order and $T \subseteq D$.

- 1. An element $d \in D$ is called an upper bound of T if $t \sqsubseteq d$ for every $t \in T$ (notation: $T \sqsubseteq d$). It is called least upper bound (LUB) (or supremum) of T if additionally $d \sqsubseteq d'$ for every upper bound d' of T (notation: $d = \bigcup T$).
- 2. An element $d \in D$ is called an lower bound of T if $d \sqsubseteq t$ for every $t \in T$ (notation: $d \sqsubseteq T$). It is called greatest lower bound (GLB) (or infimum) of T if $d' \sqsubseteq d$ for every lower bound d' of T (notation: $d = \bigcap T$).

Example 4.12

- 1. $T \subseteq \mathbb{N}$ has a LUB/GLB in (\mathbb{N}, \leq) iff it is finite/non-empty
- 2. In $(2^{\mathbb{N}}, \subseteq)$, every subset $T \subseteq 2^{\mathbb{N}}$ has an LUB and GLB:

$$\coprod T = \bigcup T$$
 and $\prod T = \bigcap T$

Complete Lattices

Definition 4.13 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\perp := | \mid \emptyset (= \mid D) \quad \text{and} \quad \top := \mid \emptyset (= \mid D)$$

respectively denote the least and greatest element of D.

Complete Lattices

Definition 4.13 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\bot := \bigsqcup \emptyset \ (= \bigcap D)$$
 and $\top := \bigcap \emptyset \ (= \bigsqcup D)$

respectively denote the least and greatest element of D.

Example 4.14

1. (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB

Complete Lattices

Definition 4.13 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\bot := \bigsqcup \emptyset \ (= \bigcap D)$$
 and $\top := \bigcap \emptyset \ (= \bigsqcup D)$

respectively denote the least and greatest element of D.

Example 4.14

- 1. (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
- 2. $(\mathbb{N} \cup \{\infty\}, \leq)$ with $n \leq \infty$ for all $n \in \mathbb{N}$ is a complete lattice

Complete Lattices

Definition 4.13 (Complete lattice)

A complete lattice is a partial order (D, \sqsubseteq) such that all subsets of D have LUBs and GLBs. In this case,

$$\bot := \bigsqcup \emptyset \ (= \bigcap D)$$
 and $\top := \bigcap \emptyset \ (= \bigsqcup D)$

respectively denote the least and greatest element of D.

Example 4.14

- 1. (\mathbb{N}, \leq) is not a complete lattice as, e.g., \mathbb{N} does not have a LUB
- 2. $(\mathbb{N} \cup \{\infty\}, \leq)$ with $n \leq \infty$ for all $n \in \mathbb{N}$ is a complete lattice
- 3. $(2^{\mathbb{N}}, \subseteq)$ is a complete lattice

Concurrency Theory

Lecture 4: Hennessy-Milner Logic with Recursion

Application to HML with Recursion

Lemma 4.15

Let $(S, Act, \longrightarrow)$ be an LTS. Then $(2^S, \subseteq)$ is a complete lattice with

$$ullet$$
 $\mathcal{T} = \bigcup \mathcal{T} = \bigcup_{\mathcal{T} \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^{\mathcal{S}}$

•
$$\prod \mathcal{T} = \bigcap \mathcal{T} = \bigcap_{T \in \mathcal{T}} T$$
 for all $\mathcal{T} \subseteq 2^{S}$

Application to HML with Recursion

Lemma 4.15

Let $(S, Act, \longrightarrow)$ be an LTS. Then $(2^S, \subseteq)$ is a complete lattice with

- ullet $\mathcal{T} = \bigcup \mathcal{T} = \bigcup_{\mathcal{T} \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^{\mathcal{S}}$
- $\prod \mathcal{T} = \bigcap \mathcal{T} = \bigcap_{T \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^S$
- $\perp = | |\emptyset = \square 2^{S} = \emptyset$
- $\bullet \top = \prod \emptyset = \bigsqcup 2^{\mathcal{S}} = \mathcal{S}$

Application to HML with Recursion

Lemma 4.15

Let $(S, Act, \longrightarrow)$ be an LTS. Then $(2^S, \subseteq)$ is a complete lattice with

- ullet $\mathcal{T} = \bigcup \mathcal{T} = \bigcup_{\mathcal{T} \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^{\mathcal{S}}$
- $\prod \mathcal{T} = \bigcap \mathcal{T} = \bigcap_{T \in \mathcal{T}} T$ for all $\mathcal{T} \subseteq 2^S$
- $\perp = | \mid \emptyset = \prod 2^{S} = \emptyset$
- ullet $\top = \prod \emptyset = \bigsqcup 2^{\mathcal{S}} = \mathcal{S}$

Proof.

omitted

