
Semantics and Verification of Software
apl. Prof. Dr. Thomas Noll
Christoph Matheja, Kevin Batz

Exercise Sheet 8
Due date: June 28th. Please hand in your solutions at the start of the exercise class.

Task 1: Hoare Logic for Timed Correctness (40 Points)

Consider the Hoare logic for timed correctness (Lecture 13, Definition 13.7).
(a) Show that the following rule for sequential composition is not sound.

{A}c1{e1 ⇓ C} {C}c2{e2 ⇓ B}
{A}c1; c2{e1 + e2 ⇓ B}

That is, provide programs c1, c2, assertions A,B, and arithmetic expressions e1, e2, which
satisfy the premise of the above rule but do not satisfy the conclusion.

(b) Determine an arithmetic expression e such that for your programs c1, c2 and your asser-
tions A,B from (a) it holds that ` {A}c1; c2{e ⇓ B}. Prove this triple in Hoare logic
for timed correctness using the sound rule for sequential composition (Definition 11.13)

Task 2: Operational Semantics of Procedure Calls (30 Points)

A naïve version of the operational semantics of procedure calls might be defined as follows:
(ρ, π) ` 〈c, σ〉 → σ′ π(P ) = (c, ρ′, π′)

(ρ, π) ` 〈call P, σ〉 → σ′

Construct a program c with procedures that illustrates the difference between the above rule
and the call-rule from the lecture (Definition 14.2).
Validate your claim by constructing two different derivation trees (one using the above rule,
one using the rule from the lecture) for c and a suitable initial program state.

Task 3: Axiomatic Semantics with Local Variables (30 Points)

Assume we extend the WHILE programming language with blocks whose local variables are
initialized (procedures are not considered in the extension).

v ::= Var x :=e; v | ε (e ranges over AExp)
c ::= . . . | begin v c end

(a) Let A be an assertion with free variables FV (A). Define an assertion A′ in which
every x ∈ FV (A) is replaced by a fresh existentially quantified variable x′ such that
|= (A⇒ A′) holds.

(b) Extend the rules of axiomatic semantics to capture the local variable declarations and
block definitions. You may assume that a sequence v of variable declarations contains
no duplicates. For convenience, you may use FV (v) ( resp. FV (A)) to denote the set
of variables occuring in v (resp. A) and Exp(v) to denote the corresponding arithmetic
expressions.

Page 1 of 1


