Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic

Joost-Pieter Katoen and Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

’ Software Modeling

‘ Il and Verification Chair

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Recap: Calculus of Communicating Systems

Outline of Lecture 3

Recap: Calculus of Communicating Systems

RWTH

2 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Recap: Calculus of Communicating Systems

Syntax of CCS |
Definition (Syntax of CCS)

e Let Abe a set of (action) names.

e A:={a| ac A} denotes the set of co-names.

o Act .= AU AU {7} is the set of actions with the silent (or: unobservable) action 7.
e Let Pid be a set of process identifiers.

e The set Prc of process expressions is defined by the following syntax:

P ::=nil (inaction)
| a.P (prefixing)
| P1+ P> (choice)
| Py || P> (parallel composition)
| P\ L (restriction)
| P[f] (relabelling)
| C (

process call)

where a € Act,) # L C A, C € Pid, and f : Act — Act such that f(7) = 7 and f(a) = f(a)
for each a € A.

RWTH

3 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Recap: Calculus of Communicating Systems

Syntax of CCS Il

Definition (continued)

e A (recursive) process definition is an equation system of the form
(Ci=Pi|1<i<k)
where k > 1, C; € Pid (pairwise distinct), and P; € Prc (with identifiers from {Cy, ..., Cx}).

Notational Conventions:

e 2means a

e > " . Pi(neN)means P; + ...+ P, (where 2?21 P; := nil)

e P\ aabbreviates P\ {a}

e [a; — by, ..., a, — by stands for f : Act — Act with f(a;) = b;for i € [n] and f(a) = «
otherwise

e restriction and relabelling bind stronger than prefixing, prefixing stronger than composition,
composition stronger than choice:

P\a+b.Q| R means (P\a)+((b.Q)l R)

RWTH

4 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Recap: Calculus of Communicating Systems

Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph
e nodes = system states
e edges = transitions between states

Definition (Labelled transition system)

An (Act-)labelled transition system (LTS) is a triple (S, Act, —) consisting of
e a set S of states
e a set Act of (action) labels
e a transition relation — C S x Act x S

For (s, ,s') € — we write s — s'. An LTS is called finite if S is so.

Remarks:
e sometimes an initial state sy € S is distinguished (“LTS(sy)”)
e (finite) LTSs correspond to (finite) automata without final states

RWTH

5 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Recap: Calculus of Communicating Systems

Semantics of CCS |

Definition (Semantics of CCS)

A process definition (C; = P; | 1 < i < k) determines the LTS (Prc, Act, —)
whose transitions can be inferred from the following rules (P, P’, Q, Q" € Pre,
a € Act, \ € AUA, ac A):

. - P— P - Q- Q@
a.P 25 P P+Q— P P+Q— Q@
i Q-4 PP O a

(Pa (Pa Com

)
PlQ@——P| &

rv) r2)
PlQ-—=PFP|a PlQa-=P| &

PP (e,a¢l) p_%, p P—s P (C=P)
(Res) (Rel) (Call)
P\ L P\ L P[] 4 P C— P

RWTH

6 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Recap: Calculus of Communicating Systems

Semantics of CCS I
Example (continued)

Complete LTS of parallel two-place buffer:

—(By (B[] || B[g]) \ com empty

n . out

n
-

((out.B)[f] || Blgl) \ com|——((BIf] || (out.B)[g]) \ com| one entry

out in

((out.B)[1] || (out.B)[g]) \ com) full

7 of 22 Concurrency Theory o Rm
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Infinite State Spaces

Outline of Lecture 3

Infinite State Spaces

8 of 22 Concurrency Theory
Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic

)

4

Software Modeling
Il and Verification Chair

RWTH

Infinite State Spaces

The Power of Recursive Definitions

So far: only finite state spaces

RWTH

9 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Infinite State Spaces

The Power of Recursive Definitions

So far: only finite state spaces
Example 3.1 (Counter)
C = up.(C || down.nil)

RWTH

9 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Infinite State Spaces

The Power of Recursive Definitions

So far: only finite state spaces
Example 3.1 (Counter)
C = up.(C || down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

i [C | down]u—p>[C | down || down] aD
jdown down J
C || down || nil P)
down

C || nil || nil u ()

