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Abstract

Programs with shared-memory concurrency are inherently di�cult to get right: They
are prone to all the memory-related errors that are familiar from the single-threaded
setting, such as null pointer dereferences and unintended aliasing. In addition, the possible
interference between parallel execution threads gives rise to new classes of errors, such as
data races. As thread interleaving is nondeterministic in nature and heap-manipulating
programs generally have an unbounded state space due to dynamic memory allocation, the
application of formal methods is challenging in this setting.

In this thesis I develop a static analysis for proving shape invariants, absence of null pointer
dereferences, as well as data-race freedom of programs with fork–join parallelism. To this
end, I develop a formal semantics based on hypergraphs and access permissions for a model
programming language with fork–join parallelism. I derive an abstract interpretation that
uses hyperedge replacement grammars to safely approximate the program’s semantics
and discuss how to implement this interpretation in a framework for data-�ow analysis to
automatically generate procedure contracts. The result is a modular analysis for proving
the above properties in the presence of recursive data structures and dynamic (possibly
recursive) thread creation.
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CHAPTER 1

Introduction

1.1 Motivation and Related Work

Writing correct software is a di�cult task. So di�cult, in fact, that even delivered software
products average 15 to 50 errors per 1000 lines of code [McC04]—despite prevalence
of systematic testing and advanced software engineering methodologies. This is not
surprising, as even the most careful system design leaves room for errors and even the
most experienced tester may forget to cover a corner case. For this reason, formal methods
are increasingly used to prove a program’s properties with mathematical certainty, rather
than relying on inherently incomplete mechanisms such as testing. In formal methods,
we use techniques from mathematics and logic to specify and reason about systems—an
approach which has long been advocated, especially for critical systems [Rus95]. Formal
methods range from completely manual proofs over partly automated methods such as
interactive theorem proving to fully automated methods such as model checking. In this
thesis I shall focus on methods from the area of static program analysis. In static program
analysis, we employ fully automatic, source–code-guided analysis techniques (hence static).
More concretely, I develop an analysis for the abstract interpretation [CC77] of heap-
manipulating programs in the presence of fork–join parallelism.

A heap-manipulating program is any program that allocates memory on the heap rather
than exclusively operating on a stack. Every program that uses dynamic data structures
or object orientation, or otherwise explicitly or implicitly deals with pointers, falls under
this umbrella. In other words: Nearly every non-trivial program written in any modern
programming language is a heap-manipulating program.

Pointers are di�cult to reason about; as a result, the incorrect use of pointers is one of
the most common sources of errors [FGL96]. Null dereferences, memory leaks, and
unintended aliasing are all errors that most software developers are familiar with. In
addition to such low-level mistakes, there are also more complex functional properties
to consider. A programmer may, for example, develop a function under the assumption
that it receives a noncyclic list as input or that it receives two input lists that are disjoint.
If these implicit shape invariants are violated, the program may behave in unexpected
ways [SRW02].

Recent years have brought further complications into the programming mainstream: With
the advent of many-core systems as well as the cloud, parallel, concurrent, and dis-
tributed programming have become ubiquitous. Even though research in these areas
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has been carried out for �fty years—Dijkstra’s seminal paper on cooperating sequential
processes [Dij68] was written in 1965—we are arguably still not in a position to claim that
we have de�nite answers to questions such as “How do I best structure a parallel program?”
and “How can I ensure that it is safe to run my program in parallel?”.

Many (imperative) programming languages implement a variant of the fork–join model
of parallel computation. In this model, an execution thread, the parent thread forks o�
one or more children that may potentially run in parallel with the parent thread. When
the parent thread needs to access the results of the child’s computation, it performs a join
operation, which causes the parent thread to block until the computation of the forked
child has completed. In the classical model, the forked threads are executed completely
independently from the parent thread and from each other; the only point of interaction is
the join. While this model goes back as far as 1963 [Con63], it continues to be an important
principle for structuring parallel programs: Both Java’s threading model [Gos00] and
C’s POSIX threads [IEEE95] are (extended) implementations of the fork–join model, and
fork–join parallelism continues to be one of the design patterns presented in text books on
concurrent and parallel programming [DGT93; Lea00].

Concurrency gives rise to new classes of bugs, which are often extremely hard to catch,
because they depend on the interleaving of the execution threads. The canonical example
(formulated in a language with parallel composition) usually runs along the following lines:

(y := x+ 1;x := y) ‖ (z := x+ 1;x := z)

This program runs (y := x+ 1;x := y) and (z := x+ 1;x := z) in parallel, denoted by
the parallel composition operator ‖. Each sequential computational increments the value
of a shared variable x. The result may, however, be either x+ 1 or x+ 2, depending on the
interleaving of the threads’ statements.

This kind of—usually unintended—ambiguity is called a data race. Unfortunately, most
�avors of shared-memory concurrency, including fork–join parallelism, are prone to data
races [DGT93; Pac11].

In this thesis I study an imperative programming language with explicit pointers, fork–join
parallelism and shared memory concurrency. This small language, which I simply call PL,
is simpler than Java or C, but is at the same time complex enough to be prone to all the
memory errors I discussed so far. As such, it was speci�cally designed as a study object to
test the feasibility of a novel static analysis for formally proving the absence of memory
errors, from simple ones such as null dereferences to violations of shape invariants to data
races in the concurrent setting.

My work follows in a long research tradition: In the veri�cation of parallel programs, one
early work which comes to mind is the Owicki-Gries method for axiomatically verifying
parallel programs, which was published in 1976 [OG76]. For an overview of the �eld up
until 2001, see de Roever’s book [Roe01]; for a more recent perspective, the work of Jones
et al. [Jon12; JHC13] is a good starting point.

In the area of heap analysis, shape analysis [SRW02] and separation logic [Rey02] are
the most widespread approaches.1 Heap-manipulating programs generally have in�nite
state space, as there is no upper bound for the size of the heaps they must be able to deal with
(consider, for example, linked lists of arbitrary length). We therefore need an abstraction

1 These are, however, not the only approaches by any means. Consider, for example, (implicit) dynamic
frames [Kas11], region logic [BNR08], and forest automata [Hab+12].
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mechanism to reason about such programs. In shape analysis, shape graphs serve this
purpose. In separation logic, recursive predicates are used for abstracting recursive data
structures such as lists. Separation logic is known for the separating conjunction, commonly
denoted ∗, which expresses that a heap consists of two disjoint parts. This allows to reason
locally about a statement’s or procedure’s e�ect without reasoning about the global heap,
which is the key innovation of and reason for the popularity of separation logic [Rey02].

We use a di�erent (but related [Dod08]) approach: We represent heaps as hypergraphs,
i.e., as generalized graphs where edges may connect arbitrarily many rather than exactly
two nodes. We use such generalized edges (hyperedges) to represent abstract data struc-
tures. The abstraction and concretization mechanisms are provided through hyperedge
replacement grammars, a variant of context-free graph grammars. This approach shares
with separation logic the possibility to reason locally about those parts of the heap that are
relevant for the execution of a procedure; it has successfully been employed in the analysis
of sequential heap-manipulating programs [Dod09; Rie09; HBJ12; Hei+15].

In this thesis I adapt the hypergraph model to parallel programs to be able to reason about
noninterference of parallel processes in addition to sequential memory errors. To this
end, I use permission accounting, based on the work by Boyland [Boy03] and Heule et
al. [Heu+11]. This approach was inspired by the corresponding extension of separation
logic [Bor+05; OHe07], and the application thereof to Java programs [HHH11].

The starting point for this thesis was the paper “Generating Abstract Graph-Based Procedure
Summaries for Pointer Programs” by Jansen et al. [JN14]. This paper instantiates an
interprocedural analysis framework by Knoop and Ste�en [KS92] with a hypergraph-based
domain to automatically prove the absence of certain types of memory errors.

I go beyond this work in two ways. First, I develop a formal operational semantics based
on hypergraphs and an abstract interpretation of that semantics based on hyperedge
replacement grammars. I use this abstract interpretation as a basis for the interprocedural
analysis, thereby closing some gaps in the formalization, as the paper lacked a complete
de�nition of the semantics. Second, I develop a semantics and an abstract interpretation
for the fork–join scenario and extend the interprocedural analysis to this setting.

The resulting analysis has several desirable properties: It is sound, it is completely auto-
matic1, it enables local reasoning about procedures and threads, it is modular in the sense
that procedures and threads can be analyzed independently, and it is decidable for large
classes of programs.

Work on the veri�cation of programs should, of course, not be a purely theoretical endeavor.
Throughout the last decade, many mature tools for heap analysis have been developed.
In 2005, Berdine et al. [BCO05b] presented a symbolic execution based on a decidable
fragment of separation logic. This was the reasoning method based on separation logic that
achieved a high degree of automation and resulted in the Smallfoot tool [BCO06]. Since
then, many tools based on separation logic with various emphases have appeared. Examples
include VeriFast [JP08], which supports concurrency and is integrated with an SMT solver,
THOR [Mag+08], which can deal with arithmetic properties as well as shape properties,
and SLAyer [BCI11], which achieves a very high degree of automation for low-level code.
Embeddings of SL fragments into �rst-order theories to reduce heap analysis to SMT
solving have also been studied [PWZ13]. The Chalice tool [LMS09] provides permission-
based reasoning for a concurrent object-oriented programming language. The VerCors

1After development of hyperedge replacement grammars for the recursive data structures that occur in
the program.
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tool [BH14], builds upon Chalice to enable the veri�cation of concurrent Java programs.
This list is necessarily incomplete, but highlights the interest of the research community in
providing tool support for heap veri�cation and the veri�cation of concurrent programs.

In this thesis I am mainly concerned with a thorough exposition of the underlying theory,
but a tool implementing this theory is also currently under development.

1.2 Summary of Contributions

My contributions are as follows.

1. A complete formal semantics of heap-manipulating programs with (a restricted form
of) fork–join parallelism based on hypergraphs

2. An abstract interpretation of that semantics
3. A reformulation of the interprocedural analysis from [JN14] in terms of the abstract

interpretation that applies to sequential as well as concurrent programs

1.3 Outline

I begin by de�ning basic notation, the syntax of our programming language, and the hy-
pergraph model of program states in Chapter 2. Chapter 3 develops the formal semantics
and grammar-based abstract interpretation of sequential programs written in our program-
ming language. Chapter 4 extends both the semantics and the abstract interpretation to
concurrent programs. In Chapter 5, I develop an interprocedural analysis based on the
abstract interpretations. This development extends upon work by Jansen and Noll [JN14]. I
conclude and discuss possibilities for future work in Chapter 6.

Basic familiarity with order theory and data-�ow analysis are assumed throughout this
thesis; to make the thesis self-contained, I sum up the key concepts in Appendices A and B.
In addition, I give a brief tour of my prototypical implementation in Appendix C.

1.4 How to Read this Thesis

The text is quite technical at times, as I made an e�ort to rigorously de�ne all terms and
give a complete, unambiguous formalization of the presented program analyses. I tried to
convey the intuition in all cases, so that it will often be su�cient if you just skim through
the formal details.

There also is a detailed index at the end of the thesis, where you can look up all terms
and abbreviations that I introduce throughout the thesis. Symbols can be found at the
beginning of that index.

Whenever I want to draw attention to clarifying remarks, I set them apart from the sur-
rounding text using R . Particularly important assumptions or observations are highlighted
using ! .



CHAPTER 2

Background

This chapter sets the stage for the rest of the thesis. I begin by introducing a few notational
conventions in Section 2.1. I present PL, a toy programming language with pointers and
fork–join shared memory concurrency in Section 2.2; PL shall be the object of study
throughout the remainder of the thesis. Section 2.3 introduces hypergraphs and hyper-
edge replacement grammars and motivates their use as a model for the representation
and abstraction of heaps. It contains both the theoretical background and an informal
preparation for the hypergraph-based semantics and static analyses that we shall explore
in later chapters.

2.1 Basic Notation

I sum up the notational conventions that I use in this thesis in the following list. Throughout
the text, I shall write

• 2A for the power set of A
• f : A 99K B for a partial function from A to B.
• f(x) = ⊥ if f is a partial function and unde�ned at x
• Dom(f) and Cod(f) for the domain and codomain of f
• f � C to mean the restriction of f : A→ B to the domain C ∩A
• f ∪ (k 7→ v) for the function that is obtained by extending or updating f according

to the given mapping, i.e., (f ∪ (k 7→ v))(x) :=

{
v if x = k

f(x) otherwise
• f ∪ g for combining functions with disjoint domains, i.e., given f : A→ B, g : C →

D, A ∩ C = ∅, we de�ne (f ∪ g)(x) :=

{
f(x), if x ∈ A
g(x), otherwise

• 〈x1, . . . ,xn〉 for ordered sequences and ε for the empty sequence 〈〉
• 〈x1, . . . ,xn〉·〈y1, . . . ,ym〉 for the concatenation of sequences 〈x1, . . . ,xn,y1, . . . ,ym〉
• x1 :: 〈x2, . . . ,xn〉 for destructuring the sequence 〈x1,x2, . . . ,xn〉 into its head and

tail
• |x| refers to the cardinality of a set x as well as the length of a sequence x
• x ∈ 〈x1, . . . ,xn〉 to denote that x ∈ {x1, . . . ,xn}
• s(i) to refer to the i-th element of a sequence s = 〈x1, . . . ,xn〉, where i ∈ {1, . . . , n}
• A∗,A+ andAω for �nite, non-empty �nite and in�nite sequences overA, respectively

It is, of course, not necessary to memorize this list; you should just remember that you can
look up notation here.
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2.2 A Concurrent Pointer Language

2.2.1 Syntax

In this thesis we shall study a pointer-based programming language with fork–join paral-
lelism. In this section I de�ne the syntax of the language and describe an informal semantics;
the formal semantics shall be developed in Chapter 3. I shall refer to the language sim-
ply as PL and to its sequential fragment—that is, to PL programs without fork or join
statements—as PLseq . PL is de�ned by the EBNF-style grammar in Fig. 2.1 on the facing
page.

Let us have a look at this de�nition in detail. PL is a parallel, imperative, and statically
typed programming language. A PL program consists of a list of procedures, and a list
of type declarations. Although this is not enforced by the grammar in Fig. 2.1, we shall
assume that both procedures and types have unique identi�ers and that there is a single
procedure named main that serves as the unique program entry point. Each procedure
expects a non-empty list of typed parameters of pairwise di�erent names. Procedure calls
may be recursive.

R Following the convention of, e.g., [Aho+06], I use procedure as a generic term in
place of any of function, subroutine, method, or message.

In addition to the procedure declarations, each program contains a list of type declara-
tions. PL types are similar to record types in C: Each type declaration de�nes a �xed list
of typed �elds. They can be accessed via a string identi�er, that we will henceforth call a
selector. Type de�nitions may (and very often will) contain self-references. This makes it
possible to de�ne recursive data types such as lists or binary trees.

Variables in a PL program are either pointers, declared via the var keyword, or thread
tokens, declared via thread .

Pointers are typed according to the type declarations given in the program. The type’s
�elds can be accessed via the selector syntax x.s, mirroring the familiar syntax from C,
C++, or Java (where we would access attributes of objects rather than �elds of records).

R Despite the restriction of PL to pointer variables, it is Turing-complete: We can
encode the natural numbers by associating 0 with the null pointer and de�ning a
successor type type S is prev. On the basis of this encoding, we can easily de�ne a
counter machine model.

There are two types of references in PL: References to variables that consist of single
identi�ers, such as x, and references to selectors, such as x.s. We do not allow nesting
of selectors such as x.s.r, because a maximum dereferencing depth of 1 simpli�es the
semantics.

We shall assume that all variables are declared and assigned a static type before usage. This
is done via statements such as var x : t. This way we can easily check for consistent typing
of all variables throughout the program.1 Given that x has been declared to be of type t,
we can either allocate new memory of the given type via x := new t or make x an alias to
another pointer via x := p, provided that p either refers to a location of type t or the null
pointer.

1Without this restriction, we would need to run an extra static analysis to rule out programs of the kind
if x = y then z := new list else z := new tree, which we are going to disallow to conform to other
statically typed languages such as C or Java.



2.2. A Concurrent Pointer Language 7

〈prog〉 ::= 〈proc-list〉 〈type-list〉

〈proc-list〉 ::= 〈proc〉 | 〈proc〉 〈proc-list〉

〈proc〉 ::= procedure 〈id〉 ’(’ 〈typeddecl-list〉 ’)’ is 〈stmt〉

〈stmt〉 ::= ’skip’ (* No operation *)
| ’var’ 〈id〉 : 〈id〉 (* Pointer variable declaration *)
| 〈ref 〉 ’:=’ 〈ptr〉 (* Assignment *)
| 〈id〉 ’:=’ ’new’ 〈id〉 (* Allocation *)
| ’call’ 〈id〉 ’(’ 〈id-list〉 ’)’ (* Procedure call *)
| ’thread’ 〈id〉 (* Thread variable declaration *)
| 〈id〉 ’:=’ ’fork’ 〈id〉 ’(’ 〈id-list〉 ’)’ (* Thread forking *)
| ’join’ 〈id〉 (* Thread joining *)
| 〈stmt〉 ’;’ 〈stmt〉 (* Concatenation *)
| ’if’ 〈expr〉 ’then’ 〈stmt〉 ’else’ 〈stmt〉 (* Conditional *)
| ’while’ 〈expr〉 ’do’ 〈stmt〉 (* While loop *)
| ’(’ 〈stmt〉 ’)’ (* Grouping to resolve ambiguity *)

〈expr〉 ::= 〈ptr〉 ’=’ 〈ptr〉
| 〈ptr〉 ’6=’ 〈ptr〉
| 〈expr〉 ’∧’ 〈expr〉
| 〈expr〉 ’∨’ 〈expr〉

〈ref 〉 ::= 〈id〉 | 〈id〉 ’.’ 〈id〉

〈ptr〉 ::= 〈ref 〉 | ’null’

〈type-list〉 ::= 〈type〉 | 〈type〉 〈type-list〉

〈type〉 ::= ’type’ 〈id〉 ’is’ 〈typeddecl-list〉

〈typeddecl-list〉 ::= 〈typeddecl〉 | 〈typeddecl〉 ’,’ 〈typeddecl-list〉

〈typeddecl〉 ::= 〈id〉 ’:’ 〈id〉

〈id-list〉 ::= 〈id〉 | 〈id〉 ’,’ 〈id-list〉

〈id〉 ::= [a-zA-Z][a-zA-z0-9]*

Figure 2.1.: De�nition of PL
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We shall also assume that both variables and thread tokens can only be declared top-level,
i.e., not within if or while blocks. If that were not the case, scoping for if and while would
become more di�cult: We would have to clean up upon leaving the block. I opted against
this �exibility to simplify the semantics.

There are no return values, so the only way to realize return values in PL is to assign to a
parameter’s �elds. It is also possible to override parameters directly, but we shall assume
that parameters are passed by value, so overriding a parameter does not have any e�ect at
call site. This mirrors the way that object references are passed to methods in Java.1

There is no explicit way to free memory. Instead we assume the presence of a garbage
collector. I made this choice mainly because it �ts the hypergraph-based memory model
very nicely, as we shall see in the following section and chapter. The approach is not limited
to garbage-collected languages, however—the semantics in Chapter 3 could be adapted to
support explicit memory deallocation. The language constructs discussed so far constitute
the atomic statements of PL.
Definition 2.1 — Atomic statement. We call c ∈ Cmd atomic if c is of the form skip,
var x, p1 := p2, p := new t.

Atomic statements are atomic in the sense that they cannot be split. Most atomic PL
statements will not actually be atomic in the sense that they can be compiled into a single
machine instruction.

Apart from the restriction to pointers, PL is quite standard: Usual imperative control-�ow
is available via comma-separated command sequences, (stateful) if branching, while loops,
and side-e�ecting procedure calls. The conditions for if and while are (possibly nested)
disjunctions and conjunctions of pointer comparisons.2

Beside blocking procedure calls to a procedure p via call p(x1, . . . ,xn), it is also possible to
run p in a separate thread: tid := fork p(x1, . . . ,xn) creates a thread, stores the thread’s
unique identi�er in tid, and runs p on arguments x1, . . . , xn in the new thread. Using tid,
we can later join tid, i.e., block execution until the thread’s execution has �nished. In this
way, PL supports fork/join parallelism very much akin to POSIX threads in C [pthread95
] and similar to Java [Gos00].3 Note that, both for call and for fork statements, we only
allow variables as parameters, not arbitrary pointer expressions. While this is inconvenient
from the programmer’s point of view, it simpli�es the call and fork semantics.

PL’s multi-threading is restricted in one important way, however: Thread variables cannot
be passed around. Thus threads are either joined in the same scope where they are forked
or are not joined at all. I shall discuss the motivation for and implications of this restriction
when I develop the formal semantics for fork and join in Chapter 4.

! Allow me to call attention once again to the most important characteristics of PL,
so as to avoid any confusion in the subsequent formalization of the semantics.

• We assume garbage collection of memory after the last reference to a memory
location has run out of scope; there is no explicit deallocation mechanism.

• All data in PL program are heap-allocated records, each of which consists of
a �xed number of pointers to other records, as de�ned in the corresponding
type declarations. Each record has a �xed static type.

1Confusingly, pointers are called references in Java, even though they are always passed by value.
2There is no direct support for Boolean literals, but we can, of course, express them: true ≡ null =

null, false ≡ null 6= null.
3In Java, we fork o� Thread objects rather than procedures, and threads can be joined

multiple times.
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• Variable and thread token declarations are not allowed within if or while blocks.
• Parameters are passed call by value.
• Forked procedures must be joined in the same scope where they are forked or

are never joined.

Example

We must postpone the discussion of the precise program semantics for the moment: We
�rst need a memory model, which we shall develop in the next section. Let us instead
look at a simple example program, depicted in Fig. 2.2. If you have some experience in
a language like C or Java, this program will hardly be surprising to you. The program
recursively copies a doubly-linked list. We make the assumption that pointers to the �rst
and the last element of the list are passed as parameters to the main procedure, In each call
to copy, a single list cell is copied. The recursion stops once we reach the last element of
the original list.
A doubly-linked list element or elem contains pointers to the previous and next element,
hence the de�nition of the elem type lists two �elds, prev and next. Note that there is
no value �eld, since we do not represent values in PL. As it stands, the program is in fact
a PLseq program, i.e., a program written in the sequential fragment of PL. If we replaced

copy(head, last, copiedhead)

with

thread tid;
tid := fork copy(tmp, last, tmpcopy);
join tid

we would obtain a PL program that starts a separate execution thread for copying the list
and then waits for that thread to �nish.

procedure main(head : elem, last : elem) is
var copiedhead : elem;
copiedhead := new elem;
if (head != last) then

copy(head, last, copiedhead)
else

skip
procedure copy(cur : elem, last : elem, curcopy : elem) is

var tmp : elem;
var tmpcopy : elem;
tmp := cur.next;
tmpcopy := new elem;
curcopy.next := tmpcopy;
tmpcopy.prev := curcopy;
if (tmp != last) then

copy(tmp, last, tmpcopy)
else

skip
type elem is

prev : elem;
next : elem

Figure 2.2.: A PL program for copying doubly-linked lists
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2.2.2 Mathematical representation

As syntax trees are quite unwieldy, we shall de�ne an intermediate representation of PL
programs.

R The de�nitions in the remainder of this section may look quite pointless at the
moment, or at least very technical (which is exactly what they are). The reason to
de�ne a mathematical representation is that it is easier to de�ne the formal semantics
in terms of such a representation than in terms of a syntax tree. It is not necessary
to understand the de�nitions in detail right now, let alone memorize them, to be able
to follow the rest of the thesis. In later parts of the thesis, I shall explicitly refer you
back to this section when we need the de�nitions.

First of all, let Cmd be the set of all statements or commands that can be generated from
PL’s grammar, i.e. those syntactical entities generated started from 〈stmt〉. Let Cmdseq

speci�cally refer to the commands of PLseq . Further, let Id be the set of all valid identi�ers.

We de�ne a mathematical representation for the sets of all programs, procedures, and type
declarations, Progs, Procs, and Types.

Definition 2.2 — Mathematical representation of programs.

Progs := Procs×Types

Procs := 2Id99K((Id,Id)+,Cmd)

Types := 2Id99K(Id,Id)∗

The idea behind this mathematical representation is as follows.

• Each program can be regarded as a product of procedure declarations and type
declarations

• The set of procedure declarations of a program can be viewed as a partial function
de�ned on the identi�ers of the declared procedures. Each valid identi�er is mapped
to a sequence of identi�er pairs representing the parameters’ names and types, as
well as the procedure body.

• Likewise, the set of type declarations of a program can be viewed as partial function
from identi�ers—the declared types—to sequences of identi�er pairs—the types’
named �elds.

R PL programs can be transformed into the above representation easily by standard
parsing techniques. I shall therefore skip this transformation.

It is useful to have auxiliary notation to simplify accessing the relevant parts of the program
representation.

• Let P = (Π,T) ∈ Progs. We de�ne accessor functions procs(P ) := Π and
types(P ) := T.

• Let π := (〈(p1,t1), . . . , (pk,tk)〉,c) ∈ ((Id,Id)+,Cmd) be a representation of a
procedure’s parameters and body, i.e., in the image of a function Π ∈ Procs.
params(π) := 〈(p1,t1), . . . , (pk,tk)〉, names(π) := 〈p1, . . . , pk〉, typesig(π) :=
〈t1, . . . , tk〉, and body(p) := c.

• Let T ∈ Types, t an identi�er and T(t) = 〈(s1,t1), . . . , (sk,tk)〉. We write sels(T(t))
to extract the sequence of selectors from the type de�nition, i.e., sels(T(t)) =
〈s1, . . . , sk〉.

• Finally, we sometimes need to refer to the sets of all variables and selectors that occur
in a program P . We write VarP and SelP to refer to these sets.
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R The motivation for de�ning sets of procedures and type declarations as partial
functions is as follows. LetP be a program in the sense of Def. 2.2. We can now simply
access a procedure named main by the function application procs(P )(main),
its body by body(procs(P )(main)), and access the �elds of a type typ via
types(P )(typ). This allows for a very concise and precise formulation of
interprocedural and type-safe program semantics, as we shall see in Chapter 3.

� Example 2.3 — Mathematical representation. Recall the example program in Fig. 2.2 on
page 9. The mathematical representation of that program is P := (Π,T), where

• Π(main) = (〈(head,elem),(last,elem)〉, var copiedhead : elem; . . . skip)
• Π(copy) = (〈(cut,elem),(last,elem),(curcopy,elem)〉, var tmp : elem; . . . skip)
• Π(id) = ⊥ for all id /∈ {main,copy}
• T(elem) = 〈(prev, elem),(next, elem)〉
• T(id) = ⊥ for all id 6= elem
• VarP = {head, last, copiedhead, cur, curcopy, tmp, tmpcopy}
• SelP = {prev, next}

�

The de�nitions ofProgs, Procs, andTypes, are purely syntactical in nature. For example,
programs that call procedures that have not been declared are also contained in Progs.
This observation motivates the �nal two de�nitions of this section.
Definition 2.4 — Type system. Let T : Id 99K Id∗ ∈ Types. T is a type system if

• T is non-empty: Dom(T) 6= ∅
• T is self-contained: For all t ∈ Dom(T) and for all i ∈ {1, . . . , |T(t)|}, T(t)(i) ∈
Dom(T)

Definition 2.5 — Well-formed program. A program P ∈ Progs is well-formed if

• It has a main procedure, i.e., procs(P )(main) is de�ned
• All call and fork statements refer exclusively to procedures that have been declared,

i.e., procs(P )(id) is de�ned for all call id(. . .) and t := fork id(. . .) statements
in P . Furthermore, the correct number and types of arguments are passed to all
calls and forks.

• All types used in procedure and variable declarations and memory allocation are
declared, i.e., types(P )(id) is de�ned for all

– typesig(π), where π ∈ Dom(Π(P ))
– var x : id, x := new id in P

• The set of type declarations is a type system according to Def. 2.4

The set of well-formed programs is exactly the set of programs that we would expect to
compile without error.

! We are only interested in the semantics and analysis of well-formed programs.
Henceforth, we shall therefore assume that all programs be well-formed in the sense
of Def. 2.5; a condition which would, of course, be enforced by any compiler for PL.

This completes the formalization of the syntax of PL. In the next section, I motivate the
use of hypergraphs as a model for representing the state of PL programs and develop the
necessary theoretical foundations. The current section together with the upcoming section
come together in Chapter 3, where we shall explore formal hypergraph-based semantics
for (the mathematical representation of) PL programs.
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2.3 Hypergraphs as Model of Program States

To reason formally about programs with recursive procedures and local variables, we need
a mathematical model of the stack. Likewise, to reason formally about programs with
pointers, we need a mathematical model of the heap. Consequently, the model of the stack
and heap that we develop in this section is going to be central to the remainder of this
thesis.

Let us brie�y pause to consider one key requirement: Our model must support a means of
abstraction.
Definition 2.6 — Abstraction [Rus95]. Abstraction is the process of simplifying certain
details of a system description or model so that the main issues are exposed. Abstraction
is the key to gaining intellectual mastery of any complex system, and a prerequisite to
e�ective use of formal methods. In formal methods, abstraction is part of the process of
developing a mathematical model that is a simpli�cation or approximation of reality
but that retains the properties of interest.

We cannot reason individually about all—in�nitely many—di�erent heaps that a given
program might conceivably operate on. In terms of the example program from the previous
section, we would like to be able to reason abstractly about copying arbitrary doubly-linked
lists, not speci�cally about lists of, say, length 23. To this end, we have to identify some
common structural properties of the heaps that may occur in the execution of the program
and then reason about the entire class of all heaps that exhibit these structural properties.
In the example, an appropriate class of heaps may be that of all non-circular doubly-linked
lists connected via next and prev pointers.

This pattern—abstraction of heaps followed by abstract reasoning to derive general results—
is common to many veri�cation formalisms for pointer programs; consider, for example,
the (recursive) predicates of separation logic [Rey02], or the shape graphs of shape analy-
sis [SRW02].

In this thesis, hypergraphs serve as an integrated representation of the heap as well as the
local stack variables. To abstract structural properties, we use hyperedge replacement
grammars (HRGs). The idea to use hypergraphs and HRGs to model (abstract) heaps is
not new: In this section I present and expand upon ideas published between 2008 and
2015 [Dod09; Rie09; HNR10; Jan+11; JN14; Hei+15].

This section is structured as follows. Section 2.3.1 is an informal introduction to the
hypergraph-based model of heaps and stacks. The subsequent formalization is broken into
two parts, the introduction of hypergraphs in Section 2.3.2 and of hyperedge replacement
grammars in Section 2.3.3. The latter section in particular is quite lengthy and may be
skimmed on �rst reading, to be consulted as reference when the material is used in later
chapters. (All terms and de�nitions are indexed at the end of the thesis.)

2.3.1 Motivation

When verifying interprocedural pointer programs, i.e., heap-manipulating programs that
involve calls to procedures, one needs to model both local variables and the runtime
heap. Such a model, together with a representation of the call stack(s)1, then constitutes
the program state.

1The plural applies in the multi-threaded setting
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A heap can naturally be viewed as a graph, where each vertex corresponds to a memory
location or a block of locations—for example, representing a whole record structure or
object—while the edges of the graph represent pointers between locations.

There are multiple ways of de�ning such a graph encoding of heaps, in�uenced both
by the memory model (of the programming language and underlying machine) and the
desired level of abstraction. In our particular model, we shall always assume that each
node represents a whole PL record. Each PL record has a �xed data type, which is why
we shall need typed nodes. Records have �xed numbers of �elds according to their data
type. Each �eld contains a pointer to another record, i.e., to another vertex in the graph
representation of the heap. These pointers are modeled as labeled edges, where each edge
is labeled with the name of the �eld that contains the pointer. This labeling is necessary to
distinguish between �elds, since the whole record structure is represented as a single node
of the graph, so we usually need to associate more than one pointer of any given type with
any given node.

Optionally, a heap may also contain a null node for each data type. These null nodes
represent the (unique) null pointer. Analogously to, for example, Java object references,
uninitialized pointers of any type will be represented by pointing the corresponding edge
to the type’s null node. We introduce one null node per type rather than one global null
node to simplify the semantics of static typing (see Chapter 3). Null nodes are added and
removed on demand; if no pointers of type t have been assigned null, and there are no
uninitialized pointers of type t in the heap or uninitialized variables of type t on the stack,
the corresponding heap graph should not contain the null node of type t.1

In accordance with the de�nition of PL, we do not model any data apart from pointers to
other locations. Thus a heap graph only models the structure of a heap, not the concrete
values that a memory location contains.

I will henceforth call graphs that follow the above encoding heap con�gurations or heap
graphs, but defer the formal de�nition until Section 2.3.2.
� Example 2.7 — Heap graph for a doubly-linked list. Consider the case of doubly-linked
lists. Each element of a doubly-linked list usually consists of a value, which we do not model
in our approach, and pointers to the previous and next element of the list. A doubly-linked
list with four elements would thus be represented by a graph with four nodes and eight
edges as depicted in Fig. 2.3. As before, we use next and prev as names for the pointers.
We (arbitrarily) assign names v1 . . . v4 to the list elements; these names are not necessary,
but useful to refer to nodes in the text. The �rst node v1 does not have a predecessor, the
last node v4 does not have a successor. In our graph model, we depict this by adding a
special null node, which we label ⊥ (for unde�ned). To improve readability of the graphs,
we sometimes depict several or zero such null nodes. This is why there are two null nodes
in the �gure. It is, however, su�cient (and desirable for the implementation) to only add
one null node per type, which is in fact enforced by the formal de�nition of heap graphs in
Section 2.3.2. �

1This model does not account for the possibility of C-like uninitialized �elds: Rather than pointing
to null, an uninitialized pointer in C may point to any arbitrary memory location, often leading to non-
deterministic results upon dereferencing. If we wanted a more C-like memory model, we could adapt our model
to incorporate a special uninitialized node in addition to and separate from the null node. This would allow
us to di�erentiate between null pointer dereferences and other segmentation faults, thereby yielding a closer
but still deterministic approximation of the C semantics. A true C semantics is not possible with our model,
however, since it is inherently storeless [BIL03]
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⊥ v1 v2 v3 v4 ⊥
prev

next

prev

next

prev

next

prev
next

Figure 2.3.: Heap graph of a doubly-linked list with four elements v1, . . . ,v4. The pointers
between the nodes are represented by the labeled edges, uninitialized pointers
are represented by pointers to special null nodes that are labeled with ⊥.

