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Abstract

This paper presents a graph-based modelling of the structure of concurrent
heap manipulating programs. It introduces a programming language that
allows parallel execution in the means of fork and join. The semantics of the
programming language is presented in terms of hypergraphs transformations.
The main results are the abstraction of the heap structure by hyperedge
replacement grammars which is proven to be a correct overapproximation and
that the presented analysis can prove data race free executions of programs.
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1 Introduction

Nowadays, software relies on the use of pointers. In order to make use of unbounded data
structures these are modelled within the dynamically allocateable part of the memory,
the heap. As previous research has shown it is a viable approach to analyse pointer
programs by representing the structure of the heap as hypergraph [7, 10, 11]. This
analysis focuses on different problems in the use of pointer in software, most notably
the dereferencation of null pointers and memory leaks [7, 6]. Furthermore in order to
obtain a finite representation of the unbounded data structures hyperedge replacement
grammars are used for abstraction. Those hyperedge replacement grammars allow to
represent parts of the heap that can grow unboundedly in a finite manner but also to
concretise abstracted parts on demand. This modelling technique is already used as basis
for computational analysis by the tool Juggrnaut [6]. By now these techniques operate
mainly on sequential execution of programs. Another possible approach on analysing
pointer programs which relies on formulating structural properties of the heap in logical
formulae is separation logic [14]. Because in separation logic the heap is separated in
different parts which are reasoned about individually this approach has proven well suited
for analysis of concurrent programs [3, 4, 15]. This work is a contribution in widening
the analysis technique of a graph-based representation to parallel executing programs.
By approaching parallelism new challenges arise, most importantly data races. Data
races are situations where multiple processes access data at the same time and the result
of these actions depend on each other. If data races occur all possible interleavings of
the executions have to be examined which causes the possible states that have to be
analysed to grow uncontrollably large. This is often referred to as state space explosion
e.g. in [2, pp. 77-80]. In order to avoid state space explosion it is possible to prove the
absence of data races which resolves the dependency of the actions and allows to reduce
the number of states that have to be examined. In separation logic this is approached
by incorporating permission accounting into the formulae that describe the heap states.
This permission accounting is a way to distinguish read and write access and can be
used to prove data race freedom. As suggested e.g. in [10] and [11] this approach can be
examined for graph-based representation of the heap. This is the main contribution of
this paper: incorporating permissions into the hypergraphs that are used to model the
state of the heap and introducing a mechanism of parallelism by adding fork and join
statements to the examined programming language. Where fork starts new processes
and join synchronises other processes by waiting for their termination. This is explored
in [1] with some formal effort. The goal of the presented analysis is among other things
to provide a more intuitive approach by graph-based representation of the heap. For
the fork and join statemant appropiate semantics in the sense of graph transformations
are defined. Central results of this work are the proof that the used abstraction via
hyperedge replacement grammars support the incorporation of permissions and that the
analysed states ensure data race freedom. For this result it is generally assumed that
the behaviour of forked processes is determined by given contracts, similar to those that
are automatically generated in [11].
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2 Preliminaries

For a set S, S∗ are all finite sequences of elements from S. For such a sequence s ∈ S∗
the number of elements is denoted by |s| and the set of elements of the sequence is
denoted by HsI. Furthermore s(i) refers to the i-th element of the sequence s. For
a tupel A = (B,C,D, ...) for the single components BA, CA, DA, ... is used as long as
A is clear from the context. Additionally, a function restricted to a subset A of its
domain is denoted by f � A. Functions defined for a set V are lifted to the sequence
V ∗ and the power set P(V ) by elementwise application. For a finite set A the function
enumA : |A| → A returns an enumeration of the elements of A. And finally, for a
function f f [e 7→ v]describes a function that mirrors f except for e where it maps to v,
i.e. for an e ∈ dom(f) and v ∈ img(f)

f [e 7→ v](x) =

{
v if x = e

f(x) otherwise
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3 Programming Language

In the following a very basic programming language is discussed, which allows simple
heap manipulating operations. It is similar to the programming language introduced in
[6]. For the manipulation of the heap it is possible to create objects by allocation. All
these objects contain a set of selectors which refer to other objects or a distinguishable
empty state, null. Especially there is just one set of selectors (Sel) and all objects are
universally typed in the sense that the selectors of all objects are Sel . Additionally
every program has a set of variables (Var) which refer to objects within the heap. This
heap is implicitly garbage collected, i.e. objects that can not be reached from one of the
variables are deleted. Initially all variables and selectors of newly allocated objects refer
to the null value. One of the main features of the presented programming language
is the possibility of parallel execution. Therefore the fork and the join statement are
introduced. On the one hand the fork statement allows to spawn a new process and on
the other hand the join statement synchronises a process by blocking until the process
that is joined terminates. Every process operates on variables which are exclusively
accessible to itself. But the objects of the heap can be shared between different processes
therefore at the forking of a new process it is provided with a set of parameters which
refer to objects of the heap. These parameters are the initial values for some variables
of the newly forked process. Because a program might start multiple processes there
is a set of process identifier (Varprocess) which are used to identify forked processes.
These process identifier are also unique for every executing process (as variables are)
and the join statement is called with one of theses identifiers to determine which process
the program synchronises with by waiting for its termination. Forked processes execute
defined programs concurrently and every process must only be joined once. Let Proc
denote a finite set of programs that can be forked.

3.1 Syntax

The syntax of the examined programming language can be given by a context-free gram-
mar starting in 〈S 〉 as follows where x, x1, . . . , xn ∈ Var , s ∈ Sel , t, t1, t2 ∈ Varprocess and
m ∈ Proc is another program:

〈P〉 ::= null | x | x.s

〈C 〉 ::= 〈P〉 == 〈P〉 | 〈P〉 != 〈P〉 | 〈C 〉 && 〈C 〉 | 〈C 〉 ‖ 〈C 〉

〈S 〉 ::= x=〈P〉 | x.s = 〈P〉 | new(x) | while(〈C 〉) do 〈S 〉 done
| if (〈C 〉) then 〈S 〉 else 〈S 〉 fi | skip | 〈S 〉;〈S 〉
| t=fork(m(x1, . . . , xn)) | join(t) | t1 = t2

3.2 Example

In the following a small program is examined which traverses a binary tree. Therefore
there is one variable called curr which is assumed to initially start on a node of the binary
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tree. Every node has two selectors left , right identifying the left and right subtree. The
program executes by forking another process that executes a different program traverse
on every node initially provided with the right subtree(the program traverse is assumed
to not change the subtree it operates on) and itself moving down the left subtree. If
there is no left subtree the most recently forked process is synchronised with. At last
the left selector of curr is set to the right subtree of curr and the right selector is set to
the designated null value:

Listing 1: An example program

1 while (curr .left != null ) do
2 tmp = curr .right ;
3 t = fork ( traverse ( tmp ) ) ;
4 curr = curr .left ;
5 done ;
6 tmp = curr .right ;
7 t = fork ( traverse ( tmp ) ) ;
8 tmp = null ;
9 join (t ) ;

10 curr .left = curr .right ;
11 curr .right = null ;

Thus for this program the context(the sets Sel , Varprocess, Var , Proc) is as follows:

• Proc = {traverse}

• Sel = {left , right}

• Var = {curr , tmp}

• Varprocess = {t}

Furthermore consider the graphical representation of the execution of this program that
can be seen in Figure 1. Some interesting observations can be made:

1. Because of the structure of the binary tree the newly forked process can only access
the subtrees starting from the parameter object (marked in green).

2. After starting a new process the previously started process cannot be referred to
anymore since the process identifier is assigned to another process. Thus there
is no information about any process operating on the yellow marked areas of the
binary tree.

3. The last process is joined again, thus it can be assured that it has terminated after
the join statement. This means especially that no process operates on the subtree
which is moved from the right hand side to the left hand side (as indicated by the
absence of a yellow mark).
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Figure 1: A graphical representation of the execution of the example program for one
possible heap state, note that aside from the first step selectors which refer to
the null value are omitted.
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The in the following presented analysis of programs relies heavily on representing the
current state as graph. But in order to approach parallel execution of multiple processes
which share heap objects and their selectors this representation is furtherly enriched. In
order to account which parts of the heap are accessible by multiple processes it is locally
logged for the selectors to which processes these are visible.
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4 Permission Model

As stated above it is locally accounted for which process a selector is accessible. The
main goal of the analysis is to state that the execution of a program is data race free.
Where data race refers to the situation that two processes access a shared value at the
same time and at least one of the processes alters the value. This implies a dependency of
both actions with each other. For a proper analysis all interleaving have to be examined
(see [2, pp. 77-80] for details). Data race freedom describes the absence of data races
which can be guaranteed as long the following two conditions are met1:

• If two or more parallel processes access a value it must not be altered.

• If one process alters a value it must have at this time exclusive access to it.

The accounting is realised in form of permissions. Permissions are used to model access
restrictions in order to ensure (1) that write access is exclusive and (2) that if other
processes might access the same value at the same time both are restricted to read
access. Permissions were already introduced for other modelling techniques for heaps like
separation logic [3]. There different models for permissions are examined like fractional
permissions or counting permissions. All these models share the property that there is
one distinguishable permission representing exclusive access on a value. From this access
ticket for one value multiple other access tickets on this value can be derived which then
causes all these accesses to become read only. Furthermore derived access tickets can be
returned until there exists only one access tickets which then again grants permission to
alter the given value. For fractional permission it is possible that once derived tickets
can be split indefinitly on demand to generate as many access tickets as needed. On the
other hand for counting permissions there is one distinguishable permission per value
from which further access tickets are derived. Every derived access ticket is accounted
for and can be returned to this distinguishable permission. In the following course
an approach is chosen which is closer connected with [8] and combines both presented
concepts of fractional permissions and counting permissions and formalises ideas from
[12].

Fundamentally two different permissions are distinguished:

• WR - denotes that this value can be altered.

• RD - denotes a shared access, which restricts to reading only.

These permissions represent access rights where WR is the distinguishable value repre-
senting exclusive access. From both permissions it is possible to derive further access
tickets which are locally accounted and deleted if these tickets are returnded. Therefore
the different forked processes are uniquely identified and this identification is used to
account derived access tickets. Additionally it is possible to transfer WR tickets com-
pletely. For the identification of forked processes the programming language relies on

1this can be easily derived from the explanation of safe concurrency in [3]
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values from Varprocess. As it can be seen from the grammar of the programming lan-
guage it is possible that multiple process identifiers from Varprocess can refer to the same
actual process as it can be easily seen by the following example:

1 t1 = fork ( t r a v e r s e ( tmp ) ) ;
2 t2 = t1 ;
3 join (t2 )

Here t1 and t2 refer to the same forked process. The join statement takes any of
these possible process identifier to synchronise with the corresponding process. In order
to account permissions given to processes tokens are introduced. Tokens are sets of
Varprocess which refer to the same process. Thus, for every token T always holds that
T ⊆ Varprocess and the set of all possible tokens is simply the powerset of the process
identifiers (P(Varprocess)). For every shared value the permission that it held initially
is kept as well as a set of tokens that represent all derived tickets to the process that
can access this value. Recall that variables and process identifiers are considered process
exclusive and only heap objects and selectors can be shared. Furthermore the presented
analysis focuses on structural analysis of the heap and therefore only consideres selectors
as data of heap objects.

In order to formalises these ideas permission expressions (PEs) are introduced in the
following. These consist of a so called BasePerm which represents the permission that
was originally granted and a set of tokens for derived permissions.

For an example consider Figure 2, which mirrors the previous example from Figure
1 but added permissions to the selectors. Imagine all selectors are initially equipped
with a WR permission. For the part of the heap that the newly forked process may
access the token {t} is added to the permissions. As already observed in the second
iteration of the example from Figure 1 the information if a process still operates on a
certain part of the heap is lost. Especially it is impossible to retrieve any information
of the status of the once forked process because the synchronisation mechanism (join
statement) demands an identifier referring to the process which no longer exists. In this
case the derived access tickets are considered permanently lost. In order to model this for
permissions two additional BasePerm besides WR,RD are introduced: WR∗ and RD∗

which indicate that the initially granted permission can never be fully returned since
the information about any parallel executing processes is lost. The following definition
formalises these observations:

Definition 4.1 (Permission Expression). A permission expression is a term of the
form

BasePerm − PermSet

where BasePerm ∈ {WR,WR∗,RD ,RD∗}. And PermSet ⊆ P(Varprocess).

For convenience an empty PermSet and a PermSet after RD∗ or WR∗ as BasePerm
might be omitted if it is clear from the context that this information is not needed.
Sometimes for a BasePerm ρ and a PermSet Φ and T ∈ P(Varprocess) ρ − Φ − T is
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shortened to l and r respectively. For two selectors that are represented by
one edge the permission for those is written only once.
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written for ρ − Φ ∪ {T}. In addition a PE with an empty PermSet is called simple.
The set of all PEs over Varprocess is denoted by PESVarprocess . Note that for a finite set
Varprocess PESVarprocess is finite as well.