9 of 22 Concurrency Theory o Rm
Software Modeling

Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

Infinite State Spaces

The Power of Recursive Definitions

So far: only finite state spaces
Example 3.1 (Counter)
C = up.(C || down.nil)

gives rise to infinite LTS (abbreviating down := down.nil):

i [C | down]u—p>[C | down || down] ()
jdown down

C || down || nil >)
down

C || nil || nil N

Sequential “specification”. Cy = up. C;
C, = up.Cpq + down.C,_; (n>0)

9 of 22 Concurrency Theory o Rm
Software Modeling

Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

Process Traces

Outline of Lecture 3

Process Traces

10 of 22 Concurrency Theory
Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic

)

4

Software Modeling
Il and Verification Chair

RWTH

Process Traces

Process Traces |
Goal: reduce processes to the action sequences they can perform
Definition 3.2 (Trace language)
For every P € Prc, let
Tr(P) := {w € Act* | ex. P € Prc such that P — P’}

be the trace language of P (where = T oo Mforw = as...ap).
P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

RWTH

11 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces |

Goal: reduce processes to the action sequences they can perform
Definition 3.2 (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P € Prc such that P —— P’}

be the trace language of P (where = T oo Mforw = as...ap).
P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 3.3 (One-place buffer)
B = in.out.B
—> Tr(B) = (in- out)" - (in+ ¢)

RWTH

11 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces Il

Remarks:

e The trace language of P € Prc is accepted by the LTS of P, interpreted as a (finite or
infinite) automaton with initial state P and where every state is final.

RWTH

12 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces Il

Remarks:
e The trace language of P € Prc is accepted by the LTS of P, interpreted as a (finite or
infinite) automaton with initial state P and where every state is final.
e Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

RWTH

12 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces Il

Remarks:

e The trace language of P € Prc is accepted by the LTS of P, interpreted as a (finite or
infinite) automaton with initial state P and where every state is final.

e Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

e Trace equivalence identifies processes with identical LTSs: the trace language of a process
consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) — Tr(P) = THQ)

RWTH

12 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Process Traces

Process Traces Il

Remarks:

e The trace language of P € Prc is accepted by the LTS of P, interpreted as a (finite or
infinite) automaton with initial state P and where every state is final.

e Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

e Trace equivalence identifies processes with identical LTSs: the trace language of a process
consists of the (finite) paths in the LTS. Thus:
LTS(P) = LTS(Q) = Tr(P) = Tr(Q)

e Later we will see: trace equivalence is too coarse, i.e., identifies too many processes
—> bisimulation

RWTH

12 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Outline of Lecture 3

Hennessy-Milner Logic

RWTH

13 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Motivation

Goal: check processes for simple properties
e action a is initially enabled
e action b is initially disabled
e a deadlock never occurs
e always sends a reply after receiving a request

14 of 22 Concurrency Theory
Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic

n

4

Software Modeling
Il and Verification Chair

RWTH

Hennessy-Milner Logic

Motivation

Goal: check processes for simple properties
e action a is initially enabled
e action b is initially disabled
e a deadlock never occurs
e always sends a reply after receiving a request

Approach:
e Formalisation in Hennessy-Milner Logic (HML)

e M. Hennessy, R. Milner: On Observing Nondeterminism and Concurrency, ICALP 1980,
Springer LNCS 85, 299-309

e Checking by exploration of state space

RWTH

14 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Syntax of HML
Definition 3.4 (Syntax of HML)

The set HMF of Hennessy-Milner formulae over a set of actions Act is defined by the
following syntax:

F .=t (true)
ff (false)
Fi N\ Fo (conjunction)
FiV F (disjunction)
(a)F (diamond)
[a]F (box)

where o € Act.

RWTH

15 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

e All processes satisfy ftt.

RWTH

16 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

e All processes satisfy ftt.
e No process satisfies ff.

RWTH

16 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

e All processes satisfy ftt.
e No process satisfies ff.
e A process satisfies F A G iff it satisfies F and G.

RWTH

16 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

e All processes satisfy ftt.

e No process satisfies ff.

e A process satisfies F A G iff it satisfies F and G.

e A process satisfies F \/ G iff it satisfies either F or G or both.

RWTH

16 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

e All processes satisfy ftt.

e No process satisfies ff.

e A process satisfies F A G iff it satisfies F and G.

e A process satisfies F \/ G iff it satisfies either F or G or both.

e A process satisfies («)F for some o € Act iff it affords an a-labelled transition to a state
satisfying F (possibility).

