

Concurrency Theory

Winter Semester 2019/20

Lecture 3: Hennessy-Milner Logic

Joost-Pieter Katoen and Thomas Noll Software Modeling and Verification Group RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-19-20/ct/

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

HML and Process Traces

Syntax of CCS I

Definition (Syntax of CCS)

- Let A be a set of (action) names.
- $\overline{A} := {\overline{a} \mid a \in A}$ denotes the set of co-names.
- $Act := A \cup \overline{A} \cup \{\tau\}$ is the set of actions with the silent (or: unobservable) action τ .
- Let Pid be a set of process identifiers.
- The set *Prc* of process expressions is defined by the following syntax:

$$P ::= nil$$
 (inaction)
 $\mid \alpha.P$ (prefixing)
 $\mid P_1 + P_2$ (choice)
 $\mid P_1 \mid\mid P_2$ (parallel composition)
 $\mid P \setminus L$ (restriction)
 $\mid P[f]$ (relabelling)
 $\mid C$ (process call)

where $\alpha \in Act$, $\emptyset \neq L \subseteq A$, $C \in Pid$, and $f : Act \rightarrow Act$ such that $f(\tau) = \tau$ and $f(\overline{a}) = \overline{f(a)}$ for each $a \in A$.

Syntax of CCS II

Definition (continued)

• A (recursive) process definition is an equation system of the form

$$(C_i = P_i \mid 1 \leq i \leq k)$$

where $k \ge 1$, $C_i \in Pid$ (pairwise distinct), and $P_i \in Prc$ (with identifiers from $\{C_1, \ldots, C_k\}$).

Notational Conventions:

- $\overline{\overline{a}}$ means a
- $\sum_{i=1}^n P_i$ $(n \in \mathbb{N})$ means $P_1 + \ldots + P_n$ (where $\sum_{i=1}^0 P_i := \text{nil}$)
- $P \setminus a$ abbreviates $P \setminus \{a\}$
- $[a_1 \mapsto b_1, \dots, a_n \mapsto b_n]$ stands for $f : Act \to Act$ with $f(a_i) = b_i$ for $i \in [n]$ and $f(\alpha) = \alpha$ otherwise
- restriction and relabelling bind stronger than prefixing, prefixing stronger than composition, composition stronger than choice:

$$P \setminus a + b.Q \parallel R$$
 means $(P \setminus a) + ((b.Q) \parallel R)$

Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph

- nodes = system states
- edges = transitions between states

Definition (Labelled transition system)

An (Act-)labelled transition system (LTS) is a triple $(S, Act, \longrightarrow)$ consisting of

- a set S of states
- a set Act of (action) labels
- a transition relation $\longrightarrow \subseteq S \times Act \times S$

For $(s, \alpha, s') \in \longrightarrow$ we write $s \stackrel{\alpha}{\longrightarrow} s'$. An LTS is called finite if S is so.

Remarks:

- sometimes an initial state $s_0 \in S$ is distinguished ("LTS(s_0)")
- (finite) LTSs correspond to (finite) automata without final states

Semantics of CCS I

Definition (Semantics of CCS)

A process definition $(C_i = P_i \mid 1 \le i \le k)$ determines the LTS $(Prc, Act, \longrightarrow)$ whose transitions can be inferred from the following rules $(P, P', Q, Q' \in Prc, \alpha \in Act, \lambda \in A \cup \overline{A}, a \in A)$:

$$(Act) \overline{\alpha.P \xrightarrow{\alpha} P} \qquad (Sum_1) \overline{P \xrightarrow{\alpha} P'} \qquad (Sum_2) \overline{Q \xrightarrow{\alpha} Q'}$$

$$(Par_1) \overline{P \parallel Q \xrightarrow{\alpha} P' \parallel Q} \qquad (Par_2) \overline{P \parallel Q \xrightarrow{\alpha} P \parallel Q'} \qquad (Com) \overline{P \xrightarrow{\lambda} P' Q \xrightarrow{\lambda} Q'}$$

$$(Par_1) \overline{P \parallel Q \xrightarrow{\alpha} P' \parallel Q} \qquad (Par_2) \overline{P \parallel Q \xrightarrow{\alpha} P \parallel Q'} \qquad (Com) \overline{P \parallel Q \xrightarrow{\tau} P' \parallel Q'}$$

$$(Res) \overline{P \xrightarrow{\alpha} P' (\alpha, \overline{\alpha} \notin L)} \qquad (Rel) \overline{P \parallel Q \xrightarrow{\alpha} P' \parallel Q'} \qquad (Call) \overline{P \xrightarrow{\alpha} P' (C = P)}$$

$$(Call) \overline{P \xrightarrow{\alpha} P'} \qquad (Call) \overline{P \xrightarrow{\alpha} P'}$$