For now it was always considered that the process only reads the part of the heap it has
access to. But as it is introduced later on there also will be a way to specify for a process
that it might alter certain selectors. In order to model that this part of the heap must
not be accessed anymore because the access ticket is completely submitted to the forked
process. This is achieved by substituting this part of the heap that might be altered by a
placeholder. This placeholder “hides” parts of the heap so it can not be accessed. Upon
joining this process again the placeholder is additionally used to identifiy where the part
of the heap to which the access ticket is transferred to is returned. For the program
from Listing 1 consider that the forked process might demand write access on the right
subtree of its parameter. Then the substitution of this subtree by a placeholder can be
seen in Figure 3. Note that the placeholder is connected to the node which can still
be accessed from the original heap but is also the node that the parameter of traverse
pointed to and to the null node.
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5 Hypergraphs as Heap Representation

In order to formalise the intuitive graph representation from the examples above hy-
pergraphs (HGs) are introduced in the following. This follows the general approach
presented in [13, 10, 7, 6]. Intuitively, an HG is the same as a normal graph, it consists
of a set of nodes and edges, but an edge in an HG is called hyperedge and can connect
arbitrarily many nodes instead of only two. Furthermore the used HGs will be labeled,
thus there is a function lab which assigns a label to every hyperedge. The possible labels
come from a set Σ. Then an HG can be formally defined as follows:

Definition 5.1 (Hypergraph). Let Σ be a set of labels and let V be a finite set of
nodes, E a finite set of edges. con : E → V ∗ maps every edge to the sequence of
connected nodes, lab : E → Σ labels every edge. Further let ext ∈ V ∗ denote a
possibly empty sequence (ε) of nodes and perm : E → PESVarprocess. An HG H is a
tupel

H = (V,E, con, lab, ext , perm)

The set of all hyperedges with the labels Σ and process identifier Varprocess is denoted

by HG
Varprocess
Σ . Two HGs are called isomorphic if they are equivalent modulo renaming

of edges and nodes. Isomorphic HGs are not distinguished in the following.

In order to represent states of the heap the objects in the heap will be represented
as nodes. Variables are represented by hyperedges that are only connected to the node
that represents the value of the variable. Such a hyperedge that is connected to only
one node is called unary. Selectors are modelled as binary hyperedges between nodes,
which are interpreted as directed from the first node of the connection sequence to the
second one. Furthermore parts that are given away to other processes are substituted by
hyperedges. For the hyperedges that represent parts of the heap for which access tickets
are transferred a set of labels is introduced as

T = {NT | T ∈ P(Varprocess)}

States of the heap can now be represented as H ∈ HG
Varprocess
Σ where Σ = Var ]Sel ]T,

but of course not all those HG H represent valid heaps because it is e.g. possible that
every object might have multiple outgoing edges labeled with the same selector. Thus
some restrictions are enforced in order to represent valid states of a heap which are called
heap configurations (HCs), namely:

• There is exactly one distinguishable node vnull representing the null value. vnull

has no outgoing selectors.

• There is exactly one unary hyperedge for every variable.

• Edges labeled by a selector are binary hyperedges.

• For every node there is at most one outgoing edge per selector.
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Note that every object is universally typed. Thus, all objects have initially an outgoing
edge for every selector. But of course some of these edges can be “hidden” within
a hyperedge representing parts of the heap for which WR permissions are transferred
to another process. As it is possible that the reference to the process that operates
exclusively on the selectors is lost, these selectors can permanently be removed from the
heap state. This leads to the following formal definition for HCs:

Definition 5.2 (Heap Configuration). A hypergraph

H = (V,E, con, lab, ext , perm) ∈ HG
Varprocess
Σ is called a heap configuration if

• Σ = Var
⊎

Sel
⊎
T

• vnull ∈ V and @e ∈ E.labH(e) ∈ Sel ∧ conH(e)(1) = vnull

• |conH(e)| = 1 for all e ∈ E with labH(e) ∈ Var

• |conH(e)| = 2 for all e ∈ E with labH(e) ∈ Sel

• ∀v ∈ Var .∃e ∈ E.labH(e) = v

• ∀v ∈ Var , e, e′ ∈ E.v = labH(e) = labH(e′)→ e = e′

• ∀s ∈ Sel , e, e′ ∈ E.conH(e)(1) = conH(e′)(1) ∧ s = labH(e) = labH(e′) → e =
e′

The set of all HC over Σ and Varprocess is denoted by HC
Varprocess
Σ .

Furthermore the following notion is defined for ρ ∈ PESVarprocess which collects all
edges of the HG with permission ρ:

EHρ = {e ∈ EH | permH(e) = ρ}
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6 Concrete Semantics

Because HGs are used to represent the current state of the heap the semantics of the
programming language are modelled in terms of graph transformations. Therefore the
different statements of a program are connected with changes of the shape of the hyper-
graph representing the state of the heap. In the following the necessary graph transfor-
mations which are based on presented transformations of [6] for modelling the semantics
are presented. This is done in two separate parts where firstly structural changes are
discussed and secondly transformations that regard the PEs of the graph.

6.1 Graph Transformations

The structural graph transformations are presented in the following:

• H[+v] adds a new fresh node v to H, which is of universally type, thus there are
edges attached to for all selectors

• H[\E′] removes the set of edges E′ from H

• H[x ↪→ v] connects one x labeled edge with v, where x ∈ Var

• H[u
s
↪−→ v] connects one s labeled edge from the node u to the node v

• H[+ρn ⇒ v1 · · · vm] adds a fresh n labeled edge with permission ρ connected to
v1 · · · vm

Formally these transformations are defined as follows, where v is a new node and e, e1, . . .
are new edges:

H[+v] =

(VH ] {v}, EH ] {e1, . . . , e|Sel |},
conH ∪ {e1 7→ vvnull, . . . , e|Sel | 7→ vvnull},
labH ∪ {e1 7→ enumSel (1), . . . , e|Sel | 7→ enumSel (|Sel |)},
extH , permH ∪ {e1 7→WR, . . . , e|Sel | 7→WR})

H[\E′] =
(VH , EH \ E′, conH � (E \ E′), labH � (E \ E′),
extH , permH � (E \ E′))

H[x ↪→ u] =

(VH , EH ,

conH [e 7→ u],

labH , extH , permH)

for one e with labH(e) = x, if
such an e exists

H[u
s
↪−→ u′] =

(VH , EH ,

conH [e 7→ uu′],

labH , extH , permH)

if there is e with labH(e) =
s and conH(e)(1) = u and
u, u′ ∈ VH

H[+ρn⇒ v1 · · · vn] =
(VH , EH ] {e}, conH ∪ {e 7→ v1 · · · vn},
labH ∪ {e 7→ n}, extH , permH ∪ {e 7→ ρ})

The few more transformation which focus on various aspects of the permissions are also
introduced below:
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• H[↓ t] denotes that t ∈ Varprocess does not longer identify a certain process (for
example by reassigning t)

• H[← T ] denotes that the permissions for T ∈ P(Varprocess) are returned

• H[t = t′] is used to describe that for t, t′ ∈ Varprocess t now identifies the same
process as t′

• H[E − T ] denotes that for the edges in E the token T is added to the PermSet of
the permissions

The following definitions formalise these intuitions:

Definition 6.1 (Dropped Thread Variable). For an HC H, t ∈ Varprocess let
Eremove ⊆ EH be all edges e such that labH(e) = N{t}. Then H[↓ t] denotes the
HC with:

H[↓ t] = (VH , EH \ Eremove︸ ︷︷ ︸
=:E′

, conH � E
′, lab′ � E′, perm ′ � E′)

where lab ′ mirrors labH except of all edges e such that labH = NT ∈ T where holds
lab′(e) = N(T\{t}). And for all edges e with permH(e) = ρe −Φe perm ′(e) is defined
as follows:

perm ′(e) =


WR∗ − Φe \ {{t}} if ρe ∈ {WR,WR∗} and {t} ∈ Φe

RD∗ − Φe \ {{t}} if ρe ∈ {RD ,RD∗} and {t} ∈ Φe

ρe − {T \ {t} | T ∈ Φe} otherwise

Note that all edges labeled with N{t} are removed. This is because these edges are the
placeholder for the part of the heap that the process t referred to might alter. Thus, in
order to ensure data race freedom this part of the heap has to be exclusively accessible
by this process. Because the process which operates on this part of the heap can never be
rejoined (the token is a singleton set only containing t, thus only t refers to this process
and is reassigned) all these nodes and edges must never be accessed. To achieve this the
placeholder is removed which removes this part of the heap permanently. Furthermore
all tokens containing t are updated in order to indicate that t no longer identifies the
same process as the other process identifier of this token. For those PermSets that
contain the token {t} the BasePerm is “starred” in order to indicate that, since there is
no further reference to the process the corresponding access token can never be returned.
And this implies that the BasePerm can never be fully recovered.

Definition 6.2 (Returned Token). For H ∈ HC
Varprocess
Σ , T ∈ P(Varprocess)

H[← T ] = (VH , EH , conH , labH , extH , perm ′)

with perm ′(e) = ρ− Φ \ {T} where permH(e) = ρ− Φ.
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Note that simply the token T is removed from all the PermSets. The return of parts of
the heap that the process identified by T (or rather all t ∈ T ) had exclusive access on is
dealt with separately.

Definition 6.3 (Thread Variable Assignment). For H ∈ HC
Varprocess
Σ and t, t′ ∈

Varprocess let Φt′ = {T ∈ Φ | t′ ∈ T} denote the set of all tokens in a PermSet Φ
which contain the process identifier t′. Then

H[t = t′] = (VH[↓t], EH[↓t], conH[↓t], lab′, extH[↓t], perm ′)

where lab′ mirrors labH[↓t] except for all e ∈ EH[↓t] with labH[↓t](e) = NT and t′ ∈ T
where lab′(e) = NT∪{t}. And perm ′(e) = ρ − (Φ \ Φt′ ∪ {T ∪ {t} | T ∈ Φt′}) if
permH[↓t](e) = ρ− Φ.

Note that for the assignment the reassigned identifier is previously dropped since its
original value will be lost after the assignment. And the set of tokens for all PermSets
that do not contain the process identifier t′ are simply preserved. To thoses tokens that
contain t′ as process identifier t is added since t identifies from now on the same process
as t′.

Definition 6.4 (Add Token to Edge). For H ∈ HC
Varprocess
Σ , T ∈ P(Varprocess) and

E ⊆ EH
H[E − T ] = (VH , EH , conH , labH , extH , perm ′)

where

perm ′(e) =

{
permH(e)− T if e ∈ E
permH(e) otherwise

The token T is simply added to all PermSets of edges in E.

6.2 Semantics

In the following the semantics of programs are defined by graph transformations. There-
fore some relations over nodes in HGs are defined as follows:

• v s
↪−→ρ v

′ states that the node v is connected to the node v′ by an edge labeled with
s ∈ Sel and the permission ρ

• x ↪→ρ v denotes that there is an edge labeled with x ∈ Var and the permission ρ
which is connected to the node v

For both relations the permission might be omitted to indicate that one permission ρ
exists such that the relation holds.

At first the semantics of pointer expressions are examined. This is, evaluating a
pointer expression under an HC H ∈ HC Σ (J·KH). Intuitively, this means that variables
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are identified with the node the edge labeled with the variable is attached to, the null
value is identified with vnull and dereferencing a selector of the object corresponds to
following the outgoing edge from a node labeled by this selector. There are two possible
errors: firstly, dereferencing anything from the null value and secondly, accessing a
selector which is not there. The second case indicates that a selector is accessed although
another process demands exclusive access. Because of the universal type of every node
the only possible way a selector is absent is because it is hidden behind a placeholder for
another process or removed because the reference to the corresponding process is lost.
Such an error is indicated by returning an error symbol ⊥. Formally this leads to the
following:

JnullKH = vnull

JxKH = v with x ↪→ v

Jx.sK =

{
v if JxKH

s
↪−→ v

⊥ otherwise

Note that for an HC these semantics are well defined since every node has maximal one
outgoing edge for every selector and for every variable exists exactly one edge labeled
with it.

The semantics of conditions are evaluated very intuitively, but where ⊥ propagates
strictly, i.e. if there is one expression yielding ⊥ the whole evaluation becomes ⊥.
Therefore for pointer expressions p1, p2, and conditions c1, c2:

Jp1 == p2KH =


⊥ if Jp1KH = ⊥ or Jp2KH = ⊥
true if Jp1KH = Jp2KH
false if Jp1KH 6= Jp2KH

Jp1 != p2KH =


⊥ if Jp1KH = ⊥ or Jp2KH = ⊥
false if Jp1KH = Jp2KH
true if Jp1KH 6= Jp2KH

Jc1 && c2KH =

{
⊥ if Jc1KH = ⊥ or Jc2KH = ⊥
Jc1KH ∧ Jc2KH otherwise

Jc1 ‖ c2KH =

{
⊥ if Jc1KH = ⊥ or Jc2KH = ⊥
Jc1KH ∨ Jc2KH otherwise

This gives the basis to define the semantics for the given programming language using
a transition system:
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Definition 6.5 (Semantics of the Programming Language). The semantics of the
individual statements are modelled by a transition relation of the form B ⊆ (S ∪
{ε} ×HC Σ)2 where S denotes the language derived by the grammar in section 3.1.

