
2
Concurrency Theory WS 2015/2016

Chair for Software Modeling and Verification

Rheinisch-Westfälische Technische Hochschule Aachen

Prof. Dr. Ir. Joost-Pieter Katoen

apl. Prof. Dr. Thomas Noll

B. Kaminski, C. Matheja

Concurrency Theory WS 2015/2016

— 1st Exam —

First Name:

Second Name:

Matriculation Number:

Degree Programme (please mark):

◦ CS Bachelor
◦ CS Master
◦ CS Lehramt
◦ SSE Master
◦ Other:

General Information:

• Mark every sheet with your matriculation number.

• Check that your copy of the exam consists of 10 sheets (20 pages).

• Duration of exam: 120 minutes.

• No helping materials (e.g. books, notes, slides) are permitted.

• Give your solution on the respective sheet. Also use the backside if necessary. If
you need more paper, ask the assistants.

• Write with blue or black ink; do not use a pencil or red ink.

• Make sure all electronic devices are switched off and are nowhere near you.

• Any attempt at deception leads to failure for this exam, even if detected only later.

Σ Points Points obtained
Task 1 28
Task 2 28
Task 3 15
Task 4 14
Task 5 24
Task 6 11

Σ 120



Matriculation Number:

Task 1 (Labeled Transition Systems) (20+5+3 Points)

(a) Consider the following CCS process definition:

A =
(
B + (D ‖ E)

)
\ {sync}

B = (a.D ‖ a.E) + b.nil

D = sync.D

E = sync.E

Derive all legal outgoing transitions A
α−→ A′ (for some A′ ∈ Prc) by giving a

corresponding derivation tree.

2



Matriculation Number:

3



Matriculation Number:

(b) Reconsider the CCS process definition from Task 2 (a):

A =
(
B + (D ‖ E)

)
\ {sync}

B = (a.D ‖ a.E) + b.nil

D = sync.D

E = sync.E

Draw LTS(A) and label the nodes with the corresponding CCS processes.

4



Matriculation Number:

(c) Give the trace language Tr(A) of A.

5



Matriculation Number:

Task 2 (HML and Bisimulation) (18+8+2 Points)

Consider the following CCS processes:

A = a.B + a.C B = b.A+ a.C + b.D C = b.A+ a.B + b.E

D = c.E + b.C E = b.B + c.D F = c.F + b.G

G = b.F + a.G+ b.H H = a.G I = a.b.H + a.G

(a) Draw LTS(A), LTS(H) and LTS(I), respectively. Prove or disprove: A ∼ H,
A ∼ I and H ∼ I, where ∼ denotes strong bisimilarity.

For proving or disproving that two processes are strongly bisimilar, you may use the
game characterization of bisimilarity. For disproving you may alternatively provide
an HML formula which is satisfied by only one of two processes.

6



Matriculation Number:

7



Matriculation Number:

(b) Provide a (possibly recursive) HML specification expressing that pattern aba is
enabled in each state until action c is enabled (although c might never be enabled
at all).

(c) Check whether H satisfies your HML specification provided in (b).

8



Matriculation Number:

9



Matriculation Number:

Task 3 (Modeling with CCS) (4+1+6+4 Points)

Let A = {a, b, c, d}. For a word w ∈ A∗ and x ∈ A, we write #x(w) to denote the number
of occurrences of symbol x in w. Moreover, pref (L) denotes the prefix-closure of L ⊆ Act∗.

(a) Provide a CCS process P whose trace language is Tr(P ) = pref (L1), where

L1 = {w ∈ A∗ | #a(w) > #b(w)}.

(b) Prove or disprove: There exists a CCS process P with Tr(P ) = pref (L1) such that
LTS(P ) is finite.

(c) Provide a CCS process Q whose trace language is

Tr(Q) = L2 = {w ∈ (τ ∗aτ ∗)m(τ ∗bτ ∗)n | m ≥ n ≥ 0}.

(d) Prove or disprove: There exists a CCS process Q with Tr(Q) = L2 such that
LTS(Q) is finite.

10



Matriculation Number:

11



Matriculation Number:

Task 4 (Preservation of Bisimilarity) (14 Points)

For β ∈ Act, let � β be a unary CCS operator with the following semantics:

(suff1)
P

α−−→ P ′

P � β α−−→ P ′ � β

(suff2)
P 6−→

P � β β−−→ nil

Prove or disprove: � β preserves strong bisimilarity, i.e. for any processes S and T with
S ∼ T it holds that S � β ∼ T � β.

12



Matriculation Number:

13



Matriculation Number:

Task 5 (True Concurrency Semantics) (14+10 Points)

Consider the following elementary net N :

p1

p2

p3

p4

p5

p6

p7

p8

t1

t2 t3

t4

t5

t6 t7

t8

(a) Give the marking graph of N .

14



Matriculation Number:

15



Matriculation Number:

(b) Provide three non-isomorphic branching processes B1, B2, B3 of N such that B1 v
B2 and B2 6v B3 6v B1.

16



Matriculation Number:

17



Matriculation Number:

Task 6 (Petri–Net–Acceptable Languages) (3+8 Points)

Recall the following definition of Petri–net–acceptable languages: Let N = (P, T, F, M0)
be an elementary net and let Lab : T → Σ, where Σ is a finite alphabet, be a labelling of
the transitions. The language of N is defined as

L(N, Lab) = {w ∈ Σ∗ | w = Lab(t1) · · · Lab(tk), σ = t1 · · · tk, M0
σ−→M}

A language L is called Petri–net–acceptable iff there exist an elementary net N with
labelling Lab such that L = L(N, Lab). Prove or disprove:

a) If L is context–free, then L is Petri–net–acceptable.

b) If L is Petri–net–acceptable, then L is context–free.

Hint: The prefix–closure of the language {anbcmbdk | n ≥ m ≥ k ∈ N} ⊆ {a, b, c, d}∗ is
not context–free.

18



Matriculation Number:

19



Matriculation Number:

20


