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The Approach

The Calculus of Communicating Systems

History:
• Robin Milner: A Calculus of Communicating Systems

LNCS 92, Springer, 1980
• Robin Milner: Communication and Concurrency

Prentice-Hall, 1989
• Robin Milner: Communicating and Mobile Systems: the π-calculus

Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using only a few
basic primitives
• no explicit storage (variables)
• no explicit representation of values (numbers, Booleans, ...)
⇒ concurrent system reduced to communication potential
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Syntax of CCS

Syntax of CCS I
Definition 2.1 (Syntax of CCS)

• Let A be a set of (action) names.

• A := {a | a ∈ A} denotes the set of co-names.
• Act := A ∪ A ∪ {τ} is the set of actions with the silent (or: unobservable) action τ .
• Let Pid be a set of process identifiers.
• The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| P \ L (restriction)
| P[f ] (relabelling)
| C (process call)

where α ∈ Act , ∅ 6= L ⊆ A, C ∈ Pid , and f : Act → Act such that f (τ ) = τ and f (a) = f (a)
for each a ∈ A.
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Syntax of CCS

Syntax of CCS II

Definition 2.1 (continued)

• A (recursive) process definition is an equation system of the form

(Ci = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ci ∈ Pid (pairwise distinct), and Pi ∈ Prc (with identifiers from {C1, . . . ,Ck}).

Notational Conventions:
• a means a
•
∑n

i=1 Pi (n ∈ N) means P1 + . . . + Pn (where
∑0

i=1 Pi := nil)
• P \ a abbreviates P \ {a}
• [a1 7→ b1, . . . , an 7→ bn] stands for f : Act → Act with f (ai) = bi for i ∈ [n] and f (α) = α

otherwise
• restriction and relabelling bind stronger than prefixing, prefixing stronger than composition,

composition stronger than choice:
P \ a + b.Q ‖ R means (P \ a) + ((b.Q) ‖ R)
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Intuitive Meaning and Examples

Meaning of CCS Constructs

• nil is an inactive process that can do nothing.

• α.P can execute α and then behaves as P.
• An action a ∈ A (a ∈ A) is interpreted as an input (output, resp.) operation. Both are

complementary: if executed in parallel (i.e., in P1 ‖ P2), they are merged into a τ -action.
• P1 + P2 represents the nondeterministic choice between P1 and P2.
• P1 ‖ P2 denotes the parallel execution of P1 and P2, involving interleaving or

communication.
• The restriction P \ L declares each a ∈ L as a local name which is only known within P.
• The relabelling P[f ] allows to adapt the naming of actions.
• The behaviour of a process call C is given by the right-hand side of the corresponding

equation.
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Intuitive Meaning and Examples

CCS Examples

Example 2.2

1. One-place buffer
2. Two-place buffer
3. Parallel specification of two-place buffer

(on the board)
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Formal Semantics of CCS

Labelled Transition Systems

Goal: represent behaviour of system by (infinite) graph
• nodes = system states
• edges = transitions between states

Definition 2.3 (Labelled transition system)

An (Act-)labelled transition system (LTS) is a triple (S,Act,−→) consisting of
• a set S of states
• a set Act of (action) labels
• a transition relation −→ ⊆ S × Act × S

For (s, α, s′) ∈ −→ we write s
α−→ s′. An LTS is called finite if S is so.

Remarks:
• sometimes an initial state s0 ∈ S is distinguished (“LTS(s0)”)
• (finite) LTSs correspond to (finite) automata without final states
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Formal Semantics of CCS

Semantics of CCS I

We define the assignment

syntax → semantics
process definition 7→ LTS

by induction over the syntactic structure of process expressions. Here we employ
derivation rules of the form

(rule name)

premise(s)
conclusion

which are composed to form derivation trees (where axioms, i.e., rules without
premises, correspond to leaves).
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Formal Semantics of CCS

Semantics of CCS II

Definition 2.4 (Semantics of CCS)

A process definition (Ci = Pi | 1 ≤ i ≤ k) determines the LTS (Prc,Act,−→)
whose transitions can be inferred from the following rules (P,P ′,Q,Q′ ∈ Prc,
α ∈ Act , λ ∈ A ∪ A, a ∈ A):

(Act)

α.P
α−→ P

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q′

P + Q
α−→ Q′

(Par1)
P

α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(Par2)
Q

α−→ Q′

P ‖ Q
α−→ P ‖ Q′

(Com)
P

λ−→ P ′ Q
λ−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

(Res)

P
α−→ P ′ (α, α /∈ L)

P \ L
α−→ P ′ \ L

(Rel)
P

α−→ P ′

P[f ]
f (α)−→ P ′[f ]

(Call)

P
α−→ P ′ (C = P)

C
α−→ P ′
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Formal Semantics of CCS

Semantics of CCS III

Example 2.5

1. One-place buffer:

B = in.out .B

2. Sequential two-place buffer:

B0 = in.B1

B1 = out .B0 + in.B2

B2 = out .B1

3. Parallel two-place buffer:

B‖ = (B[f ] ‖ B[g]) \ com
B = in.out .B

where f := [out 7→ com] and g := [in 7→ com]

(on the board)
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Formal Semantics of CCS

Semantics of CCS IV

Example 2.5 (continued)

Complete LTS of parallel two-place buffer:

B‖

((out.B)[f ] ‖ B[g]) \ com

((out.B)[f ] ‖ (out.B)[g]) \ com

(B[f ] ‖ (out.B)[g]) \ com

(B[f ] ‖ B[g]) \ com empty

one entry

full

in
in

τ

out

inout
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