The semantics for the assignment, allocation, loop, conditional and skip statement can

be given by the following rules, where v ↪→ρ − abbreviates ∃v′.v ↪→ρ v
′ and v

s
↪−→ρ − is

expanded to ∃v′.v s
↪−→ρ v

′:

JP KH 6= ⊥ JxKH ↪→WR −
(x = P,H)B (ε,H[JxKH ↪→ JP KH ])

JP KH 6= ⊥ JxKH
s
↪−→WR −

(x.s = P,H)B (ε,H[JxKH
s
↪−→ JP KH ])

JCKH = true

(while(C) do S done, H)B (S; while(C) do S done, H)

JCKH = false

(while(C) do S done, H)B (ε,H)

JCKH = true

(if(C) then S1 else S2 fi, H)B (S1, H)

JCKH = false

(if(C) then S1 else S2 fi, H)B (S2, H)

JxKH ↪→WR −
(new(x), H)B (ε,H[+v][x ↪→ v])

(skip, H)B (ε,H)

(S1, H)B (S′1, H
′)

(S1;S2, H)B (S′1;S2, H
′)

t, t′ ∈ Varprocess

(t = t′, H)B (ε,H[t = t′])

(ε;S,H)B (S,H)

Note that for operations that change an edge a WR permission on that edge is expected.
Furthermore every statement that does not have a fitting transition rule yields explicitly
⊥. Since fork and join are more complex they are examined in more detail below.
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6.3 Fork

As described previously fork creates a process and provides it with parameters.This is
similar to procedure calls modelled in [11]. In the following two types of parameters are
distinguished:

• Formal parameters, which belong to the newly created process

• Actual parameters, which belong to the process executing the fork statement

In the call of a fork statement the actual parameters are provided to the newly created
process and are identified with formal parameters. Thus the new process initially only
knows the nodes identified by the actual parameters and can now access other nodes via
the different selectors. The subgraph that can be accessed in this way is called reachable.
The concept of reachability will be later on introduced formally but partially relies on
the abstraction that is introduced in Section 7.4 and is therefore here only given as the
set reach(v1, . . . , vn) which denotes all edges that are considered to be reachable from
the nodes v1, . . . , vn.2

Reconsider the example from Listing 1 and Figure 1 on page 6 where it was observed
that forking a new process and assigning it to a process identifier potentially causes
to lose the possibility to refer to the process the process identifier identified before. In
order to model this loss of information the semantics rely on a corresponding graph
transformation (H[↓ t]). Another aspect of the fork statement is that as demonstrated
in Figure 3 it is possible that a write access ticket is completely transferred to the forked
process. As mentioned in Section 1 the behaviour of processes and especially which parts
of the heap the process might alter is defined in a contract. These contracts consist of
a precondition, the set of edges which the process might alter and a postcondition. The
precondition is the representation of the context from which the process is forked from.
The postcondition is the representation of the heap that resulted from the execution of
the process started from an initial heap state. This initial heap state is obtained by a
transformation of the precondition which is examined later on. Firstly, as mentioned
in Section 3 it is expected that every process has its own variables as well as process
identifier. W. l. o. g. the heap state for every forked process can be described as an HC
over the set Var ′process and Σ′ = Sel ] T′ ] Var ′ with renaming of variables and process
identifier as well as limiting the used variables and process identifier to subsets of Var ′

and Var ′process. Especially it holds that Var ∩ Var ′ = ∅ and Varprocess ∩ Var ′process =
∅. Secondly, the precondition is examined as a representation which is isomorph to
the reachable subgraph. Therefore it is assumed that the precondition is a HG from
HG

Varprocess
Σ . On the other hand the postcondition is the result of the computation

of the forked process and therefore represented as HG from HG
Var ′process
Σ′ . And this

computation of the forked process ensures that only edges from the alternable set are
altered. These coherences are illustrated graphical in Figure 4. For every program the

2actually the set reach(v1, . . . , vn) is a superset of the actual reachable edges, but because it covers at
least all actual reachable edges the soundness of the model for the semantics is ensured
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forking process (HG
Varprocess
Σ ): forked process (HG

Var ′process
Σ′ ):

Precondition

Reachable Subgraph

Initial Heap State

Postcondition

∼= Execution

(with re-
spect to
alternable
set)

Transformation

Figure 4: Graphical representation of the coherences between precondition, initial heap
state, reachable subgraph and postcondition

set of contracts is formally described as a function

Cont : Proc → P(HG
Varprocess
Σ × P(E)×HG

Var ′process
Σ′ )

where for every program m and every contract C = (PC , EC , QC) ∈ Cont(m) holds that
E ⊆ EPC

WR, thus the set of alterable edges (EC) is a subset of the edges with write access
of the precondition.

The necessary graph transformations associated with the fork statement are examined
in the following. Let H be an HG and C = (PC , E,QC) ∈ Cont(m). Let ap1, . . . , apn
be the nodes that are identified by the actual parameter of the fork statement. This
means that for the statement

1 t = fork (m(x1, . . . , xn ) ) ;

with the current heap representation H it holds that api = JxiKH for all 1 ≤ i ≤ n. Thus
the set of reachable edges from the actual parameter is defined as reach(ap1, . . . , apn).
The actual precondition for the newly forked process is the current heap representation
reduced to the subgraph which is induced by the reachable part. This subgraph is defined
as follows:

Definition 6.6 (Edge Induced Subgraph). Let H be a HG and E′ ⊆ EH a set of
edges. Then the subgraph induced by E′ is defined as

H � E′ = (
⋃
e∈E′

HconH(e)I, E′, lab � E′, con � E′, ext � E′, perm � E′)
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To find the fitting contract C for the fork statement it is necessary that the reachable
subgraph forms the precondition of C and the actual parameters agree with the formal
parameters. Let fp1, . . . , fpn denote the nodes of the formal parameters within the pre-
condition of C. Then the reachable subgraph is structurally identical to the precondition
and the actual parameters agree with the formal parameters. Let R denote the reachable
subgraph of a fork statement and P denote the fitting precondition. Then R and P are
isomorphic and especially this isomorphism matches formal and actual parameter. Let
R ∼=ap fp P denote the existence of such an isomorphism.

Once again reconsider the example in Figure 2 and let

C =



v1

v2 v3

v4

vnull

e1lWR rWRe2

rWRe3

lWR e4
rWR

e5

lWR

e6

rWR
e7

lWRe8

, {e2, e3, e4, e7, e8},

v1

v2 v3

v4

vnull

e1lRD rWRe2

lWRe3

rWR e4

rRD

e5

lRD

e6

rWR
e7

lWRe8


be a possible contract such that C ∈ Cont(traverse) and v1 is the only formal parameter.
Here l and r abbreviate left and right respectively. Note that C fulfills that the alterable
set is a subset of the edges with WR permission of the precondition. Secondly, in
the postcondition only edges have been altered which were part of the alterable set
(namely e3, e4). Thirdly, forking by C leads to the replacement seen in Figure 3 because
the induced subgraph of {e2, e3, e4, e7, e8} is replaced. As it can be seen in Figure 3
the replacement is connected to the node that is identified with v1 and vnull. This is
because v1 represents an object which is part of the main process as well as the newly
forked one. Such nodes are called border nodes and are defined as those nodes that are
connected to edges of the alterable set and to edges that are not part of the alterable set.
Additionally, the placeholder in Figure 3 is also connected to vnull, which is generally
assumed for all placeholder, thus the heap representation of every process can refer to
the same distinguishable null value. The formal definition of the set of border nodes is
closely connected to the definition of reachability and is therefore likewise postponed to
Section 7.5. For now the set of border nodes for a contract C and a heap representation
H is denoted by borderH(C)3. These border nodes represent the connection points
between the heap representation of the main process and the part of the heap of the
forked process that can be altered. For joining the process later on it is crucial to identify
these nodes in the postcondition. This is achieved by using the mechanism of external
nodes as introduced for hyperedge replacement in Section 6.4. With these considerations

3just like the reachable set this set is potentially a superset of the actual border nodes
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in mind the transformation of the heap representation that models the fork statement
can be described. Let therefore

• t = fork(m(x1, . . . , xn));

• with H as the current heap representation,

• api = JxiKH for all 1 ≤ i ≤ n,

• (PC , EC , QC) ∈ Cont(m),

• PC ∼=ap fp (H � reach(ap1, . . . , apn)),

• t ∈ Varprocess,

• bC(H) denote the set of border nodes,

• enumbC(H) = enumbC(H)(1) . . . enumbC(H)(|bC(H)|) is an arbitrary sequence of the
border nodes

W. l. o. g. it is assumed that PC shares nodes and edges with H which can easily
achieved by renaming the edges and nodes of PC according to the existing isomorphism.
Then the graph transformation can be given as follows:

H ′ =

3︷ ︸︸ ︷
1︷ ︸︸ ︷

H[↓ t][\EC ]︸ ︷︷ ︸
2

[+WRN{t} ⇒ enumbC(H)][(EP \ EC)− {t}]

︸ ︷︷ ︸
4

where the different steps state the following:

1 the process identifier used for the newly forked process is freed

2 the edges that the forked process demands write access on are removed from the
heap representation

3 the formerly removed edges are replaced with an hyperedge

4 to all edges that can be read by the newly forked process the appropiate token is
added

Formally this process is therefore described by the following transition rule:

(PC , EC , QC) ∈ Cont(m) PC ∼=ap fp (H � reach(Jp1KH , . . . , JpnKH))

(t = fork(m(p1, . . . , pn)), H)B (ε,H ′)

For the join statement some formalisms of hyperedge replacement grammars, namely
hyperedge replacement is used and therefore the definition is postponed and hyperedge
replacement is introduced before.
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6.4 Hyperedge Replacement

In the following the concept of hyperedge replacement (HR) is presented. HR is a graph
transformations which replaces single hyperedges by more complex graphs [16, p. 104].
As the fork statement replaces parts of the heap by a single hyperedge in order to “hide”
this subgraph, rendering it unavailable for the main process. Indeed the “hidden” sub-
graph still exists within the heap representation of the forked process and can especially
be returned by a join statement. Therefore a way to re-integrate this subgraph is dis-
cussed in the following. A possible way to present rules for substituting hyperedges by
hypergraphs are production rules which have the form p : X → H. Here X is a label and
H a hypergraph and this production rule p can be applied to a hypergraph by removing
a X-labeled edge and replacing it by the hypergraph H. For better understanding the
production rule in Figure 5 is considered in the following. On the right hand side of
this production rule the nodes marked by 1 and 2 are external nodes of the hypergraph
and their annotation is their position in the sequence ext . For the hyperedges that are
labeled with B the numbers denote the position of the nodes in the sequence of con-
nected nodes. In order to replace for instance such a B-labeled hyperedge in an HG the

p : B

1

B B2

l r

1

2

2

1

Figure 5: A possible production (permissions are omitted)

external nodes of the right hand side of the production rule are identified with the nodes
connected to the hyperedge. A simple example (see Figure 6) illustrates such a replace-
ment. Note that the external nodes and the connected nodes that are identified had the
same position within the respective sequences. Such a replacement of an hyperedge is
called a derivation and is formally described as follows:
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n

B

l

r

2

1

1

B B2

l r

1

2

2

1

⇒

n B B

r

l l r

1 1

2

2

Figure 6: Illustration of an hyperedge replacement
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Definition 6.7 (Hyperedge Replacement). Let p be a production rule of the form
p : X → K, H ∈ HGΣ a HG with an edge e ∈ EH with labH(e) = X and |extK | =
|conH(e)|. Then H ′ = H[e/K] is an HG with:

• VH′ = VH ∪ (VK \ HextKI)

• EH′ = (EH \ {e}) ∪ EK

•
conH′ = conH � (EH \ {e}) ∪ ((idK [extK(1) 7→ conH(e)(1)] . . .

[extK(|extK |) 7→ conH(e)(|extK |)]) ◦ conK)

• labH′ = labH � (EH \ {e}) ∪ labK

• extH′ = extH

• permH′ = permH � (EH \ {e}) ∪ permK

An HG H ′ is derived from an HG H by a production rule p : X → K (denoted by

H
p

=⇒ H ′) if H ′ is isomorphic to H[e/K] for any edge e labeled with X. Furthermore
⇒∗ is the transitive closure of this relation.

6.5 Join

Having introduced the mechanism of hyperedge replacement the postponed semantics
of the join statement can now be addressed. Therefore it is distinguished between the
joining process which is the one actually executing the join statement and the joined
process which is the one that terminated and now returns its permissions. Returning
this permissions can be done in two separate steps: Firstly, the permissions for the
shared edges, i.e. those edges which BasePerm is either RD or RD∗ for the joined
process, are returned. Since these edges are still present in the heap representation of
the joining process returning those permissions is a matter of mutating the PE of the
heap representation of the joining process. Secondly, the edges which were allowed to
be altered are returned, i.e. edges which BasePerm is either WR or WR∗. This is done
by replacing the hyperedge in the joining process which represents this part of the heap
by its corresponding HG of the joined process. This imposes a further restriction to the
contracts which have to ensure that the external nodes of the postcondition of the forked
process are the same as the border nodes of the placeholder in the heap representation of
the forking process. To do so, the sequence of external nodes in the precondition is used
to encode which nodes are border nodes and the isomorphism ∼=ap fp is restricted to map
the border nodes in the heap representation of the forking process to the external nodes
in the precondition. Following it is formally described how the initial heap state for
the forked process is obtained from the contract C = (PC , EC , QC):4 Let ap1, . . . , apn
denote the nodes that mark the actual parameters and fp1, . . . , fp1 denote the names

4which refers to the transformation in Figure 4
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of the formal paramters they are matched to (especially fpi ∈ Σ′ for all 1 ≤ i ≤ n).
Furthermore let for all s ∈ Sel s′ ∈ Sel ′ denote the corresponding selector used to

describe the heap states of forked processes, then I ∈ HG
Var ′process
Σ′ is the initial heap

state for the forked process with:

• VI = {vIv′ | v′ ∈ VPC
}

• EI = {eIe′ | e′ ∈ EPC
} ∪ {efpi

| 1 ≤ i ≤ n} ∪ {ev | v ∈ (Var ′ \ {fpi | 1 ≤ i ≤ n})}

• conI = {v′ 7→ vIv′ | v′ ∈ VPC
} ◦ conPC

∪ {efpi
7→ api | 1 ≤ i ≤ n} ∪ {ev 7→ vnull | v ∈

(Var ′ \ {fpi | 1 ≤ i ≤ n})}

• labI = {efpi
7→ fpi | 1 ≤ i ≤ n} ∪ {e 7→ s′ | labPC

(e) = s} ∪ {ev 7→ v | v ∈
(Var ′ \ {fpi | 1 ≤ i ≤ n})}

• extI = {vIv′ 7→ v′ | v′ ∈ VPC
}(enumborderPC

(1) . . . enumborderPC
(|borderPC

(C)|))

• permI = {e 7→ WR | e ∈ EC} ∪ {e 7→ RD | e ∈ EPC
\ EC} ∪ {ev 7→ WR | v ∈

(Var ′ \ {fpi | 1 ≤ i ≤ n})

Note that actually only the selectors are renamed and variables introduced for the for-
mal parameters that point to the nodes the actual parameters pointed to in the fork
statement, also all other variables of Var ′ are introduced and initially point to vnull.
Furthermore the external nodes of the initial heap state are used to mark the border
nodes in order to ensure that the “WR-part” of the postcondition agrees on the shared
objects when it is joined. At last, all permissions in the initial heap state are simple and
grant those access tickets that the contract demands. From this initial heap state the
execution of the forked program starts.