As motivated at the beginning of this chapter, we usually do not want to reason speci�cally
about lists of length four. The programs that are the objects of our analyses are generally
written to process arbitrary input data. For example, a procedure for list traversal should
be able to traverse lists of arbitrary length rather than only lists of length four. Since
lists of di�erent lengths are represented by di�erent heap graphs, the state space of any
program that deals with lists will generally be in�nite. The same observation applies to
other recursive data structures such as trees. Since we need to have a �nite state space if
we want to apply data-�ow analyses and veri�cation techniques such as model checking,
we employ abstraction techniques to obtain a �nite representation of the state space. This
abstraction necessarily comes at the cost of over-approximating the state space, so it is
essential that it preserves enough of the original structure of the input data to be able to
draw meaningful conclusions [Rus95; Jon12].

One such way to abstract heap graphs is via graph grammars. Akin to string grammars,
graph grammars consist of a set of production rules for rewriting graphs. In this thesis,
we employ hyperedge replacement grammars (HRGs), a type of context-free (hyper-)graph
grammars. Several other types of graph grammars have been studied; for an introduction
see [DKH97]. HRGs operate on hypergraphs, which generalize graphs to allow edges that
connect arbitrarily many nodes (rather than just two). The generalized edges are called
hyperedges, hence the name hyperedge replacement grammar. (A formal de�nition of
HRGs is given later in this chapter.)

Each HRG is de�ned in terms of nonterminal hyperedges, the analog of nonterminal
symbols in string grammars. Each production rule of the grammar provides a way to
replace a single nonterminal hyperedge with a hypergraph. The replacing hypergraph
may again contain nonterminals. Consequently, arbitrarily long sequences of hyperedge
replacements—called derivations or derivation sequences—may be possible.
� Example 2.8 Continuing our running example, Fig. 2.4 shows a simple hyperedge replace-
ment grammar for doubly-linked lists. The �gure introduces the rectangle notation for
representing hyperedges: Throughout the remainder of the thesis, I shall always draw ordi-
nary edges—i.e., pointers between locations—as arrows. I shall draw all other hyperedges as
rectangles that are connected to all the attached nodes of the hyperedge. The digits above
the connecting edges re�ect the order in the attachment.1 In this example, this applies to
the L edges.

Now let us examine the grammar. A list is either empty or consists of a head element
and the remaining list, commonly called the tail of the list: L ::= ε | a.L. This algebraic
structure is directly captured in the two rules of the grammar: The �rst rule says that a list
nonterminal, i.e., a hyperedge labeled L, that is connected to two nodes can be replaced by
just a prev and a next edge. In this case, we interpreted the L hyperedge as representing
an empty list. The second rule says that we can also replace a nonterminal by adding a

1I adopted this notational convention from my sources [Jan+11; JGN14; JN14].
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v1 L v2
1 2 −→ v1 v2

next

prev

v1 L v2
1 2 −→ v1 vn L v2

next

prev

1 2

Figure 2.4.: A hyperedge replacement grammar for doubly-linked lists. The �rst rule re-
places an abstract L edge with an empty list, whereas the second rule produces
a concrete head element vn followed by another abstract L edge.

new node (here named vn) and a new L nonterminal, again connected to two nodes, and
abstracting the remainder of the list.1 In other words, applying the second rule to the
original L nonterminal yields the head and a (possibly empty) tail list. The blue background
of v1 and v2 signals that these nodes remain unchanged by the rule application. �

A hypergraph that contains a nonterminal is thus abstract in the sense that it represents
multiple concrete heaps that can be derived via rule application. Given a hypergraph that
contains nonterminals, we can apply rules forward to derive a graph that is more concrete
in the sense that the set of heaps it represents is a subset of the set represented by the
hypergraph before rule application. We therefore commonly refer to forward application
of HRG rules as concretization. Conversely, we can also apply rules backward, to obtain
more concise and less precise representations, a process called abstraction.
� Example 2.9 Fig. 2.5 on the following page illustrates rule applications in both directions.
In Fig. 2.5a, we show the abstraction process. Starting from the graph in Fig. 2.3—modulo
renaming of nodes and omitting the null nodes for clarity—we apply the �rst rule from
the grammar de�ned in Fig. 2.4 backward to replace the connection between the last two
nodes by an abstract L hyperedge. We then apply the second rule twice to obtain a graph
with just two nodes and a single L nonterminal.

Fig. 2.5b shows the forward application starting from this abstract hypergraph. This
exempli�es how the abstraction process over-approximates the real state space: We started
with a concrete four-element list, but by performing full abstraction using the HRG, we lost
this information and are thus able to derive arbitrary lists in the subsequent concretization.
If this is undesirable in our given setting, we could either use a di�erent grammar for
performing the abstraction or only perform partial abstraction. �

The purpose of abstraction is clear in our setting: It enables �nite abstractions of the state
space. The merit of concretization might be less obvious. It becomes clear when thinking
about the semantics of programs. To assign a meaning to the statement x.next := y, for
example, we must resolve a list element’s next pointer. But what happens if x points
to a node in the heap that is only connected to a nonterminal L edge, because the list
has been fully abstracted? We need to apply concretization on demand to replace the
node’s adjacent nonterminal by concrete locations and pointers; we will see the details
in Section 3.2, where we develop an abstract interpretation based on abstraction and
on-demand concretization.

1Note that in this simple case, since the nonterminal is attached to only two nodes, we would not need to
generalize our model to hypergraphs. For an example with hyperedges attached to three nodes, see [Jan+11]
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v1 u w v2

next

prev

next

prev

next

prev

v1 u w L v2

next

prev

next

prev

1 2

v1 u L v2

next

prev

1 2

v1 L v2
1 2

rule 1

rule 2

rule 2

(a) HRG-based abstraction by right-to-left application of production rules
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(b) HRG-based derivation of (more) concrete graphs by left-to-right application of production rules

Figure 2.5.: HRG-based abstraction and concretization of doubly-linked lists
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⊥ v1 v2 v3 v4 ⊥
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Figure 2.6.: Integrated representation of heap and stack. Hyperedges of degree 1 have been
added for the variables that are currently in scope, head and tail

R You may have noticed that, in the previous example, the abstraction of the four-
element list to a single nonterminal only succeeded because we chose to begin the
abstraction by applying the �rst rule to the last two nodes of the list. Had we chosen
any other way to apply the �rst rule, the abstraction process would have gotten
stuck with at least two L hyperedges remaining. If such divergence in the abstraction
process can never occur, the HRG is called backward con�uent. By adding a new
rule to the grammar in Fig. 2.4 that merges two adjacent nonterminals, we can easily
establish this property. We shall study backward con�uence as well as other desirable
properties of HRGs in Section 2.3.3.

Besides the heap, we also need to incorporate the stack into our model of the program
states. One way to do this, taken from [JN14], is to introduce additional hyperedges for
keeping track of those variables that are currently in scope: For each variable, we add a
hyperedge of degree 1, label it with the variable identi�er and attach it to the memory
location that the variable currently points to.
� Example 2.10 — Integrating the stack. Let us assume that we run a list-processing program
that has a variable head that points to the �rst element of the list and a variable last
that points to the last element.1 Fig. 2.6 shows how this information is added to the heap
graph of the four-element list from Fig. 2.3. Note that we reuse the rectangle notation. This
does not introduce ambiguity, since I exclusively use uppercase letters for nonterminals
and exclusively use identi�ers that start with a lowercase letter for variables. �

The informal examples given above illustrate the approach to modeling the heap and
stack that I take in this thesis (based on [Rie09; Dod09] as well as numerous subsequent
publications including [Hei+15; JN14]). Before turning to the formalization, let us try to
distill the essence of the approach2 from the examples I presented.

• We model the heap as (hyper)graph, where nodes represent memory locations and
edges represent pointers between locations.

• We add the local variables to the heap graph as hyperedges of degree 1.
• We capture the general structure of the heaps via hyperedge replacement grammars.
• We abstract concrete heaps via backward application of HRG-rules to obtain a �nite

over-approximation of the state space.
• For the abstract interpretation of programs, we concretize parts of the heap on

demand via (forward) HRG derivations.
The next step shall be the formalization of these steps.

2.3.2 Heap Graphs

In this section I will make precise the notions of hypergraphs and heap graphs. We saw in
the examples above that we need to label hyperedges, both for de�ning grammars and for

1Such as the program in Fig. 2.2 on page 9, for example.
2Measured in \items per itemize rather than alcohol by volume
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modeling pointers between locations and local variables. Formally, these labels come from
a �xed alphabet, each element of which is associated with a �xed rank1, a natural number
that determines the number of nodes that are attached to a hyperedge of that label. It makes
sense to �x this rank: An abstract list hyperedge L always connects two nodes, never one
or three. This idea is usually captured in the de�nition of ranked alphabets [DKH97].
Here we de�ne a more speci�c variant of ranked alphabets following the observation that
we always have exactly three distinct types of symbols in the hypergraphs that we consider:

• Variable identi�ers for the hyperedges of degree 1 that we use to model the stack
• Selector identi�ers labeling the concrete pointer hyperedges of degree 2
• Nonterminal symbols for use in the graph grammars

This observation motivates the following de�nition.

Definition 2.11 — Heap Alphabet. A heap alphabet Σ is a tuple (ΣV ,ΣS ,ΣNT , rk),
where

• ΣV is a �nite set of variable identi�ers
• ΣS is a �nite set of selector identi�ers
• ΣNT is a �nite set of nonterminal symbols
• rk : (ΣV ∪̇ΣS∪̇ΣNT )→ N>0 is the ranking function
• rk(σ) = 1 for all σ ∈ ΣV and rk(σ) = 2 for all σ ∈ ΣS

By slight abuse of notation, I shall also refer to ΣV ∪̇ΣS∪̇ΣNT by Σ.

To simplify notation, we assume that variables, selectors and nonterminals are always
disjoint for any given program. This restriction can, of course, be lifted easily, e.g. by using
typed labels.2

� Example 2.12 In our running doubly-linked list example, Σ = (ΣV ,ΣS ,ΣNT , rk),
ΣV = {head,last}, ΣS = {next,prev}, ΣNT = {L}, and rk(L) = 2 �

We would like to use a heap alphabet together with a type system (cf. Def. 2.4 on page 11),
because our heaps contain typed nodes. To this end, we must ensure that the heap alphabet
contains all selectors that occur in the type system. We call this property compatibility.

Definition 2.13 — Type–system-compatible heap alphabet. A heap alphabet Σ is called
compatible with a type system T if ΣS ⊇ Dom(T).

Our variant of hypergraphs is de�ned in terms of type systems and heap alphabets compat-
ible with said type systems.

Definition 2.14 — Hypergraph. Let T be a type system and (ΣV ,ΣS ,ΣNT , rk) be a heap
alphabet compatible with T. A hypergraphH over (ΣV ,ΣS ,ΣNT , rk) and T is a tuple
H = (V,E, att, lab, ext, typ, isnull), where

• V is the set of nodes or vertices
• E is the set of hyperedges
• att : E → V ∗ is the attachment function
• lab : E → Σ is the labeling function
• ext : V ∗ is the sequence of external nodes
• typ : V → T is a type assignment

1The term type is also commonly used, e.g. in [DKH97]. I shall instead only use the term rank to avoid
confusion with the notion of (data) types in programming languages such as PL.

2Which is exactly what is done in the implementation.
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• isnull : V → {true, false} indicates which nodes are null nodes
• |att(e)| = rk(lab(e)) for all e ∈ E

To refer to the i-th attached node of an edge e and the i-th external node, respectively, I
write att(e)(i) and ext(i).

When I need to make explicit the hypergraphH to which a component belongs, I write
VH,EH, etc. I use the notation HGT,Σ or simply HG for the set of all hypergraphs over
Σ and T.

Apart from typ and isnull, this de�nition is standard [DKH97]. Since each node in our
setting represents a data structure of a �xed type, we need the additional typ component.
The isnull predicate lets us distinguish between initialized data structures and null nodes.

By modeling the hyperedges via a separate setE and an attachment function rather than as
subsets of V , we obtain ordered hyperedges, i.e, we generalize the notion of ordered graphs.
This is necessary in our setting, because the direction of hyperedges is essential for the
semantics—it makes a big di�erence whether an L nonterminal that is attached to nodes
n and m represents a list with head n or head m. Likewise, the external nodes—whose
purpose will become clear once we formally de�ne hyperedge replacement—are ordered.

All edges are labeled with symbols from a heap alphabet, as was the case in the examples
we saw in Section 2.3.1; otherwise it wouldn’t make sense to speak of L edges, for example.
Note that I demand in the de�nition that hypergraphs be well-formed in the sense that each
hyperedge is attached to exactly as many nodes as prescribed by the rank of its assigned
label.
� Example 2.15 Consider again the doubly-linked with four elements referenced by head
and last variables (cf. Fig. 2.6). This corresponds to the hypergraph

H = (V,E, att, lab, ext, typ, isnull) ∈ HGT,Σ

where

• Σ was de�ned in Ex. 2.12
• T = {elem}
• V = {v1,v2,v3,v4,v⊥}
• E = {n1,n2,n3,n4,p1,p2,p3,p4,h,l}
• lab(h) := head, lab(l) := last, lab(ni) := next, lab(pi) := prev
• att(h) := 〈v1〉, att(n1) := 〈v1,v2〉, att(p1) := 〈v1,v⊥〉, att(n2) := 〈v2,v3〉, etc.
• ext := ε
• typ(v) = elem ∀v ∈ V
• isnull(v) = true i� v = v⊥

Note that the naming of the nodes and edges—v1,v2,n1,etc.—is completely arbitrary: The
functions lab, att, typ, and isnull, as well as the word ext, assign the “meaning” to the
members of V and E. �

R While we technically have to include the ranking function and the type system
whenever we formally de�ne a hypergraph, both are almost always clear from the
context. Thus I will only explicitly mention Σ and T when this improves clarity.

Not all hypergraphs represent valid heaps. A node with two outgoing next selector edges
would, for example, be completely �ne by Def. 2.14, but does not make sense in our model of
the heap. This warrants another de�nition, namely that of the set of all valid heap graphs,
henceforth referred to as heap con�gurations in accordance with the literature [JN14].
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Definition 2.16 — Heap configuration. A hypergraphH ∈ HGT,Σ is called a (well-typed)
heap con�guration or heap graph if

• H is �nite
• For all v ∈ ΣV ,H contains at most one hyperedge e with lab(e) = v
• For all nodes n and all s ∈ ΣS , H contains at most one hyperedge e with
att(e)(1) = n and lab(e) = s

• For all t ∈ T, |{v ∈ V | typ(v) = t ∧ isnull(v) = true}| ≤ 1
• For all v ∈ V with isnull(v) = true, {e|lab(e) ∈ ΣS ∧ att(e)(1) = v} = ∅
• H is well-typed w.r.t. T, i.e., for all types t ∈ T, all v ∈ VH with typH(v) = t,

and all (s,t′) ∈ T(t),
– There exists e ∈ EH such that labH(e) = s, attH(e)(1) = v,

and typH(attH(e)(2)) = t′.
– There is no edge e ∈ EH such that labH(e) /∈ sels(T(t))

We write HCT,Σ ⊂ HGT,Σ for the set of all well-typed heap con�gurations or simply
HC if Σ and T are clear from the context.

Let us dissect this de�nition point by point.

• While there is no upper bound on the size of a heap, every heap is �nite.
• Each pointer variable can only point to at most one heap location.
• At most one heap location can be assigned to each �eld of a record structure
• There is at most one null node per type.
• Null nodes do not have any outgoing selector edges. In this way we model that

null nodes do not represent data structures (which would usually contain �elds of
pointers to other locations), but instead serve as a sink for null pointers.

• All our heap con�gurations are de�ned in terms of a type system, and in fact one
invariant we want to preserve is well-typedness with respect to this type system:
When we have a node of type t in a heap con�guration, that heap con�guration
should also contain a selector edge for each pointer �eld that type t de�nes, and this
edge should point to a node of the type of the �eld. It should also contain no other
selector edges for the node.

R In the literature—for example in [Jan+11]—no type system is assumed. The conditions
regarding null nodes and well-typedness are therefore not present in the standard
de�nition of heap con�gurations.

As we shall soon see, it makes sense to distinguish between heap con�gurations that contain
only terminal edges—concrete pointers and variables—and those that contain at least one
nonterminal edge, henceforth called concrete and abstract heap con�gurations.

Definition 2.17 — Concrete and abstract heap configurations. Given a heap alphabet
Σ = (ΣV ,ΣS ,ΣNT , rk) and a types system T, we de�ne

• concrete heap con�gurationsHC0
T,Σ := {H ∈ HCT,Σ | lab(H) ∩ΣNT = ∅}

• (partially) abstract heap con�gurations HC≥1
T,Σ := {H ∈ HCT,Σ | lab(H) ∩

ΣNT 6= ∅}

I shall omit the Σ and T indices and write HC0 ⊂ HC and HC≥1 ⊂ HC when the
indices are clear from the context.

In the previous examples, all hypergraphs that contained at least one L edge were (partially)
abstract, while the others were concrete.
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We conclude this section with some additional terminology, so that we can talk precisely
about hypergraphs in the upcoming section. First, the direction of selector edges and thus
of pointers is important.

Definition 2.18 — Outgoing and incoming edges. LetH ∈ HCT,Σ and v ∈ VH . The set
of outgoing edges of v, out(v), is de�ned as {e ∈ EH | lab(e) ∈ ΣS ∧ att(e)(1) = v}.
Conversely, the {e ∈ EH | lab(e) ∈ ΣS ∧ att(e)(2) = v} is the set of incoming edges

Second, we need to be able to talk about subgraphs. More precisely, we need section
hypergraphs, which generalize induced subgraphs.

Definition 2.19 — Section Hypergraph. Let H be a hypergraph and W ⊆ VH. Let F :=
{e | e ∈ EH , attH(e) ⊆W} and extW be the largest subsequence of extH that contains
only nodes from W . The section hypergraph of H and W , H ×W , is the hypergraph

(W,F, att � F, lab � F, extW , typ �W, isnull �W )

Section hypergraphs are important for grammar-based abstraction, but also in the de�nition
of the local procedure semantics in Chapter 3. In both cases, the nodes on the boundary
between the section and the rest of the hypergraph play a special role, which warrants a
special notation.

Definition 2.20— Section Boundary. LetH ∈ HGT,Σ and G = H×W for someW ⊆ VH.
The section boundary betweenH and G, bound(H,G) is de�ned as follows.

bound(H,G) := {v ∈ VG | ∃e ∈ EH \ EG .v ∈ att(e)}

In addition, we also de�ne di�erence and union of hypergraphs in the obvious way.

Definition 2.21 — Hypergraph di�erence. LetH,G ∈ HCT,Σ. We de�ne

H− G := (V,E, att, lab, ext, typ, isnull)

where

• V := VH \ VG
• E := EH \ {e ∈ EH | att(e) ∩ VG 6= ∅}
• att := attH � E, lab := labH � E
• ext is the longest subsequence of extH that contains only nodes from V
• typ := typH � V, isnull := isnullH � V

Definition 2.22 — Hypergraph union. LetH,G ∈ HCT,Σ. We de�ne

H ∪ G := (V,E, att, lab, ext, typ, isnull)

where for all a ∈ {V,E,att,lab,typ,isnull}, a := aH∪aG and ext := extH ·extG. Note
that, because of the order on external nodes, hypergraph union is not commutative.

Finally, we sometimes need to determine whether two hypergraphs are isomorphic. We
only call a mapping between edges an isomorphism if it preserves all structure apart from
external nodes, i.e., all of lab,typ,isnull. External nodes play a special role and are therefore
excluded from the de�nition. (Otherwise, we would, for example, not be able the right-hand
side of a rule against part of a hypergraph.)
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Definition 2.23 — Hypergraph isomorphism. Let H,G ∈ HGT,Σ be hypergraphs with
|VH| = |VG |, |EH| = |EG |, and without isolated nodes (i.e., for all nodes there is an
edge that is attached to the node). Let ϕ : EH → EG . ϕ is an isomorphism betweenH
and G if

• ϕ is a bijection
• For all e, if labH(e) = σ, then labG(ϕ(e)) = σ
• For all e1,e2,i,j, if attH(e1)(i) = attH(e2)(j), then attG(ϕ(e1))(i)

= attG(ϕ(e2))(j)
• For all e and i, typ(attH(e)(i)) = typ(attG(ϕ(e))(i)) and isnull(attH(e)(i)) =
isnull(attG(ϕ(e))(i))

We write G ∼= H for isomorphic hypergraphs G,H.

R You might object to the de�nition of isomorphisms on edges rather than nodes. Note,
however, that in our setting, the edges are not a relation but instead also objects in
the structure: The universe of a hypergraph structure is the disjoint union of nodes
and edges. An isomorphism in this setting has to preserve all functions on both
nodes and edges. Conveniently, since we assume that there are no isolated nodes, it
is, su�cient to de�ne the isomorphism on edges, as this induces an isomorphism on
the nodes in this restricted setting.

Our main motivation for looking at hypergraphs rather than graphs is the suitability of
hyperedge replacement grammars for heap abstraction, which we examine next.

2.3.3 Hyperedge Replacement Grammars

Graph grammars have been used in various application areas from compiler construction
to database design, from biology to software modeling and validation [Roz99]. In this thesis
I use hyperedge replacement grammars (HRGs), a formalism for context-free hypergraph
transformations [DKH97]. Just like string grammars are commonly de�ned via production
rules that operate on nonterminal and terminal symbols, HRGs operate on hyperedges
with nonterminal or terminal labels.

R Partition of heap alphabets into terminals andnonterminals. In this thesis, we
deal with heap alphabets (ΣV ,ΣS ,ΣNT , rk) as opposed to general ranked alphabets
in the sense of [DKH97]. In our special case, ΣV ∪ΣS constitute the terminal labels,
and ΣNT the nonterminal labels.

Definition 2.24 — Hyperedge replacement grammar. Let T be a type system and
(ΣV ,ΣS ,ΣNT , rk) be a heap alphabet compatible with T. A hyperedge replacement
grammar G over Σ and T is a �nite set of production rules or productionsR1, . . .Rn,
where each ruleRi

• is a tuple (σi,Gi), for some σi ∈ ΣNT , Gi ∈ HGT,Σ

• must satisfy rk(σi) = |extGi |

I sometimes write σi → Gi instead of (σi,Gi), following the conventions for writing
down (string) grammars.

The similarity with context-free string grammars is apparent in the syntactical structure of
the rules: Each rule’s left-hand side must consist of a single nonterminal. We thus say that
HRGs are context free [DKH97].
� Example 2.25 Recall Ex. 2.9 from page 15. The (partially) abstract heaps in the language
derivation contain L nonterminal edges attached to two nodes. When these nonterminals
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are replaced by hypergraphs, the replacing hypergraphs are attached to the same nodes as
the removed L edge. This is done by matching the external nodes of the replacing graph
with the attached nodes of the nonterminal edge. (In the example, the external nodes are
indicated by a blue background.)

To enable matching, we need an order on the attached nodes as well as the external nodes,
which shows up as the numbers 1 and 2 in the �gure and is re�ected in the de�nition of
hypergraphs (Def. 2.14 on page 18): Both the image of the attachment function att, and the
external nodes ext, are de�ned to be ordered sequences rather than sets. �

The forward and backward application of production rules σ → G is formalized using
hyperedge replacement and subgraph abstraction, respectively. In this thesis, I usually
refer to forward application as concretization and backward application as abstraction,
since in our application domain, nonterminal edges represent abstracted data structures,
whereas terminal edges represent concrete pointers in the heap.

Forward application

Let H be a hypergraph and σ → G be a production rule. To apply the rule forward, we
need a hyperedge e ∈ EH with lab(e) = σ, i.e., labeled with the left-hand side of the
rule. Forward application of the rule then is the hyperedge replacement of e with the
right-hand side of the rule G, i.e.,H[e/G].

Definition 2.26 — Hyperedge replacement. Let H,G be hypergraphs and e ∈ EH be a
hyperedge with |extG | = rk(lab(e)). Let (w.l.o.g.) VH ∩ VG = ∅. The replacement of e
by G inH,H[e/G] =: J , is the hypergraph

(VJ , EJ , attJ , labJ , extJ , typJ , isnullJ )

where

• VJ = VH ∪ (VG \ extG)
• EJ = (EH \ {e}) ∪ EG
• labJ = (labH ∪ labG) � EJ
• attJ = (attH � (EH \ {e})) ∪ rename ◦ attG
• extJ = extH
• typJ = (typH ∪ typG) � VJ
• isnullJ = (isnullH ∪ isnullG) � VJ

with rename := idVJ ∪{extG(1) 7→ attH(e)(1), . . . ,extG(rk(e)) 7→ attH(e)(rk(e))},
f ∪ g is the point-wise union of the functions, and � denotes restriction of the domain.

The edge e is removed fromH, and G is inserted in its place by matching the nodes that
are attached to e with the external nodes of G. This is commonly called a gluing approach
(as opposed to a connecting approach) to graph grammars [Roz99]. Note that, as discussed
before, it only makes sense to replace a hyperedge e with a hypergraph G if e’s rank is
equal to the number of external nodes in G, hence the additional requirement.

We say thatH[e/G] is derived fromH and writeH =⇒ H[e/G] for such a direct deriva-
tion and ∗

=⇒ for the re�exive-transitive closure of =⇒.

Backward application

Intuitively, to apply a rule toH backward, we need to �nd a subgraph ofH that is isomorphic
to the right-hand side of the rule. This subgraph must be a section hypergraph, i.e., an
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induced subgraph in the sense that if it contains nodes n1, . . . ,ni, it must also contain all
hyperedges in H that are attached exclusively to nodes from n1, . . . ,ni. Otherwise the
result of replacing the subgraph with a single nonterminal edge would not be well-de�ned,
since we would remove said nodes from the graph while retaining an edge that is attached
to some of the removed nodes. We must also not lose external nodes through abstraction.
These requirements are formalized in the de�nition of subgraph abstraction.

Definition 2.27 — Subgraph abstraction. LetH ∈ HGT,Σ, W ⊆ VH and G = H×W be
a section hypergraph. Let σ ∈ ΣNT , and extmatch ∈ (VG)rk(σ) be a sequence of nodes.
We require further extG \ bound(G,H) = ∅, i.e., the only external nodes in G are on
the boundary betweenH and G (cf. Def. 2.20). We assume enew /∈ EH. The abstraction
of G by σ inH, writtenH[G&extmatch/σ] =: J , is the hypergraph

(VJ , EJ , attJ , labJ , extJ , typJ , isnullJ )

where

• VJ = (VH \ VG) ∪ extmatch
• EJ = (EH \ EG) ∪ {enew}
• labJ = (labH � EJ ) ∪ (enew 7→ σ)
• attJ = (attH � EJ ) ∪ (enew 7→ extmatch)
• extJ = extH
• typJ = typH � VJ
• isnullJ = isnullH � VJ

Note that the condition extG \ bound(G,H) = ∅ ensures that external nodes cannot be
lost through abstraction.
To apply a ruleσ → G backward, we �nd a subsetW ⊆ VH such that the section hypergraph
H×W ∼= G and does not contain external nodes that are not on the boundary. Let ϕ be an
isomorphism betweenH×W and G and ϕV : VG →W be the bijection on nodes induced
by ϕ. Let 〈x1, . . . , xrk(σ)〉 := extG .
Backward rule application then consists in the subgraph abstractionH[H×W&extmatch/e],
where extmatch := 〈ϕV (x1), . . . , ϕV (xrk(σ))〉.
Given a hypergraphH and a HRG, we can iterate this abstraction process to obtain a full
abstraction ofH.
Definition 2.28 — Fully abstract hypergraph. Let G be an HRG andH,G be hypergraphs.
G is fully abstract w.r.t. G if no rule of G can be applied backward to G. G is a full
abstraction of H if it is fully abstract and can be derived from H via a sequence of
backward rule applications.

Languages of HRGs

Let us examine the semantics of HRGs in more detail. Recall that string grammars de�ne
languages of �nite words: Those words that only contain terminal symbols and can be
derived via �nitely many rule applications from a dedicated start nonterminal. Analogously,
HRGs de�ne languages of �nite hypergraphs.
In the following, let G be an HRG and σ be a nonterminal symbol occurring in G. Starting
from a hypergraph that consists solely of a σ hyperedge and external nodes, we can try
to derive concrete hypergraphs by iterated forward rule application. The set of graphs
derivable in this manner constitutes the language of G and σ. To make this precise, we
�rst need to de�ne the “start hypergraph”, called the handle of σ [Jan+11].
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Definition 2.29 — Handle. Let T be a type system and Σ be a heap alphabet consistent
with T. Let σ ∈ ΣNT be a nonterminal and τ := 〈t1, . . . ,trk(σ)〉 ∈ (Dom(T))rk(σ) be a
sequence of types. The (typed) handle of σ and τ , hnd(σ,τ), is the hypergraph

(Vσ, Eσ, attσ, labσ, extσ, typσ, isnullσ)

where

• Vσ := {1, . . . , rk(σ)}
• Eσ := {eσ}
• attσ(eσ) := 〈1, . . . ,rk(σ)〉
• lab(eσ) := σ
• extσ := {1, . . . , rk(σ)}
• typ(i) := ti for all i ∈ {1, . . . , rk(σ)}
• isnullσ(i) := false for all i ∈ {1, . . . , rk(σ)}

Intuitively, the derivation of the language of G and σ starts at the handle and proceeds as I
described right before the previous de�nition. In contrast to [Jan+11], we have to include
type information, because according to our de�nition of hypergraphs, all nodes are typed.
Formally, the language is de�ned as follows.

Definition 2.30 — Language of a nonterminal. Given an HRG G over (ΣV ,ΣS ,ΣNT , rk)
and T, a start nonterminal σ ∈ ΣNT , and τ := 〈t1, . . . ,trk(σ)〉 ∈ (Dom(T))rk(σ), we
de�ne the language of G, σ, and τ written L(G,σ,τ), as

L(G,σ,τ) := {H ∈ HG0
T,Σ | hnd(σ,τ)

∗
=⇒ H}

� Example 2.31 — The language of all doubly-linked lists. Recall the list grammar from
Ex. 2.8 on page 14. The handle hnd(L,〈elem,elem〉) and (part of) the language generated
from the handle are shown in Fig. 2.5 on page 16. More generally, all (�nite) doubly-linked
lists can be generated from hnd(L,〈elem,elem〉) using that grammar. �

We can generalize this from handles to all hypergraphs: The language of an (abstract)
hypergraph is the set of all concrete hypergraphs derivable from that graph.

Definition 2.32 — Language of an abstract hypergraph. The language of an abstract
hypergraph w.r.t. a grammar G, L(G,H), is de�ned by

L(G,H) := {G ∈ HG0
T,Σ | H

∗
=⇒ G}

2.3.4 HRGs for Data Structures

Not all HRGs are suitable for representing (abstract) data structures. In addition, not all
HRGs that represent data structures are well-behaved from an algorithmic point of view.
In this section, I explain these two statements and explore which additional properties
a HRG must possess to be used in the automated analysis of PL programs. The main
source of this section is [Jan+11], and modulo some changes—mostly to accommodate type
systems—most de�nitions I introduce here can be found there as well.

Throughout this section, we assume a type system T and a heap alphabet Σ = (ΣV ,ΣS ,ΣNT ,
rk) compatible with T.

First note that, in general, L(G,σ) is a subset of HG0
T,Σrather than of HC0

T,Σ, i.e., the
language may contain hypergraphs that are not valid heap con�gurations. We are not
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interested in such HRGs. Instead, we restrict our attention to HRGs that capture valid data
structures on the heap, data structure grammars.

Definition 2.33 — Data Structure Grammar. An HRG G over Σ and T is a data structure
grammar (DSG) if for all σ ∈ ΣNT , there exists a unique τ such that L(G,σ,τ) ⊆
HC0

T,Σ.

If G is a DSG, we write nttype(σ) := τ and L(G,σ) := L(G,σ,τ)

The purpose of the uniqueness constraint is to justify speaking of the (one, unique) language
of a nonterminal rather than one language out of the set of languages of a nonterminal,
which will turn out to be a convenient simpli�cation. We can always ensure that such a
unique typing exists by renaming the �elds of a type in case of ambiguity.

A restriction to DSGs is possible in light of the following result.

Theorem 2.34 It is decidable whether a given HRG is a DSG.

Since the focus of this thesis is not on the theoretical foundations of graph grammars, I
omit the proof; the untyped version is proven in [Jan+11, Appendix A] and the adaptation
to nodes with data types is straightforward. DSGs are, however, still not strong enough for
our purposes, as we shall see in the remainder of this section.

Productivity

The �rst problem is that DSGs may contain nonterminals from which no concrete heap
con�guration can be derived. We would like to exclude this and hence demand that the
DSGs be productive.

Definition 2.35 — Productivity. G is productive if for all nonterminals σ ∈ ΣNT that
occur in G, L(G,σ) 6= ∅. In other words, G is productive if any abstract hypergraph
over Σ represents at least one concrete hypergraph.

R We can e�ciently determine the productive nonterminals of G: All nonterminals
that have at least one rule whose right-hand side is concrete are obviously productive.
Additionally, if a rule’s right-hand side is already known to contain only productive
nonterminals, the nonterminal on its left-hand side is productive, too. Hence we can
iteratively compute the set of productive nonterminals.

Increasing Grammars

G is increasing if for all rules σ → G ∈ G, either G ∈ HG0
T,Σ or |EG | > 1. In an increasing

DSG, the right-hand side of each rule is either concrete or “bigger” than its left-hand side.
This is a desirable property since it guarantees that the full abstraction of any graph is
reached after a �nite number of abstraction steps. As our abstract interpretation of PL
programs (cf. Sections 3.2 and 4.2) is based on the full abstraction of heap con�gurations,
we demand that our DSGs are increasing to guarantee the termination of the abstraction
algorithm.

Increasingness is obviously decidable and can be easily established if we have already estab-
lished productivity: Each nonincreasing chain of nonterminals σ1,σ2, . . . must eventually
lead to a (partially) concrete heap graph in a productive DSG. We can collect these graphs
G,H, . . . and add new rules σ1 → G, σ1 → H, . . .. Afterwards the non-increasing rule
σ1 → σ2 may be removed.
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Local concretizability

Recall that each hyperedge e is attached to rk(lab(e)) nodes. We shall have to talk about
speci�c attachment points of nonterminal edges, called tentacles.

