

Concurrency Theory WS 2019/2020

- Exercise 2 -

Hand in until October 24th before the exercise class.

Exercise 1

(30+10+20 Points)

Consider the following tasks on CCS and corresponding LTS.

- (a) Decide whether the following CCS process definitions induce infinite LTS and whether their trace languages are regular. Justify your answers.
 - i) B = (B || B) + a.nil
 - ii) $D = a.(D \parallel b.nil)$
 - iii) $B = (B \parallel B) \setminus \{a\} + a.nil$
- (b) Prove or disprove: If a CCS process C is defined as $C = C \parallel P$ for some process expression P, then LTS(C) is infinite.
- (c) Prove or disprove: If a CCS process C is defined as $C = a.C \parallel P$ for some process expression P, then LTS(C) is infinite.

Exercise 2

Let $A = \langle a \rangle (\langle b \rangle \texttt{tt} \lor \langle c \rangle \texttt{ff})$ and $B = [a](\langle b \rangle \texttt{tt} \land [c]\texttt{ff})$ be HML formulae.

- (a) Give a CCS expression (or LTS) for which A holds but not B.
- (b) Give a CCS expression (or LTS) for which B holds but not A.

Exercise 3

(20 Points)

(20 Points)

Let F be a label and $A = \langle a \rangle F$ and B = [a]F be HML formulae. Give minimal (w.r.t. the number of states) LTS L_1, L_2, L_3 and L_4 such that

- (a) $L_1 \models A$ and $L_1 \models B$,
- (b) $L_2 \models A \text{ and } L_2 \nvDash B$,
- (c) $L_3 \nvDash A$ and $L_3 \models B$ and
- (d) $L_4 \nvDash A$ and $L_4 \nvDash B$.