

Concurrency Theory WS 2019/2020 Exercise 9 — _____

Hand in until December 12th before the exercise class.

Exercise 1

An elementary net N is k-bounded iff for each reachable marking M and place p of N holds

 $M(p) \leq k$.

Prove or disprove:

- a) If N is k-bounded, then N has a finite marking graph.
- **b)** If N has a finite marking graph, then N is k-bounded.

Exercise 2

Let $N = (P, T, F, M_0)$ be an elementary net and let Lab: $T \to \Sigma$, where Σ is a finite alphabet, be a labelling of the transitions. The language of N is defined as

 $\mathcal{L}(N, \mathsf{Lab}) = \{ w \in \Sigma^* \mid w = \mathsf{Lab}(t_1) \cdots \mathsf{Lab}(t_k), \sigma = t_1 \cdots t_k, M_0 \xrightarrow{\sigma} M \}$

A language L is called petri-net-acceptable iff there exist an elementary net N with labelling Lab such that $L = \mathcal{L}(N, \mathsf{Lab})$. Prove or disprove:

- a) If L is regular, then L is petri-net-acceptable.
- **b**) If L is petri-net-acceptable, then L is regular.

Exercise 3

Consider the following CCS process P_n for $n \ge 1$:

$$P_n = a_1.\mathrm{nil} || \ldots || a_n.\mathrm{nil}$$

- **a)** Sketch $LTS(P_n)$. How many states does $LTS(P_n)$ have? Briefly justify your answer.
- **b**) Recall the language $\mathcal{L}(N, \mathsf{Lab})$ of a Petri net N and a labeling of states Lab . Give a minimal (w.r.t. number of places) one-bounded elementary net N and a labeling of states Lab with L(N, Lab) = $\operatorname{TR}(P_n).$

(30 Points)

(40 Points)

(30 Points)