
2 Concurrency Theory WS 2019/2020
Chair for Software Modeling and Verification
RWTH Aachen

Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen
apl. Prof. Dr. Thomas Noll

Christoph Matheja, Kevin Batz

Concurrency Theory WS 2019/2020

— Exercise 2 —
Hand in until October 24th before the exercise class.

Exercise 1 (30+10+20 Points)

Consider the following tasks on CCS and corresponding LTS.

(a) Decide whether the following CCS process definitions induce infinite LTS and whether their trace
languages are regular. Justify your answers.

i) B = (B ‖ B) + a.nil

ii) D = a.(D ‖ b.nil)

iii) B = (B ‖ B) \ {a} + a.nil

(b) Prove or disprove: If a CCS process C is defined as C = C ‖ P for some process expression P , then
LTS(C) is infinite.

(c) Prove or disprove: If a CCS process C is defined as C = a.C ‖ P for some process expression P ,
then LTS(C) is infinite.

Exercise 2 (20 Points)

Let A = 〈a〉(〈b〉tt ∨ 〈c〉ff) and B = [a](〈b〉tt ∧ [c]ff) be HML formulae.

(a) Give a CCS expression (or LTS) for which A holds but not B.

(b) Give a CCS expression (or LTS) for which B holds but not A.

Exercise 3 (20 Points)

Let F be a label and A = 〈a〉F and B = [a]F be HML formulae.
Give minimal (w.r.t. the number of states) LTS L1, L2, L3 and L4 such that

(a) L1 |= A and L1 |= B,

(b) L2 |= A and L2 2 B,

(c) L3 2 A and L3 |= B and

(d) L4 2 A and L4 2 B.

