

Concurrency Theory WS 2019/2020 — Exercise 6 —

Hand in until November 21th before the exercise class.

Exercise 1

(30 Points)

(30 Points)

Prove or disprove the following statements.

- 1. Trace equivalence is a congruence w.r.t. parallel composition.
- 2. Completed Trace equivalence is a congruence w.r.t. the restriction-operator.

Exercise 2

- 1. Provide an example of two processes which are trace equivalent, but not completed trace equivalent.
- 2. Consider the following rules for the semantics of the sequential composition P; Q of two CCS processes P and Q, which you already know from Exercise 1.2:

$$\frac{\not\exists \alpha \ \not\exists P' \colon P \xrightarrow{\alpha} P'}{P; Q \xrightarrow{\tau} Q} \qquad \qquad \frac{P \xrightarrow{\alpha} P'}{P; Q \xrightarrow{\alpha} P'; Q}$$

Check whether trace equivalence is a congurence w.r.t. sequential composition.

Exercise 3

(40 Points)

Let A be a finite set and A^{ω} be the set of all *infinite* sequences of symbols in A. For $w \in A^{\omega}$, we denote the first symbol of w by w[0] and the remaining sequence by w', i.e., $w = w[0] \cdot w'$, where $w[0] \in A$ and $w' \in A^{\omega}$. A relation $\sim \subseteq A^{\omega} \times A^{\omega}$ is called a *bisimulation* (of infinite sequences) if it satisfies the following property: For $u, v \in A^{\omega}$ it holds that if $u \sim v$, then u[0] = v[0] and $u' \sim v'$.

Show for the *largest* bisimulation $\sim \subseteq A^{\omega} \times A^{\omega}$ that for all $u, v \in A^{\omega}$, we have

u = v if and only if $u \sim v$.