Semantics of CCS II

Example (continued)

Complete LTS of parallel two-place buffer:

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

HML and Process Traces

The Power of Recursive Definitions

So far: only finite state spaces

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

$$C = up.(C \parallel down.nil)$$

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

$$C = up.(C \parallel down.nil)$$

gives rise to infinite LTS (abbreviating down := down.nil):

The Power of Recursive Definitions

So far: only finite state spaces

Example 3.1 (Counter)

$$C = up.(C \parallel down.nil)$$

gives rise to infinite LTS (abbreviating down := down.nil):

Sequential "specification": $C_0 = up.C_1$

$$C_n = up.C_{n+1} + down.C_{n-1}$$
 $(n > 0)$

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

HML and Process Traces

Process Traces I

Goal: reduce processes to the action sequences they can perform

Definition 3.2 (Trace language)

For every $P \in Prc$, let

$$Tr(P) := \{ w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P' \}$$

be the trace language of P (where $\stackrel{w}{\longrightarrow} := \stackrel{a_1}{\longrightarrow} \circ \ldots \circ \stackrel{a_n}{\longrightarrow}$ for $w = a_1 \ldots a_n$).

 $P, Q \in Prc$ are called trace equivalent if Tr(P) = Tr(Q).

Process Traces I

Goal: reduce processes to the action sequences they can perform

Definition 3.2 (Trace language)

For every $P \in Prc$, let

$$Tr(P) := \{ w \in Act^* \mid \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{w} P' \}$$

be the trace language of P (where $\stackrel{w}{\longrightarrow} := \stackrel{a_1}{\longrightarrow} \circ \ldots \circ \stackrel{a_n}{\longrightarrow}$ for $w = a_1 \ldots a_n$).

 $P, Q \in Prc$ are called trace equivalent if Tr(P) = Tr(Q).

Example 3.3 (One-place buffer)

$$B = in.\overline{out}.B$$

$$\implies$$
 $Tr(B) = (in \cdot \overline{out})^* \cdot (in + \varepsilon)$

Process Traces II

Remarks:

The trace language of P ∈ Prc is accepted by the LTS of P, interpreted as a (finite or infinite) automaton with initial state P and where every state is final.

Process Traces II

Remarks:

- The trace language of $P \in Prc$ is accepted by the LTS of P, interpreted as a (finite or infinite) automaton with initial state P and where every state is final.
- Trace equivalence is obviously an equivalence relation (i.e., reflexive, symmetric, and transitive).

Process Traces II

Remarks:

- The trace language of P ∈ Prc is accepted by the LTS of P, interpreted as a (finite or infinite) automaton with initial state P and where every state is final.
- Trace equivalence is obviously an equivalence relation (i.e., reflexive, symmetric, and transitive).
- Trace equivalence identifies processes with identical LTSs: the trace language of a process consists of the (finite) paths in the LTS. Thus:

$$LTS(P) = LTS(Q) \implies Tr(P) = Tr(Q)$$

Process Traces II

Remarks:

- The trace language of P ∈ Prc is accepted by the LTS of P, interpreted as a (finite or infinite) automaton with initial state P and where every state is final.
- Trace equivalence is obviously an equivalence relation (i.e., reflexive, symmetric, and transitive).
- Trace equivalence identifies processes with identical LTSs: the trace language of a process consists of the (finite) paths in the LTS. Thus:

$$LTS(P) = LTS(Q) \implies Tr(P) = Tr(Q)$$

Later we will see: trace equivalence is too coarse, i.e., identifies too many processes
 bisimulation

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

HML and Process Traces

Motivation

Goal: check processes for simple properties

- action a is initially enabled
- action b is initially disabled
- a deadlock never occurs
- always sends a reply after receiving a request

Motivation

Goal: check processes for simple properties

- action a is initially enabled
- action b is initially disabled
- a deadlock never occurs
- always sends a reply after receiving a request

Approach:

- Formalisation in Hennessy-Milner Logic (HML)
- M. Hennessy, R. Milner: On Observing Nondeterminism and Concurrency, ICALP 1980, Springer LNCS 85, 299–309
- Checking by exploration of state space