Definition 2.36 — Tentacle. Let σ ∈ ΣNT , and i ∈ {1, . . . , rk(σ)}. The pair (σ, i) is
called a tentacle.
Definition 2.37 — Reduction and non-reduction tentacle. Let G be an HRG over T and
Σ. Let (σ, i) be a tentacle. (σ, i) is a reduction tentacle if for all H ∈ L(G,σ),∀v ∈
extH.out(v) = ∅. Otherwise (σ, i) is a non-reduction tentacle.

The signi�cance of reduction tentacles is as follows. LetH be an abstract heap graph that
contains a hyperedge eσ with lab(eσ) = σ and att(eσ)(i) = vi for 1 ≤ i ≤ rk(σ). Say that
H also contains a variable edge ex with lab(ex) = x. Intuitively, it is safe to attach ex to vi
if and only if (σ, i) is a reduction tentacle: In that case we know that whatever the concrete
hypergraph represented by the σ-labeled nonterminal edge, there is no outgoing edge from
vi into this hypergraph. Thus dereferencing pointers x.s will never cause us to “run into”
the abstracted part of the graph. For non-reduction tentacles, on the other hand, it might
be necessary to partially concretizeH prior to following pointers x.s. This is captured in
the following de�nition.

Definition 2.38 — Violation points and admissibility. Let e ∈ EH with lab(e) = σ ∈
ΣNT . The pair (e,i) is a violation point if (σ, i) is a non-reduction tentacle and there
exists an e′ with lab(e′) ∈ ΣV and att(e′)(1) = att(e)(i). We write vpG(H) for the set
of all violation points ofH w.r.t. a grammar G.

H is called admissible if it does not contain any violation point.

Intuitively, it is admissible to dereference a pointer such as x.s even in abstract heap
con�gurations, as long as it does not contain any violation points. This is what we will
exploit in the abstract interpretation of PL. To do so we, of course, need to be able to
turn inadmissible heap con�gurations into admissible ones. To this end, we use G to
concretize at the violation points. In general, there is, however, no limit to the number of
concretization steps that we may need to execute to remove an violation point. This is
obviously problematic from an algorithmic point of view.

Ideally, we would like to work with grammars that ensure that each violation point can
be removed through a single rule application. This means that there must be a set of
rules for each non-reduction tentacle that insert a concrete node between the (former)
violation point and any other nonterminals that they may generate. This set of rules must
be language-preserving as well: We must not lose any information about the abstracted
data structures by removing violation points. If a DSG has such a set of language-preserving
rules for each non-reduction tentacle—i.e., each possible violation point—it is called locally
concretizable. Let us formalize this property.

Definition 2.39 — Grammar restriction. The σ-restriction of G, Gσ , is the set
{σ → G} ∩G. We write Gσ for G \Gσ .

Definition 2.40 — Local conretizability. Let G be a DSG and 〈t1, . . . ,trk(σ)〉 := nttype(σ)
(cf. Def. 2.33). G is locally concretizable if for all nonterminals σ in G, there exist
grammars Gσ

1 , . . . ,G
σ
rk(σ) ⊆ Gσ such that

1. ∀i ∈ {1, . . . , rk(σ)} : L(G,σ) = L(Gσ
i ∪Gσ, σ)
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2. ∀i ∈ {1, . . . , rk(σ)}, ∀(σ → G) ∈ Gσ
i , ∀s ∈ sels(ti)∃e ∈ EG .att(e)(1) =

extG(i) ∧ lab(e) = s

The �rst part of the de�nition guarantees that the subset of rules is indeed language-
preserving; the second part guarantees that we can use Gi to derive all outgoing edges at
(N,i) in one step.
If a DSG G is locally concretizable, one concretization step per violation point is always
su�cient to obtain an admissible heap con�guration, because we can always restrict the
concretization to the language-preserving fragment of G that removes the violation point.
There are sensible DSGs that do not have this property, as will become apparent in the
following example.
� Example 2.41 The doubly-linked list HRG as presented in Fig. 2.4 is not locally concretiz-
able: It only allows concretization at the head of the list. Since the last element of a list has
an outgoing edge as well—its type is {prev}, as you may recall—it is a potential violation
point. It is impossible to remove this violation point without turning the abstract graph at
hand into (one of in�nitely many) concrete graphs, thus defeating the purpose of abstrac-
tion. It is easy to solve this problem by adding a rule for concretizing at the end of a list,
yielding the DSG in Fig. 2.7. �

v1 L v2
1 2 −→ v1 v2

next

prev

v1 L v2
1 2 −→ v1 vn L v2

next

prev

1 2

v1 L v2
1 2 −→ v1 L vn v2

1 2
next

prev

Figure 2.7.: Locally concretizable DSG for doubly-linked lists

Proposition 2.42 Every DSG can be transformed into an equivalent locally concretizable
DSG.

If you are interested in the proof, I would once again like to refer you to [Jan+11].

Backward confluence

In Section 2.3.1 on page 17, we observed that the full abstraction of a hypergraph may
not be unique: In general, changing the order of rule applications or selecting di�erent
subgraphs for the abstraction may lead to di�erent full abstractions. An HRG that yields a
unique full abstractions for each hypergraphs is called backward con�uent.
� Example 2.43 The grammar in Fig. 2.7 is not backward con�uent. That can easily be �xed
by adding a rule for merging adjacent nonterminals, see Fig. 2.8. �

Proposition 2.44 — Decidability of backward confluence. It is decidable whether a given
DSG is backward con�uent.[Plu10]
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v1 L v2
1 2 −→ v1 L vn L v2

1 2 1 2

Figure 2.8.: Additional rule for backward con�uent list abstraction

Unlike all the other properties we examined in this section, it is unknown whether we can
transform all DSGs into equivalent backward con�uent DSGs [JN14]. I shall nevertheless
assume backward con�uence in much of the remainder of this thesis; the reason for this is
explained in context later in the text.

Heap abstraction grammars

We now have a formal understanding of all properties that we need for e�ective grammar-
based abstraction and concretization, and hence �nally a su�cient basis for de�ning the
semantics. Before turning to the semantics, we bundle our requirements for HRGs into the
�nal de�nition of this chapter.

Definition 2.45 — (Backward-confluent) heap abstraction grammar. An HRG G is called
a heap abstraction grammar (HAG) if it satis�es the following four additional prop-
erties.

1. G is a DSG
2. G is productive
3. G is increasing
4. G is locally concretizable

If G is backward-con�uent as well, we use the acronym BCHAG.

Unless stated otherwise, we always assume that grammars are HAGs throughout the
remainder of the thesis.

R Jansen et al. [Jan+11] also introduce the notion of typedness. A typed DSG is one
where for all concrete heap con�guration derived from a nonterminal, the nodes on
the boundary between the concrete heap con�guration and the rest of the graph have
the same incoming edges. In our setting with strongly typed nodes, this property is
automatically satis�ed by all DSGs.





CHAPTER 3

Semantics and Abstract Interpretation
of Sequential Programs

In this chapter I explore programming language semantics for PLseq , the sequential frag-
ment of the programming language introduced in Section 2.2. The semantics will employ
heap con�gurations and heap abstraction grammars, as presented in Section 2.3.
In Section 3.1, I develop a concrete semantics for PLseq . In the concrete semantics,
program states consist of a model of the call stack and concrete heap con�gurations that
represent the heap and the local variables. The semantics is de�ned via hypergraph trans-
formations. In Section 3.2, I present an abstract interpretation that safely approximates
the concrete semantics. This abstract interpretation uses heap abstraction grammars to
abstract from the shape of the heap. Having thus de�ned concrete and abstract semantics
for PLseq , we shall turn to the semantics of concurrent PL programs in Chapter 4.

3.1 Concrete Semantics of Sequential Programs

In this section I develop a structural operational semantics [Plo04] for PLseq , the sequential
fragment of PL, based on the hypergraph model of the previous chapter. The semantics is
concrete in the sense that it is de�ned in terms of concrete heap con�gurations that do not
contain nonterminals. Nevertheless, the semantics is already abstract due to the abstraction
inherent in the heap con�guration model: We abstract from concrete memory locations.
This is in accordance with our goal of analyzing the shape of the heap, whereas the physical
memory layout is not of interest for our analyses. Our hypergraph-based semantics can thus
be characterized as a storeless semantics [Jon81; BIL03]. A key advantage of abstracting
from the store already in the concrete semantics is that this step can be left out in the
abstraction process. Additionally, storeless semantics are well-suited for garbage-collected
languages such as PL, because they do not distinguish between heaps with isomorphic
reachable parts [Rin+05].
For clarity, we split the treatment of intraprocedural semantics and interprocedural seman-
tics into two parts, Sections 3.1.1 and 3.1.2.

3.1.1 Intraprocedural Semantics

We begin by formalizing the execution of intraprocedural PLseq programs, i.e., programs
without procedure calls. We use concrete (well-typed) heap con�gurations as per Def. 2.17
as the memory model for representing the execution state of a PLseq program.
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Notation Meaning

p
H7−→ v InH, resolving pointer p yields node v

p
H7−→ ⊥ InH, pointer p cannot be resolved

(H′,v : t)← newH v is a new node (i.e., v /∈ VH), typ(v) = t,
andH′ is obtained by adding v toH

(H′,v : t)← nullH v is the (possibly new) null node of type t
ifH already contains such a node, thenH′ = H

(H′,e)← newH(l,〈v1, . . . ,vk〉) e is a new edge (i.e., e /∈ EH) with
lab(e) = l and att(e) = 〈v1, . . . ,vk〉,
andH′ is obtained by adding e toH

H[a/a′] Replace a ∈ {V,E,lab,att,ext,typ,isnull} with a′

Table 3.1.: Auxiliary notation (Informal)

Throughout this section, we shall assume that our input is a (concrete) well-typed heap
con�gurationH over a set of types T and a heap alphabet Σ compatible with T.

Additional notation

We start o� by de�ning some auxiliary notation to allow more concise de�nitions of the
commands’ semantics. Recall that we use 〈v1, . . . ,vk〉 for denoting ordered sequences, i.e.,
〈v1, . . . ,vk〉 ∈ V k ⊂ V ∗. In addition, we shall use the notation introduced in Table 3.1.

The notation is de�ned formally in Fig. 3.1. Recall that we write f ∪(k 7→ v) as abbreviation
for adding k to the domain of the function f and mapping it to v. Note that the de�nitions
are all well-de�ned, since heap con�gurations may only have at most one edge per variable
identi�er and at most one edge per variable-selector pair.

With these additional notational conveniences available, we now turn to the de�nition of
the semantics. We begin by de�ning transformation functions for each atomic statement
(cf. Def. 2.1 on page 8) in turn. More concretely, we de�ne a function tc : HCT,Σ →
(HCT,Σ ∪ err) for each atomic statement c ∈ Cmd, where err signals an error.

Skip statements

Let us begin with the most trivial case: The skip statement, which is equivalent to a
noop and is mainly included in PL to enable empty else branches. Unsurprisingly, skip
statements do not a�ect the heap con�guration in our semantics:

tskip(H) := H

Variable declarations

In PL, variables need to be declared before they are used. We are going to disallow the
redeclaration or shadowing of local variables. In other words, if a variable identi�er x is
already in scope, be it as variable or procedure parameter, the statement var x : t is illegal.
This has the advantage that each variable identi�er has a �xed and easily discernible type
throughout its entire scope. The incurred price is a loss of �exibility, as we neither have
nested scopes nor the ability to assign di�erent types depending on the control-�ow.
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x
H7−→ v, ∃e ∈ E.lab(e) = x ∧ att(e) = 〈v〉

x.s
H7−→ v, ∃ex,es ∈ E∃w ∈ V.(lab(ex) = x ∧ lab(es) = s

∧att(ex) = 〈w〉 ∧ att(es) = 〈wv〉)
p
H7−→ ⊥, @v ∈ V.p H7−→ v

(H′,v : t)← newH v /∈ V
∧H′ = H[V/V ∪ {v}, typ/typ′, isnull/isnull′]
where typ′ = typ ∪ (v 7→ t)

and isnull′ = isnull ∪ (v 7→ false)

(H′,v : t)← nullH (v ∈ V ∧ typ(v) = t ∧ isnull(v) = true ∧H′ = H)

∨(v /∈ V ∧H′ = H[V/(V ∪ {v}), typ′, isnull′])
where typ′ = typ ∪ (v 7→ t)

and isnull′ = isnull ∪ (v 7→ true)

(H′,e)← newH(l,〈v1, . . . ,vk〉) e /∈ E ∧H′ = H[E/E ∪ {e}, att/att′, lab/lab′]
where att′ = (att ∪ (e 7→ 〈v1, . . . ,vk〉)
and lab′ = (lab ∪ (e 7→ l))

Figure 3.1.: Auxiliary notation (Formal de�nitions)

tvar x:t(H) :=

{
H′′, if x H7−→ ⊥
err otherwise

where (H′,v : t)← nullH ∧ (H′′,ex)← newH′(x,〈v〉)

Figure 3.2.: Semantics of variable declarations

The restriction manifests itself in the semantics of the var statement, as de�ned in Fig. 3.2:
We only add an edge if x H7−→ ⊥. Otherwise we throw an error, denoted err.1

The new edge ex is labeled with the variable identi�er x and initially points to the null
node of type t, representing a null pointer. This re�ects the separation of declaration and
initialization of variables in PL.2

R We can now see the justi�cation for using typed null nodes in our heap model: If we
did not assign x to a typed null node but rather to a generic untyped null node, we
would lose the information that x is declared to be of type t. Consequently, we would
lose type safety, because we would not be able to detect erroneous assignments such
as x := y for y : t′, where t′ 6= t.

1This kind of error could, of course, be caught before execution through an additional static analysis.
2Assigning null pointers to uninitialized variables corresponds to the Java semantics, where all uninitial-

ized references are null pointers. To come closer to C semantics, where uninitialized pointers may hold any
value, we would need to distinguish between uninitialized pointers and null pointers. Real C semantics, i.e., the
assignment of truly arbitrary pointer values, cannot be modeled in a sensible fashion in storeless semantics.
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tx:=p(H) =



H[att/att[ex 7→ 〈v〉]], if ∃ex ∈ E∃v,w ∈ V ∃t ∈ T.

p
H7−→ v ∧ x H7−→ w

∧lab(ex) = x

∧typ(v) = typ(w)

err, otherwise

Figure 3.3.: Semantics of variable assignments

tx.s:=p(H) =



H[att/att[es 7→ 〈wv〉]], if ∃ex,es ∈ E∃v,w ∈ V ∃t ∈ T.

p
H7−→ v ∧ x H7−→ w

∧lab(ex) = x ∧ lab(es) = s

∧att(es)(1) = w

∧typ(v) = typ(att(es)(2))

err, otherwise

Figure 3.4.: Semantics of selector assignments

Assignments

Now let us consider assignments x := p, where x is a variable identi�er and p an arbitrary
pointer. The corresponding graph transformer is de�ned in Fig. 3.3.

We look up the node v that p points to and the edge ex that is labeled with x. We compute
the result by updating the attachment for ex to v. If either lookup is impossible, or if
the types are inconsistent, we return an error. Note that this is well-de�ned for all heap
con�gurations, as they may contain at most one edge with lab(e) = x for each variable x.

Similarly, we de�ne a transformer for assignments x.s := p. Here we have to make sure
that

• H contains a (variable) edge ex for x and a (selector) edge es for s
• These edges are attached to the same node w. This way, we make sure that we have

the right selector edge, i.e., es points from w to some other node
• p can be resolved, yielding node v
• The types of the node that es currently points to, att(es)(2), and the new node v

coincide

If all these requirements are satis�ed, we update the attachment of es. Otherwise, we report
an error; see Fig. 3.4.

R There is one special case we ignored in both assignment transformers: If p = null,
the assignment is always allowed, even if the corresponding null node is not yet in
H. In that case, the null node would be added before executing the assignment. We
need another pair of rules to handle this case, but do not give them here, because
they are straightforward modi�cation of the rules in Figs. 3.3 and 3.4.1

1If this were a text book, I would write “The de�nition is left as an exercise for the reader.”
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tx:=new t(H) =


withSels(H′′, vnew, T(t)) if ∃ex ∈ E.lab(e) = x

∧(H′,vnew : t)← newH

∧H′′ = H′[att/att[ex 7→ vnew]]

err, otherwise
where
withSels(H, vnew, ε) = H
withSels(H, vnew, 〈s1 : t1, . . . ,sn : tn〉) =

let G = withSels(H, vnew, 〈s2 : t2, . . . ,sn : tn〉)
(G′,vnull : t1)← nullG
(G′′,es1)← newG′(s1,〈vnew,vnull〉)

in G′′

Figure 3.5.: Semantics of memory allocation

Memory allocation

Next we turn to the semantics of memory allocation statements, x := new t. Allocating
new memory of type t consists in

• Creating a new node vnew of type t
• Adding a sel-labeled edge from vnew to nullt′ for each selector sel : t′ in the type

signature of type t
• Attaching the variable edge that is labeled with x to the new node

We formalize this in Fig. 3.5. Recall from Section 2.2.2 on page 10 that type systems are
modeled as functions and T(t) = 〈(s1,t1), . . . ,(sn,tn)〉 is the type signature of t. As we
demand that the variable x be declared before it is used, we know that an x-labeled edge
ex must exist prior to the execution of the new statement.

withSels is an auxiliary function that creates selector-to-null edges for node v and typed
selectors 〈s1 : t1, . . . ,sn : tn〉.

Transition relation

Having de�ned the semantics of all the atomic statements, the next step is the de�nition
of the semantics for non-atomic intraprocedural statements, i.e., sequential composition,
conditionals, and while loops. I shall do so in the form of structural operational seman-
tics [Plo04].

R Denotational semantics. Given that we have already de�ned the semantics of
atomic statements as functions on heap con�gurations, it might seem more natural
to give a denotational semantics for PLseq than to give an operational semantics.
I decided against this, because the semantics of parallel PL programs cannot be
de�ned in terms of traditional denotational semantics. Since the parallel semantics
in Chapter 4 are operational, I also chose operational semantics for the sequential
setting. It is, however, easily possible to de�ne a denotational semantics for the
sequential fragment PLseq using the usual domain-theoretic approach.

To de�ne the semantics of conditionals and loops, we �rst need to de�ne conditional
evaluation. To this end, we de�ne a function condEval : HCT,Σ×BExp→ {true,false},
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where BExp is the set of all Boolean expressions.

condEval(H,p1 = p2) = true i� (∃v ∈ V.p1
H7−→ v ∧ p2

H7−→ v)

∨(∃v,w ∈ V.p1
H7−→ v ∧ p2

H7−→ w
∧isnull(v) = true ∧ isnull(w) = true)

condEval(H,p1 6= p2) = true i� condEval(H, p1 = p2) = false
condEval(H,b1 ∧ b2) = true i� {true} = {condEval(H,b1), condEval(H,b2)}
condEval(H,b1 ∨ b2) = true i� true ∈ {condEval(H,b1), condEval(H,b2)}

R The second part of the de�nition of condEval(H,p1 = p2) ensures that comparing
two null pointers always returns true, even if they are of di�erent type. This corre-
sponds to the semantics of Java. An alternative solution would be to disallow
comparing pointers of di�erent types altogether.

Now we are ready to de�ne the transition relation for intraprocedural statements, →.
Each rule relates two program states, where the �rst component of each state is either the
remaining program to be executed or ↓ to signify termination, and the second component
is the current heap graph or err in case of failure. Formally,

→⊆ (Cmd× (HCT,Σ ∪ {err}))× (Cmd ∪ {↓} × (HCT,Σ ∪ {err}))

The inference rules are listed in Fig. 3.6 on the next page. The �rst four rules—the inference
rules for skip statements, variable declarations, assignments, and memory allocation—are
derived from the transformation functions for atomic statements in the obvious way. The
next six rules de�ne the semantics of composite programs. The �nal two rules formalize
short-circuited error handling. We opt for a small-step instead of a big-step semantics to
lay the foundations for the data-�ow analysis in Chapter 5.

R This is admittedly not a true small-step semantics, because we short-circuit in the
case of errors and evaluate even compound conditionals in single steps. In addition,
our “atomic” commands are already not atomic on any realistic machine, as we have
included the allocation of memory for whole records in the set of atomic commands.
This choice of granularity will, however, turn out to be convenient when we turn to
data-�ow analysis in Chapter 5.

Note that the execution relation is deterministic. The proof of this fact is straight-forward
and omitted. We write ∗→ for the re�exive-transitive closure of→. We say that a program
c run on initial heapH terminates with heapH′ if (c,H)

∗→ (↓,H′).
� Example 3.1 Fig. 3.7 on the facing page illustrates the intraprocedural semantics for a
simple example program that prepends an item to a list. We assume that we start execution
with a four-element list, whose elements are accessible via head and last pointers. This
list is depicted at the top of Fig. 3.7. We then execute four statements, displayed between the
graphs, which gradually transform the graph according to the intraprocedural semantics
as de�ned up to Fig. 3.6, yielding a list with an additional element at the front. �

3.1.2 Interprocedural Semantics

In this section we shall develop the semantics of call statements, thus arriving at a complete
operational semantics for PLseq .

To this end, we need to model the call stack. The details of the call stack implementation
di�er between instruction sets, operating systems, programming languages, and compilers,
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(skip,H)→ (↓,H)

tvar x:t(H) = H′

(var x : t,H)→ (↓,H′)

p1 6= null tp1:=p2(H) = H′

(p1 := p2,H)→ (↓,H′)
tx:=new t(H) = H′

(x := new t,H)→ (↓,H′)

c1 =↓
(c1; c2,H)→ (c2,H)

(c1,H)→ (c′1,H′)
(c1; c2,H)→ (c′1; c2,H′)

condEval(H,b) = true

(if b {c1} else {c2},H)→ (c1,H)

condEval(H,b) = false

(if b {c1} else {c2},H)→ (c2,H)

condEval(H,b) = true

(while b {c},H)→ (c;while b {c1},H)

condEval(H,b) = false

(while b {c},H)→ (↓,H)

tc(H) = err

(c,H)→ (↓, err) (c, err)→ (↓, err)

Figure 3.6.: Small-step semantics for intraprocedural programs.
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Figure 3.7.: Application of the small-step semantics: Prepending an item to a list.



38 Chapter 3. Semantics and Abstract Interpretation of Sequential Programs

but for our purposes it su�ces to have an abstract model of the call stack. A call stack
consists of one stack frame or activation record per active procedure call. Let us brie�y
think about the information that must be stored in each frame [Aho+06, Section 7.2]:

• The call parameters (if any)
• The return address
• The local variables of the procedure (if any)

Instead of modeling the return address, we shall keep track of the remaining program
statements of the procedure, if any, or ↓. This will make it trivial to reuse the intraprocedural
semantics, where the program states were also de�ned in terms of remaining statements.
As before, we use an integrated model of the heap and local variables: For each variable x
in scope, we add an edge of degree 1 to the heap that is labeled with x and attached to the
corresponding node. Consequently, each stack frame in our model consists of

• The command (sequence) c that is still to be executed, or ↓ to indicate termination
• A heap con�guration that models the parameters, local variables and the part of the

heap that is reachable from the parameters, or err in case of an error

Formally, we obtain the following stack representation.

Stk := ((Cmd ∪ {↓})× (HCT,Σ ∪ err))+

Recall from Section 2.1 that we write x1 :: 〈x2, . . . ,xn〉 for destructuring the sequence
〈x1,x2, . . . ,xn〉 into its head and tail. This becomes useful in the formalization of the
interprocedural semantics, which operates on the topmost entries of the stack.

Intuitively, each procedure call enlarges the stack by one entry. This entry is initialized
with the body of the called procedure and the procedure’s local view of the heap, i.e., the
reachable fragment of the heap w.r.t. the arguments of the called procedure (formally
de�ned in Def. 3.3 later in this section). This reachable fragment is the only part of the
heap that the called procedure can possibly access or modify, so it is su�cient to keep this
cut-down heap to de�ne the semantics.

You might be wondering whether it is a good idea to operate on a stack of local heaps
rather than on one global heap. After all, the call stack is an entirely separate issue from
the heap. Having just one global heap seems appealing especially with the implementation
in mind: Given a heap con�guration H of size O(n) and a call stack of size O(m), the
stack-of-local-heaps representation will need space O(n · m) in the worst case, while
keeping just one global heap will bring this down to O(n+m), as each of the O(m) stack
frames only needs O(1) additional space for each of the O(1) parameters and variables
used in the corresponding procedure.

There are, however, multiple reasons to opt for a procedure-local heap representation. First,
this simpli�es handling of the stack variables: Each heap graph only needs to contain the
variable hyperedges for the currently active procedure, which is especially helpful because
we allow recursion: We get correct static scoping almost for free.

Second, and more importantly, this choice improves modularity, by allowing local reasoning
much like the separating conjunction of separation logic. By only keeping the local heap
fragment in the program state, we can e�ectively reason about the local e�ects of the
procedure in isolation. This does not impair correctness, since it is impossible for the
procedure to infer with a fragment of the heap that it cannot reach from its parameters.
This observation—that the analysis of procedure-local heap fragment su�ces—is at the
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heart of our analysis method. It also turns out that the fear of increased memory complexity
is largely unwarranted, since in our context, we actually only need to consider stacks of
size at most two, as we shall see in Chapter 5.

Se�ing the stage for the interprocedural semantics

To de�ne an interprocedural semantics, we need a context that provides access to all
procedures. Thus all the following rules shall be parameterized by a program representation
P ∈ Progs. The judgments in this section are thus of the form P ` stk1 ⇒ stk2, to be
read as “given the program P , the stack of commands and heaps stk1 may be transformed
into the stack stk2 in a single step”. Consequently,

⇒⊆ Progs× Stk× Stk

We use the double arrow to distinguish the interprocedural semantics from the intraproce-
dural semantics from the previous section. The re�exive-transitive closure is now denoted
by P ` stk1

∗⇒ stk2.

Before going on, you should thus brie�y (re-)familiarize yourself with the mathematical
program representation as developed in Section 2.2.2 on page 10, because we shall make use
of the functions procs, types, params, body, names, and typesig de�ned there to select
the various relevant parts of P ∈ Progs.

Li�ing the intraprocedural semantics

The �rst thing to note is that the intraprocedural semantics can easily be lifted to the
interprocedural, stack-based semantics, simply by applying its rules to the top element of
the stack.

(c,H)→ (c′,H′)
P ` (c,H) :: stk ⇒ (c′,H′) :: stk

(c,H)→ (c′, err)

P ` (c,H) :: stk ⇒ (c′, err) :: stk

We would also like to short-circuit the interprocedural semantics in case of an error, so we
add a rule

P ` (c, err) :: stk ⇒ 〈(↓, err)〉

Towards call and return semantics: An example

The treatment of call and return statements is more interesting. Before attempting a
formalization, let us have look at a simple example. Fig. 3.8 on the following page contains
a brief example program that receives pointers to the head of two lists as well as one
additional pointer into the �rst list, node1, as inputs. It passes the node1 pointer to the
prepend procedure, which creates a new list element and adds it in front of the node it
receives as argument, node. Fig. 3.9 on page 41 illustrates the interprocedural semantics of
this program, assuming (arbitrarily) that it is called on lists of length 3 and 2, respectively,
and that the node1 pointer points to the second element.

1. At call site—that is, in the main procedure—the heap consists of two lists, accessible
via the head and node pointers. (top left)

2. Upon the call, node1 is renamed to node (parameter passing) and the heap is
truncated to the reachable fragment w.r.t. node. This is the local view of the heap
argued for above. In addition, u1 and u2 are marked as external nodes (indicated by
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procedure main(head1 : elem, node1: elem, head2 : elem) is
prepend(node1)

procedure prepend(node : elem) is
var tmp : node;
tmp := new(node);
node.prev := tmp;
tmp.next := node

type elem is
prev : elem;
next : elem

Figure 3.8.: Prepending an element to a list

the blue background) to remember that they form the border between the local view
of the heap and the rest of the heap. (This information is not necessary in the concrete
semantics, but will be in the abstract semantics: Nodes on the boundary must not
be lost through abstraction, or we cannot embed the local heap into the global heap
upon procedure return. Abstraction was de�ned such that it cannot be applied to
external nodes, so marking the boundary as external ensures that it is indeed not
abstracted. As the abstract semantics are de�ned in terms of the concrete semantics,
we already mark the boundary nodes as external in the concrete semantics.) The
thus annotated heap fragment is placed on top of the call stack (not displayed).

3. Now we apply the intraprocedural semantics to the local view of the heap. This
results in a list with an additional node at the front of the list, pointed to by tmp.

4. Before procedure return, all local variables are discarded, since they go out of scope
at this point.

5. At return to main, we merge the two top-most stack entries, i.e., the heaps for main
and prepend. To this end, we recompute the fragment of the heap that was passed
to prepend—i.e., the �rst list—and the border between the fragment and the rest of
the graph.1 Apart from the border, the fragment is removed from main’s heap and
replaced with the heap that resulted from executing prepend, hence introducing
the new list element into the heap at call site. The same gluing approach that is used
in hyperedge replacement (cf. Def. 2.26 on page 23) is used: The caller and the callee
heap are glued together at the boundary.
It is not possible to simply throw out the entire fragment at call site and take the
union with the callee graph, because we would then lose the head1 and node1
variable edges.

Reachable fragments

We now want to formalize this process. We start with the formalization of reachable
fragments.

Throughout the remainder of this section, let P ∈ Progs and VarP denote the variables
occurring in that program. We further assume that VarP ⊆ ΣV .

Definition 3.2 — Access path and reachability. LetH ∈ HC0
T,Σ, x ∈ VarP , and v ∈ VH.

The sequence 〈v1, . . . ,vn〉 ∈ (VH)n is called an access path from x to v if all of the
following conditions hold

1In an implementation, we would, of course, handle this more cleverly
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main procedure prepend procedure
head1

u1 u2

node1

u3

next
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v1 v2
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u1 u2

node

u3

next
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next
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next
prev

next next

prev

call

execute prepend

cleanup

return

Figure 3.9.: Example: Semantics of call and return

• v1 = attH(ex)(1), where ex is the unique edge in EH with lab(ex) = x
• vn = v
• For all 1 ≤ i < n, there exists en e ∈ EH with attH(e) = 〈vi,vi+1〉

If there is an access path from x to v, we say v is reachable from x and write
reachable(x,v).

Definition 3.3 — Reachable fragment. LetH ∈ HCT,Σ and X ∈ 2VarP . The reachable
fragment ofH w.r.t. X is de�ned as the section hypergraphH×W , where

W := {v ∈ VH | ∃x ∈ X.reachable(x,v)}

We write reachable(H,X) for the reachable fragment ofH w.r.t. X .

Less formally, the reachable fragment w.r.t. a set of variables is precisely the part of the heap
that we can access via arbitrarily long chains of pointer dereferences, starting from any of
the variables in the set. In particular, the reachable fragment w.r.t. a procedure’s parameters
is precisely the part of the heap that the procedure can access and thus potentially modify.
Our procedure-local semantics shall thus be de�ned in terms of reachable fragments.
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Cutpoints and the boundary of reachable fragments

One obstacle in the de�nition of procedure-local semantics are cutpoints. Cutpoints are
those nodes on the boundary between caller and local callee heap that are not directly
pointed to by a procedure parameter. As such, they are those nodes that have to be properly
glued to the callee heap upon procedure return [Rin+05; Kre+13].

Definition 3.4 — Cutpoint. LetH ∈ HC0
T,Σ,X ∈ 2VarP , and G be the reachable fragment

ofH w.r.t. X . A node v ∈ VH is a cutpoint, if all of the following conditions hold

• v ∈ bound(H,G), i.e., v is on the section boundary betweenH and G
• v is not directly pointed to by a variable in X , i.e., for all e ∈ EG with lab(e) ∈ X ,
attG(e) 6= v

� Example 3.5 — Cutpoints and boundaries. In Fig. 3.9 on page 41, the boundary consisted
of both u1 and u2, whereas u1—not being an argument to prepend—was the sole cutpoint.
�

From the semantics point of view, cutpoints are easy to deal with. In fact, we just handle
all nodes on the section boundary—i.e., both cutpoints and call arguments—uniformly:
We mark them as external nodes to keep track of them throughout the execution of the
procedure.1

We have to take care to do this in a deterministic fashion, though, to know which node in
the call heap to match against which node of the callee. This is, however, not a problem.
In the following, let the distance from a variable x to a node v be the minimal number of
edges that we have to follow from the node pointed to by x to node v. (Hence the distance
is 0 for the node pointed to by x itself, 1 for the nodes directly reachable from that node
via selector edges, etc.)

Definition 3.6 — Node order. LetH ∈ HCT,Σ. We de�ne a total order <V on the nodes
in VH as follows. Let v,w ∈ VH.

• v <V w if the shortest path from a variable to v is shorter than the shortest path
from a variable to w

• v <V w if the distance d from the nearest variables to v and w is the same, but
the minimal variable at distance d to v is smaller (w.r.t. alphanumeric ordering on
identi�ers) than all variables at distance d to w

• w <V v otherwise

Since we operate in a garbage-collected model—that is, all memory that is not reachable
from a variable is discarded—this is well-de�ned.
Definition 3.7 — Ordered boundary. Let H ∈ HCT,Σ and G = H ×W for some W .
The ordered boundary ofH and G, obound(H,G), is the unique node sequence that
contains exactly the nodes in bound(H,G) and is ordered according to <V .

Call semantics

We are �nally ready to formalize call and return. We begin with the call semantics. We
need one auxiliary function, namely for renaming the arguments of the procedure call to

1Allowing arbitrarily many cutpoints may unfortunately result in an in�nite state space even under
abstraction, because external nodes cannot be abstracted. We will come back to this point in the next section.
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π = procs(P )(p) lab′ = rename(〈x1, . . . ,xn〉,names(π)) ◦ lab
H1 = H[lab/lab′] H2 = reachable(H1,names(π))

H3 = H2[ext/ obound(H1,H2) · ext]
H4 = H3[E/E \ {e | lab(e) ∈ ΣV \ names(π)}]

P ` (call p(x1, . . . , xn); c,H) :: stk ⇒ (body(π),H4) :: (call p(. . .); c,H) :: stk

Figure 3.10.: The call semantics: We rename the parameters, compute the reachable frag-
ment, and add the boundary to the external nodes.

the called procedure’s formal parameters.

rename(〈x1, . . . ,xn〉,〈y1, . . . ,yn〉)(x) =

{
yi, if x = xi

x, otherwise

Now the call consists in

1. Composing the rename function with the labeling function
2. Cutting down the graph to the reachable fragment w.r.t. the formal parameters of

the procedure
3. Prepending the ordered boundary between the caller heap and the reachable fragment

to the reachable fragment’s external nodes.
4. Removing all variables other than the parameters
5. Placing the called procedure’s body together with the thus modi�ed heap onto the

call stack

R The reachable fragment may already contain external nodes that were added further
down in the call hierarchy. For that reason we cannot simply replace ext but rather
add the boundary in front of the external nodes. The decision to add them at the
front rather than the back is arbitrary.