For both steps of returning permissions for the join statement it is important to de-
termine if all permissions are returned which were derived when the process was forked.
This is not the case for all edges which PEs are not simple or which BasePerm is
“starred” (thus WR∗ or RD∗). These permissions are unrecoverably lost and this prop-
agates strictly to the permissions of the heap representation of the joining process.

For returning the read permissions it is avoided to match the edges from the heap
representation of the joining and joined process since it imposes further difficulties later
on. Therefore the minimal permission is returned: for all edges of the joining process
from which permissions were derived to the joined process the BasePerm is “starred”
if there is any edge in the postcondition for which the permission cannot be completely
returned.

Returning the write permissions is done by simply applying a production rule to
the hyperedge of the joining process that represents the borrowed part. Let now C =
(PC , EC , QC) ∈ Cont(m) be the contract by which the joined process was forked (note
that this contract has to be the same as for the fork statement that created the process
which is re-joined now, in order to save the contract for matching it from fork to join
statement it can be e. g. attached to the placeholder) and Tt the set of all aliases of
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the process identifier t that is used in the join statement. Further the following few
definitions are used for convenience:

Q′1 = QC [↓ enumVar ′thread
(1)] . . . [↓ Var ′thread(|Var ′thread|)]

Note that for Q′1 all PE are simple and every not yet returned permission caused the
BasePerm to be “starred”.

Q′2 = Q′1[\(EQ
′
1

RD ∪ E
Q′1
RD∗)]

Q′2 represents the state where the heap representation of the joined process is reduced to
the edges of the alterable set. Now two transition rules are used to model the semantics
of the join statement where the first one describes the case with lost read permissions
and the second one describes the case where all read permissions can be completely
returned:

E
Q′1
RD∗ 6= ∅ H[↓ Tt]

NTt→Q
′
2

=====⇒ H ′

(join(t), H)B (ε,H ′)

Note that H[↓ Tt] is used which successively drops the process identifier in the token Tt

“H[↓ Tt] = H[↓ enumTt(1)] . . . [↓ enumTt(|Tt|)]”

but preserves NTt in order to replace it by the given production rule.

E
H′1
RD∗ = ∅ H[← Tt]

NTt→Q
′
2

=====⇒ H ′

(join(t), H)B (ε,H ′)

This concludes the modelling of the semantics of the presented programming language
and in the following it is dealt with abstraction techniques to approach potentially un-
bounded structures.
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7 Concretisation & Abstraction

Making use of dynamic allocation and deallocation can lead to heap structures of un-
bounded size. In order to present these structures in a finite manner HR can be used in
order to concretise and abstract heap states by applying production rules for concreti-
sation and by applying production rules backwards for abstraction. Therefore introduce
a set of production rules in order to abstract parts of the heap representation. In order
to illustrate the following steps the data structure of binary trees is examined along the
definitions5. Reconsider the structure in the example from Figure 1 and furthermore
the HR from Figure 6. When the node marked by n is interpreted as vnull and the
production rule from Figure 5 is applied repetitively arbitrary large binary trees can be
constructed. But it is already noteable that repetitive application of this production
rule always leads to further B-labeled edges. The following formal introduction of the
concept of abstraction follows mostly [6, 10, 13].

In order to distinguish the hyperedges that are used for the abstract representation
of a subgraph from the hyperedges that represent placeholders, selectors or variables a
new set of so called nonterminals N is introduced. For the above considered example
of binary trees this set would be N = {B}. In the following ΣN = Σ

⊎
N denotes the

set of labels for HGs that are partially concrete and partially abstract. Furthermore
these nonterminals are expected to connect always the same amount of nodes. This
amount is called the rank of the nonterminal. Therefore a function rk : N → N is given
and for every HG H it holds that if labH(e) ∈ N then |conH(e)| = rk(labH(e)), the
rank of B for example is 2. The set of all these partially abstract HGs is denoted
by HG

Varprocess
ΣN

and the set of HGs that furthermore satisfy the restrictions of HCs is

denoted by HC
Varprocess
ΣN

. Note that for now the permissions were neglected but are
actually incorporated as follows: a production rule p : X → H with X ∈ N is annotated
by a permission ρ (pρ) such that for pρ : X → H holds that img(permH) = {ρ} (thus all
edges in H hold permission ρ). Furthermore this production rule must only be applied
to an X-labeled edge if this edge holds the permission ρ.

7.1 Hyperedge Replacement Grammar

To apply abstraction and concretisation a set of production rules is used. Such a set of
production rules is called a hyperedge replacement grammar (HRG). Formally defined as
follows:

Definition 7.1 (Hyperedge Replacement Grammar). A hyperedge replacement
grammar over an alphabet ΣN and Varprocess is a finite set of production rules of the
form pρ : X → G where X ∈ N , ρ ∈ PESVarprocess, G ∈ HGΣN

and rk(X) = |extG|.

HRG
Varprocess
ΣN

denotes the set of all HRGs over ΣN and Varprocess. Especially, in this pa-
per the concepts of structural abstraction and permission accounting are independently

5this example reassembles the hyperedge replacement grammar from [6, p. 21]
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examined, this means in order to separate those concepts the following definition is used
which states that every production rule is available for every permission:

Definition 7.2 (Fully Permissive Grammar). G ∈ HRG
Varprocess
ΣN

is called fully per-
missive if the following holds: Every production rule p : X → H in G exists for every
ρ ∈ PESVarprocess.

The set of all fully permissive HRGs (fpHRGs) is denoted by fpHRG
Varprocess
ΣN

.

In the following some definitions regarding fpHRGs are introduced. These intuitions
and their respective definitions are examined in their structural concepts only since the
incorporation of permissions is straightforward:

• For G ∈ fpHRG
Varprocess
ΣN

GX = {X ′ → H ∈ G | X ′ = X} denotes the set of all
production rules for a nonterminal X.

• For a production rule p : X → H lhs(p) is used for X and respectively rhs(p)
for the right hand side H. rhs and lhs are lifted to sets of production rules by
elementwise application.

• The handle of a nonterminal is introduced which is the HG that contains one edge
labeled by the nonterminal and nodes connected to this nonterminal. Formally:

Definition 7.3 (Handle). For a fpHRG G ∈ fpHRG
Varprocess
ΣN

and a nontermi-
nal X ∈ N the handle of X is the HG X• ∈ HGΣN

with:

– VX• = {v1, . . . , vrk(X)}
– EX• = {e}
– conX• = {e 7→ v1 · · · vrk(X)}
– labX• = {e 7→ X}
– extX• = ε

– permX• = {e 7→ ρ}

• For hyperedges labeled with nonterminals the position on which a node is attached
on is called a tentacle. A tentacle is just a label and the position a node is attached
to an edge of this label.

Definition 7.4 (Tentacle). A tentacle is a pair (X, i) where X ∈ N and
i ∈ {1, . . . rk(X)}.

• For hyperedges labeled with nonterminals the notion of tentacles can be extended
in order to describe how two nodes are connected by this hyperedge. Such a con-
nection is called a bridge and reassembles two tentacles of the same nonterminal.
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Definition 7.5 (Bridge). A bridge is a triple (i,X, j) where X ∈ N and
1 ≤ i, j ≤ rk(X).

Let br(S) denote the set of all bridges for the set of ranked labels S.

Consider the following possible fpHRG G which describes the abstraction of binary trees:

G =



B

1

vnull

l r

l

r l

r
, B

1

vnullB

l r

1

l

r
,

B

1

vnull B

l r

1

l

r

, B

1

BB vnull

l r
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Note that these production rules are present for every permission, since it is a fully
permissive HRG and that from H ∈ HG

Varprocess
ΣN

it can be possible to derive multiple
HGs since there might be more than one production rule for any nonterminal. Consider
therefore the HG of Figure 6 and the fpHRG G from above. It is easily to see that
multiple different HGs can be derived. The set of all these deriveable HGs which no
longer contain a nonterminal (like the terminal words of a string grammar) is called the
language of H and defined as follows:

Definition 7.6 (Language of an HG). For G ∈ fpHRG
Varprocess
ΣN

and H ∈ HGΣN

LG(H) = {K ∈ HGΣ | H ⇒∗ K}

is the language from the HG H (under the fpHRG G).

7.2 Properties

In the following some properties of HRGs are discussed. The presented properties as
well as the presented results for fpHRGs follow from [13]. Actually the design of the defi-
nitions are built around those in [13] to focus on the compatibility of adding permissions
to the already established results. At first it is discussed which selectors a nonterminal
actually abstracts. By considering the example in Figure 6 it can easily be seen, that
at the different connected nodes of the B-labeled edge different selectors are abstracted.
At the node on the tentacle (B, 1) both selectors l and r are “hidden” in the abstraction
of the hyperedge whereas the node on tentacle (B, 2) identifies vnull which must not
have any outgoing selectors. This illustrates that different selectors can be abstracted at
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different tentacles. Typedness is introduced to ensure that application production rules
reveals the same selectors for every tentacle. The function type maps from tentacles to
the sets of the selectors this tentacle abstracts. In the fpHRG from page 31 it holds that
type(B, 1) = {l, r}. The formal definition is as follows:

Definition 7.7 (Typedness). For G ∈ fpHRG
Varprocess
ΣN

a nonterminal X ∈ N is
called typed if for all tentacles (X, i) there is a set type(X, i) ⊆ Sel such that for all
H ∈ LG(X•) where v•i is the node of the tentacle (X, i) in X• it holds:

type(X, i) = labH(outH(v•i ))

Note that outH(v) = {e ∈ EH | conH(1) = v ∧ labH(e) ∈ Sel} is the set of all outgoing
selectors from the object represented by v. Since different tentacles might have different
types but the definition of HC enforces that every node is universally typed it is pos-
sible that the nodes of a handle violate this typing. Therefore the notion of handles is
expanded to ensure that at least the initial nodes of the handle are universally typed:

Definition 7.8 (Typed Handle). For a typed nonterminal X ∈ N let Type =⋃
1≤i≤rk(X) type(X, i) denote the set of all selectors of the nonterminal. The typed

handle of X (denoted as X◦) is defined as follows:

• VX◦ = {v1, . . . , vrk(X), vnull}

• EX◦ = {e} ] {es,i | 1 ≤ i ≤ rk(X), s ∈ Type \ type(X, i)}

• conX◦ = {e 7→ v1 · · · vrk(X)} ] {es,i 7→ vivnull | es,i ∈ EX◦}

• labX◦ = {e 7→ X} ] {es,i 7→ s | es,i ∈ EX◦}

• extX◦ = ε

• permX◦ = {e 7→WR | e ∈ EX◦}

Secondly, productivity is examined which simply states that at least one terminal HG
can be derived from this nonterminal. Formally stated as:

Definition 7.9 (Productivity). For G ∈ HRG
Varprocess
ΣN

a nonterminal X ∈ N is
called productive if

LG(X•) 6= ∅

G is called productive if all nonterminals in G are productive.

Following increasingess is introduced. The idea is that every right hand side of a
production rule is strictly “bigger” than the left hand side. Where “bigger” refers to
the number of edges, but also terminal HGs are considered “bigger”. This ensures
that applying succesively production rules in a backward fashion terminates, since every
applied production rules reduces the size of the HG.
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Definition 7.10 (Increasingess). For G ∈ fpHRG
Varprocess
ΣN

a production rule p : X →
H ∈ G is called increasing if H ∈ HG

Varprocess
Σ or H ∈ HG

Varprocess
ΣN

∧ |EH | > 1. G is
called increasing if all p ∈ G are increasing.

Fourthly, local concretisability means that for every tentacle there are production
rules that reveal abstracted selectors but preserve the language of the graph. In order
to illustrate the problem another fpHRG is introduced6:

G′ =



L 1 2

next

prev
,

L 1 L 2

next

prev

1 2


This fpHRG describes doublely linked list of arbitrary length. Firstly, it holds that
type(L, 1) = {next} and type(L, 2) = {prev}. But, consider the typed handle of L,
where n, p abbreviate next , prev respectively:

v1 L v2

vnull

1 2

p n

In order to reveal the abstracted selectors at the tentacle (L, 2) only the first production
rule can be applied. But this reduces the language to the singleton set of the right
hand side of the first production rule. Repeatedly applying the second production rule
does not reveal the abstracted selectors. Thus this grammar is not locally concretisable.
Adding the production rule

L 1 L 2

next

prev

1 2

establishes local concretisability because it is now possible to reveal abstracted selectors
at tentacle (L, 2) but the generated language (doubly linked lists of arbitrary length) is
preserved.