RWTH

16 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

e All processes satisfy ftt.

e No process satisfies ff.

e A process satisfies F A G iff it satisfies F and G.

e A process satisfies F \V G iff it satisfies either F or G or both.

e A process satisfies («)F for some o € Act iff it affords an a-labelled transition to a state
satisfying F (possibility).

e A process satisfies [a]F for some o € Act iff all its a-labelled transitions lead to a state
satisfying F (necessity).

RWTH

16 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Meaning of HML Constructs

e All processes satisfy ftt.

e No process satisfies ff.

e A process satisfies F A G iff it satisfies F and G.

e A process satisfies F \V G iff it satisfies either F or G or both.

e A process satisfies («)F for some o € Act iff it affords an a-labelled transition to a state
satisfying F (possibility).

e A process satisfies [a]F for some o € Act iff all its a-labelled transitions lead to a state
satisfying F (necessity).

Abbreviations for L = {a4, ..., a,} (n € N):
o (L)F :={(aq)FV ...V {apF
o [L|F :=[a]F N ... A ap]F
e In particular, (0)F := ff and [(]F := tt

RWTH

16 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Semantics of HML
Definition 3.5 (Semantics of HML)

Let (S, Act, —) be an LTS and F € HMF. The set of processes in S that satisfy F,
[F] C S, is defined by: [tt] .= S [ff] =0
HF1 VAN FQ]] = [[F1]] M [[Fg]] HF1 V Fg]] = [[F1]] U [[Fg]]
[(e) F] == (-a)([F]) lle]F] = [-a]([F])

where (-a-), [-a-] : 25 — 25 are given by

(a)(T)={s€S|IcT:s 5}

[a](T) ={s€cS|V§€S:s——+§ = §cT}
We write s = F iff s € | F]. Two HML formulae are equivalent (written F = G) iff
they are satisfied by the same processes in every LTS.

17 of 22 Concurrency Theory o Rm
Software Modeling

Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

Hennessy-Milner Logic

Semantics of HML
Definition 3.5 (Semantics of HML)

Let (S, Act, —) be an LTS and F € HMF. The set of processes in S that satisfy F,
[F] C S, is defined by: [tt] .= S [ff] =0
HF1 VAN FQ]] = [[F1]] M [[Fg]] HF1 V Fg]] = [[F1]] U [[Fg]]
[(e) F] == (-a)([F]) lle]F] = [-a]([F])

where (-a-), [-a-] : 25 — 25 are given by

(a)(T)={s€S|IcT:s 5}

[a](T) ={s€cS|V§€S:s——+§ = §cT}
We write s = F iff s € | F]. Two HML formulae are equivalent (written F = G) iff
they are satisfied by the same processes in every LTS.

Example 3.6 ({-a-), [-a-] operators)

on the board

Winter Semester 2019/20

17 of 22 Concurrency Theory o Rm
Software Modeling

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

Hennessy-Milner Logic

Simple Properties Revisited

Example 3.7

1. Action a is initially enabled: (a)tt

[(aytt] = (-a)[tt] = (-a-)(S)

—{seS|3gecS:sH}={seS|s—>)

RWTH

18 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Simple Properties Revisited

Example 3.7

1. Action a is initially enabled: (a)tt
[(a)t] = (-a)[t] = (-)(S)
—{seS|3gecS:sH}={seS|s—>)
2. Action b is initially disabled: [b]ff
[[blff] = [-b-][ff] = [-b-](9)
—{seS|VdeS: s = ¢ci
—{seS|PgeS:sd)={seS|s /)

RWTH

18 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Simple Properties Revisited

Example 3.7

1. Action a is initially enabled: (a)tt
[(a)tt] = (-a)[tt] = (-a)(S)
—{seS|3gecS:sH}={seS|s—>)
2. Action b is initially disabled: [b]ff
[[blff] = [-b-][ff] = [-b-](9)
—{seS|VdeS: s = ¢ci
—{seS|PgeS:sd)={seS|s /)
3. Absence of deadlock:

— initially: (Act)tt
— always: later (requires recursion)