The inference rule for procedure calls, shown in Fig. 3.10, re�ects these 4 steps, where the
graphs resulting from steps 1 to 4 are namedH1 toH4. (Recall that the concatenation of
sequences seq1,seq2 is denoted seq1 · seq2.)

It is worth noting several things at this point.

• Step 3 (removing excess variables) is necessary to capture static scoping rules: Only
those variables are in scope (i.e. in the heap graph) that are local to the current
procedure, which is correct, since PL does not have global variables.1

• The de�nition captures call-by-value semantics: Assignments to procedure param-
eters are possible, as such assignments are handled just like ordinary variable as-
signments by the intraprocedural semantics, but this reassignment is local and not
re�ected at call site.

• The call statement is not discarded but rather carried over to the successor state. This
is necessary to be able to de�ne the return semantics, as we shall soon see.

R There is one special case that is not covered by the call rule: If a call statement is the
last statement in a block, the rule cannot be applied, because the state does not match.

1This is not an inherent limitation of the approach, though. If one were to incorporate global variables
into PL, one could e.g. tag the corresponding variable edges and demand that tagged edges be kept as long as
the nodes they point to are in the graph.
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Hsub = reachable(Hcaller, {x1, . . . ,xn})
Hdrop = Hsub − (Hsub × bound(H,Hsub))

Hcleaned = Hexit[E/E \ {e ∈ E | lab(e) ∈ ΣV }]
Hmerged = (Hcaller −Hdrop) ∪Hcleaned

Hfinal = reachable(Hmerged, {lab(e) | e ∈ EHmerged
∧ lab(e) ∈ ΣV })

P ` (↓,Hexit) :: (call p(x1, . . . ,xn); c,Hcaller) :: stk ⇒ (c,Hfinal) :: stk

Figure 3.11.: Return semantics

We can, of course, easily get around this by adding a rule such as the following.

P ` (call p(x1, . . . , xn),H) :: stk ⇒ (call p(x1, . . . , xn); skip,H) :: stk

This rule allows appending a skip statement to a single call statement. This does
not add any behavior, since the skip statement’s semantics is the identity function,
but makes it possible to apply the rule for call statements de�ned earlier.

Return semantics

Now for the return semantics. When a procedure’s body has been executed completely,
we end up in a state (↓,H′) :: stk. If stk is empty, this signi�es termination of the
program. I.e., an interprocedural program P run on initial heapH terminates with heap
H′ if P ` 〈(body(procs(P )(main)),H)〉 ∗⇒ 〈(↓,H′)〉.
If, however, the remaining stack is non-empty, we need to execute a procedure return. The
key complication is the need to merge local heap views of the caller and the callee stack
entries. Since the call statement is still in the second stack entry, we can recompute the
reachable fragment and hence also the ordered boundary.1

This leads to the following return semantics, formalized in Fig. 3.11.
1. Recompute the reachable fragment w.r.t. 〈x1, . . . ,xn〉 (Hsub)
2. Drop the boundary from the fragment. In this way we obtain the part of the caller

heap that we must drop in favor of the callee heap (Hdrop)
3. Clean the callee heap by removing all variables (Hcleaned)
4. Merge caller and callee by replacing the (outdated) caller’s view of the callee’s heap

fragment with the result of executing the callee (Hmerged)
5. Finally, forget all nodes that are not reachable from a variable (Hfinal)

R Garbage collection. Computing the reachable fragment after the hypergraph union
corresponds to garbage collection: Nodes that the callee was able to access but that
the caller cannot access after the return are now garbage. These are precisely the
nodes that are removed through the reachable fragment computation.

This concludes the de�nition of the concrete interprocedural semantics of PLseq . We next
turn to the abstract semantics.

3.2 Abstract Interpretation of Sequential Programs

So far we have dealt with the concrete semantics of PLseq programs: The heap con�gu-
rations contained only variable edges and selector edges, but no nonterminal edges for

1When implementing the semantics it, of course, makes sense to save these rather than recomputing them
at the return.
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abstracting recursive data structures (such as the L edges from Section 2.3). Usually, we
are, however, not interested in the semantics of a program on one speci�c input, but rather
want to derive results for all sensible inputs. Even if we were only interested in the behavior
on one concrete input, we would often still be out of luck, since the usual undecidability
results for semantic properties apply (Rice’s theorem).

We thus need abstraction both to reason about arbitrary input data and to obtain a decid-
able over-approximation of semantic properties such as shape safety. The abstraction I
present here is based on heap abstraction grammars (HAGs) as de�ned towards the end of
Section 2.3.3.

3.2.1 Towards an Abstract Interpretation of PLseq

Our goal is to develop an abstract semantics for PLseq in the spirit of abstract interpre-
tation [CC77]. To this end, we have to de�ne an abstract semantics that operates on sets
of abstract states that safely over-approximates the concrete semantics. In this context,
“safe” means that all concrete transition sequences are represented by abstract transition
sequences. In general, the abstract transitions will also represent concrete transitions that
are in fact impossible, which is what the term “over-approximation” refers to.

We build the abstract semantics on top of the concrete semantics: The basic idea is to
wrap the concrete semantics in concretization and abstraction steps. These steps consist
in the forward and backward application of production rules of an HAG. The abstract
interpretation of every single command then comprises three steps:

1. Before executing a command, we use the HAG to locally concretize the abstract hy-
pergraphs on demand to make it su�ciently concrete to apply the concrete semantics
of the command—that is, to remove all violation points that stand in the way of the
application of the concrete semantics. For example, we might need to access the
next pointer of a list element that has been abstracted through an L nonterminal.
We apply the rules of the doubly-linked list HAG to get back the next edge. This
concretization step may result in multiple heap graphs if multiple rules are applicable.

2. We apply the concrete semantics de�ned in Section 3.1 to the partially concretized
graphs. Thanks to the concretization step, this is well-de�ned.

3. We abstract the heap con�gurations as far as possible, i.e., we apply HAG rules
backward until no rule is applicable to obtain the full abstraction of the graphs.

Unfortunately, there are several potential problems hidden in the vagueness of the above
description, which is why we restrict our abstract interpretation to backward-con�uent
heap abstraction grammars. Let me brie�y justify this restriction by pointing out why each
of the properties of (backward-con�uent) HAGs is necessary for a well-de�ned abstract
interpretation of PL.

• We would like abstracted data structures to represent only concrete and consistently
typed data structures, so we consider only data structure grammar. .

• We would like each abstract heap con�guration to represent at least one concrete
state, so we demand productivity.

• Although all PLseq commands have only local e�ects—the maximum dereferencing
depth is 1—it is not immediately clear that the concretization step consists in a �xed
number of rule applications or even that it terminates at all. We demand local
concretizability to be able to remove each violation point in a single concretization
step.
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• We consider only increasing grammars to exclude loops in the abstraction process
and thus guarantee the termination of the abstraction step.

• Backward con�uence. As I mentioned in Section 2.3.1, the abstraction result is
not necessarily unique. If our grammar exhibits such ambiguity, this will not only
increase the nondeterminism in the semantics, but also yield states that consist
of several abstract hypergraphs that represent the same or overlapping languages,
which is neither intuitive nor useful. For that reason, we restrict our attention to
backward-con�uent grammars.

3.2.2 Formal Definition of Abstract Semantics

Let us try to formalize the “concretization–concrete semantics–abstraction” loop. To this
end, we assume a �xed HAG G = (σi → Gi)i∈{1,...,n} for the remainder of this section.
The formal de�nition of on-demand-concretization and full abstraction are the key to the
abstract semantics.

Concretization on demand

We de�ne concG, the set of minimal admissible concretizations of a heap graph H
w.r.t. G.

For all σ ∈ ΣNT , let Gσ
1 , . . . ,G

σ
rk(σ) ⊆ Gσ be language-preserving subgrammars of G that

remove violation points at attachment point 1, . . . , rk(σ). (These exist because of the local
concretizability of HAGs, see Def. 2.40 on page 27.)

concG(H) :=


{H}, if vpG(H) = ∅⋃
{concG(H′) | (e,i) ∈ vpG(H)

∧H′ ∈ concAtG(e, i,H)}, otherwise
concAtG(e,i,H) := {H[e/G] | (lab(e)→ G) ∈ Gσ

i }

Recall the de�nition of violation points on page 27. IfH contains violation points, we pick
one such point (e,i) and apply all possible concretizations from the language-preserving
subgrammar Gσ

i to remove it. Note that conc is well-de�ned because each concretization
step at a violation point is guaranteed to reduce the number of violation points by at least
one.

Full abstraction

Recall from Section 2.3.3 that abstraction is performed by applying production rules back-
ward: Given a rule σi → Gi, we �nd a subgraph Hsub of H that is isomorphic to Gi and
whose inner nodes are not external. We then perform a partial abstraction by replacing
Hsub with the handle of σi, hnd(σi): H[Hsub/hnd(σi)]. (For DSGs there is only a single
type sequence τ such that hnd(σi,τ) is well-de�ned. Writing hnd(σi) therefore does not
introduce any ambiguity; see the de�nition of DSGs, Def. 2.33 on page 26.)

As explained before, we perform full abstraction, i.e., we iteratively apply abstraction
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steps until no rules are applicable. Formally,

applicable(H, σ → G) :=


true, if ∃Hsub ⊆ H.(Hsub ∼= G

∧extHsub
⊆ bound(H,Hsub))

false, otherwise
apply(H, σ → G) := H[Hsub/hnd(σi)] whereHsub ∈ {H′ ⊆ H | H′ ∼= G}

abstG(H) :=


H, if ∀i¬applicable(H, σi → Gi)
abstG(apply(H, σi → Gi)), otherwise,

where i := min{j | applicable(H, σj → Gj)}

R Note that rules are only applicable if their application does not remove external
nodes, as expressed by demanding that all external nodes in the matched subgraph
are on its boundary.

R apply is nondeterministic, and thus abst is as well. This does not matter, however,
since we assume that the HRG is backward-con�uent, which guarantees the unique-
ness of the full abstraction, if not of the single abstraction steps. Thus we can, for
example, resolve the non-determinism by always picking the �rst applicable rule
and isomorphic subgraph that we �nd. This is re�ected in the de�nition of abst.

This remark shows that, unlike concretization, full abstraction does not introduce addi-
tional non-determinism. In fact, it might even resolve some non-determinism, should two
(partially) concrete heap graphs have the same abstraction.

Pu�ing it all together

We are now ready to de�ne the abstract operational semantics. Informally, to arrive at the
abstract semantics of a command c, we want a composition “abst ◦concrete semantics(c)◦
conc”. As with the concrete semantics, we begin with an intraprocedural relation, A→.

H0 ∈ conc(H) (c,H0)→ (c′,H1) H2 = abst(H1)

(c,H)
A→ (c′,H2)

R
A→ is nondeterministic, since conc(H) usually contains several partially concretized
hypergraphs.

The interprocedural relation A
=⇒ exactly mirrors the concrete relation, the only di�erence

being the additional abstraction steps. For completeness’s sake, I show the modi�ed rules
in Fig. 3.12 to Fig. 3.14. Note that the call rule does not even have an additional abstraction
step: We do not need an additional abstraction step, because the reachable fragment is
already fully abstract. It is true that some variables might go out of scope, but these are all
on the boundary of the reachable fragment and thus not subject to abstraction.

! For this semantics to be correct, it is crucial that the whole boundary between caller
and callee is marked as external. This makes it impossible to abstract nodes on the
boundary and thus guarantees that the boundary stays intact until the return. The
return therefore works just as in the concrete case.

We write s1
A∗

=⇒ s2 for the re�exive-transitive closure of A
=⇒.
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(c,H)
A→(c′,H′)

P ` (c,H) :: stk
A

=⇒ (c′,H′) :: stk

(c,H)
A→(c′, err)

P ` (c,H) :: stk
A

=⇒ (c′, err) :: stk

P ` (c, err) :: stk
A

=⇒ 〈(↓, err)〉

Figure 3.12.: Lifted intraprocedural semantics and error handling.

π = procs(P )(p) lab′ = rename(〈x1, . . . ,xn〉,names(π)) ◦ lab
H1 = H[lab/lab′] H2 = reachable(H1,names(π))

H3 = H2[ext/ obound(H1,H2) · ext]
H4 = H3[E/E \ {e | lab(e) ∈ ΣV \ names(π)}]

P ` (call p(x1, . . . , xn); c,H) :: stk
A

=⇒ (body(π),H3) :: (call p(. . .); c,H) :: stk

Figure 3.13.: Abstract call semantics. There is no di�erence to the concrete semantics,
because the reachable fragment is already fully abstract.

R You may have noticed that we never formally de�ned reachable fragments on abstract
graphs. I will omit this de�nition, but observe that the de�nition for reachability
in concrete heaps (i.e., Def. 3.2) can easily be lifted to the abstract setting: Let e
be a nonterminal edge and v,w ∈ att(e). We now allow 〈v,w〉 to be contained in
(abstract) access paths if there is a path from v to w in any (and hence all, Because
we restricted our attention to HAGs) concrete graphs represented by e. Otherwise,
we do not allow 〈v,w〉 as a subsequence of the access paths (unless, of course, there
are other hyperedges connecting v and w that are concrete or that satisfy the above
constraint).

Size of the abstract domain

To be able to base a static analysis on the abstract semantics, we need to guarantee the
�niteness of the abstract domain—at least if we want to ensure termination of the analysis.
First of all, we clearly need to identify isomorphic hypergraphs. Even if we only consider
one hypergraph per isomorphism class, there are three reasons why the abstract domain of
the semantics I presented here is in�nite.

1. The semantics are de�ned in terms of stacks of arbitrary and hence potentially
unbounded size.

Hsub = reachable(Hcaller, {x1, . . . ,xn})
Hdrop = Hsub − (Hsub × bound(H,Hsub))

Hcleaned = Hexit[E/E \ {e ∈ E | lab(e) ∈ ΣV }]
Hmerged = (Hcaller −Hdrop) ∪Hcleaned

Hfinal = reachable(Hmerged, {lab(e) | e ∈ EHmerged
∧ lab(e) ∈ ΣV })

P ` (↓,Hexit) :: (call p(x1, . . . ,xn); c,Hcaller) :: stk
A

=⇒ (c, abst(Hfinal)) :: stk

Figure 3.14.: Abstract return semantics. The only di�erence is an additional abstraction
step in the end, because the cleaned heap need not be fully abstract.
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2. We might be unable to bound the size of the parts of the heap that cannot be abstracted
by our HRG.

3. Cutpoints cannot be abstracted, and recursive programs may contain an unbounded
number of cutpoints.

As we will see in Chapter 5, the �rst point is actually not a problem, since we only need to
consider the two top-most stack elements to de�ne the interprocedural data-�ow analysis.

The second point is often unproblematic: Most programs do not use an unbounded number
of unstructured raw pointers. Instead, most data is usually organized in (possibly recursive)
structures, which can often be captured completely by HRGs. Such programs may violate
the (implicit) shape invariants of the data structures they use—for example, introducing a
cycle into a tree—but they usually do so only locally, i.e., in an environment of constant
size around the variable pointers. This environment of constant size can be used to derive
a bound for the number of nodes that cannot be abstracted. If you would like to see a
concrete example of the HRG-based analysis of an analysis with a bounded number of
shape violations, you can have a look at the analysis of the Deutsch-Schorr-Waite algorithm
in [HNR10].

The third point is the most severe. Despite the claim to the contrary in [JN14], we are not
able to deal with arbitrarily many cutpoints in the data-�ow analysis, because we cannot
bound the size of the abstract graphs in such cases. In practice, we therefore demand an
arbitrary but �xed upper bound on the number of cutpoints that the analysis is able tracks.
If this bound is exceeded, the analysis fails. Since many recursive programs are in fact
e�ectively cutpoint-free, our approach is still applicable to a wide range of recursive
programs [Kre+13].1

3.2.3 Soundness of the Abstract Semantics

Intuitively, the abstract semantics is sound if each concrete program trace that is enabled
for a set of concrete input values is included in an abstract trace that is enabled for the
corresponding set of abstract input values. To formalize this intuition we use the framework
of abstract interpretation, originally introduced by Cousot and Cousot [CC77]. We de�ne
the abstract interpretation for an arbitrary but �xed backward-con�uent HAG G.

Recall that we de�ned⇒ and A
=⇒ as relations on states, where each state consisted of a

stack of commands and (abstract) values. Observe that we can instead de�ne the semantics
via functions

nextC : Cmd+ → Cmd+ → 2(HC0∪{err})+ → 2(HC0∪{err})+

in the case of the concrete semantics and

nextA : Cmd+ → Cmd+ → 2(HC0∪{err})+ → 2(HC0∪{err})+

in the case of the abstract semantics. In such a formulation of the semantics,

nextC(cs1, cs2,H1) = H2

1The notion of e�ectively cutpoint-free programs was introduced in [Kre+13]. Since I do not want to
dwell on the topic of cutpoints, I refer you to that paper for an in-depth treatment of cutpoints and a discussion
of how to deal with cutpoints under abstraction.
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means that, if we start with call stack cs1 and one of the stacks of heap con�gurations
hs ∈ H1, and end up in call stack cs2 after a single step, then the resulting stack of heap
con�gurations (or error information) will be one of the hs′ ∈ H2. nextA has the analogous
meaning for stacks of abstract heaps (and error information).

Formally,

nextC(cs1,cs2,H) := {hs2 | hs1 ∈ H ∧ zip(cs1,hs1)⇒ zip(cs2,hs2)}

nextA(cs1,cs2,H) := {hs2 | hs1 ∈ H ∧ zip(cs1,hs1)
A

=⇒ zip(cs2,hs2)}

where

zip(ε, ε) := ε
zip(〈x1, . . . , xn〉, 〈y1, . . . , yn〉) := (x1,y1) :: zip(〈x2, . . . , xn〉, 〈y2, . . . , yn〉)

In other words, nextC and nextA gather all the results of applying⇒ and A
=⇒ to any

of the input con�gurations in H. For notational convenience, we de�ne partially applied
variants of the functions where the pair of control stacks has been �xed.

nextC〈cs1,cs2〉 : 2(HC0∪{err})+ → 2(HC0∪{err})+

nextC〈cs1,cs2〉(hs) := nextC(cs1, cs2, hs)

nextA〈cs1,cs2〉 : 2(HC0∪{err})+ → 2(HC0∪{err})+

nextA〈cs1,cs2〉(hs) := nextA(cs1, cs2, hs)

If cs2 is not a possible successor call stack of cs1, then nextC〈cs1,cs2〉 will always be
a constant function returning the empty set. If, however, cs1, cs2, . . . , csk is a possible
sequence of call stacks when starting on a stack of heap con�gurations hs, then this
execution trace is also re�ected by the corresponding chain of semantics functions,

(nextC〈csk−1,csk〉 ◦ · · · ◦ nextC〈cs1,cs2〉)({hs}) = {hs′}
i�

(cs1,hs)⇒k−1 (csk,hs
′)

This equality holds due to the determinacy of the concrete semantics, whereas the nonde-
terminism of the abstract semantics also carries over to the nextA function.

hs′ ∈ (nextA〈csk−1,csk〉 ◦ · · · ◦ nextA〈cs1,cs2〉)({hs})
i�

(cs1,hs)
A

=⇒
k−1

(csk,hs
′)

Now observe that for each �xed pair of stacks cs1, cs2, the partially applied functions
nextC(cs1,cs2) and nextA(cs1,cs2) are monotonic functions on the power set lattices
(2(HC0∪{err})+

,⊆) and (2(HC0∪{err})+
,⊆), since by de�nition,

nextC(cs1,cs2)(H1 ∪ H2)
= {hs2 | hs1 ∈ (H1 ∪ H2) ∧ zip(cs1,hs1)⇒ zip(cs2,hs2)}
= {hs2 | hs1 ∈ H1 ∧ zip(cs1,hs1)⇒ zip(cs2,hs2)}
∪{hs2 | hs1 ∈ H2 ∧ zip(cs1,hs1)⇒ zip(cs2,hs2)}

= nextC(cs1,cs2)(H1) ∪ nextC(cs1,cs2)(H2)

(The exact same holds for nextA.)
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R If you are not familiar with the order-theoretic notions used throughout this section,
you will �nd a brief introduction in Appendix A on page 111.

Furthermore, we can lift (full) abstraction and concretization to the power set domains,
yielding a pair of functions α and γ. Recall that L(G,H) denotes all concrete hypergraphs
represented byH (Def. 2.32 on page 25).

α : 2(HC0∪{err})+ → 2(HC0∪{err})+

α(H) := {〈G1, . . . ,Gk〉 | 〈H1, . . . ,Hk〉 ∈ H ∧
∧
i(Gi = abst(Hi) ∨ Gi = Hi = err)}

γ : 2(HC0∪{err})+ → 2(HC0∪{err})+

γ(H) := {〈G1, . . . ,Gk〉 | 〈H1, . . . ,Hk〉 ∈ H ∧
∧
i(Gi ∈ L(G,Hi) ∨ Gi = Hi = err)}

We obtain the abstraction of a set of concrete stacks by applying full abstraction to each heap
con�guration in the stack. (Note that, because we assume that G is backward con�uent,
abst(H) is a single graph.) Conversely, we obtain the concretization of a set of abstract
stacks by replacing each abstract heap con�guration by a concrete one that is in the language
of the abstract heap. Errors are replaced by errors.
The key observation for applying the theory of abstract interpretation to our domain is
that the power set lattices together with α for abstraction and γ for concretization form a
Galois connection (cf. Def. A.11). To show this, we �rst need two lemmas.

Lemma 3.8 IfH ∈ HC0, thenH ∈ L(G, abst(H)).

Proof. Let 〈R1, . . . ,Rk〉 be the sequence of rules that, applied backward, transform H
into abst(H). Applying 〈Rk, . . . ,R1〉 forward to abst(H) yieldsH. I.e., abst(H)

∗
=⇒ H.

HenceH ∈ L(G, abst(H)). �

Lemma 3.9 IfH is fully abstract, then abst(L(G,H)) = H.

Proof. Thanks to backward con�uence, the abstraction result is unique. Since all graphs in
L(G,H) can be abstracted toH by reverting the corresponding derivation sequence, this
unique result must beH. �

Theorem 3.10 The tuple ((2(HC0∪{err})+
, ⊆), α, γ, (2(HC0∪{err})+

, ⊆)) forms a Galois
connection.

Proof. We need to show that
1. ∀H ∈ 2(HC0∪{err})+

.H ⊆ γ(α(H))
2. ∀H ∈ 2(HC0∪{err})+

.α(γ(H)) ⊆ H

α and γ both map err to itself, so if the claims hold for stacks without error components,
they clearly also hold for stacks with error components.
We show the �rst point for stacks without error components. Let H ∈ 2(HC0)+ . Let
hs := 〈H1, . . . ,Hk〉 ∈ H be an arbitrary element of H. Note that γ(α({〈H1, . . . ,Hk〉})) =
{〈G1, . . . ,Gk〉 | Gi ∈ L(G, abst(Hi))}. Lemma 3.8 shows that for each individual stack
elementHi,Hi ∈ L(G, abst(Hi)). Hence also {〈H1, . . . ,Hk〉} ⊆ γ(α({〈H1, . . . ,Hk〉})).
Now, since γ(α(H)) =

⋃
hs∈H(γ(α({hs}))), it follows that H ⊆ γ(α(H)).

The second point is proven analogously by applying Lemma 3.9 to the individual stack
components. �
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What does this characterization buy us? We can show that the abstract semantics is a safe
approximation of the concrete semantics.

Definition 3.11 — Safe Approximation. Let ((L, vL),α,γ,(M, vM )) be a Galois con-
nection and f : L → L be a function on the concrete domain. g : M → M is a safe
approximation of f i�

α(f(γ(m))) vM g(m) ∀m ∈M

It is called the most precise safe approximation if the reverse also holds.

Let us think about the meaning of this de�nition. The abstract function is a safe approxima-
tion if it over-approximates the concrete function—that is, if the abstraction of the concrete
output of the concrete function applied to the concretized input is contained in the output
of the abstract function. This is illustrated by the following diagram [Nol15].

m
γ−→ γ(m)

↓ g f ↓
g(m) w α(f(γ(m)))

α←− f(γ(m))

We are now ready to state the central theorem of this section.

Theorem 3.12 — The abstract semantics safely approximates the concrete semantics. For
all cs1, cs2, nextA〈cs1,cs2〉 safely approximates nextC〈cs1,cs2〉.

It is intuitive that this should hold: First, the abstract semantics is just the concrete se-
mantics applied to a set of graphs that have been concretized on demand, and on-demand
concretization is language-preserving (for a locally concretizable grammar), so the abstract
semantics necessarily subsumes all concrete behavior. Second, thanks to backward con-
�uence, it does not matter whether we concretize fully (through the application of γ) or
partly (in the abstract semantics), subsequent (full) abstraction, as performed both by α
and the abstract semantics, must yield the same hypergraph.

To prove this formally, a series of lemmas will come in handy. In the following, I shall
assume a �xed BCHAG G and denote by L(hs) the language obtained by applying said
grammar to all components of hs. I shall write conc(hs), abst(hs) for the application of
the respective function to the top element of the stack, in the former case w.r.t. the current
call stack cs1. I shall also adopt the convention to denote stacks of abstract heaps by hs,
hsi, hs′, etc., and use gs, gsj , etc., for stacks of concrete heaps.

Lemma 3.13 Let H1 ∈ 2(HC0∪{err})+ , gs1,gs2 ∈ (HC0)+. If gs1 ∈ γ(H1), gs1 ⇒ gs2,
and nextA〈cs1,cs2〉(H1) = H2 6= ∅, then there exist hs1 ∈ H1, hs2 ∈ H2 such that
hs1

A
=⇒ hs2 and gs2 ∈ L(hs2).

Proof. By de�nition of γ, gs1 ∈ L(hs) for some hs ∈ H1.

Case 1: Assume the next command to be executed is intraprocedural. Let {hs′1, . . . ,hs′k} =
conc(hs). Clearly there exists a j such that gs1 ∈ L(hs′j), since G is locally concretizable.
Now apply the concrete semantics⇒ to both gs1 and hs′j , leading to gs2 and hs′′j . Before
that application, the parts of the graphs that are a�ected by this application are isomorphic,
because of the local concretization.
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Hence the local transformations in the two graphs caused by the application of ⇒ are
identical and the resulting subgraphs are still isomorphic after the application of⇒. Thus,
gs2 ∈ L(hs′′j ). Subsequently, a full abstraction is applied to hs′′j , leading to stack hs∗j . Note
that L(hs∗j ) ⊇ L(hs′′j ) and hs∗j ∈ H2. Hence the pair hs1 := hs, hs2 := hs∗j has the
desired property.

Case 2: The next command is a call. Clearly, language inclusion is invariant under relabeling
variables, dropping variables, and marking variables as external. It is also invariant under
reachable fragment computation, since G is context free. The result of applying the call
semantics to hs is thus the desired graph hs2, again setting hs1 := hs.

Case 3: The next case is a return. Omitted for the sake of brevity, as it can be proven along
similar lines. �

Lemma 3.14 If nextA〈cs1,cs2〉({hs}) = ∅, then nextC〈cs1,cs2〉(γ({hs})) = ∅

Proof. I show the contrapositive, i.e., if nextC〈cs1,cs2〉(γ({hs})) 6= ∅, then
nextA〈cs1,cs2〉({hs}) 6= ∅.

Let gs1,gs2 such that gs1 ∈ γ({hs}) and gs1 ⇒ gs2. (These exist by assumption.) Note
that, like in Lemma 3.13, gs1 ∈ L(hs′) for some hs′ ∈ conc(hs).

Case 1: The next command in cs1 is intraprocedural. By de�nition of conc, hs′ does not
contain violation points and the parts of gs1 and hs′ that are a�ected by the execution of
the current command are isomorphic. Hence the concrete semantics is applicable to hs′
and hs′ ⇒ hs′′ for some hs′′, so hs⇒ hs∗ for some hs∗ and nextA〈cs1,cs2〉({hs}) 6= ∅.

Case 2: The next command in cs1 is a call statement. Then this call statement is clearly en-
abled for hs′ (since the graphs contain the same variables as gs1), and thus
nextA〈cs1,cs2〉({hs}) 6= ∅.

Case 3: The next command in cs1 is a return statement. As hs′ contains the same variables
and external nodes as cs1, the abstract return rule is enabled for hs and also in this case
nextA〈cs1,cs2〉({hs}) 6= ∅. �

So far, we have not dealt with error cases. We handle them in a �nal lemma.

Lemma 3.15 LetH1 ∈ 2(HC0∪{err})+ . If gs1 ∈ γ(H1), gs1 ⇒ gs2 = 〈err,G1, . . . ,Gk〉, k ≥
0, then nextA〈cs1,cs2〉(H1) = H2 6= ∅, and there exist hs1 ∈ H1, 〈err,H1, . . . ,Hk〉 =

hs2 ∈ H2 such that hs1
A

=⇒ hs2.

Proof. If gs1 = 〈err,J1, . . . ,J`〉, the result is trivial, as both semantics yield (↓ ,err) in
that case. Let therefore gs1 ∈ (HC0)+. Let hs1 ∈ H1 such that gs1 ∈ L(hs′) for and
hs′ ∈ conc(hs1). Again, such stacks must exist for locally concretizable G by de�nition of
γ.

This time need only consider intraprocedural commands. Call and return do not produce
err values—at worst the semantics deadlocks if the rules’ preconditions are not satis�ed.
But clearly hs′ A

=⇒ 〈err,H′1, . . . ,H′k〉, since those parts of hs′ and gs1 that are relevant
for the execution of cs1 are isomorphic. By de�nition of nextA〈cs1,cs2〉, it follows that
hs2 := 〈err, abst(H ′1), . . . , abst(H ′k)〉 ∈ H2. �
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These three lemmas let us prove Theorem 3.12 in a straightforward way.

Proof of Theorem 3.12. We have to show that

∀H ∈ 2(HC)+
.α(nextC〈cs1,cs2〉(γ(H))) ⊆M nextA〈cs1,cs2〉(H)

Let H ∈ 2(HC)+ and H′ := {hs ∈ H | nextA〈cs1,cs2〉({hs}) 6= ∅}. By Lemma 3.14, it
su�ces to show α(nextC〈cs1,cs2〉(γ(H′))) ⊆M nextA〈cs1,cs2〉(H

′).

Consider arbitrary hs ∈ H′ and gs1 ∈ γ({hs}). By Lemma 3.15, we do not have to consider
error cases. There are two other cases: Either there is no gs2 such that gs1 ⇒ gs2. But
then nextA〈cs1,cs2〉 is clearly a safe over-approximation of the (non-existent) concrete
behavior.

Conversely, if gs1 ⇒ gs2, we can apply Lemma 3.13 to gs1, gs2, H1 := {hs}, and H2 :=
nextA〈cs1,cs2〉({hs}) to conclude that there exists hs2 ∈ H2 with gs2 ∈ L(hs2). But then
α(gs2) = abst(gs2) = hs2 by backward con�uence.

Hence for all hs ∈ H′ and gs1 ∈ γ(H′), α(nextC〈cs1,cs2〉({gs1})) ⊆ H2 =
nextA〈cs1,cs2〉({hs}) ⊆ nextA〈cs1,cs2〉(H

′). Noting that γ(H′) =
⋃
{γ({hs}) | hs ∈ H′},

the claim follows. �

This justi�es our use of the abstract semantics as basis for an analysis for proving the
absence of memory errors.

R Note that the abstract semantics is not the most precise safe approximation w.r.t. α
and γ, because the concretization function γ produces concrete stacks that cannot
occur in any concrete execution. (The case where there is no gs2 such that gs1 ⇒ gs2
in the proof of Theorem 3.12.) We could overcome this by adapting the call and return
semantics: We could throw out the reachable fragment (apart from the boundary)
already upon call rather than only at the return. Then, the various levels of the stack
could be concretized individually without producing any inconsistent stacks. We
would then obtain the most precise safe approximation. I opted against this to be
able to de�ne fork semantics that are very similar to call semantics—when forking,
we must not throw away the reachable fragment, because it may be shared by other
threads.1

We shall spend the remainder of this chapter exploring how we can extend both the concrete
and the abstract semantics to obtain similar results for all of PL—that is, for programs that
make use of fork–join parallelism.

1More concretely (if you have already had a look at the parallel semantics), we must not throw away the
fragment because we need to retain the used, lost, and pending mappings.



CHAPTER 4

Semantics and Abstract Interpretation
of Concurrent Programs

We have seen how to de�ne a hypergraph-based semantics for a pointer language and
how to de�ne an abstract interpretation of such a semantics via hyperedge abstraction
grammars. So far we have, however, focused on PLseq , a sequential language. In this
chapter, we explore how to extend the semantics to model fork–join parallelism.

Recall thatPL supports the classical fork–joinmodel of parallel computation: PL de�nes
a fork statement for starting independent execution threads and a join statement for
blocking until the forked thread has terminated. Each fork statement returns a thread
token, to be stored in a thread token variable that was previously declared via the thread
keyword:

thread t; t := fork p(x1, . . . ,xn)

Later, we can join the thread by referring to the thread token:

join t

We need this token mechanism (or something similar) because of the dynamic nature of
PL’s threading model: We do not know in advance how many threads a given program
is going to create. It is thus not possible to statically limit the number of threads that are
(potentially) active at the same time. We do not really care about the concrete form of
the tokens, however. We shall, in fact, see that we can de�ne a formal semantics without
any reference to the tokens’ values. In our semantics we will not allow aliasing of thread
tokens—that is, assignments t2 := t1, where t1 is a thread token—but I will argue later that
this could be enabled easily by a slight complication of the model.

I go beyond some formulations of the fork–join model by allowing that threads be forked but
never joined. I allow this to be a little closer to implementations of the fork–join model in real
programming languages such as Java and to show that our approach is suitable for going
beyond a parallel composition operator as known, for example, from process algebra [Bae05].
I do not model any bilateral synchronization mechanisms, such as Java monitors [Lea00],
or more low-level synchronization constructs such as semaphores [Dow05]. This should
be considered important future work. Note that we demand that a forked procedure must
be joined by the same procedure instance (and hence thread) that forked it, or not at all.
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Admittedly, this is a restriction compared to, for example, Java’s Threads, as Thread
objects may be passed freely between objects.