6this example is featured in various contributions to this approach [7, 10] because of its illustrating
quality
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The formal definition of local concretisability requires some additional defintions, such
as: (X, i)→p (Y, j) denotes that for a production rule p : X → H there is an edge e ∈ EH
such that labH(e) = Y and extH(i) = conH(e)(j). This means that after applying the
production rule p the tentacle (X, i) morphs (for the connected node) to a tentacle (Y, j).
Furthermore let GX denote the set of production rules in a fpHRG G for all nonterminals
except of X, i.e. GX = G \GX . Then local concretisability can be defined as follows:

Definition 7.11 (Local Concretisability). G ∈ fpHRG
Varprocess
ΣN

is called local con-
cretisable if for all nonterminals X there are sub-grammars G1, . . . , Grk(X) ⊆ G such
that ∀i ∈ {1, . . . , rk(X)}.L

GX
i ∪GX (X•) = LG(X•) and ∀i ∈ {1, . . . , rk(X)}.∀p ∈

GXi .(X, i)→p (a, 1) for all selectors a in type(X, i).

The following definition gathers now all fpHRG for which the language of the typed
handle contains only valid HC. This ensures that not external nodes of the right hand
sides are properly typed and follow the properties of HCs.

Definition 7.12 (Data Structure Grammar). A HRG G ∈ fpHRG
Varprocess
ΣN

is called
a data structure grammar (DSG) if it is typed and for all nonterminals X ∈ N the
language of its typed handle X◦ only contains valid heap configurations (LG(X◦) ⊆
HC

Varprocess
Σ ) and for all inner nodes of right hand sides in GX it holds that there is

one outgoing edge for every selector in
⋃

1≤i≤rk(X) type(X, i).

Note that it is assumed that only the selectors exist which are gathered in the different
types of the tentacles of the nonterminal. If more selectors exist they can be simply
attached to every node and point to vnull to ensure that the HGs of the language are
still valid HCs. Again let DSG

Varprocess
ΣN

denote the set of all DSGs over ΣN and Varprocess.
Additionally, it is generally assumend that right hand sides of production rules do not
contain any edges labeled with variables or placeholders (thus, rhs(G) ⊆ HG

Varprocess
ΣN\(Var∪T)).

And therefore all inner nodes are properly typed which means that they have edges for
all selectors that exist within the context of the nonterminal (i.e. the union of the types
of all tentacles). In the following Heap Abstraction Grammars are defined which are
DSGs that additionally provide the properties introduced above:

Definition 7.13 (Heap Abstraction Grammar). G ∈ DSG
Varprocess
ΣN

is called a Heap
Abstraction Grammar (HAG) over ΣN if G provides the following properties:

1. Productivity

2. Increasingness

3. Local Concretisability

This is no real restriction since the following theorem can be derived from the results of
[13]:
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Theorem 7.1. For every DSG a HAG can be constructed which is equivalent regarding
the language of HGs.

7.3 Concretisation

The basic idea of abstraction is to represent multiple heaps in one HG. Therefore HAGs
are used. Recall the initial programming example in Listing 1 where one possible exe-
cution is represented in Figure 1. Analysing executions on binary trees of arbitrary size
is realised by representing these as one single B-labeled hyperedge as follows:

curr

vnull B WR

1

where the fpHRG G from page 31 (which is actually a HAG) is used to derive the
concrete binary trees which are represented by the nonterminal B. By applying the
different production rules of G all possible binary trees can be derived. Especially
since all possible binary trees need to be analysed it is necessary that every production
rule is used to concretise the nonterminal. This leads to four possible representations,
namely the four right hand sides of the production rules in G (as it can be seen in
Figure 7). For the three HCs that still contain nonterminals further concretisation
steps have to be applied. But since the given programming language (see section 3.1)
allows only dereferences of depth one (like x.s) it is possible to execute all statements
(besides fork and join) on these partially abstract HCs just like they are executed on
fully concrete HCs. These states of partially abstract HCs are called admissible and
ensure that all actually from statements referenceable selectors are present in the HC.
For the formal definition another kind of tentacle is examined, the reduction tentacle.
Reduction tentacles are tentacles for which in every concretisation there is no outgoing
edge for the identified node. This can be formally defined as follows:

Definition 7.14 (Reduction Tentacle). Let for the tentacle (X, i) v•i ∈ VX• be the
node such that conX•(e)(i) = v•i for the only edge e ∈ EX• with labX•(e) = X is
called a reduction tentacle if

∀H ∈ L(X•).out(v•i ) = ∅

For typed nonterminals another characterisation of reduction tentacles is that the type
of the tentacle (X, i) is empty (type(X, i) = ∅). As seen in [13] reduction tentacles can
be determined by a syntactical analysis of the used production rules. Admissibility can
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curr

vnull

lWR rWR

lWR

rWR lWR

rWR

curr

1

BWR vnull

lWR rWR

1
lWR

rWR

curr

1

B WRvnull

lWR rWR

1
lWR

rWR

curr

1

B WRBWR vnull

lWR rWR

11

Figure 7: First step of concretisation for abstraction of binary trees, note that the per-
mission of the nonterminal propagates to the inserted right hand side
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be defined in terms of violation points where violation points are tentacles that hide
possibly accessible selectors. Formally:

Definition 7.15 (Violation Point). For H ∈ HC
Varprocess
Σ the tupel (e, i) with e ∈

EH , labH(e) ∈ N and 1 ≤ i ≤ rk(labH(e)) is called a violation point, if e hides acces-
sible selectors (i.e. there exists e′ ∈ EH such that labH(e′) ∈ Var and conH(e′)(1) =
conH(e)(i) and (labH(e), i) is no reduction tentacle.

A HC H is called admissible if there is no violation point in H, the set of admissible
HCs is denoted by AHC

Varprocess
ΣN

. Reconsider the abstracted representation of binary
trees on page 35 which is not admissible since the tentacle (B, 1) hides the selectors l
and r but those are actually referenceable by curr .l or curr .r respectively (when b is
the edge of the heap such that lab(b) = B then (b, 1) is the violation point). On the
other hand the heap representations in Figure 7 are admissible since the violation point
is resolved by applying concretisation. In the following resolving violation points and
therefore reestablishing admissibility is formalised for a HAGs G in the “re-admissibility”
function

reaG : HC
Varprocess
ΣN

→ P(AHC
Varprocess
ΣN

)

which maps possible abstracted HCs to the set of admissible HCs that arise by resolving
violation points by applying production rules. But in fact not every production rule
have to be applied, recall therefore the fpHRG G′ of doubly linked list from page 33.
Imagine now a program that traverses doubly linked lists of arbitrary length from the last
element to the first. In order to resolve the violation point caused by the tentacle (L, 2)
the second production rule does not remove the violation point. But the production rule
which was added to establish local concretisability can be used to resolve the violation
point. Additionally, it can easily be seen that in order to establish admissibility for HCs
different nonterminals have to be concretised (simply imagine a node that is the head
of a doubly linked list as well as the root of a binary tree and is therefore connected to
a nonterminal B and a nonterminal L). Since the parts that results from concretisation
of nonterminals are only connected via the nodes connected to the nonterminals and
apart from that are independent it can be seen that the order in which HRs are applied
is insignificant to the resulting HG. This property is called confluence and defined as
follows:

Definition 7.16 (Confluence). For H ∈ HG
Varprocess
ΣN

with e1, e2 ∈ EH , e1 6= e2

and labH(e1), labH(e2) ∈ N it holds for two production rules p1 : labH(e1) → H1,
p2 : labH(e2)→ H2 that

H[e1/H1][e2/H2] = H[e2/H2][e1/H1]

As stated in [16, p. 105] HRs always are confluent. And from this follows the following
lemma (for details see [6]):
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Figure 8: Heap representation of a binary tree with possible abstraction step

Lemma 7.1. For G ∈ HAG
Varprocess
ΣN

, H ∈ HC
Varprocess
ΣN

, e ∈ EH and labH(e) ∈ N holds
that:

LG(H) =
⋃

labH(e)→K

LG(H[e/K])

This lemma as well as the definition of local concretisability ensures that applying
reaG still yields all possible HCs that can be concretised from the HC reaG is applied
to.

7.4 Abstraction

After having introduced how to obtain more concrete heap representations from an ab-
stracted representation in the following it is discussed how concrete heap representations
are abstracted into more general representations. The idea of such an abstraction is to
apply production rules in a backward fashion. Thus identifying the right hand side of a
production rule, removing it and replacing it by the according nonterminal. Note that
this approach corresponds to the way write access is handed over to forked processes
where also subgraphs are replaced by hyperedges. For a comprehensible presentation of
this concept recall once again the grammar G from page 31 and also consider the heap
representation and abstraction steps in Figure 8. In this example the right hand side of
a production rule is identified in the heap representation (blue mark) and replaced by
the nonterminal on the left hand side (B). Note that all permissions on the right hand
side of a production rule are the same which prevents further abstraction steps although
besides permission the structure fits the right hand side of a production rule, namely
the third one. But since the permissions differ there is no right hand side which fits this
graph. For a formal approach on identifying the right hand side of a production rule
embeddings are introduced below. Embeddings are functions that identify subgraphs of
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HGs and are formally defined as follows:

Definition 7.17 (Embedding). For K,H ∈ HRG
Varprocess
ΣN

an embedding emb =
(mV ,mE) of K in H is a pair of functions with mV : VK → VH and mE : EK → EH
that preserve the following properties:

labK(e) = labH(mE(e)) for all e ∈ EK
permK(e) = permH(mE(e)) for all e ∈ EK
mV (conK(e)) = conH(mE(e)) for all e ∈ EK
HconH(e)I ∩mV (VK \ HextKI) = ∅ for all edges e ∈ EH \mE(EK)

mE(e) 6= mE(e′) for all e, e′ ∈ EK with e 6= e′

mV (v) 6= mV (v′) for all v ∈ VK , v′ ∈ VK \ HextKI with v 6= v′

The requirements for the functions of the embedding are as indicated distinguisheable
in three topics:

1. Preservation, namely of labeling and permissions

2. Structure, namely that identified edges agree on which nodes they connect and
inner nodes are not connected to any other edge in H than those that can be also
found in K (since the inner nodes will be replaced by the nonterminal it would be
unclear where those edges point to afterwards)

3. Injectivity, both the embedding function of edges and nodes are injective with one
exception: it is possible to identify multiple external nodes of K with the same
node in H, this causes the nonterminal to be connected with multiple tentacles to
the same node

With these definitions applying production rules backwards is defined as:

Definition 7.18 (Hyperedge introduction). For an HAG G, (pρ : X → M) ∈ G,

H ∈ HC
Varprocess
Σ and an embedding (mV ,mE) of K in H H[M/e] ∈ HG

Varprocess
ΣN

is
defined as follows:

• VH[M/e] = VH \mV (VM \ HextMI)

• EH[M/e] = (EH \mE(EM ))
⊎
{e}

• conH[M/e] = conH � (EH \mE(EM )) ∪ {e 7→ mV (extM )}

• labH[M/e] = labH � (EH \mE(EM )) ∪ {e 7→ X}

• extH[M/e] = extH

• permH[M/e] = permH � (EH \mE(EM )) ∪ {e 7→ ρ}
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With these definitions an abstraction function

abs ′G : HG
Varprocess
ΣN

→ P(HG
Varprocess
ΣN

)

for an HAG G is defined which maps an HG H ∈ HG
Varprocess
ΣN

to the set of those HGs
that result by introducing successively hyperedges until there is no further embedding for
any right hand side of any production rule in G. Note firstly that this way of abstracting
terminates because G is increasing and thus every abstraction step results in a smaller
HG and secondly that abstraction might possibly lead to a set of HGs instead of a
single one as the following example illustrates. Consider therefore the fpHRG G′ from
page 33 and the following example of abstraction steps where every arrow indicate the
introduction of an hyperedge.

nWR

pWR

nWR

pWR

L

WR
1 2

nWR

pWR L

WRnWR

nWR

1 2

L

WR

L

WR
1 2 1 2

L

WR
1 2

Note that the dotted arrow is only valid if the third production rule (on page 33) which
established local concretisability is added to G′. Nevertheless there are two HGs that can
not be anymore abstracted which are obtained by introducing hyperedges repeatedly. As
stated for HR it holds that two (and therefore by an inductive argument arbitrary many)
production rules are applied and there is exactly one resulting HG, but for backward
application there are possible multiple resulting HGs and it depends on which abstraction
is carried out first. Consider now adding additionally the production rule

L 1 L L 2
1 2 1 2

to G′. This causes the above considered abstraction to result in a singleton set because
the left hand leaf of this “abstraction tree” can be further abstracted to the right hand
leaf. The property that abstraction results in a single possible HG is called backward
confluence and a HAG is called backward confluent if every abstraction for an arbitrary
HG results in a single HG. For a backward confluent HAGs G the abstraction function
absG : HG

Varprocess
ΣN

→ HG
Varprocess
ΣN

is defined as the mapping from every HG H to the

single element in abs ′G(H). It is unclear if it is possible to establish backward confluence
for HAGs, but it is decideable if an HAG is backward confluent (for details see [10]).
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7.5 Abstract Semantics

As already mentioned above and also explored in [6] it is possible to model the semantics
of statements (except fork and join) on partially abstracted but admissible HCs because
the admissibility ensures that all referenceable objects and selectors are actually cur-
rently available in the heap representation. But it is possible that the execution of such
a statement invalidates the admissibility because other selectors can become reference-
able because a variable might get assigned a new value. This inadmissibility has to be
resolved in order to continue the analysis of further statements. In order to resolve inad-
missibilities the heap representation is at first completely abstracted and subsequently
as far as necessary concretised to reestablish admissibility. The first abstraction step
is used in order to minimise the heap representation because reaG stops as soon as ad-
missibility is established. With these intuitions the abstract semantics (denoted by I)
of pointer operations (which are all statements except of fork, join and assignment of
process identifiers) can be given as follows:

(S,H)B (S′, I) H ′ ∈ reaG(absG(I))

(S,H) I (S′, H ′)

For the semantics of the assignment of process identifiers the concrete semantics also
transfer to partially abstracted HCs since the definitions given for the modifications of
permissions in Section 6.1 are applicable for nonterminals as well, thus no changes are
required.

