

Concurrency Theory WS 2019/2020 — Exercise 8 —

Hand in until December 5th before the exercise class.

Exercise 1

(30 Points)

Decide whether $s \sim t_4$ holds in the LTS depicted below. For that, either give a universal winning strategy for the attacker or for the defender. In case $s \sim t_4$ holds, define a strong bisimulation \mathcal{R} with $s \mathcal{R} t_4$. In case $s \not\sim t_4$ holds, provide an HML formula distinguishing s and t_4 .

Exercise 2

Consider the following LTS:

Prove or disprove that P and T are weakly bisimilar.

Exercise 3

(30 Points)

Prove Milner's τ laws for weak bisimilarity, i.e., prove the following for all $P, Q \in \mathsf{Prc}$ and all $\alpha \in \mathsf{Act}$:

- 1. $\alpha.\tau.P \approx \alpha.P$. 2. $P + \tau.P \approx \tau.P$.
- 3. $\alpha . (P + \tau . Q) \approx \alpha . (P + \tau . Q) + \alpha . Q.$

(20 Points)

Exercise 4

(30 Points)

A binary relation \mathcal{R} over the set of states of an LTS is a *branching bisimulation* if and only if it is symmetric and, whenever $P \mathcal{R} Q$ holds, then for all $\alpha \in Act$ (including τ) it holds: if $P \xrightarrow{\alpha} P'$ then either $\alpha = \tau$ and $P' \mathcal{R} Q$ or there is a $k \ge 0$ and a sequence of transitions

$$Q = Q_0 \xrightarrow{\tau} Q_1 \xrightarrow{\tau} \dots \xrightarrow{\tau} Q_k \xrightarrow{\alpha} Q'$$

such that $P \mathcal{R} Q_j$ holds for each $j \in \{1, \ldots, k\}$ and $P' \mathcal{R} Q'$.

Two states P and Q are *branching bisimilar* if and only if there is a branching bisimulation \mathcal{R} such that $P \mathcal{R} Q$. The largest branching bisimulation \approx_{BB} is called *branching bisimilarity*.

- 1. Prove or disprove: If P and Q are branching bisimilar, then P and Q are weakly bisimilar.
- 2. Prove or disprove: If P and Q are branching bisimilar, then P and Q are strongly bisimilar.
- 3. Prove or disprove: If P and Q are weakly bisimilar, then P and Q are branching bisimilar.