R We have to take care to properly de�ne what we mean by parallel or concurrent
programs. In general, these terms cannot be used interchangeably. A possible
de�nition is as follows.

A parallel program is one that uses a multiplicity of computational
hardware (e.g. multiple processor cores) in order to perform computation
more quickly. [. . . ] concurrency is a program-structuring technique in
which there are multiple threads of control. Notionally the threads of
control execute “at the same time”; that is, the user sees their e�ects
interleaved. Whether they actually execute at the same time or not is an
implementation detail [Mar12, Section 1.2].

On the one hand, only the potential for shared memory concurrency is of interest
for the methods in this thesis, because our focus is on potential data races; hence
the term “concurrent” applies. On the other hand, the adequate term for our model
of concurrency is fork–join parallelism. As a result, you will encounter both terms
throughout this thesis, but should be aware that the distinction is only of peripheral
interest in our scenario.

The structure of this chapter mirrors the one of Chapter 3: In Section 4.1, I show how to
adapt and extend the concrete semantics from Section 3.1 to take fork–join parallelism
into account. This semantics is based on permission accounting. Section 4.2 develops an
abstract interpretation for these extended semantics.

4.1 Concrete Semantics of Concurrent Programs

The overarching question of this chapters is: How can we de�ne a suitable semantics for
PL’s variant of the fork–join model? Countless formal models and semantics for parallel
and concurrent programming languages have been developed over the last four decades;
see, for example, Chapter 14 in Winskel’s classic book on program semantics [Win93] for
an introduction.

For our purposes, the semantics should have all of the following properties.

• It should be based on interleaving of commands, rather than on true concurrency. This
is the natural model when investigating data races in shared-memory concurrency:
A data race is possible if di�erent interleavings may yield di�erent results.

• It should be de�ned in terms of (an extension of) our hypergraph-based heap model
and be suitable for sound abstract interpretation via hyperedge replacement, so that
we can reuse the semantics of the previous sections.

• We need the possibility to infer data-race freedom without looking at all (exponen-
tially many) possible interleavings, which would be prohibitively expensive in all
nontrivial cases.

To achieve all these properties, we add access permissions to the stack entries. Access
permissions specify for each thread which memory locations it can read from and write
to. The great bene�t of permissions is that they allow modular reasoning about threads:
If a thread holds a write permission to a memory location, it may write to that location
without fearing either a concurrent write or a concurrent read from any other thread; if it
holds a read permission, it knows that concurrent reads may occur, but concurrent writes
are impossible [Boy03]. As long as a thread has su�cient permissions for all the memory
operations it needs to perform, we can therefore reason about the thread in isolation. A
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permission system must, of course, be carefully designed to guarantee the desired invariants.
In particular, there must never be more than one write permission for a location at a time,
i.e., the duplication of permissions must be impossible. I discuss permissions in detail in
Section 4.1.1.

New challenges for abstract interpretation

Ultimately, the goal of this chapter is to derive a safe approximation of a reasonable concrete
semantics, building upon the results from Sections 3.1 and 3.2. In the concurrent fork–
join setting, we, however, have to deal with one signi�cant complication compared to
the sequential call–return setting: The fork and join points may be arbitrarily far apart,
potentially interspersed with additional forks and joins. Between the fork and the join,
the heap’s shape evolves locally as well as in the called thread. This was di�erent in the
sequential call–return setting, where the evolution was restricted to the called procedure.
It was therefore comparatively straight-forward to replace the heap at call site with the
modi�ed heap that the procedure returned. (See Fig. 3.11 on page 44.) In the concurrent
setting, it still su�ces to pass the reachable fragment to the child thread, but we must
still keep track of accesses to that fragment at fork site, as well as model the permission
distribution between the two threads, until the join occurs at some later point—possibly
with additional forks and joins in between.

Although this is not central to the current section, we must also keep in mind that this
problem is further complicated through grammar-based abstraction: Between the fork and
the join, abstraction and concretization steps may alter the shape of the heap fragment that
the parent thread has passed to its child. For example, we might assign a di�erent location
to a variable in the parent thread, so the original location may become subject to abstraction.
At the same time, the child may itself perform abstraction and concretization. Thus, the
parent’s and the child’s views of the heap fragments may diverge, even if neither thread
modi�es the fragment. Inspired by the notion of spurious counterexamples in CEGAR
approaches [Cla+00], we shall call this phenomenon a spurious shape evolution. In
the presence of spurious shape evolution, we may not be able to match the parent’s heap
against the child’s heap at the join point, unless we introduce an additional mechanism for
keeping track of such evolution (which we will do in Section 4.2).

These observations in�uence the design space for the concurrent semantics, and we shall
return to them throughout this chapter.

4.1.1 Permission Accounting

While interleaving semantics for concurrent programs are quite natural, they are problem-
atic from the point of view of program analysis: Reasoning about a program based directly
on an interleaving semantics would equate to reasoning about all possible interleavings,
which does not scale well due to the inherent combinatorial explosion [Got+07].

One approach for proving data-race freedom of concurrent programs without considering all
possible interleavings is permission accounting. The idea behind permission accounting
is as follows.

There are three types of access permissions

• Write permission, i.e., the permission to both write to and read from a memory cell
• Read permission, i.e., the permission to read but not to alter a memory cell’s value
• No permission
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Whenever one thread holds a write permission to a memory location, all other threads may
hold neither a write nor a read permission; whenever one thread holds a read permission, all
other threads may hold read permissions, too, but not write permissions. If these invariants
hold throughout the execution of the program, there cannot possibly be any data races.
This is extremely useful in light of the following observation.

Observation 4.1 If a parallel program is data-race free, all possible interleavings of the
program compute the same result.

In this setting we can therefore treat concurrent programs as if they were sequential and
only need to consider a single (arbitrary) interleaving in the program analysis.

There are two questions that immediately come to mind:

• What representation should we choose for the permissions?
• How do we compute a valid permission distribution for data–race-free programs?

When answering the �rst question, we must keep in mind that we must be able to both
split and recombine permissions in such a way that we can generate arbitrarily many
read permissions, but must later only be able to recombine them into a write permission
if we collect all the read permissions that we previously generated. To this end, using
counting permissions and fractional permissions has been proposed. The former
allows unbounded counting of read permissions (as is useful, for example, in the classic
readers-and-writers algorithm), whereas the latter allows unbounded divisibility (as needed
in concurrent divide-and-conquer schemes) [Bor+05]. Both these mechanisms were initially
developed for languages with parallel composition.

More recently, Heule et al. [Heu+11] developed permission expressions, an adaptation
of fractional permissions for modeling fork–join parallelism with dynamic thread creation
and the possibility to keep track of permissions lost by threads that are never joined. Instead
of explicit fractions, they use abstract read and write permissions that can be added and
subtracted and which are parameterized by thread tokens. The tokens make it possible to
soundly recombine permissions upon join. In addition, they introduce a rd∗ permission for
modeling a read permission that can never again be used to reassemble a write permission,
which happens when part of a permission is lost.

As is to be expected, we need something related to this last mechanism, as we must also
handle dynamic thread allocation and lost permissions. I, however, use a di�erent modeling
mechanism: I only distinguish between read, write, and no permission, rd, wt, and no,,
and a permission error, er, but keep multiple of these permissions around for each edge:

• A lower permission bound on the permission that the current thread (or any of its
children) needs to guarantee execution without interference

• An upper bound on the permission that has been lost by the current thread (or its
children), because of threads that were forked, but not joined and are now out of
scope

• A map from pending threads to their required permissions: For each forked but
unjoined (henceforth: pending) child thread, we keep track of the lower permission
bounds that the child thread needs throughout its execution

Formally, given a set E, the permission accounting information is taken from the domain

PermsE := (E → Perm)× (E → Perm)× (Id 99K (E → Perm))
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where Perm := {wt,rd,no,er}. For convenience, we de�ne helper functions used, lost,
and pending to access the entries of concrete values q = (u,l,a) ∈ PermsE , i.e.,

used : PermsE → (E → Perm)

used((u,l,a)) = u

lost : PermsE → (E → Perm)

lost((u,l,a)) = l

pending : PermsE → (Id 99K (E → Perm))

pending((u,l,a)) = a

This may sound unnecessarily complex; the reasoning behind this model is as follows.
pending(q) contains the permissions for all threads that might possibly be running con-
currently with the current thread and that are still in scope. lost(q) contains the aggregate
of all permissions of the threads that may still be running but are no longer in scope.
Consequently, if the next command in the current thread c executed on the current heap
H needs permissions requires(c,H) : E → Perm, we just need to check whether for all
edges e,∑

t

pending(t)(e) + lost(e) + requires(c,H)(e) ≤ wt

where

no ≤ rd ≤ wt ≤ er

and the addition of permissions is de�ned by

x+ y =


x, if y = no

y, if x = no

rd, if x = y = rd

er, otherwise

This allows us to use a greedy approach to compute a valid permission distribution: In the
(sequential) execution of the concurrent program, we keep track of the minimal permissions
that the thread needs (used) and the permission that have been lost throughout its execution
(lost), as well as the minimal permissions needed by pending threads, i.e., threads that
have been forked but not yet joined. (These threads’ used permissions have in turn be
computed greedily before.)

If at some point we encounter a command c such that∑
t

pending(t)(e) + lost(e) + requires(c,H)(e) = er

the program contains a potential data race and we return an error. If, on the other hand, the
greedy approach succeeds throughout the whole execution, this proves data-race freedom.

The huge advantage of this approach is that we do not need to parameterize permissions
by (dynamic) thread tokens to be able to soundly recombine read permissions into write
permissions: If and only if lost(e) = no, the remaining permissions may be combined
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into a write permission for e. Instead of the arbitrarily complex permission expressions of
[Heu+11], we only need the simple set {no,rd,wt,er}. We can therefore de�ne a semantics
without reasoning about concrete thread tokens at all.

R Modularity. Because of the pending map, this approach is not thread-modular: In
a truly thread-modular analysis, each thread can be analyzed as if it were a sequential
program [FFQ02; Got+07], whereas we explicitly keep track of possible interference
with child processes. This is unavoidable, unless we make explicit assumptions
about the execution environment, as is the case in thread-modular analyses. We do,
however, preserve the same degree of modularity that we achieved in the sequential
interprocedural setting: Each thread (each procedure) can be analyzed independently
from the context in which it is forked (called). In particular, if a thread is run starting
from the same reachable fragment multiple times, we only have to analyze it once,
regardless of the forking context (see Chapter 5).1

4.1.2 Permission-Handling for PLseq Commands

The �rst step on the way to a permission-based concurrent semantics is determining which
access permissions are required for the execution of the various sequential commands.
More speci�cally, let us think about which permissions are needed for the execution to
progress a single step in the⇒ semantics.

• No permissions are involved in the execution of skip commands.
• The declaration var x : t creates a new edge. No permission is needed for this

operation, as no other thread is aware of this edge upon its creation.
• To execute x := y.s, we need read permission on y.s.
• To execute x.s := y, we need write permission on x.s.
• To execute x.s1 := y.s2, we need both write permission on x.s1 and read permission

on y.s2.
• Just like with variable declaration, we do not need any permission for allocating the

new edges in the execution of x := new t.
• To progress a single step in c1; c2, we need the same permissions as for progressing
c1.

• To progress a single step in if and while commands, we need to evaluate their con-
ditions, which requires read permissions on all pointers that occur in the conditions.

• Call and return can be de�ned just like in the sequential case. Execution of the
procedure bodies, of course, requires permissions.

We formalize the required permissions by de�ning a function whose existence we already
assumed in the previous section: A function requires, which, when applied to a command
and a heap con�gurationH, yields a function from EH to Perm. As the de�nition of this
function directly re�ects the above observations, I just present a couple of examples instead
of the whole de�nition.

requires(x.s := y.t,H)(e) =


wt, if labH(e) = s ∧ x H7−→ att(e)(1)

rd, if labH(e) = t ∧ y H7−→ att(e)(1)

no, otherwise
requires(c1; c2,H)(e) = requires(c1,H)(e)

As argued in the previous section, we can use requires in the concurrent semantics to check
whether there exists a valid permission distribution. We will formalize this next.

1We will see in Section 4.2 that this is not entirely true for the abstract semantics, but even there a forked
thread will not have any concrete knowledge about other threads and their permission allocation.
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4.1.3 Deterministic Data–Race-Free Semantics

We now develop the deterministic data–race-free semantics for PL. We already observed
before that

1. If we �nd a permission distribution for a program, this proves that the program is
data-race free

2. If a program is data-race free, all interleavings of the parallel program return the
same result

Hence it is su�cient to analyze an arbitrary interleaving of the program—for example by
treating fork statements essentially like call statements, i.e., executing the child thread as a
whole as soon as it is forked. To this end, we add a component q for permission accounting
to the stack entries, which itself is a triple of functions as introduced in Section 4.1.1:

PermsE := (E → Perm)× (E → Perm)× (Id 99K (E → Perm))

Perms :=
⋃

H∈HCT,Σ

PermsEH

Stkp := ((Cmd ∪ {↓})× ((HCT,Σ ×Perms) ∪ {err}))+

How do we use these functions to de�ne the semantics? Let us think about the various
scenarios that we have to deal with in the execution of a concurrent PL program.

• When a thread is created with a heap con�gurationH, the permission triple should
be initialized with used = λe ∈ EH.no, lost = λe ∈ EH.no, and pending = λt ∈
Id.⊥: It has not yet used any permissions, no permissions have been lost (locally) so
far, and there are not yet any pending—that is, forked but unjoined—threads.

• Right at the fork point t := fork p(. . .), we have to compute the complete semantics
of the child thread, i.e., the semantics of p. Provided the execution is successful, this
will give us a used and a lost mapping for the child thread that we can use to update
the local permission functions: We check for each edge whether used plus the sum of
the parent’s and child’s lost mapping plus the sum of all pending threads in pending
exceeds a write permission. If so, we go to an error state. If not, we add the child’s
lost value to the parent’s lost value, and store the child’s used mapping as pending(t)
until the join t statement. In this way we denote that t now refers to a pending
thread that has to be taken into account in future permission distributions until it is
joined. In addition, we raise the permissions in used to the level of pending(t), if
they are lower. This re�ects that the parent thread needs at least the permissions of
its children.

• If the thread associated with t is never joined, either because t is overridden or
because it runs out of scope before the join (i.e., following the computation of the
semantics of the thread after the fork), we must detect this and remove the entry
from pending (or override it). In addition to increasing the value in used as in the
ordinary join case, we must increase the values in lost to acknowledge that the
thread’s permissions have been lost and may never again be distributed. This is
because we have no kind of progress or fairness assumption and therefore cannot
derive a lower bound for the remaining run time of the lost thread. We shall call this
update of the lost mapping a ghost join.

• Whenever the currently executed thread accesses an edge e, we have to check whether
we can greedily allocate the necessary permission. To this end, we check whether the
required permission plus the sum of the pending permissions on the edge plus lost(e)



62 Chapter 4. Semantics and Abstract Interpretation of Concurrent Programs

are at most a write permission. If so, we raise used(e) to the required permission. If
not, we have a permission error and cannot �nd a valid distribution, so we enter an
error state..

• At join t, we remove t from the pending threads, pending(t) := ⊥, re�ecting that
we may now reuse the corresponding permissions.

R I assume that a child thread may outlive its parent. If that is not the case, we do not
need to perform ghost joins on a thread’s pending children when it terminates. We
also do not need to propagate lost values to the parent in that case, as we know that
we regain the full available permission upon the thread’s termination.

R Observe that the size of the domain of the pending mapping is bounded by the number
of thread identi�ers de�ned in the corresponding procedure and thus constant. In an
implementation of this formalism, we thus only need a constant amount of additional
memory per hyperedge.

We now adapt the inference rules for PLseq to formalize the above points. We start with
some auxiliary de�nitions. We write proj(stk) for the projection of a Stkp to a Stk, i.e.,

proj : Stkp → Stk

proj(ε) := ε

proj((c,H, q) :: stk) := (c,H) :: proj(stk)

For convenience, we lift addition, maximum, minimum, and comparison of permissions to
functions of type E → Perm:

f ≤ g :⇐⇒ f(e) ≤ f(g)∀e ∈ E
(max(f,g))(e) := max(f(e),g(e))
(min(f,g))(e) := min(f(e),g(e))
(f + g)(e) := f(e) + g(e)

We will also need to apply the maximum to all components of two permission mappings,
which we denote max(q1,q2). (If pendingi(t) is only de�ned for one i ∈ {1,2}, we interpret
this function as the maximum.)

In the inference rules below, we also need to update the domains of the functions in q
whenever the rule takes a graph H to a graph H′ with a di�erent set of edges. A little
sloppily, we shall write q̃ (without explicit reference to H or H′) to mean the following
transformation (where E denotes the old set of edges and E′ the new set of edges):

used(q̃)(e) =


used(q)(e), if e ∈ E ∩ E′

no, if e ∈ E′ \ E
⊥, if e ∈ E \ E′

lost(q̃)(e), pending(q̃)(t)(e) analogously

Finally, we also need to formalize ghost joins. We denote the ghost join of a set of thread
identi�ers {t1, . . . , tk} w.r.t. q by gjoin(q,{t1, . . . , tk}).

gjoin(q,∅) = q

gjoin(q,{t1, . . . , tk}) =

{
gjoin(q,{t2, . . . , tk}), if t1 /∈ Dom(pending(q))

gjoin(q′,{t2, . . . , tk}), otherwise
where q′ = (used(q), lost(q) + pending(q)(t1),

pending(q) � (Dom(pending(q)) \ {t1}))
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We use these de�nitions to formalize the concurrent semantics, P
=⇒.

• Sequential commands. Figs. 4.1 to 4.4 show how to reuse the sequential seman-
tics ⇒ by coercing the stacks to their sequential representation. In addition, we
make sure that we have the necessary permissions for each sequential command
by comparing the sums against write permissions We log the permissions that are
necessary to perform the sequential command by updating used. If we lack the
required permissions, we transition to an error case. We also lift the error cases of
the sequential semantics to the parallel semantics, and achieve error propagation in
the same way (Fig. 4.5).
Note the use of q̃ to re�ect the appropriate changes to the domain; this way we take
care of new edges as introduced, for example, by memory allocation.

• Fork. We treat a fork just like a call. Consequently, the fork semantics is split in two,
Figs. 4.6 and 4.7. We reuse the call and return semantics to perform the reachable
fragment computation, parameter renaming, merging etc.
In the �rst rule, the forked thread is placed on top of the call stack and initialized
with an empty permission distribution. It can therefore be analyzed in a modular way
without taking the parent thread into account. The second rule merges the result of
executing the child thread with the heap of the parent thread. The child thread is
now a pending thread and thus added to the pending mapping.
Of course we also need to handle permission distribution errors, which we do in a
third rule (Fig. 4.8), in the same way as in Fig. 4.2.
All fork rules use the auxiliary gjoin de�ned before to account for permissions that
are lost when thread identi�ers run out of scope: In the �rst rule, a ghost join occurs
when a thread is assigned to the identi�er t, even though t already represents a
pending thread. In the second and third rule, a ghost join occurs if the child thread’s
execution ends with non-empty pending, since all thread identi�ers used in the child
thread run out of scope.

• Join. The join operation is trivial in this semantics, because we already computed
the child thread’s e�ect and updated the heap at the fork point. We just remove the
thread from the pending threads, i.e., remove the corresponding entry from pending
(Fig. 4.9).

The semantics is obviously deterministic, because at most one rule of the P
=⇒ semantics

can be a match and the underlying sequential semantics⇒ is deterministic as well.
Additionally, because it is su�cient to check the permissions for intraprocedural commands
and for the return-from-fork, which we do in Fig. 4.8, the semantics transitions to an error
case whenever there is no valid permission distribution among the threads that are currently
running. As observed in Section 4.1.1, whenever there is a valid permission distribution,
the program is data-race free.

Observation 4.2 If P ` 〈(body(procs(P )(main)),H, qinit)〉
P∗

=⇒ 〈(↓,H′, q′)〉, then P is
data-race free.

The above argument is, of course, not a formal proof. What would constitute a proof of this
claim? We would need to track our permission tuples across the execution of all possible
commands, showing that a thread always allocates all required permissions and proving the
invariant that write permissions indeed provide mutual exclusion. It is quite possible that
an attempt at such a proof would unveil a minor error in my semantics. I hope, however,
that my elaborations have convinced you that my general approach does the trick, and that
I can thus spare the both of us from a dozen or so pages of mindless technical proof.
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P ` (c,H) :: proj(stk)⇒ (c′,H′) :: proj(stk)
requires(c) + lost(q) +

∑
t access(q)(t) ≤ λe.WT

q′ = (max(used(q̃), requires(c)), lost(q̃),pending(q̃))

P ` (c,H,q) :: stk
P

=⇒ (c′,H′, q′) :: stk

Figure 4.1.: Lifting the intraprocedural semantics into the concurrent setting. The second
precondition ensures that a permission distribution is possible. The third pre-
condition expresses that we adapt the minimal used permissions to re�ect the
requirements of c.

P ` (c,H) :: proj(stk)⇒ (c′,H′) :: proj(stk)
∃e. requires(c)(e) + lost(q)(e) +

∑
t pending(q)(t)(e) = er

P ` (c,H,q) :: stk
P

=⇒ (c′,err) :: stk

Figure 4.2.: Lifting the intraprocedural semantics into the concurrent setting. If the permis-
sion distribution is impossible for at least one edge, we transition to an error
state.

P ` (call p(~x); c,H) :: proj(stk)⇒ (c′,Hcallee) :: (call p(~x); c,H) :: proj(stk)

P ` (call p(~x); c,H, q) :: stk
P

=⇒ (c′,Hcallee, q̃) :: (call p(~x); c,H, q) :: stk

Figure 4.3.: Lifting the call semantics into the concurrent setting. No permissions are
involved, we just have to cut the domain of q down to the reachable fragment.

P ` (↓,Hexit) :: (call p(~x); c,Hcaller) :: proj(stk)⇒ (c,Hfinal) :: proj(stk)
qmax = max(qcaller, qexit)

P ` (↓,Hexit, qexit) :: (call p(~x); c,Hcaller, qcaller) :: stk
P

=⇒ (c,Hfinal, ˜qmax) :: stk

Figure 4.4.: Lifting the return semantics into the concurrent setting. qmax propagates the
permissions used by the callee to the caller, including lost permissions and
pending permissions.

P ` (c,H) :: proj(stk)⇒ (c′,err) :: proj(stk)

P ` (c,H,q) :: stk
P

=⇒ (c′,err) :: stk P ` (c,err) :: stk
P

=⇒ (↓ ,err)

Figure 4.5.: Sequential error cases and propagation of errors are achieved in the obvious
way.
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P ` (call p(~x); c,H) :: proj(stk)⇒ (c′,Hfork) :: (call p(~x); c,H) :: proj(stk)
qpar = gjoin(q, t)

qfork = (λe.0, lost(q), λt′.⊥, λt′.⊥)

P ` (t := fork p(~x); c,H, q) :: stk
P

=⇒ (c′,Hfork, qfork) :: (t := fork p(~x); c,H, qpar) :: stk

Figure 4.6.: Fork semantics, part 1: Initializing the thread. We refer to the call semantics,
as the reachable fragment computation is the same. In addition, we initialize
the permission accounting for the child thread and perform a ghost join in the
parent thread if t is overridden.

(↓,Hexit) :: (call p(x1, . . . ,xn); c,Hpar) :: proj(stk)⇒ (c,Hfinal) :: proj(stk)
qgjoined = gjoin(qexit, Dom(qexit))

usedfinal = min(used(qgjoined),used(qpar))
lostfinal = lost(qpar) + lost(qgjoined),

pendingfinal = pending(qpar) ∪ (t 7→ λe. used(qgjoined)(e))
qfinal = (usedfinal, lostfinal,pendingfinal)

lost(qfinal) +
∑

t pending(qfinal)(t) ≤ λe.WT

P ` (↓,Hexit, qexit) :: (t := fork p(~x); c,Hpar, qpar) :: stk
P

=⇒ (c,Hfinal, ˜qfinal) :: stk

Figure 4.7.: Fork semantics, part 2: Return from the child thread. We reuse the return-
from-call semantics to merge the heaps. In addition, we perform permission
accounting: Any remaining children of the child process are ghost joined. We
note that the parent thread needs at least the permissions of the child thread,
that permissions lost in the child thread are also lost from the point of view of
the parent, and add the child thread itself to the set of pending threads.

(↓,Hexit) :: (call p(x1, . . . ,xn); c,Hpar) :: proj(stk)⇒ (c,Hfinal) :: proj(stk)
qgjoined = gjoin(qexit, Dom(qexit))

lostfinal = lost(qcaller) + lost(qgjoined),
pendingfinal = pending(qpar) ∪ (t 7→ λe. used(qgjoined)(e))

∃e. lostfinal(e) +
∑

t pendingfinal(t)(e) = er

P ` (↓,Hexit, qexit) :: (t := fork p(~x); c,Hpar, qpar) :: stk(c,err) :: stk

Figure 4.8.: Fork semantics, error case: We check whether at least one distribution require-
ment is violated upon the return. Other than the slightly reduced bookkeeping,
this rule is identical to Fig. 4.7.

q′ = (used(q), lost(q),pending(q) � (Dom(pending(q)) \ {t}))

P ` (join t; c,H, q) :: stk
P

=⇒ (c,H, q′) :: stk

Figure 4.9.: Join semantics. t is removed from the pending threads. H is not modi�ed, as
the heap views were already merged by the second fork rule.
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R By treating the fork like a call, we also immediately apply the child’s modi�cations
of the heap to the parent heap. In a sense the parent thread therefore always has
the maximally progressed view of the fragment of the heap that it can access. This
may not sound intuitive, as we might expect that we update the heap only at the join
point. This is barely a matter of taste, however; from a correctness point of view, it
does not matter when we update the parent’s heap: If it did matter, we would have a
potential data race.

4.2 Abstract Interpretation of Concurrent Programs

In this section we will informally develop an abstract interpretation of the data–race-
free semantics for PL. The goal is to integrate permission accounting into the abstract
interpretation of PLseq . In particular, we will, of course, want to �nd an abstract semantics
that safely approximates the concrete permission-based semantics. We will apply techniques
similar to those from Section 3.2 to the semantics from Section 4.1. Due to the complexity
and sheer size of the semantics in Section 4.1, I will not attempt a complete and rigorous
proof of the safe approximation.

So how do we go about de�ning an abstract semantics for PL? In principle, there is nothing
stopping us from assigning permissions to nonterminal edges and then use abstraction
and concretization in a way that respects the permissions. We must, however, take care to
do this in a way that does not lose information, let alone soundness. For this reason we
should only allow abstraction of subgraphs with uniform permissions. Conversely, when
we apply a production rule to a nonterminal edge with a certain permission, the right-hand
side should also be consistently assigned the same permission information.

R Note that this restriction will lead to an in�nite state space even under abstraction, as
in general, we cannot bound the number of permission alternations that occur in
concrete data structures. I will return to this problem towards the end of this section.

We will formalize this notion of permission-preserving abstraction and concretization in
Section 4.2.1. Before we get there, I would like to mention one additional problem, which
motivates the de�nitions in this section. Remember how the call and return semantics
were designed in a way that we were able to easily replace the outdated caller’s view of
the reachable fragment with the result of executing the procedure. This worked for both
concrete and abstract graphs. The concrete fork and return-from-fork rules in Section 4.1
then simply reused this machinery. In the presence of abstraction, this may unfortunately
invalidate the pending mappings: If the set of edges has changed because of abstraction
and/or concretization during the execution of the child thread, we lose edges that are in
the domain of the pending(t) functions and add new edges that are not in the domain,
even in cases where the language of the abstract heap(s) remains unchanged! This makes it
impossible to recombine permissions upon return-from-fork, because we are simply unable
to match the correct edges against each other.

One way to circumvent this would be to pass along the pending functions to the child
process, but that is undesirable for two reasons. First, we would have to deal with aliasing
of thread variables t, but that would merely be a technical inconvenience. Second, and more
importantly, we would lose modularity, because the analysis of the child thread would then
depend on the analysis of the parent thread.

Instead we introduce an additional component into the stack entries that keeps track of the
shape evolution of the local heap con�guration. That is, givenH,H′ ∈ HCT,Σ, whereH
was the heap when the thread started its execution andH′ was obtained fromH through
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a series of transformations, we de�ne a function η : EH′ → 2EH that maps each new
edge e to the set of original edges from which e was derived through concretization and
abstraction. (Or ∅ for edges that were added by the thread itself.) This shape evolution
function will allow us to update the functions in q correctly after returning from the fork.

R We need to allow multiple target edges because abstraction steps that occur during
the abstract execution may lead to a merging of initially separate edges.

4.2.1 Abstract Semantics with Shape Evolution

Throughout this section, we once again assume the presence of a backward-con�uent heap
abstraction grammar, GRecall that the concrete semantics for (the successful) execution of
PL programs was de�ned on stacks of commands, hypergraphs, and permissions:

Stkp := (Cmd× ((HCT,Σ ×Perms) ∪ {err}))+

We further extend the stack entries with a fourth component to keep track of shape
evolution:

EvoH,H′ := EH′ → EH

Evo :=
⋃

H,H′∈HCT,Σ

EvoH,H′

Stka := (Cmd× ((HCT,Σ ×Perms×Evo) ∪ {err}))+

We shall denote individual shape evolution functions by η : EH′ → 2EH . Intraprocedu-
ral commands thus transform stack frames of the form (c,H,q,η), interprocedural (and
interthread) commands operate on two such stack frames.

Each step in the abstract semantics becomes (compare Section 3.2.1):

1. On-demand permission-preserving concretization with corresponding update of q
and η

2. Application of concrete data–race-free semantics, with additional update of η where
applicable

3. Permission-preserving abstraction (as fully as possible)

Just like we did in Section 3.2, we begin with a formalization of concretization and ab-
straction and then wrap these steps around the concrete semantics. To this end, it will be
convenient to have a shorthand for composing two shape evolution functions.

Definition 4.3 — Composition of shape evolution functions. Let η1 : E1 → 2E0 ,η2 :
E2 → 2E1 . We de�ne the composition of shape evolution functions

η2 • η1 : E2 → 2E0

(η2 • η1)(e) :=
⋃
e′∈η2(e) η1(e′)

Concretization with permissions and shape evolution

To de�ne concretization in the parallel setting, we need to make precise the notion of
permission-preserving hyperedge replacement.
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ppconcG(H,q,η) :=


{(H,q,η)}, if vpG(H) = ∅⋃
{ppconcG(H′,q′,η′) | (e,i) ∈ vpG(H)

∧(H′,q′,η′) ∈ concAtG(e, i, (H,q,η))}, otherwise
concAtG(e,i,(H,q,η)) := {(H[e/G],q̂,η〈H,e,G〉 • η) | (lab(e)→ G) ∈ Gσ

i

∧ q̂ preserves permissions}

Figure 4.10.: Permission-preserving on-demand concretization, ppconc. Each concretiza-
tion step concAt updates η to keep track of shape evolution.

Definition 4.4 — Permission-preserving hyperedge replacement. Let H,G be hyper-
graphs and e ∈ EH be a hyperedge with |extG | = rk(lab(e)). Let VH ∩ VG = ∅.
Let further H[e/G] =: J denote the replacement of e by G in H as per Def. 2.26 on
page 23.

We say that (J , q̂) is a permission-preserving hyperedge replacement w.r.t. q ∈
PermsEH if

• q̂ ∈ PermsEJ
• q̂ and q agree on all e ∈ EH ∩ EJ
• For all e′ ∈ EG and all t, used(q̂)(e′) = used(q)(e), lost(q̂)(e′) = lost(q)(e),

pending(q̂)(t)(e′) = pending(q)(t)(e)

Each such replacement must additionally be re�ected in the shape evolution function. To
this end we de�ne a shape evolution function that precisely re�ects the changes induced by
the hyperedge replacement. This function can then be composed with the shape evolution
function prior to concretization to obtain the updated shape evolution.

Definition 4.5 — Shape evolution for hyperedge replacement. Given the hyperedge re-
placementH[e/G], we de�ne η〈H,e,G〉 ∈ EvoH,H[e/G] by:

η〈H,e,G〉(e
′) =

{
{e′}, if e′ /∈ EG
{e}, otherwise

This �nally allows us to extend the de�nition of on-demand concretization from page 46 to
include permissions and shape evolution. We denote this extended function by ppconc. It
is de�ned in Fig. 4.10. (We again write Gσ

1 , . . . ,G
σ
rk(σ) ⊆ Gσ for the language-preserving

subgrammars of G that remove violation points at the k attachment points.)

While the de�nitions are admittedly becoming increasingly unwieldy, the underlying
intuition is quite simple: We concretize on demand just like before, but additionally, we
make sure to preserve permissions and to update the shape evolution function (through
function composition) to keep track of the graph transformation.

Abstraction with permissions and shape evolution

We lift abstraction to the parallel setting completely analogously, obtaining a function
ppabstG(H,q,η) that iterates permission-preserving subgraph abstraction. Having seen
the full de�nition of ppconc, the formal de�nition of ppabst will not provide any insight.
I shall therefore omit it and only provide the necessary underlying de�nitions.
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Definition 4.6 — Permission-preserving subgraph abstraction. Let H ∈ HGT,Σ, q ∈
PermsE ,W ⊆ VH andG = H×W be a section hypergraph such that for all e1,e2 ∈ EG

• used(q)(e1) = used(q)(e2)
• lost(q)(e1) = lost(q)(e2)
• ∀t.pending(q)(t)(e1) = pending(q)(t)(e2)

Let further σ ∈ ΣNT , and extmatch ∈ (VG)rk(σ) be a sequence of nodes such that
extG \ bound(G,H) = ∅. Let J := H[G&extmatch/σ] (as de�ned in Def. 2.27 on
page 24).

(J ,q̂) is a permission-preserving abstraction of G by σ if

• q̂ ∈ PermsEJ
• q̂ and q agree on all edges inH \ G
• q̂ assigns to the new abstract edge the unique permission information of the

abstracted edges

Definition 4.7 — Shape evolution for subgraph abstraction. Given the subgraph abstrac-
tionH[G&extmatch/σ], we de�ne η〈H,G,extmatch,σ〉 ∈ EvoH,H[G&extmatch/σ] by:

η〈H,G,extmatch,σ〉(e
′) =

{
{e′}, if e′ ∈ EH
EG , otherwise

ppabstG is then de�ned as the iterated application of permission-preserving abstraction,
where each step updates η through composition with η〈H,G,extmatch,σ〉.