For join and fork on the other hand some modifications in semantics have to be intro-
duced. At first the postponed definitions of reachability and border nodes are addressed
and afterwards the semantics of fork and join are applied on partially abstracted HCs.

The set of selectors that are reachable from an initial node are those selectors that can
be reached via moving along other selectors. For example consider the HC described in
Figure 9. The set of reachable edges from v1 is {e1, e2, e4, e5} since from v1 e1 is directly

v3

v1

v2

v4

v5

p

e1

p
e2

p
e3

p

e4

p

e5

Figure 9: simple HC to illustrate reachability

reachable and after moving along e1 the edge e2 is reachable and so forth. On the other
hand e3 is not reachable from v1 since the selector points in the “wrong” direction. In
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order to formalise these movements along the edges in H ∈ HG
Varprocess
ΣN

the notion of a
path π is introduced as

π ∈ (N× EH × N)∗

where it holds for π(k) = (i, e, j) and π(k+1) = (i′, e′, j′) that conH(e)(j) = conH(e′)(i′)
for all 1 ≤ k ≤ (|π| − 1). This describes undirected paths, i.e.

(1, e1, 2)(2, e3, 1)

is a valid path although e3 is actually not reachable from v1. Thus, not all paths agree
with the intuition of reachability. The intuition of reachability is easy for selectors
which are interpreted as directed edges. For nonterminals reachability is understood as
the possibility to concretise this nonterminal in a way such that there is a reachable path
along selectors between the connected nodes. Formally defined is reachability by the use
of the term bridge as follows:

Definition 7.19 (Reachability). A bridge (i,X, j) ∈ br(N ∪Sel) is called reachable

for G ∈ HAG
Varprocess
ΣN

if i = 1, j = 2, X ∈ Sel or if X ∈ N and there is H ∈ LG(X•)
such that there is a reachable path π from v•i to v•j .

Note that it is assumed that the set Sel is ranked by the function that maps all selectors
to 2 to ensure that br(N ∪ Sel) is defined. A path π is called reachable if every used
bridge is reachable. Let Path(u, v) denote all paths that start in u and end in v, formally:

Path(u, v) =

π |
π is a path

∧ (i, e, j) = π(1) ∧ conH(e)(i) = u

∧ (i′, e′, j′) = π(|π|) ∧ conH(e′)(j′) = v


Furthermore it is possible to compute all reachable bridges over nonterminals in a

HAG over syntactical analysis of the HAG as the following lemma states:

Lemma 7.2. For G ∈ HAG
Varprocess
ΣN

the set RB(G) denotes all reachable bridges in G.
RB(G) can be computed by syntactical analysis of G.

Proof. Let

RB0 = {(1, s, 2) | s ∈ Sel}

denote the set of all bridges over selectors in the “right” direction. Let furthermore
NT (π) denote all used bridges in the path π in an HG H

NT (π) = {(i, labH(e), j) | (i, e, j) ∈ HπI}

then

RBn+1 = {(i,X, j) | ∃H ∈ rhs(GX).∃π ∈ Path(extH(i), extH(j)).NT (π) ⊆ RBn}
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denote the set of all reachable bridges that make use of previously computed reachable
bridges which ensure reachable paths. For example, RB1 is the set of bridges over
selectors and those nonterminals for which a right hand side of a production rule exists
where a path along selectors connects extH(i) and extH(j). It is easy to see that this
iteration is monotone and since the set of all bridges for a finite set of nonterminals N
and selectors Sel is finite as well it terminates after finitly many steps. By induction
over n, the depth of applied concretisation steps for nonterminals until a reachable path
is found it follows that the fixpoint of this iteration is indeed RB(G).

Combining this result with a breadth-first search that computes stepwise all possible
paths of finite length and with the set RB(G) it can be tested if these paths are reachable.
It follows that for a finite graph all reachable paths can be computed. Let CPathH(v)
denote all reachable paths in H starting in the node v:

Corollary 7.1. For H ∈ HG
Varprocess
ΣN

, G ∈ HAG
Varprocess
ΣN

and v ∈ VH the set CPathH(v)
can be computed by syntactical analysis of G and a structural analysis of H.

Another point has to be taken into account before the set of reachable edges can be
formally defined. It is illustrated by the following production rule:

T 1 2
p p

It is evident that the bridges (1, T, 2), (2, T, 1) are both not reachable. But also both
tentacles (T, 1), (T, 2) are not reduction tentacles since both actually abstract selectors.
If any reachable path from a starting node u to a node v exists such that v is connected
to a T -labeled edge e, then e has to be included in the set of reachable edges, since it
abstracts edges which can actually be reached. With this in mind the set of reachable
edges from a node v in a HG H denoted by reachHabs(v) can be formally defined in two
steps. First all edges of reachable paths are gathered in

P = {e | (i, e, j) ∈ HπI, π ∈ CPathH(v)}

and secondly all nonterminals where parts of the concretisating graphs can be reached
in

D =

{
e |

labH(e) ∈ N, 1 ≤ i ≤ rk(labH(e)).∃e′ ∈ P.conH(e)(i) ∈ HconH(e′)I
∧ (labH(e), i) is no reduction tentacle

}

Then the set of reachable edges is defined as:

reachHabs(v) = P ∪D

and let

reachHabs(v1, . . . , vn) =
⋃

1≤i≤n
reachHabs(vi)
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denote the reachable nodes from multiple initial nodes. This concludes computing the
reachable edges in a partially abstract HG. As mentioned before the computation of
reachable edges for fully concrete HGs relies on the reachability in the abstracted case
and is intuitively achieved by abstracting the concrete HG, computating the set of reach-
able edges, concretising with the same sequence of production rules that is used for the
abstraction to rebuild the initial HG. The set of reachable edges in the concrete HG
are all edges that arise from reachable edge in the abstraction. Therefore production
sequences are introduced as sequence of tupel of production rules and edges. A produc-
tion sequence denotes the way a heap is transformed via production rules. This means
it is possible to revert abstraction steps by saving tupels of the production rules and the
introduced hyperedges that arise from backward application of that production rule and
applying this sequence in reversed order to the abstracted HG yields again the original
concrete HG. Let π be a finite production sequence then π−1 denotes the reversed pro-
duction sequence. Furthermore let π � E denote the production sequence that contains
all production rules in π that are applied to edges in E or edges that are concretised
from E (in possibly multiple applications of production rules). Let furthermore H

π
=⇒ Q

denote the application of a sequence of production rules π. Especially it holds for the

production sequence π which is used to obtain absG(H) that absG(H)
π−1

==⇒ H. Addi-
tionally, let H be a partially abstracted HG then let Eπ for an production sequence π
denote the set of all edges that arise from concretisation steps applied to edges of E and
edges that are originally obtained from edges in E.

Eπ = {e | (H � E)
π�E
==⇒ H ′, e ∈ EH′}

With these notions reachability for concrete hypergraphs can be defined in context of a
HAG G as follows:

reachH(v1, . . . , vn) = (reach
absG(H)
abs (v1, . . . , vn))π−1

where the abstraction preserves v1, . . . , vn and π denotes the corresponding production
sequence of the abstraction.

For the contracts of the forked programs there is one difference to the concrete se-
mantics which is that a partially abstract precondition concretises to various possible
HCs (similar to the contracts presented in [11]). Just like concretisation of nonterminals
demands that all production rules that establish admissibility are analysed (since the
information from which of these concrete HCs it is abstracted from is lost) there are also
multiple postconditions that might apply after the execution of a program depending on
the actual structures the partially abstract precondition concretises to. Formally, this
leads to a set of contracts for a program m where one precondition leads to multiple
postconditions:

Contabs(m) ⊆ P((HG
Varprocess
ΣN

× P(E)× P(HG
Var ′process
Σ′N

)))

where for every C = (PC , EC ,QC) ∈ Contabs(m) holds that EC ⊆ EPC
WR. Furthermore

there is for every program m and precondition P maximal one contract C ∈ Contabs(m).
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Because if there are two contracts C,C ′ ∈ Contabs(m) with PC ∼=ap fp P
∼=ap fp PC′ then

those contracts can be united to a contract C ′′ = (P,EC ∪EC′ ,Q′) such that Q′ contains
all possible results from executions of m starting from the initial heap state (which
is obtained from the precondition and the set of alternable edges the same way it is
described in Section 6.5 with straightforward ajustments for nonterminals).

As already introduced the intuition for border nodes is that these nodes are part of the
subgraph for which the access tickets are transferred to the newly forked process but are
also still part and accessible (with limitation to some selectors) to the forking process.
For the formal definition let H be the current heap representation, C = (PC , EC ,QC) be
a contract for the forked process, R be the reachable subgraph from the actual parameter
of the fork statement and it holds that R ∼=ap fp PC . Then the set of border nodes can
be defined as follows:

borderHabs(C) =

 ⋃
e∈EC

HconH(e)I

⋂ ⋃
e∈EH\EC

HconH(e)I


which leads to the following transformation of the heap representation of the forking
process:

H ′ = H[↓ t][\EC ][+WRN{t} ⇒ enumbC(H)][(EPC
\ EC)− {t}]

where t denotes the process identifier that identifies the newly forked process initially.
With these definitions the abstract semantics for the fork statement can be given as
follows where R = (H � reachabs(Jx1KH , . . . , JxnKH))

(PC , EC ,QC) ∈ Contabs(m) PC ∼=ap fp R H ′′ ∈ reaG(absG(H ′))

(t = fork(m(x1, . . . , xn)), H) I (ε,H ′′)

Lastly, the join statement is dealt with almost the same as in the concrete semantics.
Recall therefore the two transformations steps for one precondition Q from page 28:

Q′1 = QC [↓ enumVar ′thread
(1)] . . . [↓ Var ′thread(|Var ′thread|)]

and
Q′2 = Q′1[\(EQ

′
1

RD ∪ E
Q′1
RD∗)]

then there are again two transition rules for the join statement where one deals with
fully returned read tickets and the other one with lost read tickets. Especially every
postcondition Q ∈ QC is examined (since every postcondition describes a valid execution
of the program from the initial heap state).

Q ∈ QC E
Q′1
RD∗ 6= ∅ H[↓ Tt]

NTt→Q
′
2

=====⇒ H ′ H ′′ ∈ reaG(absG(H ′))

(join(t), H) I (ε,H ′′)

Q ∈ QC E
Q′1
RD∗ = ∅ H[← Tt]

NTt→Q
′
2

=====⇒ H ′ H ′′ ∈ reaG(absG(H ′))

(join(t), H) I (ε,H ′′)
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where C = (PC , EC ,QC) is the contract which the process is forked by before (which
can be obtained by attaching it to the placeholder when the fork statement is executed).
Additionally it can be explained in the context of abstraction why it is avoided for
the concrete semantics as well as for the abstract semantics to match the shared edges
from the postcondition to the ones in the heap representation of the joining process.
Because of the applied abstraction it is possible that nonterminals that are identified
at the join statement get concretised and abstracted differently through the execution
of both processes. To avoid accounting from which nonterminals different edges arose
(especially since it had to be done for every forked process individually) it is just dealt
with by handing over one read ticket for all shared edges and returning the minimum
of this read ticket (nothing if any edge cannot return its ticket completely or everything
if every edge can guarantee to return the whole ticket). Also this fits the approach to
deal with abstraction and permissions as orthogonal concepts (like it is approached by
introducing fully permissive grammars on page 30). Note that again one abstraction
and one concretisation step is applied to the resulting heap representation. This is done
because after the transformation of permissions as well as inserting the “WR part” into
the heap representation it is possible that the right hand side of production rule can be
found in the resulting heap representation which were not present before. Thus, to obtain
the most general heap representation the abstraction step is executed and following to
obtain the minimal admissible HCs one concretisation step is applied.