Syntax of HML

Definition 3.4 (Syntax of HML)

The set *HMF* of Hennessy-Milner formulae over a set of actions *Act* is defined by the following syntax:

```
F ::= \text{tt} \qquad \text{(true)}
\mid \text{ ff} \qquad \text{(false)}
\mid F_1 \wedge F_2 \qquad \text{(conjunction)}
\mid F_1 \vee F_2 \qquad \text{(disjunction)}
\mid \langle \alpha \rangle F \qquad \text{(diamond)}
\mid [\alpha] F \qquad \text{(box)}
```

where $\alpha \in Act$.

Meaning of HML Constructs

• All processes satisfy tt.

- All processes satisfy tt.
- No process satisfies ff.

- All processes satisfy tt.
- No process satisfies ff.
- A process satisfies $F \wedge G$ iff it satisfies F and G.

- All processes satisfy tt.
- No process satisfies ff.
- A process satisfies F ∧ G iff it satisfies F and G.
- A process satisfies F ∨ G iff it satisfies either F or G or both.

- All processes satisfy tt.
- No process satisfies ff.
- A process satisfies F ∧ G iff it satisfies F and G.
- A process satisfies F ∨ G iff it satisfies either F or G or both.
- A process satisfies $\langle \alpha \rangle F$ for some $\alpha \in Act$ iff it affords an α -labelled transition to a state satisfying F (possibility).

- All processes satisfy tt.
- No process satisfies ff.
- A process satisfies F ∧ G iff it satisfies F and G.
- A process satisfies F ∨ G iff it satisfies either F or G or both.
- A process satisfies $\langle \alpha \rangle F$ for some $\alpha \in Act$ iff it affords an α -labelled transition to a state satisfying F (possibility).
- A process satisfies $[\alpha]F$ for some $\alpha \in Act$ iff all its α -labelled transitions lead to a state satisfying F (necessity).

Meaning of HML Constructs

- All processes satisfy tt.
- No process satisfies ff.
- A process satisfies F ∧ G iff it satisfies F and G.
- A process satisfies F ∨ G iff it satisfies either F or G or both.
- A process satisfies $\langle \alpha \rangle F$ for some $\alpha \in Act$ iff it affords an α -labelled transition to a state satisfying F (possibility).
- A process satisfies $[\alpha]F$ for some $\alpha \in Act$ iff all its α -labelled transitions lead to a state satisfying F (necessity).

Abbreviations for $L = \{\alpha_1, \dots, \alpha_n\}$ $(n \in \mathbb{N})$:

- $\langle L \rangle F := \langle \alpha_1 \rangle F \vee \ldots \vee \langle \alpha_n \rangle F$
- $[L]F := [\alpha_1]F \wedge \ldots \wedge [\alpha_n]F$
- In particular, $\langle \emptyset \rangle F := \text{ff and } [\emptyset] F := \text{tt}$

Semantics of HML

Definition 3.5 (Semantics of HML)

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF$. The set of processes in S that satisfy F, $\llbracket F \rrbracket \subseteq S$, is defined by: $\llbracket \operatorname{tt} \rrbracket := S$ $\llbracket \operatorname{ff} \rrbracket := \emptyset$ $\llbracket F_1 \wedge F_2 \rrbracket := \llbracket F_1 \rrbracket \cap \llbracket F_2 \rrbracket$ $\llbracket F_1 \vee F_2 \rrbracket := \llbracket F_1 \rrbracket \cup \llbracket F_2 \rrbracket$ $\llbracket (\alpha)F \rrbracket := [\cdot \alpha \cdot](\llbracket F \rrbracket)$

where $\langle \cdot \alpha \cdot \rangle$, $[\cdot \alpha \cdot] : 2^S \to 2^S$ are given by

$$\langle \cdot \alpha \cdot \rangle (T) := \{ s \in S \mid \exists s' \in T : s \xrightarrow{\alpha} s' \}$$

 $[\cdot \alpha \cdot](T) := \{ s \in S \mid \forall s' \in S : s \xrightarrow{\alpha} s' \implies s' \in T \}$

We write $s \models F$ iff $s \in [F]$. Two HML formulae are equivalent (written $F \equiv G$) iff they are satisfied by the same processes in every LTS.