Li�ed semantics

We now turn to the formalization of the semantics. We denote the new relation η
=⇒, where

the η indicates that we track shape evolution. We �rst lift the sequential semantics to our
extended setting. The only interesting rule for this subset is the one for the intraprocedural
semantics, where the extended wrapping is done; it is shown in Fig. 4.11.

Beside wrapping the concrete semantics in ppconc and ppabst, there is just one special
case: Upon memory allocation, we need to extend the shape evolution mapping and map
the new edges to the empty set, as they have no counterpart in the original hypergraph.
This is achieved using the following auxiliary de�nition:

instantiate(η,Enew)(e) =

{
η(e), if e /∈ Enew
∅, otherwise

Note that I will omit all rules for error cases in this section. They are a completely straight-
forward adaptation from the underlying semantics, P

=⇒. Lifting call and return is also
straightforward: We only add the η bookkeeping and are done. Since they can also be re-
garded as simpler special cases of the fork rules, I omit the corresponding rules for the sake
of brevity. The most interesting rules are, of course, the rules for fork and return-from-form,
given in Figs. 4.12 and 4.13.

The fork rule, Fig. 4.12, starts by marking all nodes ofH as external, denoted by externalize
(formal de�nition omitted). This may seem rather drastic, and it is. We need to have a look
at the return-from-fork rule to make sense of this step, so I will return to it later. Apart from
the use of externalize, the fork rule is a straightforward adaptation of the corresponding
rule in the concrete semantics (cf. Fig. 4.6 on page 65). The new thread has to keep track of
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(H0,q0,η0) ∈ ppconc(H,q,evo) P ` (c,H0,q0) :: stk
P

=⇒ (c′,H1, q1) :: stk
η1 = instantiate(η0,EH1 \ EH0) (H2,q2,η2) = ppabst(H1,q1,η1)

P ` (c,H,q,η) :: stk
η

=⇒ (c′,H2, q2,η2) :: stk

Figure 4.11.: The lifted intraprocedural semantics that form the basis of the abstract parallel
semantics. Beside wrapping the concrete semantics in (extended) concretiza-
tion and abstraction, we also add new edges to η via the instantiate auxiliary
function.

Hext = externalize(H)

(call p(~x); c,Hext) :: proj(stk)
A

=⇒(c′,Hfork) :: (call p(~x); c,H) :: proj(stk)
qpar = gjoin(q, t)

qfork = (λe.0, lost(q), λt′.⊥, λt′.⊥)
ηfork = λe.{e}

P ` (t := fork p(~x); c,H, q, η) :: stk
η

=⇒ (c′,Hfork, qfork, ηfork) :: (t := fork p(~x); c,H, qpar, η) :: stk

Figure 4.12.: Abstract fork semantics, part 1: Initializing the thread. We mark all nodes
as external to avoid the extreme over-approximation of permissions through
abstraction that would occur after the erasure (qfork) of permission informa-
tion. For formal reasons, we switch over to the abstract semantics of call
statements. We also initialize the shape evolution for the new thread. As the
shape evolution function always maps back to the start of the thread, it is
initially the identity function.

(↓,Hexit) :: (call p(x1, . . . ,xn); c,Hpar) :: proj(stk)
A

=⇒(c,Hfinal) :: proj(stk)
qgjoined = gjoin(qexit, Dom(qexit))

qevo = apply(ηexit, qpar)
usedfinal = max(used(qgjoined), used(qevo))

lostfinal = lost(qevo) + lost(qgjoined),
pendingfinal = pending(qevo) ∪ (t 7→ λe.used(qgjoined)(e))

qfinal = (usedfinal, lostfinal,pendingfinal)
lost(qfinal) +

∑
t access(qfinal)(t) ≤ λe.WT

P ` (↓,Hexit, qexit, ηexit) :: (t := fork p(~x); c,Hpar, qpar, ηpar) :: stk
P

=⇒ (c,Hfinal, ˜qfinal, extend(ηexit,Hfinal) • ηpar) :: stk

Figure 4.13.: Abstract fork semantics, part 2: Return from the child thread. On top of the
concrete semantics, we progress the set of edges in the parent thread according
to ηexit. This makes it possible to take the maximum over permissions in a
sound way. We continue with the composed shape evolution.
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its own shape evolution, so that we can later merge its permissions with the parent thread.
As no shape evolution has occurred initially, we start with the identity function.

Fig. 4.13, which speci�es the return from forked threads, is the most involved rule in my
entire thesis. Once again, the starting point is the rule from the concrete semantics. But
now we have to use the shape evolution function ηexit to be able to match the permission
accounting information.

To this end, we introduce a couple of auxiliary de�nitions. First, we need to be able to
extend the domain of a shape evolution function to the entire set of edges of a hypergraph.

extend(η,H)(e) :=

{
η(e), if e ∈ Dom(η)

{e}, if e ∈ EH \Dom(η)

This is used to de�ne the resulting shape evolution function: The execution continues
with extend(ηexit,Hfinal) • ηpar rather than ηpar . This makes sense: To obtainHfinal, we
replaced a heap fragment at call site with the returned heapHexit, and thus we must not
forget the shape evolution that led us toHfinal. extend ensures that the resulting shape
evolution function is de�ned for all edges inHfinal rather than only those fromHexit.

Second, we need to progress the permission accounting functions of the parent thread qpar
according to the shape evolution ηexit to align their domains, captured in the following
de�nition.
Definition 4.8 — Application of shape evolution to permission accounting information.
Let q be permission accounting information for a set of edges E and η ∈ EvoH,H′ be a
shape evolution that maps each e ∈ E′ to a subset of E. We say that the application of
η to q leads to q′, written q′ = apply(η,q), if

• Dom(used(q′)) = (E \ Cod(η)) ∪Dom(η)
• used(q′)(e) = used(q)(e) for all e /∈ Dom(η)
• used(q′)(e) = max{used(q)(e′) | e′ ∈ η(e)}
• The same holds for lost(q′),pending(q′)

In other words, we create a new permission mapping which is de�ned for all edges that
resulted from the shape evolution as well as all edges that were not involved in the shape
evolution (i.e., which were not in the reachable fragment of the thread that performed the
shape evolution). The permissions of those edges that were not passed to the child thread
(e /∈ Dom(η)) are not changed. If, on the other hand, e ∈ Dom(η), we perform η lookups
to gather all permission information of the edges in the parent thread from which e was
derived. This can then be compared against the permission information in the child thread
to �nd out whether a permission error may have occurred.

The reasoning behind externalize

Taking the maximum over all η(e) values is of course an over-approximation, but it is the
only thing we can do, given that the edge e represents all the original edges in η(e).

Things would be much worse if we did not externalize the nodes of the graph: Recall that,
upon forking, we throw away all permission information of the parent thread to retain
modularity (expressed in the precondition for qfork in Fig. 4.12). We are therefore suddenly
able to abstract all those concrete parts that we previously could not abstract because of
the constraint that abstraction be permission preserving. Say we obtain an abstract edge
e in this fashion. Upon return from the forked thread, we have to recombine the forked
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thread with the parent thread, thus use apply. apply will transform the entire set of edges
that was abstracted into e into the edge(s) derived from e: Again, the only way to combine
permissions in a sound way is to take the maximum of all permissions in the concrete
subgraph and add it to the permissions of e to see if the distribution is valid. This would
aggressively over-approximating the permission accounting information of the parent
thread.

On the downside, marking all nodes as external obviously quickly leads to an explosion in
the size of the graphs that occur in the analysis for algorithms with non-uniform permission
allocation pattern. (The size of the graphs is not bounded in this case.) To alleviate this,
we could compromise and de�ne a constant bound on the number of nodes that are made
external in this fashion—just like the bound for the number of cutpoints. The remainder of
the graph would then be subject to aggressive over-approximation.

Size of the abstract domain

Recall from page Section 3.2.2 that, in the sequential setting, we needed two conditions to
guarantee that the abstract state space was �nite: First, we had to �nd an HRG that allowed
abstracting all but a bounded number of nodes at each step in the program execution.
Second, we also had to be able to bound the number of cutpoints by a constant. This
still holds in the parallel setting of this chapter, but now the �rst requirement is much
harder to achieve, because we only abstract data structures that have a uniform permission
distribution. To guarantee a �nite abstract state space, we therefore have to prove that
throughout the program execution, only a constant number of nodes cannot be abstracted
because of di�erences in the permission distribution.

For many algorithms, this is actually easy. Parallel divide-and-conquer algorithms will,
for example, usually split their input list (or tree, array, etc.) into a constant number of
chunks of roughly equal size, each of which can be fully abstracted in our approach. If we
instead write an algorithm that needs a write permission on every other element of a list,
our approach fails: We get an unbounded chain of permission alternations on the list.

Note that there are ways to get around this problem—for example by introducing permission-
valued parameters into the grammars to be able to abstract data structures with non-uniform
permissions without the need to over-approximate the permissions; see Section 6.2.

4.2.2 Soundness of the Abstract Semantics

The inference rules have now become so involved as to be nearly unintelligible—at least
without the careful reading of the previous sections. Crucially, however, the abstract
semantics are once again quite a thin wrapper around the concrete semantics: Compared
to the concrete setting, we have to do some additional bookkeeping (η) to be able to track
permissions, but at its core, the abstract semantics once again merely wraps the concrete
semantics in concretization and abstraction steps.

Intuitively, we should therefore be able to prove that abstract semantics is a safe approxi-
mation of the concrete semantics in a similar way to Section 3.2.3. As a �rst step, we would
need to come up with abstraction and concretization functions,

α : 2((HC0×Perms)∪{err})+ → 2((HC×Perms×Evo)∪{err})+

γ : 2((HC×Perms×Evo)∪{err})+ → 2((HC0×Perms)∪{err})+
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Unfortunately, the additional η component makes it di�cult to do this directly, as the
abstraction function would need to generate a suitable η function, even though we do not
keep any explicit history information in the concrete domain (HC0×Perms)∪{err}. In
the concrete setting, we can identify the original set of edges of the child thread by taking
the intersection of the edge sets of child and parent, but even if we did that in the de�nition
of the abstraction function, we would still get an extremely convoluted mapping between
concrete and abstract states that would complicate the proofs.
So what can we do instead? The key idea is that we can de�ne a variant of the concrete
semantics that also uses a shape evolution function, but whose projection onto the concrete
domain agrees with the concrete semantics for all program traces. Formally, we de�ne a
concrete semantics e

=⇒ on the extended domain

Stke := (Cmd× ((HC0
T,Σ ×Perms×Evo) ∪ {err}))+

such that if

〈(c1,H1, q1, η1), . . . , (ck,Hk, qk, ηk)〉
e

=⇒ 〈(c′1,H′1, q′1, η′1), . . . , (c′j ,H′j , q′j , η′j)〉

then

〈(c1,H1, q1), . . . , (ck,Hk, qk)〉
P

=⇒ 〈(c′1,H′1, q′1), . . . , (c′j ,H′j , q′j)〉

with identicalH′k and q′k. Once we have de�ned such a semantics e
=⇒, we can show that

η
=⇒ safely approximates e

=⇒. Since the projection of the result of applying e
=⇒ onto

(HC0 × Perms) ∪ {err} yields the exact same result as applying P
=⇒, we can then

conclude that η
=⇒ also safely approximates P

=⇒. Giving the full de�nition and the full
proofs would be rather tedious; I will instead try to convince you with brief arguments that
both the de�nition of e

=⇒ and the subsequent safe approximation proof are possible.

The bookkeeping semantics e
=⇒

Recall how η was used in the abstract semantics:
1. Abstraction and concretization were translated into corresponding updates of η

(Fig. 4.11).
2. New edges were mapped to ⊥ via the instantiate function (Fig. 4.11).
3. η was initialized with the identity function at thread creation (Fig. 4.12).
4. The composition operator • was applied upon return from fork to combine the

evolution functions of the two topmost stack entries in a meaningful way (Fig. 4.13).
5. We also used an auxiliary function apply that combined child and parent permissions

based on η (Fig. 4.13).
In the concrete setting, we do not have the concretization and abstraction steps, so we do
not need step 1. If we simply add steps 2 to 4 to the rules of P

=⇒, we end up with a function
that maps all edges e either to the singleton set {e} (if e exists at thread creation) or to
⊥ (if the edge was created by the child). Other set-valued results can only arise through
abstraction and concretization steps, so they will not occur in the concrete semantics.
Crucially, we therefore do not need step 5, which is the only step in which the η component
in�uences the value of the q component.

In other words, adding steps 2 to 4 to P
=⇒ results in a semantics that behaves identically

to P
=⇒ for the H and q component, but additionally keeps track of an independent η
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component that does not interfere with the values of the other components. We have thus
found a candidate for the semantics e

=⇒. In essence, the η component does nothing but
tracking explicitly which edges have been added throughout the lifetime of the thread (by
mapping them to ⊥). This will be enough to easily relate the semantics to η

=⇒, which was
not possible for P

=⇒.

Safe approximation of e
=⇒ by η

=⇒

By using the new bookkeeping semantics e
=⇒ as concrete semantics, the safe approximation

proof can now be carried out in the same way as in Section 3.2.3. It is, of course, more
technical and involved because of the additional complexity of the stack components. At
the same time, the proof does not provide any additional insights. I will therefore not give
the full proof, but instead only show that the same theoretical framework is applicable by
de�ning extended abstraction and concretization functions that yield a Galois connection
on the extended stacks. Since we use e

=⇒ as the concrete semantics, the concrete domain
is extended by an η component, yielding abstraction and concretization functions α and γ
of the following type.

α : 2((HC0×Perms×Evo)∪{err})+ → 2((HC×Perms×Evo)∪{err})+

γ : 2((HC×Perms×Evo)∪{err})+ → 2((HC0×Perms×Evo)∪{err})+

Now that we have the additional η component in the concrete semantics, these functions
can be de�ned by applying ppabst and ppconc instead of abst and conc (cf. page 51). We
would like to de�ne abstraction and concretization component-wise once again, but this
will unfortunately not be possible because of the η component.

Let us �rst think about abstraction. To simplify matters, we will assume that each stack
frame corresponds to a thread fork rather than a procedure call.1 Let (H1,q1,η1) be a
concrete stack entry and (H2,q2,η2) = ppabst(H1,q1,η1). The result is a fully abstract
graph H2 with correspondingly updated permission and evolution components. Is this
enough? Not quite. The codomain of η2 is still concrete.

It is tempting to arbitrarily abstract it, but recall that this is not done in the abstract
semantics. Instead, the abstract semantics externalizes all nodes that cannot be abstracted
by the parent thread. To replicate this behavior, we have to use the (partial) abstraction of
the parent thread as codomain of η2. This leads to a recursive de�nition of α. (I de�ne it
for single concrete stacks, the extension to sets of stacks is obtained by taking the union.)

α(〈(H1,q1,η1)〉) = ppabst(H1,q1,η1)
α(〈(H1,q1,η1),(H2,q2,η2), . . . ,(Hk,qk,ηk)〉) = 〈(H′1,q′1,η′1),(H′2,q′2,η′2), . . . ,(H′k,q′k,η′k)〉
where 〈(H′2,q′2,η′2), . . . ,(H′k,q′k,η′k)〉 = α(〈(H2,q2,η2), . . . ,(Hk,qk,ηk)〉)

(H∗1, η∗1) = replacecodomain(η1,H2, q2)
(H′1,q′1,η∗1) = ppabst(H∗1,q1,η

∗
1)

where replacecodomain(η,H,q) is a function that

• Takes the intersection ofH with the codomain of η
• Abstracts this intersection while respecting q (using ppabst)
• Marks all concrete nodes in the result as external
• Replaces the intersection with this new (partially) abstract graph to obtainH∗

1It is straightforward to integrate calls, but this further complicates the de�nitions, since we need to handle
η components di�erently for calls. I focus on forks, because they are the more interesting case w.r.t. η.
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• Uses the abstraction as the new codomain of η by replacing each edge of the original
codomain with the corresponding edge in the abstracted graph, yielding η∗

• Returns (H∗, η∗)

I omit the formalization of replacecodomain for the sake of brevity. By de�ning α in this
way, we keep the same nodes concrete that are kept concrete by the abstract semantics.
γ is de�ned in a similar way. Recall that in the sequential setting, we replaced each abstract
graphH by the language of concrete graphs that it represents,L(G,H), where the language
was de�ned as all concrete graphs that can be obtained fromH via iterated concretization.
It is straightforward to adapt the de�nition of languages to keep track of q and η—that is, to
de�ne languages L(G,H, q, η), which contain the same graphs as L(G,H), but concretizes
the graphs using ppconc, thereby keeping q and η in sync with the concretization ofH.
In addition, we need to make sure that the codomain of η matches a subgraph of the
corresponding parent thread’s heap. This can again be achieved through a recursive
de�nition, but this time recursing on the initial part rather than the tail of the stack. (Again,
I only give the de�nition for a single stack.)

γ(〈(H1,q1,η1)〉) = L(G,H1,q1,η1)
γ(〈(H1,q1,η1), . . . ,(Hk−1,qk−1,ηk−1),(Hk,qk,ηk)〉)

= {〈(H′1,q′1,η′1), . . . ,(H′k−1,q
′
k−1,η

′
k−1),(H′k,q′k,η′k)〉}

where 〈(H′1,q′1,η′1), . . . ,(H′k−1,q
′
k−1,η

′
k−1)〉 ∈ γ(〈(H1,q1,η1), . . . ,(Hk−1,qk−1,ηk−1)〉)

η∗k = insertconcrete(ηk,Hk−1,H′k−1)
(H′k,q′k,η′k) ∈ L(Hk,qk,η∗k)

Here, insertconcrete uses the concretization result ofHk−1, which is available inH′k−1, as
the codomain of ηk. (Formalization omitted.)

Proposition 4.9 ((2((HC0×Perms×Evo)∪{err})+
, ⊆), α, γ, (2((HC×Perms×Evo)∪{err})+

, ⊆))
forms a Galois connection.

To prove this, we would need to show that
1. ∀H ∈ 2((HC0×Perms×Evo)∪{err})+

.H ⊆ γ(α(H))
2. ∀H ∈ 2((HC×Perms×Evo)∪{err})+

.α(γ(H)) ⊆ H

This is, of course, not possible in any meaningful way without formalizing replacecodomain
and insertconcrete, but informally, the conditions hold for the following reasons.

1. Abstraction is still unique. replacecodomain ensures that the evolution components
are consistent and that nodes are externalized in the same way as in the abstract
semantics. Hence α does not over-approximate the permission information q. Con-
sequently, when subsequently applying γ, we will obtain the same concrete graph
(plus many more) through the application of L. Hence the �rst inequality holds.

2. In the application of γ, insertconcrete ensures that we do not generate any concrete
stacks that are inconsistent. Hence the subsequent application of α to each concrete
stack will return the original abstract stack, and the second inequality follows.

Thus, we again obtain a Galois connection. This reasoning is admittedly vague and incom-
plete, but I hope it is enough to convince you that it is possible to connect the domains of
e

=⇒ and η
=⇒ via a Galois connection. I also hope that, given the complexity even in this

partly informal setting, my choice to omit part of the formalization is excusable.
Having established the Galois connection the safe approximation proof itself is now a mere
technicality, just like in Section 3.2.3: The abstract semantics is again just a wrapper, and γ
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is de�ned in such a way that any concrete stack (and hence any concrete behavior in the
unwrapped semantics) corresponds to an abstract stack and behavior.

Proposition 4.10
η

=⇒ safely approximates e
=⇒ and hence safely approximates P

=⇒.

This proposition concludes my theoretical study of programming language semantics. I
will now turn to the application of these semantics in program analysis.



CHAPTER 5

Modular Computation of Procedure
and Thread Contracts

In the previous chapter, we developed concrete and abstract programming language se-
mantics based on hypergraphs and hyperedge replacement grammars. We also saw how
these two semantics could be formally related using the theory of abstract interpretation.
While this was insightful in its own right, it is in fact a means rather than an end: We
are interested in the static analysis of PL programs. To make this e�ective, we need a
way to only reason about �nitely many executions of any given program. This was the
purpose of developing an abstract semantics that provides a �nite over-approximation of
the program’s semantics. (We saw that this was not always possible in the parallel case; I
will return to this point later in this chapter.) By showing that the abstract semantics safely
approximates the concrete semantics using the theory of abstract interpretation, we were
able to show that our abstract semantics is a sound approximate of our concrete semantics.
This justi�es the use of the abstract semantics as basis for program analysis.1

In this chapter we construct such an analysis by instantiating a standard data-�ow analysis
framework for interprocedural analysis. More speci�cally, we will see how to generate
abstract graph-based procedure summaries, as the title of Jansen and Noll’s paper [JN14]
puts it. A procedure summary is a form of procedure contract that relates preconditions
to possible postconditions. In our case, both preconditions and postconditions will be
abstract heap graphs. In other words, we will develop an analysis that computes for each
procedure (and thread) and for each invocation of the procedure (or thread) with an abstract
heap graph the possible heap graphs at the end of the execution. By doing this in a demand-
driven way (i.e., by only considering preconditions that actually occur in the symbolic
execution), we will obtain an e�ective algorithm based on �xed point computations.

This chapter is based on Jansen and Noll’s paper [JN14], but the presentation is at times
quite di�erent for a couple of reasons. First, we build upon our prior formalization of the
semantics, whereas the cited paper does not explicitly de�ne a formal semantics. Second, I
also incorporate the parallel semantics, whereas Jansen and Noll where operating only in the

1You could argue that the concrete semantics also needs justi�cation: It is concrete in the terminology of
abstract interpretation, but it is, in fact, already quite abstract in that it abstracts from the concrete memory
layout. It would thus be interesting to show that it corresponds to a store-based semantics that closely
re�ects the program execution on a real machine. I took care to justify my concrete semantics, but it would still
be interesting to try to relate it to a store-based semantics. See [BIL03] for more information on store-based
vs. storeless semantics.
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sequential setting. The underlying framework for interprocedural data-�ow analysis
(IPA) itself is adapted from Knoop and Ste�en’s work [KS92].

Let us �rst review some basic terminology and approaches. As the name suggests, data-
�ow analysis is a technique for analyzing how data �ows through a given program. Such
analyses can deal with all kinds of data as long as the underlying domain forms a complete
lattice (de�ned in Appendix A for readers unfamiliar with order theory), as we will argue
shortly. Canonical examples include available expressions analysis, live variable analysis,
and constant propagation [NNH99]. As these examples suggest, data-�ow analyses are
often used in optimizing compilers. Our application, however, is in program correctness
rather than program optimization. In this context, data-�ow analyses can be useful in two
ways:

• Error detection. The immediate purpose of our data-�ow analysis will be to �nd
possible memory errors such as null pointer dereferences and data races, and prove
the absence of such errors.

• State space generation. The data-�ow analysis implicitly computes an abstract
state space for the program that, when explicitly generated, can be used as input for
model checkers.

The emphasis of this thesis is on the former, though the latter is one possible direction for
future work, as I suggest in Section 6.2. Due to the abstraction-induced over-approximation,
we can, of course, not prove the absence of all memory errors for all programs: We will
sometimes report errors that are only possible in an abstract trace, but not in any concrete
program execution. On the other hand, if the analysis runs through without reporting
errors, we can be sure that there are no errors—we can only have false positives, not false
negatives.

The basic work-�ow when designing a data-�ow analysis for a programming language is
as follows [NNH99].

1. De�ne a transformation of programs to control �ow graphs (CFGs).
2. Derive an equation system that describes how the analysis information is propa-

gated and transformed between the nodes of the CFG.
3. Perform �xed point iteration to solve the equation system.

Given the right mathematical properties—namely a monotone �xed point operator on a
complete lattice of �nite height—a �xed point exists and is reached after a �nite number of
iterations. A data-�ow analysis is called interprocedural if it tracks data-�ow information
across procedure boundaries. Interprocedural analyses are both more complex and yield
more complete analysis information [Aho+06]. Over the course of this chapter, I will
develop such an interprocedural data-�ow analysis for heap analysis based on HRGs,
adapting the abstract semantics from Sections 3.2 and 4.2.

The remainder of this chapter is structured as follows. In Section 5.1 I describe the translation
of PL programs to control �ow graphs. I then develop a general interprocedural data-�ow
analysis framework in This framework was adapted from Knoop and Ste�en [KS92] and
underlies our analysis of PL. I instantiate this framework to our domain in the following
section, Section 5.3. I discuss algorithmic issues in Section 5.4, before concluding with a
short comparison of the hypergraph-based approach to separation logic in Section 5.5. If
you �nd it di�cult to make sense of the interprocedural analysis framework, you may �rst
want to have a look at Appendix B to familiarize yourself with the intraprocedural case.
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5.1 Compilation to Control Flow Graphs

As mentioned in the introduction to this section, we will compile PL into a control �ow
graph (CFG) representation and then later de�ne our data-�ow analysis in terms of this
representation.

Definition 5.1 — Control flow graph. A directed graph G = (N,F,s,e), where

• N is the set of nodes
• F ⊆ N ×N is the �ow relation, i.e., the set of edges of the CFG
• s ∈ N is the start node
• e ∈ N is the end node

is a control �ow graph (CFG) if

• s does not have any incoming edge and e does not have any outgoing edge
• every node in N is reachable from s

We instantiate this generic de�nition for PL programs as follows. We compile each
procedure into a CFG consisting of several types of nodes. Each node will be labeled
with the PL command or Boolean expression it represents (if any) and a numerical label
i ∈ N to guarantee uniqueness. In the following, we write name(p) (or, somewhat sloppily,
name(c), where c is a procedure body) to refer to the name of a procedure.

• A unique entry and exit node for each procedure p, entryname(p), exitname(p). The
purpose of these nodes is to guarantee isolated entry and exit and simplify the
interprocedural semantics.

• One call and one return node per call statement c, callic, returnic
• One fork and one return from fork node per fork statement c, forkic, rforkic
• �lter nodes for dealing with the branching of if and while induced by their Boolean

conditions b, filterib and filteri¬b
• Generic procedure-local nodes, locic, for all atomic statements c, i.e., skip, variable

declarations, assignments, and memory allocation, as well as for each join node. (In
our deterministic semantics join statements are local in the sense that all non-local
information was already computed at the return-from-fork point.)

Splitting the call and fork nodes re�ects the corresponding split in the program semantics.
Compiling branches into �lters for the positive and negative condition also makes sense,
as the analysis will generate sets of postconditions. (Just like the nextC and nextA
functions were operating on sets of heaps.)

Let us now formalize the de�nition of CFGs in terms of these types of nodes. To be able to do
so recursively, we will use two auxiliary functions in the de�nition of the �ow relation: An
init function that collects the incoming nodes of a (block) statement c and a final function
that collects the outgoing nodes.1 We thus de�ne four functions: nodes(c) determines the
set of all nodes of the CFG for command c, flow(c) de�nes the set of all edges, and uses
the auxiliary functions init(c) and final(c) to do so.

Let p be a procedure with body c ∈ Cmd and let ` : Cmd → N be a labeling function
that assigns a unique number (label) to each local statement in c.2 Then the CFG for p with

1I adapted this formalization of control-�ow graphs from [Nol15].
2For example obtained by traversing the abstract syntax tree and assigning consecutive numbers.
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respect to ` is

G = (N,F, entryp, exitp)
where
N = {entryp,exitp}∪̇nodes(c)
F = flow(c)∪̇{(entryp,n) | n ∈ init(c)}∪̇{(m, exitp) | m ∈ final(c)}

where nodes, init, final, and flow are de�ned recursively on the structure of c as follows.

nodes(c) :=



{loc`(c)c }, if c is local
{call`(c)c , return

`(c)
c }, if c = call p(x1, . . . ,xn)

{fork`(c)c , rfork
`(c)
c }, if c = fork p(x1, . . . ,xn)

nodes(c1)∪̇nodes(c2), if c = c1; c2

{filter`(c)b , filter
`(c)
¬b }

∪̇nodes(c1) if c = while b do c1

{filter`(c)b , filter
`(c)
¬b }

∪̇nodes(c1)∪̇nodes(c2), if c = if b then c1 else c2

init(c) :=



nodes(c), if c is local
{call`(c)c }, if c = call p(x1, . . . ,xn)

{fork`(c)c }, if c = fork p(x1, . . . ,xn)

init(c1), if c = c1; c2

{filter`(c)b , filter
`(c)
¬b } if c = while b do c1

{filter`(c)b , filter
`(c)
¬b }, if c = if b then c1 else c2

final(c) :=



nodes(c), if c is local
{return`(c)c }, if c = call p(x1, . . . ,xn)

{rfork`(c)c }, if c = fork p(x1, . . . ,xn)

final(c2), if c = c1; c2

{filter`(c)¬b } if c = while b do c1

final(c1)∪̇final(c2) if c = if b then c1 else c2

Now we de�ne the �ow relation flow : Cmd → nodes(c) × nodes(c) in terms of init
and final.

flow(c) :=



∅, if c is local
∅, if c = call p(x1, . . . ,xn)

∅, if c = fork p(x1, . . . ,xn)

{(n,m) | n ∈ final(c1),m ∈ init(c2)}, if c = c1; c2

{(filter`(c)b ,init(c1))}∪̇flow(c1)

∪̇{(n,filter`(c)β ) | n ∈ final(c), β ∈ {b,¬b}} if c = while b do c1

{(filter`(c)b ,init(c1)), (filter
`(c)
¬b , init(c2))}

∪̇flow(c1)∪̇flow(c2), if c = if b then c1 else c2

There are a couple of things to note. First, there is no edge from call or fork nodes to the
corresponding return nodes. This makes sense: They will only be connected via the called
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procedure in the interprocedural �ow graphs, which we will de�ne in Section 5.2.
Second, the control �ow for while loops seems strange at �rst. This is because—just like for
if branches—we introduce two �lter nodes, one for the condition and one for its negation. At
the end of the loop body, we therefore have two outgoing edges, one to each �lter node. We
leave the loop only via the negated �lter, i.e, when the loop condition is violated. In many
formalizations of control �ow graphs, only a single node is introduced for each condition.
In that case, however, we either need to add semantics to the outgoing edges to (such as
a “Yes” or “No” label indicating whether the edge corresponds to positive evaluation of
the condition) or do not evaluate conditions in their nodes at all but rather instrument the
code with assertion statements at the beginning of each branch [Nol15]. I chose a di�erent
approach to avoid both explicit assert statements and the need to add semantics to edges.
We will need a way to combine the individual CFGs for each procedure into a CFG for
interprocedural and also for concurrent programs. Especially in the concurrent setting,
many di�erent �avors of control-�ow graphs have been proposed, see for example [LC89;
DS91; NAC99]. Thanks to our deterministic semantics for concurrent programs, we do not
need to take any special care to model concurrency, however; a formalism for sequential
interprocedural programs su�ces. When we compile each procedure independently via
the above compilation scheme, taking care not to reuse labels, we get a system of control
�ow graphs.

Definition 5.2 — System of control flow graphs (SCFG). A system of control �ow
graphs or SCFG is a tuple (G0, . . . ,Gn−1) for a program P = (p0, . . . ,pn−1), where
Ni ∩Nj = ∅ for all i 6= j.

To obtain an operational interpretation of an SCFG, we need to connect the individual
CFGs, which we do as follows.

Definition 5.3 — Interprocedural flow graph (IFG). Let (G0, . . . , Gn−1) be an SCFG,
where for each i, Gi = (Ni,Fi,si,ei) and where G0 represents the main procedure. The
interprocedural �ow graph (IFG) for (G0, . . . , Gn−1) is the tuple

G∗ = (N∗, F ∗, s∗, e∗)

where the components are computed from the SCFG as follows

• N∗ :=
⋃
i∈{0,...,n−1}Ni (Combined node set)

• F ∗ :=
⋃
{Fi | i ∈ {0, . . . , n− 1}}∪⋃
{(callic,entryname(c)) | callic ∈ N∗}∪⋃
{(forkic,entryname(c)) | forkic ∈ N∗}∪⋃
{(exitname(c),returnic) | returnic ∈ N∗}∪⋃
{(exitname(c),rforkic) | rforkic ∈ N∗}

(Interprocedural �ow relation)
• s∗ := s0, e

∗ := e0 (Main entry and exit)

In other words, we combine the SCFG into a single interprocedural �ow graph through an
interprocedural �ow relation F ∗ that extends the individual �ow relations with interproce-
dural edges.

R Depending on the analysis we are interested in, it may be necessary to distinguish
between local procedure calls and thread forks for the same procedure p. In that case
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it would not be allowed to indiscriminately connect exit nodes to call and fork nodes
in the interprocedural �ow relation; rather, we would need two copies of each �ow
graph, one for local calls and one for forks.

At �rst it seems like this holds for our analysis, too: In thread forks, pending and η
are reset, whereas they remain unchanged in local procedure calls. Upon we return
we must therefore not merge fork analysis information with call analysis information.
Since we compute procedure contracts, we will fortunately not have this problem
in our analysis: Upon return (from either call or fork), we will only select contracts
with preconditions that have the expected pending and η information and thus
automatically discard analysis information of the wrong type. I will return to this
point in Section 5.3.3.

We will often have to refer to speci�c parts of the IFG, so we introduce some additional
notation (which you do not have to memorize to follow the remainder of the chapter).

• NC := {n ∈ N∗ | ∃i∃c.n = callic ∨ n = forkic} (Set of call and fork nodes)
• NR := {n ∈ N∗ | ∃i∃c.n = returnic ∨ n = rforkic} (Set of return and return-from-

fork nodes)

Finally, it will be useful to have some notation for looking up speci�c relations between
nodes. We de�ne:

callee : NC → NE as callee(callic) := entryname(c)
callee(forkic) := entryname(c)

return : NC → NR as return(callic) := returnic
return(forkic) := rforkic

caller : NX → 2NR as caller(exitp) := {callic ∈ NC , | name(c) = p}
∪̇{forkic ∈ NC , | name(c) = p}

pred : N∗ → 2N
∗ as pred(n) := {m | (m,n) ∈ F ∗}

succ : N∗ → 2N
∗ as succ(n) := {m | (n,m) ∈ F ∗}

R The de�nitions in these section are quite similar to the ones in [KS92]. Apart from
the additional nodes for fork and join, the only di�erence is that I already split call
(and fork) nodes in two in the compilation scheme. They are therefore already split
in the SCFG and do not need to be split in the IFG.

With all these de�nitions in place, we can �nally formalize our data �ow analysis framework.

5.2 A Formalization of Interprocedural Data-flow Analysis

Before I dive in, I would like to remind you that Appendix B develops a data-�ow analysis
framework for the simple setting of intraprocedural analyses. If you are not familiar with
data-�ow analyses, you may want to read that appendix before reading on.