7.6 Correctness

The main result justifying the taken approach on the presented abstraction is to show
that I is an over-approximation of the transition relation B. Therefore it is assumed that
abstraction and concretisation relies on a backward confluent HAG G and abstract and
concrete contracts are connected in the following way: For every C = (PC , EC , QC) ∈
Cont(m) exists C ′ = (PC′ , EC′ ,QC′) ∈ Contabs(m) such that

(i) PC ∈ LG(PC′), which implies there is a production sequence π such that PC′
π
=⇒ PC

(ii) PC′ � EC′
π�EC′===⇒ PC � EC

(iii) there is Q′ ∈ QC′ with QC ∈ LG(Q′)

This intuitively means that (i) preconditions of concrete contracts arise from concreti-
sation of preconditions of abstract contracts, where (ii) every edge in the alternable set
of the concrete contract arise from concretisation of edges in the alternable set of the
abstract contract and (iii) the postcondition of the concrete contract can be found by
concretising one of the postconditions of the abstract contract. Note further that the
order of π does not matter due to the confluence property of HR, but a previous HR can
expose the hyperedges which later production rules are applied to. This might cause
dependencies between the production rules. A subsequence χ of π denoted as χ ≺ π is
a sequence of production rules such that these production rules appear also in π.
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These assumptions are essential requirements for the presented analysis and abstrac-
tion approach of this paper. Because the actual analysis is actually designed for ab-
stracted representation, it is expected that the set of abstracted contracts is computed
first and the concrete contracts are simply generated by concretisation of abstracted
contracts. This justifies that even for the concrete semantics a corresponding abstracted
contract exists for every concrete contract. This is necessary because the border nodes
for the concrete semantics are computed by abstracting and computing the border nodes
for the abstracted case and concretise by the sequence of production rules used for the
abstraction. This is necessary to ensure that the abstract semantics overapproximate
the concrete semantics. This approach agrees with the intuition of the border nodes in
the concrete semantics because the computation of border nodes in the abstracted HC
is a superset of the actual border nodes. Recall therefore the intutition of border nodes
for the concrete semantics as all nodes that are connected to an edge for which WR
permission is transferred and an edge that is still present within the heap representation
of the forking process. Let H be this heap representation and C = (PC , EC , QC) the
contract by which the fork statement is executed then the intuition translates to the
following set:

IBH(C) = {v | ∃e ∈ EC .∃e′ ∈ EH \ EC .v ∈ HconH(e)I ∩ HconH(e′)I}

Then the following lemma states that this computation ensures that the border nodes
are a superset of the nodes that are intuitively understood as border nodes:

Lemma 7.3 (Border Lemma). For C ∈ Cont(m) and C ′ ∈ Contabs(m) such that for C
and C ′ (i), (ii), (iii) holds that IBH(C) ⊆ borderH(C ′)

Firstly one additional property for HR, namely context-freeness, is presented in the
following because it motivates some of the used results for the presented proofs. But in
order to avoid some formal machinery context-freeness is only presented informally, for
formal details as well as the proof that HR actually is context-free see [16, pp. 111-115]:
The deriveration of nonterminals is context-free in the sense that it is independent from
the rest of the HG. This means, first applying production rules to nonterminals and
glueing the resulting hypergraphs together yields the same result as glueing the hyper-
graphs together and applying the same production rules afterwards. In the following the
proof for the Border Lemma is presented which actually makes use of context-freeness
property:

Border Lemma. Let v ∈ IBH(C) be arbitrarily chosen. It follows that v ∈ borderH(C)
by the following argument: Since v ∈ IBH(C) it follows that there is e ∈ EC and
e′ ∈ EH \ EC such that v ∈ HconH(e)I ∩ HconH(e′)I. Let furthermore C ′ denote the
abstract contract to C for which (i), (ii), (iii) holds. By the context-freeness property of
HR and because (ii) holds follows that there are eabs ∈ EC′ and e′abs ∈ EabsG(H)\EC′ such
that e arises from concretisation of eabs and e′ from concretisation of e′abs. Therefore
it follows immediatly that v ∈ HconabsG(H)(eabs)I ∩ HconabsG(H)(e

′
abs)I and hence v ∈

borderC′(H).
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This proves that it is viable to rely on abstraction in order to determine the border
nodes because it overapproximates the definition of border nodes for the concrete case.

In order to proof the overapproximation of I it is actually shown that if (S,H) B
(S′, H ′) that there is K such that (S, absG(H)) I (S′,K) and H ′ ∈ LG(K). Furthermore
the proof is only presented for the fork and join statement and the assignment of process
identifier. For all other cases the overapproximation can be shown straigthforwardly by
adapting the proof of overapproximation presented in [6]. Especially noteworthy in this
context is that the presented absG and reaG functions of this paper with Theorem 7.1
and that every backwards application of a production rule can be undone by forwards
application of the same production rule satisfy the requirements for the concretisation
and abstraction functions demanded by the Correctness Theorem in [6, p. 19].

For the following proofs of overapproximation for fork and join some general arguments
are presented in front to reduce the formal complexity of the actual argumentation:

(I) Because permissions propagate strictly through production rules it follows for a
production sequence π and two HGs H,Q with H

π
=⇒ Q and a permission ρ that

(EHρ )π = EQρ

because every nonterminal with permission ρ can only concretise to edges with
permission ρ and also edges with permission ρ can only be abstracted into nonter-
minals with permission ρ.

(II) Since production rules are generally assumed to not abstract placeholder and vari-
ables it can be assured that nodes that are identified by variables are preserved by
abstractions and introduced placeholder are preserved through concretisation.

Lemma 7.4 (Overapproximation of Fork). For a backward confluent G ∈ HAG
Varprocess
ΣN

,

H,H ′ ∈ HC
Varprocess
Σ and (t = fork(m(x1, . . . , xn)), H) B (ε,H ′) it holds that there is

I ∈ HC
Varprocess
ΣN

with (t = fork(m(x1, . . . , xn)), absG(H)) I (ε, I) and H ′ ∈ LG(I).

Proof. Let C be the contracted by which (t = fork(m(x1, . . . , xn)), H)B (ε,H ′) is com-
puted. Then by the definition of B it follows that H ′ = H[↓ t][\EC ][+WRN{t} ⇒
enumbC(H)][(EP \ EC) − {t}]. Let C ′ be the abstract contract such that C and C ′ sat-
isfy (i), (ii), (iii). With this it is shown that H ′ ∈ LG(absG(H)[↓ t][\EC′ ][+WRN{t} ⇒
enumbC′ (absG(H))][(EPC′ \ EC′) − {t}]) by the following argument: Obviously there is a

production sequence π such that absG(H)
π
=⇒ H. Furthermore the permissions in H and

in absG(H) are altered both by [↓ t] the same way, also because placeholders cannot be
abstracted (by argument (II)) and because the permission propagate through concreti-
sation (by argument (I)) it follows that there is a production sequence π′ that mirrors π
but adapts the permissions of production rules according to the edges these production

rules are applied to such that absG(H)[↓ t] π′
=⇒ H[↓ t]. Secondly, it can be assured by the

definition of reachH and because Jx1KH , . . . , JxnKH are preserved through abstraction (by

argument (II)) that for R := reach
absG(H)
abs (Jx1KabsG(H), . . . , JxnKabsG(H)) it follows that
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absG(H) � R︸ ︷︷ ︸
PC′

π′�R
==⇒ H � reachH(Jx1KH , . . . , JxnKH)︸ ︷︷ ︸

PC

. Because of the context-freeness of HR

and property (ii) for C and C ′ it follows that removing EC′ in absG(H)[↓ t] removes EC
in H[↓ t]. This implies that there is a production sequence π′′ which is the same as π′

but reduced to those production rules for which the edges are actually present after re-

moving EC′ in absG(H) such that absG(H)[↓ t][\EC′ ]
π′′
=⇒ H[↓ t][\EC ]. Since the border

nodes in both cases are determined the same way and (II) holds it follows immediatly

that absG(H)[↓ t][\EC′ ][+WRN{t} ⇒ enumbC′ (absG(H))]
π′′
=⇒ H[↓ t][\EC ][+WRN{t} ⇒

enumbC(H)]. Finally, because of (I) it follows that there is π′′′ such that absG(H)[↓
t][\EC′ ][+WRN{t} ⇒ enumbC′ (absG(H))][(EPC′ \EC′)− {t}]

π′′′
=⇒ H[↓ t][\EC ][+WRN{t} ⇒

enumbC(H)][(EP \ EC) − {t}] where π′′′ mirrors π′′ but adapts the permissions of the
production rules according to the permissions of the edges they are applied to. This con-
cludes that H ′ ∈ LG(absG(H)[↓ t][\EC′ ][+WRN{t} ⇒ enumbC′ (absG(H))][(EPC′ \ EC′) −
{t}]) and because reaG preserves the language of the HG it is applied to it follows that

there is I ∈ HC
Varprocess
ΣN

such that (t = fork(m(x1, . . . , xn)), absG(H)) I (ε, I) with
H ′ ∈ LG(I).

And secondly the join statement is examined in detail as follows:

Lemma 7.5 (Overapproximation of Join). For a backward confluent G ∈ HAG
Varprocess
ΣN

,

H,H ′ ∈ HC
Varprocess
Σ with (join(t), H) B (ε,H ′) it holds that there is I ∈ HC

Varprocess
ΣN

such that (join(t), absG(H)) I (ε, I) and H ′ ∈ LG(I).

Proof. Let Tt denote the token of identifiers that identify the process t and C = (PC , EC , QC) ∈
Cont(m) the contract by which the process identified by all t′ ∈ Tt is joined. Let
further more denote C ′ = (PC′ , EC′ ,QC′) ∈ Contabs(m) such that C and C ′ satisfy
(i), (ii), (iii). Therefore there is (at least one) QC′ ∈ QC′ such that QC ∈ LG(QC′).
This implies there is a production sequence π such that QC′

π
=⇒ QC . Furthermore it is

clear that there is a production sequence λ with absG(H)
λ
=⇒ H. Additionally it is Q1 =

QC [↓ enumVar ′process
(1)] . . . [↓ enumVar ′process

(|Var ′process|)] and Q2 = Q1[\(EQ
1

RD ∪ E
Q1

RD∗)],

and accordingly Qabs
1 = QC′ [↓ enumVar ′process

(1)] . . . [↓ enumVar ′process
(|Var ′process|)] and

Qabs
2 = Qabs

1 [\(EQ
abs
2

RD ∪ EQ
abs
2

RD∗ )]. By argument (I) and because the successively dropped
process identifier alternate the permissions in QC and QC′ the same way (an analogous
case is examined in the proof of the overapproximation for the fork statement above)

it can be savely assumed that Qabs
1

π′
=⇒ Q1 where π′ mirrors π but adapts the permis-

sions of the production rules to fit the permissions of the edges they are adapted to,

and furthermore it follows that EQ1

RD∗ = ∅ if and only if E
Qabs

1

RD∗ = ∅, since every e with
RD∗ in Q1 has to arise from an edge with RD∗ permission in Qabs

1 and every edge in
Qabs

1 with an RD∗ permission concretises to edges with RD∗ permissions. This implies
that the abstract semantics as well as the concrete semantics agree upon which of both
production rules is used in both cases. Additionally because the “write-part” and the
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“read-part” of the postcondition can be distinguished by their BasePerm and of argu-
ment (I) there is a production sequence π′′ which is the same as π′ restricted to the

edges with WR,WR∗ permissions (π′′ = π′ � E
Qabs

1
WR ∪E

Qabs
1

WR∗) such that Qabs
2

π′′
=⇒ Q2. Let

now in the following ∆ ∈ {↓ Tt,← Tt} denote the graph transformation which is applied
to the heap representation to return the “read-part” of the postcondition. It is already

established that absG(H)
λ
=⇒ H. Because both transformations change the permissions

in absG(H) and H the same way, this implies that there is λ′ which mirrors λ aside the
permissions which are adapted to fit the edges the production rules are applied to such

that absG(H)[∆]
λ′
=⇒ H[∆]. Let in the following K ∈ HC

Varprocess
ΣN

denote the HC such

that absG[∆]
NTt→Q

abs
2

======⇒ K holds. And H ′ is by the definition of the production rules

for the concrete semantics (see page 28) the HC such that H[∆]
NTt→Q2
=====⇒ H ′. It follows

from the context-freeness and independence of π′′ and λ′ (i.e. no production rule in
π′′ is needed to reveal edges which production rules of λ are applied to and vice versa)

that K
λ′
=⇒ K ′︸︷︷︸

intermediate state

π′′
=⇒ H ′, where the intermediate step K ′ is fully concrete in the

part around the inserted Qabs
2 which is then concretised by π′′. Therefore K

λ′π′′
==⇒ H ′

which implies H ′ ∈ LG(K). Finally, because application of abstraction and concretisa-
tion yields at least the language of the HC they are applied to it follows that there is
I ∈ reaG(absG(K)) such that H ′ ∈ LG(I).

At last the overapproximation of the assignment of process identifier is given.

Lemma 7.6 (Overapproximation of Assignment of Process Identifier). For a backward

confluent G ∈ HAG
Varprocess
ΣN

, H,H ′ ∈ HC
Varprocess
Σ with (t = t′, H)B (ε,H ′) it holds that

there is I ∈ HC
Varprocess
ΣN

such that (t = t′, absG(H)) I (ε, I) and H ′ ∈ LG(I).

Proof. This follows immediatly from argument (I) and because [t = t′] operates on
the permissions of the concrete HC as well as the corresponding abstraction the same
way.

This concludes the proof that I is an overapproximation of B. �
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8 Data Race Freedom

The main result of incorporating permissions into the heap representation is to avoid data
races. This section proves the absence of dataraces for valid executions, i.e. executions
that does not yield a ⊥ symbol. To improve the readability some considerations are
given up front:

1. Edges are only altered if the permission of this edge is WR as it can be easily seen
from the transition rules on page 19.

2. Selectors can only be read if the corresponding edge is present in the representation
of the heap, which follows likewise from the transition rules on page 19

3. Let Tok(H) = {T | T is a token and either ∃e ∈ EH .permH(e) = ρ − Φ ∧ T ∈
Φ or ∃e′ ∈ EH .labH(e′) = NT } denote the set of all tokens in H. The set of tokens
is called consistent if they are all disjoint and all process identifier in a token refer
to the same process.