Semantics of HML

Definition 3.5 (Semantics of HML)

Let $(S, Act, \longrightarrow)$ be an LTS and $F \in HMF$. The set of processes in S that satisfy F,

where $\langle \cdot \alpha \cdot \rangle$, $[\cdot \alpha \cdot]$: $2^S \rightarrow 2^S$ are given by

$$\langle \cdot \alpha \cdot \rangle (T) := \{ s \in S \mid \exists s' \in T : s \xrightarrow{\alpha} s' \}$$

 $[\cdot \alpha \cdot](T) := \{ s \in S \mid \forall s' \in S : s \xrightarrow{\alpha} s' \implies s' \in T \}$

We write $s \models F$ iff $s \in [F]$. Two HML formulae are equivalent (written $F \equiv G$) iff they are satisfied by the same processes in every LTS.

Example 3.6 ($\langle \cdot \alpha \cdot \rangle$, $[\cdot \alpha \cdot]$ operators)

on the board

Simple Properties Revisited

Example 3.7

1. Action *a* is initially enabled: $\langle a \rangle$ tt

Simple Properties Revisited

Example 3.7

1. Action *a* is initially enabled: $\langle a \rangle$ tt

2. Action b is initially disabled: [b]ff

$$\begin{split} \llbracket [b] \mathsf{ff} \rrbracket &= \llbracket \cdot b \cdot \rrbracket \llbracket \mathsf{ff} \rrbracket = \llbracket \cdot b \cdot \rrbracket (\emptyset) \\ &= \{ s \in \mathcal{S} \mid \forall s' \in \mathcal{S} : s \xrightarrow{b} s' \implies s' \in \emptyset \} \\ &= \{ s \in \mathcal{S} \mid \nexists s' \in \mathcal{S} : s \xrightarrow{b} s' \} =: \{ s \in \mathcal{S} \mid s \not\xrightarrow{b} \} \end{split}$$

Simple Properties Revisited

Example 3.7

1. Action *a* is initially enabled: $\langle a \rangle$ tt

$$\begin{split} \llbracket \langle a \rangle \mathsf{tt} \rrbracket &= \langle \cdot a \cdot \rangle \llbracket \mathsf{tt} \rrbracket = \langle \cdot a \cdot \rangle (\mathcal{S}) \\ &= \{ s \in \mathcal{S} \mid \exists s' \in \mathcal{S} : s \overset{a}{\longrightarrow} s' \} =: \{ s \in \mathcal{S} \mid s \overset{a}{\longrightarrow} \} \end{split}$$

2. Action b is initially disabled: [b]ff

$$\begin{split} \llbracket [b] \mathsf{ff} \rrbracket &= \llbracket \cdot b \cdot \rrbracket \llbracket \mathsf{ff} \rrbracket = \llbracket \cdot b \cdot \rrbracket (\emptyset) \\ &= \{ s \in S \mid \forall s' \in S : s \xrightarrow{b} s' \implies s' \in \emptyset \} \\ &= \{ s \in S \mid \nexists s' \in S : s \xrightarrow{b} s' \} =: \{ s \in S \mid s \not\xrightarrow{b} \} \end{split}$$

- 3. Absence of deadlock:
 - initially: $\langle Act \rangle$ tt
 - always: later (requires recursion)

Simple Properties Revisited

Example 3.7

1. Action *a* is initially enabled: $\langle a \rangle$ tt

$$\begin{split} \llbracket \langle a \rangle \mathsf{tt} \rrbracket &= \langle \cdot a \cdot \rangle \llbracket \mathsf{tt} \rrbracket = \langle \cdot a \cdot \rangle (\mathcal{S}) \\ &= \{ s \in \mathcal{S} \mid \exists s' \in \mathcal{S} : s \overset{a}{\longrightarrow} s' \} =: \{ s \in \mathcal{S} \mid s \overset{a}{\longrightarrow} \} \end{split}$$

2. Action b is initially disabled: [b]ff

$$egin{aligned} & \llbracket [b] ext{ff}
rbracket & = [\cdot b \cdot] \llbracket ext{s}' \in \mathcal{S} : s \stackrel{b}{\longrightarrow} s'
bracket & = [\cdot b \cdot] \llbracket ext{s}' \in \mathcal{S} \mid s \stackrel{b}{\longrightarrow}
bracket & = [\cdot b \cdot] \llbracket ext{ff}
rbracket & = [\cdot b \cdot] \llbracket ext{ff}
rbracket & = [\cdot b \cdot] \llbracket ext{s}' \in \mathcal{S} : s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s}' \in \mathcal{S} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s}' \in \mathcal{S} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot] \llbracket ext{s} \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot s \mid s \stackrel{b}{\longrightarrow} s' \ & = [\cdot b \cdot s \mid s \mid$$