In the following, let (D, v) be a complete lattice with LUB operator t, least element
⊥, and top element >. In the following, we will use D as the domain for the analysis
information. Let G∗ = (N∗, F ∗, s∗, e∗) be the interprocedural �ow graph of the program
that we would like to analyze. Our goal thus is to analyze how data �ows through this
graph. Intuitively, the most precise solution that any such data-�ow analysis can possibly
compute is a solution that takes into account for each CFG node all execution paths that
lead to the node but nothing else. Formally, we would like to compute the meet over all
paths solution.
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Paths

To make this precise, we must �rst formalize the paths through the IFG.

Definition 5.4 — Interprocedural path. A sequence of nodes π = 〈n1, . . . ,nk〉 is an
interprocedural path through G∗ i� (ni,ni+1) ∈ F ∗ ∀i ∈ {1, . . . , k − 1}.

Analogously to the intraprocedural case, we also de�ne the set of all paths as well as
the set of all paths between a pair of nodes.

IP := {〈x1, . . . ,xj〉 ∈ N∗ | ∀i ∈ {1, . . . , j − 1}.(xi,xi+1) ∈ F ∗}
IPm

n := {π ∈ IP | π = 〈n,x2, . . . ,xj−1,m〉}

Note that not every interprocedural path actually corresponds to an execution of the
program. In particular, it is not enforced that we return to the caller upon method return.
This leads to the notion of valid interprocedural paths that respect the nesting of calls.

Definition 5.5 — Valid interprocedural path. An interprocedural path π = 〈n1, . . . ,nk〉
is called valid if the node sequence 〈n1, . . . ,nk〉 is well-formed. 〈n1, . . . ,nk〉 is well-
formed if either of the following conditions holds

1. if 〈n1, . . . ,nk〉 does not contain any return or rfork node, i.e., ni /∈ NR∀i ∈
{1, . . . , k}, 〈n1, . . . ,nk〉 is well-formed

2. if 〈n1, . . . ,nk〉 does contain a return or rfork node, let j be the smallest j such
that nj is such a node. Further, let i < j be the largest index such that ni ∈ NC . If
ni exists and matches nj (i.e., ni ∈ caller(nj)), then 〈n1, . . . ,nk〉 is well-formed
i�

〈n1, . . . ,ni−1,ni+1, . . . ,nj−1,nj+1, . . . ,nk〉

is well-formed.

In accordance with the notational conventions used so far, we write VIP and VIPm
n

for the set of all valid paths and the set all valid paths between n and m, respectively.

R Observe that in Def. 5.5, the shorter sequence is in general not an interprocedural
path as per Def. 5.4 because of the gaps we introduce in the sequence. Hence the
distinction between well-formed node sequences and valid paths.

R Note that Def. 5.5 only works because we assumed that all procedures are either
exclusively called locally or exclusively forked; otherwise we would have to take
care not to match call nodes with rfork nodes or fork nodes with return nodes.

Finally, to properly de�ne the semantics of procedure calls and thread forks, we are in-
terested in paths with an equal number of calls and returns, i.e., paths where all invoked
procedures and threads have returned. We call such paths complete.1

Definition 5.6 — Complete interprocedural path (CIP) [KS92]. A valid interprocedural
path π = 〈n1, . . . ,nk〉 is called complete if n1 ∈ NE and

|{i | ni ∈ NC}| = |{i | ni ∈ NR}|

We write CIP and CIPm
n for the set of all CIPs and the set all CIPs between n and m.

1Even if a thread is forked but never joined, the execution corresponds to a complete path in our semantics,
because the thread’s semantics will nevertheless be computed in its entirety at the return-from-fork.
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Stacks

Recall that we assume that the analysis information is taken from a complete lattice (D, v).
In the interprocedural case, we have to track this information across procedure boundaries.
To this end, we will use stacks of elements as domain for the interprocedural data-�ow
information.
Definition 5.7 — Stacks over la�ices. Let (D, v) be a complete lattice. We then de�ne
the stack over D, Stk(D) := (DS , vS), where

• DS := D+ ∪ {⊥S} =
⋃
i∈N>0

Di ∪ {⊥S}
• Let d,c ∈ DS . d vs c if and only if at least one of the following conditions holds

1. d = ⊥s
2. d = c
3. d = 〈d1, . . . ,di〉 ∧ c = 〈c1, . . . ,cj〉 ∧ j = 1 ∧ d1 v c1

Lemma 5.8 — Stacks over la�ices are complete la�ices. If (D, v) is a complete lattice,
then Stk(D) := (DS , vS) is a complete lattice.

Proof. Clearly, vS is a partial order. To show that Stk(D) is a complete lattice, it su�ces
to show that all subsets of DS have a least upper bound. (This is a standard result from
order theory, cf. Appendix A.) Clearly,

⊔
∅ = ⊥S and

⊔
{d} = d.

For the remaining cases, consider X ⊆ DS with |X| ≥ 2. W.l.o.g., ⊥S /∈ X , because⊔
({⊥S} ∪X) =

⊔
X for all X @ DS . Let

dlub :=
⊔
{d1 | 〈d1, . . .〉 ∈ X}

This bound exists, because D is a complete lattice. Note that

• For each 〈d1, . . .〉 ∈ X, d1 v dlub and hence, by de�nition of vS , 〈d1, . . .〉 vS 〈dlub〉
• Conversely, let 〈c1, . . . ,ck〉 be an upper bound of X . Clearly, k = 1, because X

contains at least two di�erent stacks, and stacks are only comparable to themselves
and to one-element stacks. But if k = 1, we have dlub v c1, because 〈c1〉 is an upper
bound for X and hence d1 v c1 for all 〈d1, . . .〉 ∈ S. Consequently, dlub =

⊔
{d1 |

〈d1, . . .〉 ∈ S} v c1. Thus, 〈dlub〉 vS 〈c1, . . . ,ck〉.

Hence 〈dlub〉 is the least upper bound of X . �

In other words, the least upper bound of a set of (at least two) stacks is the one-element
stack consisting of the least upper bound over the top elements of the stacks. De�ning the
stack lattice in this way makes sense: Throughout our analysis, the topmost stack element
will contain the relevant analysis information at any given point. Other stack entries are
just necessary for bookkeeping across procedure boundaries—for example, to update the
analysis information at procedure return. I will return to this point throughout this section.

R Throughout the remainder of this chapter, I will always assume that the result of
the LUB operation is a one-element stack, although this is not true when we apply
it to a singleton set, where the LUB is the stack itself. We can formally deal with
such cases by introducing a widening operator ∇ that projects the LUB onto the
one-element stack consisting of the �rst element. This is sound, because for all stacks
d = 〈d1, . . . ,dk〉, it holds that 〈d1, . . . ,dk〉 vS 〈d1〉. To simplify the exposition, I
gloss over this detail.
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Before we go on, however, we de�ne the following (partial) functions on stacks for conve-
nience.
newstack : D → DS as newstack(d) := 〈d〉
top : DS → D as top(〈d1, . . . ,dk〉) := d1

push : DS → D → DS as push(〈d1, . . . ,dk〉, d) := 〈d,d1, . . . ,dk〉
pop : DS → DS as pop(〈d1,d2, . . . ,dk〉) := 〈d2, . . . ,dk〉

Interprocedural data-flow systems

We can now lift the standard notion of data-�ow systems (as, for example, developed
in Appendix B) to stack lattices and de�ne data-�ow analyses on interprocedural �ow
graphs.

Definition 5.9 — (Distributive) interprocedural data-flow system. An interprocedural
data-�ow system over D is a tuple S = (G∗,Φ,Ξ,Ψ,ι), where

• G∗ is an IFG
• Φ = {ϕn : D → D | n ∈ N∗ \ (NC ∪ NR)} is a set of monotonic transfer

functions for the procedure-local nodes
• Ξ = {ξn : D → D | n ∈ NC} is a set of monotonic call (and fork) transfer

functions
• Ψ = {ψn : D ×D → D | n ∈ NR} is a set of monotonic transfer functions for

procedure (and fork) return
• ι : D is the extremal value

If all individual ϕn, ρn, and ξn are distributive, we call S distributive.

The ϕn functions de�ne the meaning of intraprocedural statements (which only transform
the current top element and in our case include join statements), the ξn functions de�ne
how the current top element of the stack is transformed into analysis information for the
called procedure, and the ψn functions de�ne how analysis information is merged upon
procedure return. Such a data-�ow system thus gives rise to a local semantic functional
that operates on stacks of analysis information, local : N∗ → Stk(D)→ Stk(D).

local(n)(stk) =


push(pop(stk), ϕn(top(stk))), if n ∈ N∗ \ (NC ∪NR)

push(stk, ξn(top(stk))), if n ∈ NC

push(pop(pop(stk)),

ψn(top(pop(stk)), top(stk))) if n ∈ NR

local de�nes how stacks of data-�ow information �ow through the interprocedural �ow
graph. Based on this de�nition, we can adapt the standard notions of meet over all paths
(MOP) and maximal �xed point solution to our interprocedural setting.

Interprocedural meet over all paths (IMOP) solution

Given the local semantic functional, it is straightforward to de�ne a functional that captures
the e�ect of paths through function composition.

pathlocal(π) :=

{
id, if π = ε

local(xj) ◦ pathlocal(〈x1, . . . ,xj−1〉), if π = 〈x1. . . . , xj〉

This function is still local in the sense that it only de�nes the semantics of a single path.
Our goal is, however, to reason about all paths leading up to a node. This leads to the
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de�nition of the interprocedural meet over all paths (IMOP) solution.

imop(Φ)(n) :=
⊔
{pathlocal(π)(newstack(ι)) | π ∈ VIPn

s∗}

We take the least upper bound over all paths leading up to the node of interest. Crucially,
the stack lattice was de�ned in such a way that this is the least upper bound over all top
elements of all the local(π)(newstack(ι)) stacks.1 Hence we only consider the relevant
topmost analysis information.

Unsurprisingly, it is in general not possible to compute the IMOP solution e�ectively.

Corollary 5.10 — The IMOP solution is undecidable.

Proof. The IMOP solution degenerates to the MOP solution in the intraprocedural case,
which is already undecidable [NNH99]. �

Interprocedural maximal fixed point (IMFP) solution

Just like in the intraprocedural setting, we can perform �xed-point iteration to approximate
the IMOP solution. Our goal is to perform a �xed-point iteration for the analysis domain
Stk(D). To this end, we need to provide a transformer of type Stk(D)→ Stk(D) for all
nodes in the CFG. We already have such transformers for all procedure-local nodes of the
CFG. We do, however, not have them for call or fork statements, since their meaning is
global in the sense that we have to compute (or approximate) the meaning of the entire
corresponding procedure body. More speci�cally, the meaning of a procedure is a (partial)
function from stacks to stacks whose top element is changed. We shall call this domain
FStk(D).

FStk(D) := {f : Stk(D) 99K Stk(D) | pop(f(stk)) = pop(stk) ∀stk ∈ Stk(D)}

Computing partial functions is su�cient: As long as the procedure’s meaning is de�ned for
all inputs that occur in the program’s execution, the result is well-de�ned.

We will thus de�ne two equation systems:

1. An equation system operating on the function domain FStk(D), whose �xed point
will assign meaning to procedures

2. An equation system operating on Stk(D) that uses the transfer functions Φ of the
data-�ow system for local nodes and the �xed point of the �rst equation system as
transfer functions for call and fork nodes

The idea behind the �rst system will be to assign to each node in the CFG the function
of the containing procedure’s e�ect up to that node. The function at the procedure’s exit
node then de�nes the semantics of the entire procedure. The equation system takes the

1Recall that this is technically only true if there are at least two di�erent stacks at node n, but we assume
that a widening operator for projecting onto the �rst component of the LUB is applied otherwise.
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following form.

local∗(n) =


local(return(n)) ◦ global(end(callee(n))) ◦ local(n), if n ∈ NC

⊥, if n ∈ NR

local(n), otherwise

global(n) =

{
id, if n ∈ NE⊔
{local∗(m) ◦ global(m) | m ∈ pred(n)}, otherwise

Here t (applied to functions) represents the point-wise application of t to the stacks in
the codomain.
global(n) represents the procedure e�ect up to node n, while local∗(n) approximates the
“local” semantics of procedure calls with respect to the current approximation of the global
semantics. Note that we want a local function in the sense that we want a function that
does not modify the stack height. This is achieved by computing the whole procedure e�ect
for call nodes, while leaving the function unde�ned for return nodes.
Since FStk(D) inherits the lattice structure from Stk(D) (by pointwise application of vS
to the codomain), it makes sense to ask for the least �xed point of this mutually recursive
equation system. The least �xed point, once found, determines the procedure semantics:
global(exitp) becomes the meaning of procedure p.
We de�ne a second equation system to compute the combined e�ect of all procedure calls
starting from the initial data-�ow information ι. To this end, we set up a second equation
system that refers back to the �rst equation system to determine the semantics of call
statements.

αni =


newstack(ι), if ni = s∗⊔
{local(m)(αm) | m ∈ caller(ni)} if ni ∈ NE \ {s∗}⊔
{local∗(m)(αm) | m ∈ pred(ni)}, otherwise

The interprocedural maximal �xed point (IMFP) solution is the least �xed point of this
second equation system. We write ifix(S) for this �xed point.

Theorem 5.11 The least �xed point of α is e�ectively computable for �nite lattices D.

Proof. Given a solution for local∗, the solution for α is obviously reached after �nitely
many iterations if D is �nite.
Note that all calls to local∗ in α are made for stacks of height 1, as the analysis starts from
a stack of height 1 (newstack(ι)) and the analysis information in α always remains at
height 1 by de�nition of the least upper bound operator t.
If we compute the �xed points of local∗ and global on demand—that is, only for input
values that occur in the �xed-point iteration α—we will therefore only need to look at stacks
of height at most 2 throughout the �xed-point iteration for local∗ and global: A second
element is added to stacks when local is applied to a call node, but since the functions in
the domain FStk(D) do not change the stack height, no stacks with height larger than 2
can occur. But if D is �nite, there are only �nitely many functions in FStk(D) that only
involve stacks of height at most 2. (We can, for example, view each such function as a �nite
sets of key–value pairs, and the size of these sets is bounded by the size of D.) Hence the
on-demand �xed-point iteration of local∗ and global terminates as well. �
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Interprocedural Coincidence Theorem

We have thus developed two solutions for interprocedural data-�ow analysis: The unde-
cidable but optimal IMOP solution and the e�ectively computable but approximate IMFP
solution. We shall now investigate the relationship between the two solutions. It makes
sense that the IMFP solution approximates the IMOP solution: It is based on the same
(monotonic) transfer functions, but we perform additional LUB computations and only
operate on stacks of height at most two, so we must expect to lose precision. Perhaps
surprisingly, we can show that the IMFP and IMOP coincide if all transfer functions in the
data-�ow system S = (G∗,Φ,Ξ,Ψ,ι) are distributive. This is summarized in the following
theorems.

Theorem 5.12 — Interprocedural safety theorem [KS92]. Let S be an interprocedural
data-�ow system (with monotonic transfer functions as per Def. 5.9). Then

∀n ∈ N∗. ifix(S)(n) v imop(S)(n)

Theorem 5.13 — Interprocedural coincidence theorem [KS92]. Let S be a distributive
interprocedural data-�ow system. Then the IMFP and IMOP solutions coincide, i.e.,

∀n ∈ N∗. ifix(S)(n) = imop(S)(n)

Both results are quite technical but not di�cult. If you are interested in the details, have a
look at [KS92].1

5.3 Adaptation of the IPA Framework to the Analysis of PLseq

In this section we will see how to de�ne an interprocedural data-�ow system for comput-
ing procedure contracts based on the abstract semantics of PLseq . I start with PLseq ,
because the abstract state space from Section 3.2 is much simpler and because it is �nite.
It will therefore be relatively straightforward to use the IPA framework for the abstract
interpretation of PLseq . We turn to parallel PL programs in the next section, Section 5.3.3.

5.3.1 The (Sequential) Procedure Contract Domain

The �rst step when designing a data-�ow analysis is the de�nition of a suitable domain. The
basic goal of our analysis will be to compute procedure contracts. A procedure contract
is a mathematical object that relates a procedure’s preconditions, i.e., some speci�cation
of the calling environment, to its postconditions, i.e., the (possible) cumulative e�ect(s) of
the procedure on the precondition. Contract-based reasoning has been used extensively in
the area of formal veri�cation to facilitate modular veri�cation techniques; consider, for
example, rely/guarantee reasoning [Sta85], where we rely on properties of the environment

1Here are a few pointers to help you map my de�nitions to their setting. I opted for naming my functionals
local, local∗, global rather than J·K, J·K∗, J[·]K. I was hoping to increase readability in this way, but am not
sure that I actually succeeded.

By introducing interprocedural data-�ow systems as basis for local, I can make do without explicitly de�ning
s-monotonicity and s-distributivity.

I deal with fork and join statements as if they were call statements and intraprocedural statements, re-
spectively. The IPA framework is therefore still applicable—as long as I manage to de�ne an interprocedural
data-�ow system with appropriate monotonic (or distributive) functions for fork and join.
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(precondition) and make guarantees about how the procedure will a�ect said environment
(postconditions). Similar techniques have also found their way into the software engineering
domain as design by contract [Mey88] .

R The term contract is ambiguous. Let me emphasize that in this thesis, contracts
are not annotations written by humans, as is usually the case in design by contract.
Instead, a contract is an auto-generated summary of a procedure’s e�ect (expressed
as a transformation of abstract hypergraphs).

Which form should the pre- and postconditions take in our setting? Our program semantics
are de�ned in terms of abstract hypergraphs. A procedure’s e�ect can therefore be viewed
as a (possibly non-deterministic) transformation of abstract heap con�gurations. Our
contracts re�ect this point of view. As preconditions, we simply use heap con�gurations
that characterize the (abstract) calling context. In case of successful execution of the
procedure, the corresponding postcondition is the set of heap con�gurations that may
result from executing the procedure on the precondition heap. There are two reasons
why the postcondition is a set of heaps rather than a single heap con�guration. First, the
abstract semantics that underlies our analysis is already non-deterministic. Second, when
we compute our contracts via the IPA framework, we will have to perform least upper
bound computations. This constitutes an additional source of over-approximation that may
also introduce non-determinism.

In addition to a representation of successful computations, we also need to take the possi-
bility of errors into account. After all, our main motivation for using data-�ow analysis is
our desire to �nd errors in the analyzed program. If a given precondition led to a (potential)
error, the corresponding postcondition will consist exclusively of this error, even if there
are successful paths through the procedure that start with the precondition. (This is not
strictly necessary for soundness as long as we retain the information that an error occurred
throughout the remaining analysis, but it both simpli�es and speeds up the analysis.)

In general, there may, of course, be many valid preconditions for any given procedure.
We therefore model procedure contracts as partial functions from preconditions to post-
conditions. A procedure contract thus is an element of the domain C := HCT,Σ 99K
2HCT,Σ ∪ {err}. The reason for opting for partial instead of total functions will become
clear shortly; this design choice is due to our aim of computing contracts on demand.

Let c : HC 99K 2HC ∪ {err} be a contract. (I shall from now on omit the T and Σ
parameters). We write pre(c) to refer to the domain of c, i.e., the set of all preconditions
for which the contract is de�ned. Since c is a function, we simply write c(H) to access
the postcondition for the precondition H. We will sometimes need to refer to the set
of all postconditions of a contract, i.e., its codomain. We then write post(c). Note that
pre(c) ∈ HC and post(c) ∈ 2HC ∪ {err}.

For the IPA to be applicable to contracts, we need to �nd a partial order v such that
(C, v) forms a complete lattice. First, we need a partial order on the postconditions: Let
s1,s2 ∈ 2HC ∪ {err}. We de�ne

s1 vP s2 :⇐⇒ s2 = err ∨ s1 ⊆ s2

This order corresponds to our expectations of a may analysis—that is, an analysis where
we take the union rather than the intersection o� the predecessor information: A larger
set of postconditions constitutes more complete analysis information, and, because errors
must be propagated, they should be regarded as the largest possible analysis information.
Since (2HC,⊆) is a complete lattice (cf. Appendix A), so is (2HC ∪ {err},vP ).
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The induced least upper bound tp is simply union (if the compared elements are sets of
hypergraphs) or err (if at least one of the operands of tp is err).

By applying the partial order point-wise, we obtain a complete lattice characterization of
the contract domain.

c1 v c2 :⇐⇒ ∀H ∈ HC.H /∈ pre(c1)∨ (H ∈ (pre(c1)∩pre(c2))∧ c1(H) vP c2(H))

The bottom element of this lattice is the empty contract, i.e., the unique contract c⊥ with
pre(c⊥) = ∅. The top element is the (in�nite) contract c> with ∀H ∈ HC.c>(H) = err.
We can easily see that the least upper bound operator for this domain is given by

(c1 t c2)(H) =


c1(H) tP c2(H), ifH ∈ pre(c1) ∩ pre(c2),

c1(H), ifH ∈ pre(c1)

c2(H), ifH ∈ pre(c2)

unde�ned, otherwise

Again, this is in accordance with the intuition behind may analyses, since contracts with a
larger domain are regarded as more de�ned.

There is one problem with this domain, however: It is in�nite, because HCT,Σ is already
in�nite. At �rst sight, it may therefore seem as though we cannot guarantee that we can
compute a �xed point in �nite time if we base our IPA on the contract domain. Fortunately,
the abstract semantics keeps the hypergraphs fully abstract. As observed on page 48, there
are only �nitely many fully abstract hypergraphs for a given program if we can bound
the size and number of concrete parts of the graph as well as the number of cutpoints
(and hence the number of external nodes) If these requirements hold, only �nitely many
contracts can be generated by the analysis.

Definition 5.14 — Abstract contract. A procedure contract is called abstract w.r.t. a
BCHAG G if both its precondition and its postconditions are fully abstract w.r.t. G.

Observation 5.15 Given a program P with a bounded number of cutpoints and a BCHAG
G that can always abstract all but a bounded number of nodes in the program’s heap, the
set of abstract contracts for P modulo isomorphism is �nite; in particular, it satis�es the
ascending chain condition (cf. Def. A.6).

This is a highly useful property: If the abstract contract domain is �nite, we can e�ectively
compute the IMFP solution of Section 5.2 according to Theorem 5.11 on page 87.

R The proviso “modulo isomorphism” is important. In our notion of hypergraphs, nodes
and edges are just arbitrary objects in a universe. Hence there are in�nitely many
hypergraphs in each isomorphism class. Note, however, that from a practical point
of view, we do not want to distinguish between isomorphic graphs, because they
represent the exact same heap! To simplify the presentation, I ignore the problem
of generating only one hypergraph per isomorphism class for the time being and
address it separately in Section 5.3.4.

5.3.2 An Interprocedural Data-Flow System for Contracts

The IPA of Section 5.2 was de�ned on interprocedural data-�ow systems over some lattice
D (cf. Def. 5.9 on page 85). We now develop such a system for generating procedure
contracts by using the contract lattice HC 99K 2HC ∪ {err} as domain.
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What is the goal of our analysis? At the end of the analysis, the full procedure contracts
should be available at the respective exit nodes. That is, the analysis information at each
exit node should be a contract that maps each possible precondition of the procedure to the
possible postconditions after the execution. For e�ciency reasons, only preconditions that
can actually occur throughout the main program’s execution should be taken into account.
Each contract that maps a heapH to a set of heaps proves the absence of memory errors
for the precondition H. Conversely, a contract that maps H to an error signi�es that an
error may occur during the execution of the procedure when the heap at the start of the
procedure wasH.1

We formalize this by de�ning the Φ, Ξ, Ψ, and ι components of the DFS. An informal
discussion will reveal how these components should be de�ned.

First, we need to assign an identity contractH 7→ {H} to each entry node of a procedure: At
the entry node, no computation has taken place, and hence the identity contract correctly
relates the precondition with the (empty) computation up until the entry node. This
identity contract will, however, only be de�ned on those graphsH that occur throughout
the analysis. We only explicitly de�ne this identity contract for the main procedure (in
form of the extremal value ι), the other identity contracts will be generated on demand by
the call transfer functions when the procedures are actually invoked.

The transfer functions describe how the contracts evolve away from the initial identity con-
tracts. To this end, each intraprocedural transfer function ϕ ∈ Φ updates the postcondition
of the predecessor contracts by applying the semantics from Chapter 3 to each hypergraph
in the postcondition (or propagating the error value, if applicable). The preconditions are
not modi�ed, because they refer to the precondition of the procedure execution as a whole.

Each call transfer function ξ ∈ Ξ generates a precondition for the called procedure based
on the call inference rule and then adds a corresponding identity contract to the analysis
information of the called procedure’s entry node. This is how the on-demand computation
of the identity contracts is realized: Whenever an abstract heap is generated by the actual
application of a call rule, it is added to the identity contract at the called procedure’s entry
node. This change in the contract at the entry node is propagated to the other nodes of the
procedure through the �xed-point iteration.

Each return transfer function ψ ∈ Ψ combines the caller and the callee contract as follows.
For each postcondition of the caller contract, we pick the isomorphic precondition of the
callee contract. This must exist, because it was generated in the call transfer function.
To simulate procedure return, we construct two element stacks out of the selected caller
postcondition and each callee postcondition for the matching precondition. We then simply
apply the return inference rule.

This informal discussion shows that we can directly use the inference rules to de�ne the
transfer functions of our contract data-�ow system. Let us brie�y formalize this process.
We start with the extremal value ι : HC 99K 2HC ∪ {err}. ι is assigned to the entry
node of the main procedure. As such, it should be the identity contract that maps each
of the possible preconditions of the main procedure to itself. I.e., given a set of global
preconditions {H1, . . . ,Hk}, we de�ne

ι(G) :=

{
{G}, if ∃i.G ∼= Hi
⊥, otherwise

1As discussed before, this error might, however, be a false positive.
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The global preconditions must be speci�ed by the user if the analysis should begin with a
non-empty initial heap.1 Usually, the global preconditions will be a fully abstract repre-
sentation of all program inputs for which we want to analyze the program. A list reversal
program will, for example, have a fully abstract list as sole global precondition. Note that
the global precondition is the only pre- or postcondition that is user-de�ned. All other
contracts are generated automatically by solving the data-�ow system.

As we just saw, the transfer functions can be adapted directly from the semantics in
Section 3.2: Given a node n for command c, the transfer function for n receives one or two
contracts as inputs and applies the inference rule for c to the contracts’ postconditions to
compute the updated contracts. Formally, we have to de�ne

• Φ = {ϕn : (HC 99K 2HC ∪ {err})→ (HC 99K 2HC ∪ {err}) | n ∈ N∗ \ (NC ∪
NR)}

• Ξ = {ξn : (HC 99K 2HC ∪ {err})→ (HC 99K 2HC ∪ {err}) | n ∈ NC}
• Ψ = {ψn : (HC 99K 2HC ∪ {err}) × (HC 99K 2HC ∪ {err}) → (HC 99K

2HC ∪ {err}) | n ∈ NR}

To be able to make sense of their de�nition, you might want to have another look at their
use in the de�nition of local on page 85. First, let n be a procedure-local node representing
command c.

ϕn(c)(H) := {G′ | ∃c′ ∈ Cmd∃G ∈ c(H).(c,G)
A→ (c′,G′)}

We consider each of the postconditions G of H and collect the results of applying the
intraprocedural abstract semantics for the node’s command c to the postconditions.

Second, for entry and exit nodes, we set ϕn(c)(H) := c(H), because they do not have any
e�ect of the contracts.

Third, for �lter nodes filterib, we de�ne

ϕn(c)(H) := {G ∈ c(H) | ∧condEval(G, b) = true}

That is, we only keep those graphs in the postcondition for which the �lter condition b
evaluates to true. (See page 35 for the de�nition of condEval.)

Fourth, let n be a call node for a call statement c in program P .

ξn(c)(H) :=


{H} if ∃c′ ∈ Cmd∃J ∈ HC∃G ∈ c(J ).

P ` 〈(c,G)〉 A
=⇒ 〈(c′,H), (c,G)〉

⊥, otherwise

Recall that ξn generates a new initial contract for the called procedure, i.e., an identity
contract. This contract has to be de�ned precisely on those heaps that occur when the
procedure is called on any of the caller contract’s postconditions. These heaps are extracted
from the results of applying the abstract semantics to each of the postconditions G.

Fifth, let n be a return node for a call statement call p(x1, . . . ,xn) in program P . In this
case, the new contract is computed based on two previous contracts, the caller contract, cc,

1Recall that we allow parameters for the main procedure. This makes sense, because we usually want to
apply our analysis to algorithms that exhibit some input–output behavior. Since we do not have any form of
I/O in PL, we instead de�ne initial heaps and pass them as arguments to main.
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and the callee contract at procedure return, cr .

ψn(cc,cr)(H) := {G′ | ∃c′ ∈ Cmd∃J ∈ cc(H)
∃G ∈ cr(reachable(J ,{x1, . . . ,xn})).
P ` 〈(↓,G),(call p(x1, . . . ,xn); c′,J )〉 A

=⇒ 〈(c′,G′)〉}

This de�nition is a little more involved. The problem is that we need to extract the right
precondition–postcondition pair from the return contract cr: The precondition must match
the reachable fragment of the caller graph J w.r.t. the call parameters. The postconditions,
here assigned to G, are the possible results of executing the called procedure on that
reachable fragment of the caller graph. Having identi�ed the right pairs of heaps in this
way, ψ just applies the return rule to the pairs and gathers the results.

By combining these transfer functions, we obtain a data-�ow system that computes con-
tracts by closely mirroring the abstract semantics A

=⇒. In this way, a sequence of iterations
of the �xed-point analysis corresponds to a sequence of rule applications to the contracts’
postconditions—the postconditions approximate the computation of A∗

=⇒.

Distributivity

As noted in Section 5.2, the MOP and MFP solutions coincide if and only if all transfer func-
tions are distributive. Let us assure ourselves that this is true for the transfer functions that
we just de�ned. Conveniently, we obtain this result nearly for free, because our contracts
are functions. I will show distributivity only for Φ; the other cases work analogously.

To show distributivity, we need to show that (cf. Def. A.8) for each of the transformers
ϕ ∈ Φ, ϕ(c1 t c2) = ϕ(c1) t ϕ(c2) holds. Equivalently, we can show that for all H,
ϕ(c1tc2)(H) = ϕ(c1)(H)tpϕ(c2)(H), becausetwas de�ned as the point-wise application
of tp to the postconditions. More speci�cally, recall that

(c1 t c2)(H) =


c1(H) tP c2(H), ifH ∈ pre(c1) ∩ pre(c2),

c1(H), ifH ∈ pre(c1)

c2(H), ifH ∈ pre(c2)

unde�ned, otherwise

The only interesting case is the �rst one. Let thereforeH ∈ pre(c1)∩pre(c2). First, assume
that c1(H) 6= err 6= c2(H). Then the following holds.

ϕ(c1 t c2)(H)

= {G′ | ∃c′ ∈ Cmd∃G ∈ (c1 t c2)(H).(c,G)
A→ (c′,G′)}

= {G′ | ∃c′ ∈ Cmd∃G ∈ (c1(H) tP c2(H)).(c,G)
A→ (c′,G′)}

= {G′ | ∃c′ ∈ Cmd∃G ∈ (c1(H) ∪ c2(H)).(c,G)
A→ (c′,G′)}

= {G′ | ∃c′ ∈ Cmd∃G ∈ (c1(H)).(c,G)
A→ (c′,G′)}∪

{G′ | ∃c′ ∈ Cmd∃G ∈ (c2(H)).(c,G)
A→ (c′,G′)}

= ϕ(c1)(H) ∪ ϕ(c2)(H)
= ϕ(c1)(H) tp ϕ(c2)(H)

Conversely, if c1(H) = err (or, equivalently, c2(H) = err), then ϕ(c1 t c2)(H) = err and
also ϕ(c1)(H) tp ϕ(c2)(H) = err tp ϕ(c2)(H) = err.
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5.3.3 Extension to Concurrent Programs

As you may well have realized already, the techniques in the previous section are not
restricted to sequential programs. I decided to develop the DFS for sequential programs
only to make it simpler, but we can easily adapt it to concurrent programs.

R We exploit here that the concrete semantics of Chapter 4 are deterministic. This made
it possible to treat fork and join essentially like call and return, and thus only model
a single call stack, rather than one call stack per active thread. This in turn allows us
to reuse the framework for (sequential) interprocedural analysis, in which we only
have one stack of analysis information, for contract generation in the concurrent
setting.

As a �rst step, we extend the contract domain to

HC×Perms×Evo 99K 2HC×Perms×Evo ∪ {err}

Both preconditions and postconditions now include permissions and shape evolution
information. ι is modi�ed accordingly: Given a global precondition {H1, . . . ,Hk}, the
initial contract becomes

ι((G, q0, η0)) :=

{
{(G,q0,η0)}, if ∃i.G ∼= Hi
⊥, otherwise

where η0 = λe.{e}
q0 = (λe.no, λe.no, λt.⊥)

The transfer functions now apply the inference rules from η
=⇒ rather than A

=⇒. For example,
for a node n that represents the intraprocedural command c,

ϕn(c)(H,q,η) := {(G′,q′,η′) | ∃c′ ∈ Cmd∃G ∈ c(H,q,η).

〈(c,G, q, η)〉 η
=⇒ (c′,G′,q′,η′)}

This is less readable, but at its core, not more complex than the sequential case: It still boils
down to rule application to the contract’s postconditions. We omit the adaptation of the
remaining transfer functions to the parallel setting—it could easily be achieved in the same
way.

5.3.4 Handling Isomorphic Graphs

As pointed out in the remark on page 90, it is important that we do not distinguish between
isomorphic graphs: If we have already computed the contract for precondition H, and
H ∼= G, we do not need to compute a contract for G, becauseH and G represent the same
heap. In such cases, we should just use the contract forH instead. It is therefore desirable
to de�ne contracts on isomorphism classes (w.r.t. Def. 2.23 on page 22) or on the canonical
representatives of isomorphism classes rather than on the full set HC.

The result is obviously still a complete lattice, because we just exchanged the underlying
set. The transfer functions become a little more complicated, however, since we cannot
just apply inference rules any longer, but must perform additional isomorphism checks. In
the return transfer functions, for example, we have to replace

∃G ∈ cr(reachable(J ,{x1, . . . ,xn}))
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with

∃J ′.reachable(J ,{x1, . . . ,xn}) ∼= J ′ ∧ ∃G ∈ cr(J ′)

I felt that constantly worrying about isomorphisms throughout the entire section would be
too much of a distraction from the key ideas, but in an implementation, we de�nitely must
not distinguish between isomorphic graphs.