RWTH

18 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Hennessy-Milner Logic

Simple Properties Revisited

Example 3.7

1. Action a is initially enabled: (a)tt

[(aytt] = (-a)[tt] = (-a-)(S)

—{seS|3gecS:sH}={seS|s—>)
2. Action b is initially disabled: [b]ff

[[blff] = [-b-][t] = [-b:](D)
—{seS|VseS:s—5 = s}
—{seS|PgeS:sd)={seS|s /)
3. Absence of deadlock:
— initially: (Act)tt
— always: later (requires recursion)
4. Responsiveness:
— initially: [request|(reply)tt
— always: later (requires recursion)

RWTH

18 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Closure under Negation

Outline of Lecture 3

Closure under Negation

19 of 22 Concurrency Theory
Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic

)

4

Software Modeling
Il and Verification Chair

RWTH

Closure under Negation

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

RWTH

20 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

‘ Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Closure under Negation

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F € HMF there exists F° € HMF such that [F°]| = S\ [F] for every LTS
(S, Act, —>).

RWTH

20 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

Closure under Negation

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F € HMF there exists F° € HMF such that [F°]| = S\ [F] for every LTS
(S, Act, —>).

Proof.

Definition of F°:

tt€ = ff ff¢ .= tt
(Fy N FR)°:=FZV F§ (F1V R)°:=FZ N FS
((a)F)° = o] F° ([a]F)° = () F°

RWTH

20 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

Closure under Negation

Closure under Negation

Observation: negation is not one of the HML constructs
Reason: HML is closed under negation

Lemma 3.8

For every F € HMF there exists F° € HMF such that [F°]| = S\ [F] for every LTS
(S, Act, —>).

Proof.
Definition of F°:

¢ .= ff ffC -— tt
(FAR):=FVF (FVFR):=FANF
() F)® = [a]F° ([e]F)° := (@) F°
[F] = S\ [F]: on the board -

Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic Bl and Verification Chair

20 of 22 Concurrency Theory o Rm
Software Modeling

HML and Process Traces

Outline of Lecture 3

HML and Process Traces

21 of 22 Concurrency Theory
Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic

)

4

Software Modeling
Il and Verification Chair

RWTH

HML and Process Traces

HML and Process Traces

Lemma 3.9

Let (Prc, Act,—) be an LTS, and let P, Q € Prc satisfy the same HMF (i.e.,
VF € HMF : P = F <= Q= F). Then Tr(P) = Tr(Q).

RWTH

22 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

HML and Process Traces

HML and Process Traces

Lemma 3.9

Let (Prc, Act,—) be an LTS, and let P, Q € Prc satisfy the same HMF (i.e.,
VF € HMF : P = F <= Q= F). Then Tr(P) = Tr(Q).

Proof.

on the board

RWTH

22 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

HML and Process Traces

HML and Process Traces

Lemma 3.9

Let (Prc, Act,—) be an LTS, and let P, Q € Prc satisfy the same HMF (i.e.,
VF € HMF : P= F < Q[F). Then Tr(P) = Tr(Q).

Proof.

on the board

Remark: the converse does not hold.
Example 3.10

e Let P := a.(b.nil + c.nil) € Prc, Q := a.b.nil + a.c.nil € Prc
e Then Tr(P) = Tr(Q) = {¢, a, ab, ac}

RWTH

22 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

HML and Process Traces

HML and Process Traces

Lemma 3.9

Let (Prc, Act,—) be an LTS, and let P, Q € Prc satisfy the same HMF (i.e.,
VF € HMF : P = F <= Q= F). Then Tr(P) = Tr(Q).

Proof.
on the board

Remark: the converse does not hold.
Example 3.10

e Let P := a.(b.nil + c.nil) € Prc, Q := a.b.nil + a.c.nil € Prc
e Then Tr(P) = Tr(Q) = {¢, a, ab, ac}

o Let F:= [a]((b)tt A (C)tt) € HMF

e Then P = FbutQ |~ F

e [Later: P, Q € Prc HML-equivalent iff bismilar]

RWTH

22 of 22 Concurrency Theory o
Winter Semester 2019/20 Software Modeling

Il and Verification Chair

Lecture 3: Hennessy-Milner Logic

	Recap: Calculus of Communicating Systems
	Infinite State Spaces
	Process Traces
	Hennessy-Milner Logic
	Closure under Negation
	HML and Process Traces