4. BasePerms that are once starred can never be “un-starred” again which satisfies
to drop accounting for permissions with starred BasePerms (as it can be seen in
the property Derived Tickets only not starred permissions are examined).

8.1 Proof Obligation

It is shown by induction of the transition relation that for every HC H of the transition
system described by B holds:

Consistency of Tokens that Tok(H) is consistent

Uniqueness of Access that there is only one process for which the BasePerm of an edge
in the heap representation is WR or WR∗, i. e. write access is always transferred
completely

Derived Tickets that all derived tickets for read access for edges with a BasePerm
that is either WR or RD are properly accounted in the PermSet , where properly
accounted means that for every derived ticket the token of the process is given in
the PermSet

For this induction only the fork and join statement as well as the allocation and assign-
ment of process identifier is examined, because all other statements cannot alter any
permission or placeholder.

Let as induction hypothesis for all following proofs H be a heap representation which
satisfies Consistency of Tokens and Uniqueness of Access and Derived Tickets.

Allocation. For (new(x), H) B (ε,H[+v][x ↪→ v]︸ ︷︷ ︸
H′

) it holds that there are new edges for

used selector attached to the node v. All these edges cannot accessed by any other
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process other than the current one. Therefore H ′ satisfies Uniqueness of Access.
Furthermore H ′ satisfies Consistency of Tokens by induction hypothesis and because
no new tokens are added. Since for the new selectors no access tickets are yet derived
the empty PermSet is a proper accounting, yielding Derived Tickets.

Assignment of Process Identifier. For (t = t′, H) B (ε,H[t = t′]) it holds that H[t = t′]
satisfies Consistency of Tokens because [t = t′] implicitly contains [↓ t] which ensures,
that t is removed from all tokens and afterwards it is added to the token that refers to
the process t′ refers to (by induction hypothesis there is one unique token Tt′ to which
t is added).

Additionally, Uniqueness of Access follows immediatly from the induction hypothe-
sis since it is only possible that BasePerms are starred but no access tickets are somehow
transferred between processes.

And finally, Derived Tickets holds because analogous to the argumentation of Con-
sistency of Tokens the BasePerm of all permission for which no proper accounting can
be guaranteed, i.e. those for which the access ticket was represented by {t}, are starred
(since this derived ticket can never be regained). For the others the proper accounting
follows inherently from the induction hypothesis and because the tokens referring to the
different processes are consistent (Consistency of Tokens).

Fork. For
(t = fork(m(x1, . . . , xn)), H)B(ε,

H′︷ ︸︸ ︷
H[↓ t][\EC ][+WRN{t} ⇒ enumbC(H)][(EPC

\ EC)− {t}])
let C = (PC , EC , QC) ∈ Cont(m) be the contract by which the new process is forked.

Consistency of Tokens is ensured for H ′ because again [↓ t] ensures that t is removed
from all used tokens and therefore {t} can be added safely by the introduction of the
placeholder N{t} and [(EPC

\EC)−{t}]. Note further that {t} is a consistent token since
t is the only process identifier referring to the newly forked process. Futhermore by the
definition of the initial heap state it satisfies Consistency of Tokens as well since all
its permissions are simple at the beginning which implies an empty set of tokens.

Uniqueness of Access can be assured because by the definition of how the initial
heap state is obtained it follows that only for edges from EC the permission is WR (for all
others the permission is RD). Since EC ⊆ EPC

WR by the premise for contracts and because
H satisfies Uniqueness of Access the transformation [\EC ] ensures Uniqueness of
Access for H ′ because the edges for which the initial heap state has WR access are
removed for H ′. Furthermore this argument also yields Uniqueness of Access for the
initial heap state of the forked process as well.

It can also be seen that H ′ satisfies Derived Tickets since for all e ∈ EH[↓t] with a
BasePerm that is either WR or RD Consistency of Tokens ensures a proper account-
ing of the derived access tickets. And all reachable edges are either removed [\EC ] or the
token {t} is added which accounts the the newly derived access ticket for all reachable
edges that are not removed. Concludingly, H ′ satisfies Derived Tickets. Also for the
initial heap state all PermSets are empty and because there is not yet any derived ticket
for the initial heap state it also satisfies Derived Tickets.
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Join. For (join(t), H)B (ε,H ′) let C = (PC , EC , QC) denote the contract by which the
joined process was forked intially. Furthermore it holds that

Q1 = QC [↓ enumVar ′thread
(1)] . . . [↓ Var ′thread(|Var ′thread|)] and Q2 = Q′1[\(EQ

′
1

RD ∪ E
Q′1
RD∗)].

It is shown for the fork statement that the initial heap state of forked processes sat-
isfies Consistency of Tokens, Uniqueness of Access and Derived Tickets. It is
stated that for contracts QC is obtained by a valid execution from the initial heap state.
This valid execution implies preservation of Consistency of Tokens, Uniqueness of
Access and Derived Tickets, thus QC satisfies these properties. Furthermore after
having dropped all process identifier ([↓ t′] for all t′ ∈ Var ′process) it can be assured that
Tok(Q1) = ∅ which is therefore consistent. Additionally since from Q1 to Q2 only edges
are removed it follows that Tok(Q2) = ∅ which is also consistent. Also Uniqueness of
Access is preserved for Q1 and Q2 because all BasePerms can only alter from WR to
WR∗ or from RD to RD∗ for every [↓ t] transformation. Therefore because QC satisfies
Uniqueness of Access so do Q1 and especially Q2. Also, because those edges that
preserve an unstarred BasePerm through the dropping of all process identifier must have
had an empty PermSet before and therefore the permission did not change from QC .
Therefore Q1 inherently satisfies Derived Tickets and because Q2 is a subgraph of Q1

it does too.

Distinguish two cases in the following: firstly EQ1

RD∗ 6= ∅, which implies that H[↓

Tt]
NTt→Q2
=====⇒ H ′. Then H ′ satisfies Consistency of Tokens because the token Tt is

removed from the token set (by successively dropping t′ ∈ Tt and replacing the place-
holder NTt by Q2) and the corresponding process terminated. Furthermore, integrating
Q2 does not add any token (recall that Tok(Q2) = ∅).

Uniqueness of Access can be assured because QC satisifes Uniqueness of Access
and thus, integrating those edges with BasePerm WR or WR∗ into H hands over the
write ticket to H. The write ticket was unique before and since the process that hands
the write ticket over terminated it is unique afterwards.

For Derived Tickets it is noteworthy that it cannot be guaranteed that all derived
access tickets are completely returned since there is at least one edge e ∈ EQ1

RD∗ (thus this
edge can potentially be accessed concurrently by a process and this process can never
be joined since the refernce to it is lost). Because the initial heap state is only provided
with WR or RD permission this implies a loss of information regarding the accounting
in the forked process. This loss of information propagates strictly by dropping the token
that identifies the derived access ticket. This ensures a proper accounting since those
permissions from which this access ticket was derived are starred (more precisely their
BasePerm). Furthermore for the “WR-part” Derived Tickets is shown above which
concludes that H ′ satisfies Derived Tickets.

Secondly, examine the case that EQ1

RD∗ = ∅ such that H[↓ Tt]
NTt→Q2
=====⇒ H ′: it follows

analogous to the first case that H ′ satisfies Consistency of Tokens and Uniqueness
of Access. For the Derived Tickets it is important that the whole access ticket
is returned because since QC satisfies Derived Tickets the empty PermSet for the
permissions with RD as BasePerm guarantees that in the execution every granted access
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ticket is completely recollected (in other words there is no process directly or indirectly7

forked from the joined process that can access these edges). This means the granted
access ticket (represented as RD permissions in the initial heap state) are completely
returned and it follows, because the “WR-part” satisfies Derived Tickets that H ′

satisfies Derived Tickets.

Concludingly, this induction yields data race freedom by the following argument: Be-
cause proper accounting for all edges with a permission that has a BasePerm of WR
or RD is guaranteed (Derived Tickets) it follows that any derived access ticket from
this permission restricts to read access (by the definition of the transition rules). A
permission of WR guarantees exclusive access because it meets the condition for proper
accounting of Derived Tickets, thus its empty PermSet ensures that no other process
an access this value concurrently. �

7since in the given setup process can only be joined by the process that forked them, there is a distinct
predecessor relationship between processes. Indirectly forked refers to any process which is in the
transitive closure of the predecessor relationship to the examined process
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9 Conclusion

For the future it can be generally assumed that complexity of software increases further.
Especially the paradigm of parallel programming becomes more and more important (for
example in the relatively new programming language Go which offers “explicit support
for concurrent programming.” [5]). In this work a permission model was added to the al-
ready established analysing technique of representing pointer structures as hypergraphs.
This allows analysing programs with parallel execution and therefore a programming
language was introduced which supports simple pointer manipulation as well as parallel
execution by fork and join statements. The semantics were appropiatly defined in terms
of hypergraph transformations. As long as valid contracts for the different programs that
can be forked are provided the data race freedom for the analysed states is proven. But
the defined permission model is actually meant as basis for a larger framework which
allows computation of those contracts in order to avoid defining those by hand which
is error-prone. Thus the presented analysis is meant for providing a basis that allows
further work with the framework (as presented in Section 9.1). Other contributions
regard the applied abstraction by hyperedge replacement grammars, namely computa-
tion of reachability and especially the compatibility of hyperedge replacement with the
permission model as shown in the proof of overapproximation of the transition relation.

9.1 Future Work

After having shown that analysis based on contracts yields data race freedom and is
therefore a viable approach on parallel execution of processes it is of special interest
how to obtain such contracts. Therefore it is open for future research to compute these
contracts automatically. Due to the similarity of contracts in [11] and the presented
work the same approach of fixpoint iteration to compute contracts can be explored for
the presented setup. Additionally integrating the presented permission model into the
already existent tool Juggrnaut is of interest in order to collect experimental data of the
efficency of this approach for actual problems. For permission accounting in separation
logic there are approaches to abstract from actual permission models [3, 4] which opens
permission accounting to be explored with various possible permission models. Working
on such an abstraction for heap representation with hypergraphs opens this approach
to choosing fitting permission models for different situations. Also discussed in [3] is
another concept of sharing resources between processes: conditional critical regions.
These are parts of the program that are connected with a shared resource. This shared
resource can be aquired (which grants exclusive access), operated on and finally released.
This describes a mechanism of programming for parallel execution known as monitor [9]
which is e.g. part of the programming language Ada95 [17, p. 163ff]. A possible approach
of integrating this concept for the presented permission model is to introduce a “ghost
process” which is joined by aquiring and forked by release of the resource. For separation
logic invariants are used to describe conditional critical resources [3], which can possibly
applied to hypergraph representation by representing the resource as single nonterminal
and ensuring that this nonterminal describes all possible states of the resource. Also
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connected to this is considering forked processes as heap objects themselves. Because
this is closer to the actual implementation of fork and join in programming languages e.g.
Java [1]. This would additionally allow to provide processes as parameter for procedure
calls of further fork statements. Moreover [1] allows for forked process to be joined by
various processes in order to obtain a part of the permissions of the postcondition, which
could possibly adapted for the representation of hypergraphs as well.

Regarding abstraction and abstract contracts it is possible that these contracts are far
too rigorous for their alternable sets. Consider therefore a process that might change the
right subtree of a provided binary tree but leaves the left subtree as is. Abstraction in
the context of a HRG as presented on page 31 might cause indistinguishability between
the subtrees and causes the process to demand write access on both. A possible approach
on this might be to add to contracts the information that applying some concretisation
steps might yield considerably finer demands.
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[10] Christina Jansen, Florian Göbe, and Thomas Noll. “Generating Inductive Predi-
cates for Symbolic Execution of Pointer-Manipulating Programs”. In: Graph Trans-
formation. Ed. by Holger Giese and Barbara König. Vol. 8571. Lecture Notes in
Computer Science. Springer International Publishing, 2014, pp. 65–80.

[11] Christina Jansen and Thomas Noll. “Generating Abstract Graph-Based Proce-
dure Summaries for Pointer Programs”. In: Graph Transformation. Ed. by Holger
Giese and Barbara König. Vol. 8571. Lecture Notes in Computer Science. Springer
International Publishing, 2014, pp. 49–64.

[12] Christina Jansen and Thomas Noll. “Thread Modular Analysis”. Draft.

[13] Christina Jansen et al. “A Local Greibach Normal Form for Hyperedge Replace-
ment Grammars”. In: Language and Automata Theory and Applications. Ed. by
Adrian-Horia Dediu, Shunsuke Inenaga, and Carlos Mart́ın-Vide. Vol. 6638. Lec-
ture Notes in Computer Science. Springer Berlin Heidelberg, 2011, pp. 323–335.

57



[14] Peter W. O’Hearn. “A Primer on Separation Logic (and Automatic Program Ver-
ification and Analysis)”. In: Software Safety and Security - Tools for Analysis and
Verification. 2012, pp. 286–318.

[15] Peter W. O’Hearn. “Resources, Concurrency, and Local Reasoning”. In: Theor.
Comput. Sci. 375.1-3 (2007), pp. 271–307.

[16] Grzegorz Rozenberg, ed. Handbook of Graph Grammars and Computing by Graph
Transformation: Volume I. Foundations. World Scientific Publishing Co., Inc.,
1997, pp. 95–156.

[17] S. Tucker Taft and Robert A. Duff, eds. Ada 95 Reference Manual, Language and
Standard Libraries, International Standard ISO/IEC 8652: 1995(E). Lecture Notes
in Computer Science. Springer.

58