- 3. Absence of deadlock:
 - initially: $\langle Act \rangle$ tt
 - always: later (requires recursion)
- 4. Responsiveness:
 - initially: $[request]\langle \overline{reply}\rangle$ tt
 - always: later (requires recursion)

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

HML and Process Traces

Closure under Negation

Observation: negation is *not* one of the HML constructs

Reason: HML is closed under negation

Closure under Negation

Observation: negation is *not* one of the HML constructs

Reason: HML is closed under negation

Lemma 3.8

For every $F \in HMF$ there exists $F^c \in HMF$ such that $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ for every LTS $(S, Act, \longrightarrow)$.

Closure under Negation

Observation: negation is *not* one of the HML constructs

Reason: HML is closed under negation

Lemma 3.8

For every $F \in HMF$ there exists $F^c \in HMF$ such that $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ for every LTS $(S, Act, \longrightarrow)$.

Proof.

Definition of F^c :

$$\begin{array}{ll} \operatorname{tt}^c := \operatorname{ff} & \operatorname{ff}^c := \operatorname{tt} \\ (F_1 \wedge F_2)^c := F_1^c \vee F_2^c & (F_1 \vee F_2)^c := F_1^c \wedge F_2^c \\ (\langle \alpha \rangle F)^c := [\alpha] F^c & ([\alpha] F)^c := \langle \alpha \rangle F^c \end{array}$$

Closure under Negation

Observation: negation is *not* one of the HML constructs

Reason: HML is closed under negation

Lemma 3.8

For every $F \in HMF$ there exists $F^c \in HMF$ such that $\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$ for every LTS $(S, Act, \longrightarrow)$.

Proof.

Definition of F^c :

$$\llbracket F^c \rrbracket = S \setminus \llbracket F \rrbracket$$
: on the board

Outline of Lecture 3

Recap: Calculus of Communicating Systems

Infinite State Spaces

Process Traces

Hennessy-Milner Logic

Closure under Negation

HML and Process Traces

HML and Process Traces

Lemma 3.9

Let $(Prc, Act, \longrightarrow)$ be an LTS, and let $P, Q \in Prc$ satisfy the same HMF (i.e., $\forall F \in HMF : P \models F \iff Q \models F$). Then Tr(P) = Tr(Q).

HML and Process Traces

Lemma 3.9

Let $(Prc, Act, \longrightarrow)$ be an LTS, and let $P, Q \in Prc$ satisfy the same HMF (i.e., $\forall F \in HMF : P \models F \iff Q \models F$). Then Tr(P) = Tr(Q).

Proof.

on the board

HML and Process Traces

Lemma 3.9

Let $(Prc, Act, \longrightarrow)$ be an LTS, and let $P, Q \in Prc$ satisfy the same HMF (i.e., $\forall F \in HMF : P \models F \iff Q \models F$). Then Tr(P) = Tr(Q).

Proof.

on the board

Remark: the converse does not hold.

Example 3.10

- Let $P := a.(b.\text{nil} + c.\text{nil}) \in Prc$, $Q := a.b.\text{nil} + a.c.\text{nil} \in Prc$
- Then $Tr(P) = Tr(Q) = \{\varepsilon, a, ab, ac\}$

HML and Process Traces

Lemma 3.9

Let $(Prc, Act, \longrightarrow)$ be an LTS, and let $P, Q \in Prc$ satisfy the same HMF (i.e., $\forall F \in HMF : P \models F \iff Q \models F$). Then Tr(P) = Tr(Q).

Proof.

on the board

Remark: the converse does *not* hold.

Example 3.10

- Let $P := a.(b.\text{nil} + c.\text{nil}) \in Prc$, $Q := a.b.\text{nil} + a.c.\text{nil} \in Prc$
- Then $Tr(P) = Tr(Q) = \{\varepsilon, a, ab, ac\}$
- Let $F := [a](\langle b \rangle \mathsf{tt} \wedge \langle c \rangle \mathsf{tt}) \in \mathit{HMF}$
- Then $P \models F$ but $Q \not\models F$
- [Later: P, Q ∈ Prc HML-equivalent iff bismilar]