You may, however, object that it is prohibitively expensive from a computational point of
view to have to perform that many isomorphism checks. Surprisingly, it is not: We can
compute canonical representatives of isomorphism classes very cheaply in our context, so
the isomorphism check can be performed e�ciently by computing said representatives and
comparing them for equality. I shall further discuss this, as well as other algorithmic issues,
next.

5.4 Algorithmic Complexity

Up until now I have completely neglected the question of e�ciency, which is, of course,
one of central factors for the applicability of the analysis to real programs.1

I will start with a rough complexity of the analysis of sequential programs and then discuss
the overhead incurred by including permission information.

There are computations at several levels of abstraction that we have to analyze: The
computation of each transfer function consists in applying on-demand concretization,
a rule from the concrete semantics, and subsequent abstraction to each graph in the
postcondition. This cost has to be multiplied by the number of postconditions, i.e., grows
linearly with the size of the contract. As discussed in the previous section, we also need to
keep only one representative of each isomorphism class, so we need to analyze the cost of
computing hypergraph isomorphisms in our setting. Adding all these costs gives us the
cost for a single step in the �xed point iteration. At a higher level, we are also interested in
the number of steps until termination of the �xed-point iteration.

There are also more low-level aspects to consider in a concrete implementation, such as
the data structures used for representing the hypergraphs, but these are not the focus
of this section. I will therefore not discuss the cost of individual operations on nodes or
hyperedges; the purpose of this section is not to provide sharp complexity bounds, but
rather to convey a feeling for the complexity of the proposed methods.

Canonical Representatives

Finding canonical representatives will be useful at multiple points, so I would like to
discuss this issue �rst. The basic idea is that, because we assume garbage collection,
all nodes in a heap are reachable from at least one variable edge. We already exploited
this in Def. 3.6 on page 42, where we de�ned a total order on the nodes <V . Using
this order, it is straightforward to de�ne a canonical representative for a given heap
H = (V,E, att, lab, ext, typ, isnull). Let pos(v) ∈ {1, . . . , |V |} denote the position of
node v ∈ V in the order <V . We then de�ne the canonical representativeH′ as follows.

• V ′ := {1, . . . , |V |}
• E := {(σ,〈pos(att(e)(1)), . . . ,pos(att(e)(k))〉) | e ∈ E ∧ lab(e) = σ ∧ rk(σ) = k}

1The other major one being the precision of the abstraction.
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• lab′((σ,〈n1, . . . ,nk〉)) := σ
• att′((σ,〈n1, . . . ,nk〉)) := 〈n1, . . . ,nk〉
• ext′, typ′, isnull′ are obtained by renaming all nodes using pos

We always use an initial fragment of the positive integers as set of nodes and to encode
each edge’s label and attachment directly into the edge object. Clearly, this representation
is the same for a pair of graphs G andH if and only if G ∼= H.

Once we have the order (and hence the pos function), the representative can be computed
in O(|E| + |V |). The order itself can, for example, be computed by applying Dijkstra’s
algorithm once for each of the (constantly many) variable edges, i.e., in time O(|E| +
|V | log(V )). We can obviously compare canonical representative against each other in
O(|E| + |V |). Perhaps surprisingly, we can therefore check whether a pair of heaps is
isomorphic in time O(|E|+ |V | log(V )), by �rst computing each canonical representative
and then comparing them for equality.

The cost of concrete symbolic execution

At the heart of all transfer functions lies the application of one inference rule of the concrete
semantics to a concrete subgraph of the heap. First, all local operations (assignments,
memory allocation, variable declaration, �lters) are cheap: We only need to manipulate
and create a constant number of nodes and edges.

The main complexity of call statements lies in the computation of reachable fragments.
To this end, we can use standard algorithms to identify all nodes that are reachable from
any of the (constantly many) procedure parameters. This can be done in time linear in the
number of hyperedges in the reachable fragment, since each hyperedge will be processed
only a constant number of times.

Executing procedure return is more interesting. Recall that we must replace a part of the
caller heap with the exit heap of the callee. To this end, we must reattach the edges on
the boundary between the caller and the callee heap. This takes time linear in the size of
the boundary. Embedding the callee heap is rather cheap if we make the assumption that
the sets of nodes and edges of the unmodi�ed part of the caller graph and the callee graph
are disjoint. If we only store canonical representatives, this will obviously not be the case,
but can be achieved by shifting the nodes in one of the graphs that need to be merged—an
operation that is linear in the size of the graph.1 Having embedded the returned fragment,
we then perform a reachable fragment computation (starting from the variable edges) to
get rid of the (now unreachable) fragment of the caller graph that we have just replaced.
The total number of operations on edges and nodes is thus linear in the size of the involved
hypergraphs.

The cost of concretization and abstraction

Recall that we have to perform on-demand concretization to be able to apply the concrete
semantics, and perform full abstraction after applying the concrete semantics.

Let n be the number of rules in G, m be the maximum size of a right-hand side, ` be the
size of H. Concretization is only necessary when executing assignments or evaluating
conditions. In the former case, only at most two violation points are relevant. In the second

1When actually implementing this, other approaches are possible. In my implementation I keep unique
node identi�ers in addition to the identi�ers in the canonical representative and merge the two graphs based
on the unique identi�ers, not on the identi�ers in the canonical representative.
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case, the number of relevant violation points is bounded by the number of dereferenced
pointers in the condition. Let p denote the number of relevant violation points. In the worst
case we have to perform np concretizations. Note, however, that both n and p will usually
be small in practice.

For the subsequent abstraction, we have to �nd subgraphs that are isomorphic to the
right-hand side of a production rule. In the worst case, this is exponential in m. (Subgraph
isomorphism is NP complete.) In practice, m is usually very small—certainly in the single
digits—andH has enough structure (thanks to the types and labels) to further reduce the
complexity, since even a brute force back-tracking algorithm for �nding subgraphs can
quickly rule out most edge combinations.

Costs at the contract level

The main additional cost at the contract level is caused by the necessity to identify iso-
morphic hypergraphs: We have to merge precondition–postcondition pairs that have
isomorphic preconditions and we also have to remove isomorphic graphs from each post-
condition. Pairwise isomorphism is checked by computing canonical representatives.
Canonical representatives can be both cached and hashed so that the total cost of removing
all duplicates (modulo isomorphism) from a set of hypergraphs will be not much higher
than the cost of computing each canonical representative once. (Comparison of hash values
is possible in O(()1) and, given a good hash function, comparing hash values of canonical
representatives will usually su�ce.)

Solving the equation system

A standard worklist algorithm can be used to optimize the �xed-point iteration [NNH99].
Such an algorithm computes one transfer function at a time, rather than updating the values
for all equations simultaneously. Changes are propagated by adding successor nodes to a
list of nodes for which the �xed-point iteration has not yet converged—the worklist. This
usually leads to much faster termination than the naive solution of the equation system.

In the worst case we do, however, still have to perform n ·m iterations, n being the number
of nodes and m being the height of the contract lattice. In general, m = ∞—we cannot
bound the size of the heaps that occur throughout the analysis. But if we assume that
we can always abstract all but a bounded number of nodes `, because we have a suitable
BCHAG for the program and only boundedly many permission alternations occur (in the
parallel case), m still is a huge number:

• The number of heaps modulo isomorphism is exponential in the number of variables
in the program, in the number of cutpoints, the number of nonterminals in the
grammar, and in `.

• The number of postconditions is exponential in the number of heaps modulo isomor-
phism, because postconditions are arbitrary subsets of the set of possible heaps.

• The number of contracts is equal to the product of the number of heaps modulo
isomorphism and the number of postconditions, as there may be one postcondition
per heap.

In total, the height of the domain is thus triply exponential in the number of variables,
cutpoints, nonterminals, and `. While these worst-case guarantees are truly terrible, we
have reason to hope that we will never come near them in practice: Each procedure will
usually only be called for a small number of di�erent preconditions, each postcondition for
a given precondition will only consist of a few hypergraphs, and only a subset of variables
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and nonterminals is relevant for each procedure. Additionally there are often implicit
invariants that greatly reduce the number of possible heaps that may occur. (For example,
a tail pointer always points to a node that is after the node pointed to by the head pointer.)

Still, only experiments with a mature implementation can show whether the contracts are
small enough in practice to make the proposed analysis viable.

5.5 Comparison with Separation Logic

Before concluding this thesis, I would like to brie�y address one question that I have been
asked several times: “Why not separation logic?” After all, I am trying to solve exactly the
same problem and there is already good tool support for several separation logics.1 My
perspective is as follows.

• Separation logic formulas are often di�cult to read and comprehend. Graphical
models are much more intuitive. This is aided by our aggressive approach to ab-
straction, which leads to small and hence easily comprehensible abstract graphs.
As such, procedure contracts based on (hyper)graphs rather than separation logic
formulas can be much more useful, especially for manual inspection and as basis for
debugging.

• Entailment is undecidable for full separation logic. To enable tool support, various
decidable fragments have been proposed, most prominently the restriction to linked
lists [BCO05a] that has served as the basis of many tool implementations. Each time
we want to incorporate additional data structures we must, however, develop new
decision procedures (assuming the extended logic is still decidable).
This is completely di�erent for our approach: We just have to design a suitable heap
abstraction grammar for our data structure. The analysis itself remains unchanged
and decidable. This enables us to easily model custom object graphs within our
formalism, which is not easily (if at all) possible in the framework of separation logic.
To my knowledge, completely automatic procedure contract generation in such
a general setting has not been proposed before—neither in the separation logic
community nor elsewhere.

• It should also be noted that separation logic and our hypergraph-based approach are
quite closely related. This correspondence between separation logic and the hyper-
graphs approach was �rst noted in [Dod08] and subsequently extended in [JGN14].
The details are out of the scope of this work; the key idea is that hyperedge replace-
ment grammars mirror recursive separation logic predicates.
This correspondence has potentially far-reaching implications: We can translate
back and forth and use results from both worlds. In this way we can, for example,
determine more easily whether entailment of a given separation logic fragment is
decidable [Mat14].

1Countless variants have been proposed, hence the plural; see [Par10].



CHAPTER 6

Conclusions and Future Work

6.1 Conclusions

Heap analysis based on hypergraphs and grammar-based abstraction has now been studied
for several years [Hei+15; JGN14; Jan+11; HNR10; Rie09; Dod09]. In 2014, Jansen and
Noll proposed to use abstract hypergraphs as building blocks for procedure contracts,
and to automatically generate such contracts by means of an interprocedural data-�ow
analysis [JN14]. This work, however, exclusively focused on the analysis of sequential
programs. It also lacked a thorough formalization of the underlying program semantics.

I set out to address both of these issues; as such, the contributions of this thesis can be
viewed from two orthogonal perspectives: First, I integrated the hypergraph-based heap
analysis of interprocedural programs into the framework of abstract interpretation [CC77],
thereby developing a more formal justi�cation for the analysis proposed by Jansen and
Noll [JGN14]. This made it necessary to de�ne an operational hypergraph-based semantics,
which was also not done with a similar degree of rigor in previous work such as [Hei+15;
JN14; HBJ12].

Second, I endeavored to extend the interprocedural analysis to incorporate (limited) support
for the analysis of concurrent programs. To this end, I developed a permission-based
operational semantics for a language with fork and join, and brie�y argued that this
semantics enables the analysis of concurrent programs within the same framework for
(sequential) interprocedural analysis [KS92]. In the process, I developed a novel approach
to permission accounting, in which I modeled the current thread’s permissions, the globally
lost permissions, and the permissions of unjoined children separately, rather than keeping
track of fractional permissions [Boy03; Bor+05], counting permissions [Bor+05], or dynamic
thread tokens [Heu+11]. This resulted in very simple permission arithmetic and made it
possible to de�ne a data–race-free semantics for our limited fork–join model.

Both the analyses presented here and the original analysis of [JN14] are appealing for
a number of reasons. The resulting analyses are modular—each procedure is analyzed
independent of its calling context, each thread independent of its forking context. The
approach is also highly automatic: We need to provide only a graph grammar and an initial
precondition for the main thread; the contract generation itself does not require any human
intervention. In addition, we are able to deal with arbitrary data structures of bounded tree
width out of the box—we just need to provide a suitable grammar. This is, for example, not
true for separation logic, where entailment quickly becomes undecidable. Many tools for
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separation logic are therefore restricted to �xed decidable fragments, such as the restriction
to singly-linked lists presented by Berdine et al. [BCO05a].

We saw, however, that the worst-case complexity of our method may be an impediment
to practical applicability. In Appendix C, I shall brie�y introduce my prototypical imple-
mentation of the analysis. Developing case studies for this implementation should reveal
whether the worst-case complexity is indeed a problem for actual programs.

We were also unable to guarantee termination in the parallel setting, unless each thread
in the analyzed program assigned di�erent permissions to only a bounded number of
sub-heaps. We also noted that full abstraction using hyperedge abstraction grammars
yields a very coarse over-approximation of the state space, which may result in a large
number of false positives in practice.

6.2 Future Work

I shall conclude this thesis by proposing a few directions for future work, which may help
overcome the mentioned shortcomings of my method.

Implementation

This thesis approached the exploration of hypergraph-based program semantics and data-
�ow analysis mainly from a theoretical perspective. In my opinion, the �rst focus on future
work should therefore be on tool development; to this end, my prototype, which I brie�y
introduce in Appendix C, can serve as a possible starting point.

Improved abstraction and automation

Performing full HRG-based abstraction leads to a very coarse abstraction. Beside that,
HRGs as de�ned here are also not powerful enough to capture non-uniform permission
distribution patterns. On top of that, HRGs have to be developed manually. These limitations
motivate various lines of future work:

• We can change the semantics to always leave a constant neighborhood of each
variable edge concrete to improve the precision of the analysis; this approach was
successfully employed in the Juggrnaut tool [HBJ12].

• Conversely, at the expense of precision, we can allow the application of HRG rules
even for non-uniform distributions. The only sound way to do this is to take the
maximum over all permissions that occur in the abstracted subgraph. We should
perform experiments to �nd out whether we can still prove useful properties of
parallel programs given this additional over-approximation.

• The abstraction mechanism itself can be re�ned or replaced without rami�cations
for the rest of the semantics or the analysis framework, as long as the modi�ed
mechanism still allows a safe approximation of the concrete semantics.
One could, for example, experiment with parameterized HRGs. One way to do this
is to add a �xed number of permission-valued parameters to each nonterminal in
the grammar to be able to abstract data structures with non-uniform, but regular
permission distribution. The nonterminal L(rd,wt) could, for instance, represent a
list for which the thread needs a read permission on all elements with odd index and
a write permission for all elements with even index—which is precisely the kind of
permission distribution that would cause the divergence of our current analysis.
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• To achieve further automation as well as to �nd the right degree of abstraction,
it would be interesting to explore mechanisms for automatically deriving HRGs,
possibly coupled with counterexample-guided abstraction re�nement (CEGAR) tech-
niques [Cla+00]. To this end, a possible starting point is [Wei12], where automatic
inference of heap abstraction grammars is explored.

Support for synchronization mechanisms

The fork–join model presented in this thesis is rather limited. In particular, it completely
lacks bilateral synchronization mechanisms such as locks or monitors. Our current formal-
ization of the semantics cannot easily be adapted to incorporate synchronization: We can
no longer pretend that a fork is like a call, because we can only execute the forked thread
up to its �rst synchronization point.

This is not surprising: In the presence of synchronization, even data–race-free programs can
exhibit nondeterministic behavior, but they do so in a safe way by encapsulating statements
that can cause interference within critical sections. It is therefore impossible to de�ne a
fully deterministic semantics for programs with synchronization. In the future work we
must therefore �nd a way to incorporate this (limited form of) nondeterminism in our
semantics and analysis framework.

Model checking

Last but not least, it is possible to extract an abstract state space from the �xed point
of the interprocedural analysis: Each abstract heap con�guration in the analysis result
corresponds to a state in the state space. This gives rise to the following idea: We can

1. Annotate the abstract heaps with properties expressed in a logical formalism
2. Extract the abstract state space as well as the property
3. Pass the state space to a model checker such as SPIN [Hol04]

This would allow us to perform veri�cation of additional properties of sequential as well as
concurrent PL programs. A similar approach was taken in the Juggrnaut tool [HBJ12].
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APPENDIX A

An Introduction to Order Theory

In this appendix I brie�y summarize some basic order theoretic background, which is
needed to follow parts of my thesis. I adapted the de�nitions from [NNH99; Nol15]. We
are interested in ordered sets (D, v) that exhibit some additional structure:

Definition A.1 — Least upper bound. Let S ⊆ D. u ∈ D is called the least upper bound
(LUB) of S if

1. For all d ∈ S, d v u, i.e., u is an upper bound of S.
2. For all v ∈ D, if d v v for all d ∈ S, then also u v v, i.e., all other upper bounds

of S are greater than u.

We write d1 t d2 for the LUB of two elements and
⊔
S for the LUB of the set S.

Definition A.2 — Complete la�ice. (D,v) is called a complete lattice if all subsets S ⊆ D
have both a least upper bound and a greatest lower bound.

It is a well-known result of order theory that it is su�cient to show only one of the two
conditions [NNH99, Lemma A.2].

Theorem A.3 The following statements are equivalent.

1. (D, v) is a complete lattice.
2. Every subset of D has a least upper bound.
3. Every subset of D has a greatest lower bound.

Sets ordered by the subset relation form a complete lattice.

Lemma A.4 — Powerset la�ices. Let A be an arbitrary set. Then (2A,⊆) is a complete
lattice.

Proof. Let S ⊆ D. For all d ∈ S, d ⊆
⋃
S, so

⋃
S ∈ 2A is an upper bound of S. Let T

be an upper bound of S. Then in particular, for all d ∈ S, d ⊆ T . Hence,
⋃
S ⊆ T and⋃

S is the least upper bound of S. �

Definition A.5 — Chain. Let (D, v) be a complete lattice. A sequence 〈d1,d2, . . .〉 of
elements di ∈ D is called a chain if di v di+1∀i.
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Definition A.6 — Ascending chain condition (ACC). Let (D, v) be a complete lattice.
(D, v) satis�es the ascending chain condition (ACC) if all chains inD become stationary,
i.e., if for all chains 〈d1,d2, . . .〉 there exists an i such that for all j ≥ i, dj = dj+1.

Definition A.7 — Height of a la�ice. Let (D, v) be a complete lattice. If there exists a
maximal sequence 〈d1, . . . ,dn〉 in D such that di @ di+1∀i, (D, v) has height n − 1.
Otherwise, its height is∞. We say that (D, v) has �nite height if its height is not∞.

Definition A.8 — Monotonic and distributive functions. Let (L,vL) and (M,vM ) be
complete lattices and f : L → M . f is called monotonic if for all d1,d2 ∈ L, d1 vL
d2 =⇒ f(d1) vM f(d2). If f(d1 t d2) = f(d1) t f(d2), f is called distributive.

All distributive functions are monotonic, but not the other way around.

Monotonicity is an interesting property, because it guarantees the existence of e�ectively
computable �xed-points.

Theorem A.9 — Knaster-Tarski fixed-point theorem [Nol15]. Let (D, v) be a complete
lattice and ϕ : D → D a monotonic function onD. Then ϕ has a least-�xed point fix(ϕ),
which is given by

fix(ϕ) =
⊔
{ϕk(⊥) | k ∈ N}

For the proof see, for example, [NNH99].

Corollary A.10 — E�ectively computable fixed-points. If (D, v) has the ACC, then there
exists a k ∈ N such that fix(ϕ) = ϕk(⊥).

For the theory of abstract interpretation (cf. Sections 3.2 and 4.2) we also need to relate
pairs of lattices via translation functions that are structure-preserving in a certain sense:

Definition A.11 — (Monotone) Galois connection. Let (L,vL) and (M,vM ) be complete
lattices. Further, let α : L→M and γ : M → L be monotonic. (L,α,γ,M) is called a
Galois connection i�

1. ∀` ∈ L.` vL γ(α(`))
2. ∀m ∈M.α(γ(m)) vM m

α is called the lower adjoint of γ, γ is called the upper adjoint of α.

In the context of abstract interpretation, L is called the concrete domain, and M the abstract
domain. Consequently, we refer to α as the abstraction function and to γ as the concretization
function. The intuition behind Galois connections is as follows.

1. No concrete value is lost through abstraction and subsequent concretization.
2. We do not get a coarser abstraction (i.e., greater abstract value) through concretization

and subsequent abstraction.

These are exactly the properties that we need for a theory of sound approximation.

For a more thorough introduction, which is also tailored towards applications in static
analysis, I suggest a look at “Principles of Program Analysis” [NNH99]; the original paper
on abstract interpretation [CC77] is also quite accessible and certainly worth reading.



APPENDIX B

A Primer on (Intraprocedural)
Data-Flow Analysis

Chapter 5 may be hard to follow without background in data-�ow analysis. If that is the
case for you, you may want to read this appendix as preparation for Section 5.2. In the
following, I introduce all the concepts used in Section 5.2 in the simpler intraprocedural
setting. This appendix is based on [Nol15; NNH99; KS92].
Let (D, v) be a complete lattice. Let t denote the LUB operator, ⊥ the least element and
> the top element of the lattice.

Definition B.1 — (Distributive) data-flow system. A data-�ow system over D is a triple
S = (G,Φ,ι), where

• G = (N,E,s,e) is a CFG (cf. Section 5.1)
• Φ = {ϕn : D → D | n ∈ N} is a set of monotonic transfer functions
• ι : D is the extremal value, i.e., the analysis information for s

If all individual ϕn are distributive, we call S distributive.

A data-�ow system gives rise to a set of data-�ow equations. Let n1, . . . ,nk be an (arbitrary)
ordering of N . Let αn ∈ D denote the analysis information at node n. We call a vector
(αn1 , αnk

) a solution of a data-�ow system if it satis�es the following equation system.

αni =

{
ι, ni = s∗⊔
{ϕm(αm) | (m,ni) ∈ F ∗}, otherwise

Additionally, Φ can (by abuse of notation) be viewed as a monotone operator

Φ : Dk → Dk, (α1, . . . ,αk) 7→ (α̂1, . . . ,α̂k)

where

α̂i :=

{
ι, ni = s∗⊔
{ϕm(αj) | (mj ,ni) ∈ F ∗}, otherwise

It is easy to see that (αn1 , αnk
) is a solution of the equation system if and only if it is a

�xed point of Φ [Nol15].
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We also observe that if (D, v) is a complete lattice, so is (Dk, vk), where vk is de�ned
point-wise. In addition, if (D, v) is of �nite height, then so is (Dk, vk), and the �xed
point is e�ectively computable (cf. Theorem A.9). This gives us a way to solve a data-�ow
system: Fixed-point iteration from ⊥k, yielding the least solution of the system fix(S).

Observation B.2 For a data-�ow system over a lattice of �nite height, there is an n ∈ N such
that Φn(⊥k) is a solution. Such a data-�ow system can thus be e�ectively solved by �xed
point iteration of Φ. The solution obtained in this way is the least �xed point of Φ.

R For historic reasons, this solution is usually called the maximal �xed point (MFP)
solution, although it is in fact the least �xed point of the data-�ow system [NNH99].
For consistency with the literature, I will also refer to it as the MFP solution, even
though we are exclusively interested in least �xed points in this thesis.

What can we say about the quality of the �xed-point solution? Let us brie�y characterize
the most precise solution of a data-�ow system.

Ideally, a data-�ow analysis would analyze all paths through the program and merge (i.e.,
join) the results. Let us formalize this idea. First of all, we de�ne the sets of paths through
a CFG.
Definition B.3 — Paths. A (�nite) path through a CFG is a (�nite) sequence of nodes
〈x1, . . . ,xj〉 such that all pairs of consecutive nodes are connected by an edge, i.e.,
(xi,xi+1) ∈ F ∀i ∈ {1, . . . , j − 1}.

The set of all �nite paths is de�ned as

P := {〈x1, . . . ,xj〉 ∈ N∗ | ∀i ∈ {1, . . . , j − 1}.(xi,xi+1) ∈ F}

We further de�ne

Pm
n := {π ∈ P | π = 〈n,x2, . . . ,xj−1,m〉}

to be the set of all paths from n to m.

We de�ne the combined transfer function for paths in a straightforward way.

Definition B.4 — Path transfer function. Let π be path. The path transfer function for π
given the set of transfer functions Φ is

ϕπ :=

{
id, if π = ε

ϕxj ◦ ϕ〈x1,...,xj−1〉, if π = 〈x1. . . . , xj〉

Now we can make precise the meet over all paths (MOP) solution of the data-�ow system.

mop(S)(n) :=
⊔
{ϕπ(ι) | π ∈ Pn

s }

The MOP solution for a node n is the least upper bound over all paths leading from the
start node s to n. Intuitively, this is the most precise solution that any data-�ow analysis
could possibly compute, as it takes into account all paths that lead to a node but nothing
else.

R Again, a more accurate term would be the join over all paths solution as we take least
upper bounds (joins), but for historic reasons we speak of the MOP solution [NNH99].
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Now that we have two possible solutions for the data-�ow system, the obvious question is
how the two compare. First, we observe the following.

Lemma B.5 The MFP solution fix(S) safely approximates the MOP solution mop(Φ), i.e.,
∀n ∈ N.mop(S)(n) v fix(S)(n).

This intuitively makes sense, as we implicitly consider more paths through the CFG than nec-
essary when we perform the �xed point iteration. A formal proof can be found in [NNH99,
Lemma 2.32] Thus, in general, the �xed point construction is a source of additional over-
approximation. That is to say, the �xed point iteration may yields results that are less
precise than the analysis of all paths through the program, the MOP solution. This is not
surprising, as the latter problem is undecidable for some analyses [NNH99, Lemma 2.31].
It is, however, well known that the two solutions coincide if all data-�ow equations are
distributive.

Theorem B.6 — Intraprocedural coincidence theorem [KU77]. If S is distributive, the
MFP and MOP solutions coincide: ∀n ∈ N. fix(S)(n) v mop(S)(n)

In Section 5.2, we developed an interprocedural framework with the same property. (Which
we were even able to use for parallel programs, because we could analyze them as if they
were sequential interprocedural programs thanks to our deterministic semantics.) This
gave us a way to e�ectively perform an interprocedural analysis with the full precision of
the MOP solution.





APPENDIX C

Towards an Implementation

Introductory remark

During the time that I worked on this thesis, my focus shifted: Initially, I concentrated
largely on an implementation of Jansen and Noll’s paper on interprocedural analysis [JN14],
with an aspiration to lift the analysis to parallel programs afterwards. During this process,
I became increasingly interested in writing a coherent introduction to and developing a
formal justi�cation for hypergraph-based program analysis.

On the one hand, this formalization has diverged from the semantics that I implemented,
especially regarding parallel programs. On the other hand, the formalization ended up
taking so much time and space (you are reading page 117, after all) that I was not able to
get the implementation to the degree of maturity that would warrant a dedicated chapter
in the main part of this thesis. I instead decided to end this thesis on a somewhat lighter
note1 with an informal appendix that introduces my prototypical implementation.

High-level overview

My implementation is written entirely in Scala.2 I started from scratch, i.e., without
reusing parts of the (Java) Juggrnaut implementation to have the freedom to design my
own hypergraph data structures and to be able to work completely in Scala. It would, of
course, be possible to integrate the two implementations, as Java and Scala are both JVM
languages.

The implementation follows the same approach as the thesis: I implemented both the
concrete and the abstract semantics (⇒ and A

=⇒ in the notation of Chapter 3), and then
built the interprocedural analysis as a rather thin wrapper around the semantics, which
basically just applies the rules of the semantics to the postconditions of the procedure
contracts, as described in Section 5.3.

I developed both a simple command line interface (CLI) and a browser-based graphical user
interface (GUI), which I will discuss some more in a dedicated paragraph later.

1No de�nition to be found here, for a change!
2More speci�cally, Scala 2.11, using Scala’s own combinator parsing and XML libraries for I/O, scalaz for

additional functional programming support, spray for building the REST/HTTP-layer, ScalaTest for unit tests,
and Typesafe’s Scala logging library. There are also a few snippets of JavaScript that make the web interface a
little more convenient to use, but these are negligible.
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The implementation of the sequential semantics and analysis is reasonably complete1,
whereas the implementation of the parallel semantics is not yet �nished. Overall, the
implementation currently amounts to ca. 6500 lines of code (not counting comments, blank
lines, and unit tests). These are distributed roughly equally among the following three
areas.

• Data structures (hypergraphs, HRGs, abstract syntax trees, control-�ow graphs) plus
core algorithms (abstraction, concretization, canonical heap computation)

• Symbolic execution (i.e., implementation of the semantics) and interprocedural anal-
ysis

• CLI and GUI, including (combinator) parsing of the input �les and dot export

Data structures

I mostly used a functional programming style, and hence all core data structures (hyper-
graphs, grammars, control-�ow graphs, etc.) are immutable. To this end, my implementation
makes heavy use of Scala’s built-in collection framework, especially of (immutable) sets
and (immutable) sequences. A hypergraph in my implementation, for example, essentially
consists of an immutable set of nodes, an immutable set of edges, and an immutable se-
quence of external nodes. This is not a problem from a performance point of view, because
Scala’s collection are persistent: They are implemented using structural sharing, so that
prepending to an immutable list is, for example, an O(1) operation.
Nodes have a unique identi�er to simplify substitution of subgraphs (in grammar rule
application or upon procedure return; I brie�y touched upon this when discussing the cost
of symbolic execution on page 96): We never have to check for duplicate nodes or rename
nodes, apart from the assignment of unique identi�ers to the nodes in production rules
whenever they are applied.2 An edge is nothing more but a sequence of nodes, a label, and
a type to distinguish between variables, selectors, and nonterminals.3

Whenever we need to compare hypergraphs for equality, we compute the graphs’ canonical
representatives roughly as described on page 95.
Contracts are represented as sets of precondition–postcondition pairs, where each such
pair consists of a hypergraph and a set of hypergraphs, i.e.,
type Contract = Set[(HyperGraph, Set[HyperGraph])]

(This is a bit of an oversimpli�cation, but it boils down to this.) Here I use the fact that a
partial function can be regarded as a set of pairs. Because I de�ned graph equality as equality
of canonical representatives, Scala automatically only keeps one graph per isomorphism
class in the postconditions. I use the same equality check to detect whether precondition–
postcondition pairs have to be merged, because their preconditions are isomorphic.
All in all, the core data structures are therefore quite close to the mathematical representa-
tion chosen in the main part of the thesis. The other data structures (such as syntax trees
and control �ow graphs) are all straightforward and hence not discussed here.

Algorithms

The IPA implementation is not exactly straightforward, but it does not contain any surprises
that would merit a detailed discussion. A brief overview of the more interesting algorithms
follows.

1There are still a few rough edges at the time of writing.
2Assigned through one of the very few side-e�ecting commands that are not concerned with I/O.
3Realized as so-called case classes.
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• On-demand concretization simply applies all applicable rules that remove at least
one violation point. I implicitly assume that this is a language-preserving operation,
but do not enforce anywhere in the code that the given HRG is actually locally
concretizable. Rule application consists in removing the nonterminal edge, adding
(uniquely named copy of) the right-hand side to the graph, and connecting the
attached nodes of the nonterminal edge to the external nodes of the right-hand side
in the correct order.

• In the abstraction process, we have to match the right-hand side of the production
rules against subgraphs of the heap. To this end, many (very small) instances of the
subgraph isomorphism problem are solved. Because the right-hand sides of the rules
are very small and the heaps have enough structure to quickly rule out most node
combinations, this has so far not been a performance bottle neck.

• Implementation of the inference rules is mostly straightforward. The reachable
fragment computation in the call semantics is a simple breadth-�rst search. The
return semantics are not di�cult either, because the external nodes of the caller heap
are not abstracted by the callee, and we can hence just “glue” the returned fragment
to the caller heap at the external nodes.

• Canonical representatives are computed a little di�erently than suggested in the main
part of the thesis: I perform a breadth-�rst-search, with the twist that I use a queue
of edges rather than nodes. I initialize this queue with the set of all variable edges,
ordered by their respective label. Whenever a new node is visited, it is assigned the
next unused positive integer and its outgoing edges are added to the queue, ordered
by their label. This yields a unique representative of the graph’s isomorphism class.
(Under our usual assumption that the entire graph is reachable from the variables.)

The user interfaces

As mentioned earlier, I implemented a CLI and a browser-based GUI. The latter consists
of a simple interactive webservice, which I also implemented in Scala, and which directly
uses the core algorithms and data structures. The webservice can be run on localhost using
an embedded HTTP server; no installation is necessary.

Both interfaces receive their input as text �les: The user places the PL programs and
type declaration, the heap abstraction grammars, as well as the preconditions for the main
procedure in �les, then creates a con�guration �le which de�nes both a suitable set of
input �les and a few parameters that control the execution of the program.

The CLI performs a �xed task speci�ed in the con�guration �le, whereas the web GUI lets
the user choose whether she wants to explore the semantics (symbolic execution) or wants
to perform an interprocedural analysis. In both cases, there are interactive step-by-step
modes and “full execution” modes, which run or analyze the program until termination
and report the result. In the interactive mode, the GUI displays control �ow graphs, HRGs,
heaps, and contracts as they are generated. Graph layouting is performed by graphviz,
based on a straightforward export from my hypergraph and CFG data structures to the dot
format.

I would like to conclude this thesis with two screen shots from the web GUI: Figs. C.1
and C.2 show the interactive mode “in action”. The former shows an intermediate step of
the symbolic execution on concrete graphs, i.e., the execution of⇒. The latter shows a
single precondition–postcondition pair as generated during the interprocedural analysis.
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Figure C.1.: An intermediate step in the symbolic executing using the concrete semantics
⇒ as displayed in the browser-based GUI. The left-hand side shows the current
control-�ow graph. Each node of the CFG is labeled with the command that
it represents. The next edge in the control-�ow graph is highlighted. On the
right-hand side, we see the current heap. Each ellipsis represents a node in the
heap graph. It is labeled with a unique identi�er and the data type of the node.
External nodes are displayed on a dark background. Following the convention
of the thesis, variable edges are displayed as rectangles, whereas pointer edges
are represented by ordinary edges.

Figure C.2.: An intermediate step in the execution of the worklist algorithm that computes
the �xed point of the IPA DFS, as displayed in the browser-based GUI. We see
that a new precondition–postcondition pair has been added to the contract at
node r_1. It corresponds to the execution of the command tmp := curr.next
in a simple list traversal program.
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