
Analysing Cryptographically-Masked Information
Flows in D-MILS Architectures
— Preliminary Results —

Thomas Noll (noll@cs.rwth-aachen.de)

MOVES Söllerhaus Workshop; March 4, 2015

MOVES Söllerhaus Workshop; March 4, 2015

noll@cs.rwth-aachen.de

The D-MILS Project

Content

The D-MILS Project

Information Flow Security

The Type Checking Approach

The Slicing Approach

2 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Distributed MILS

2 fortiss

n  Funded by the 7th Framework Programme of the European Commission
n  Website d-mils.org
n  Project consortium

Architectural Refinement

D-MILS Design Flow

11 fortiss

MILS
AADL

Performance
Analysis

MILS
AADL

MILS
AADL

Security
Analysis

Safety
Analysis

MILS Technical Platform

Node1 Node2 Node3

Configurations / Schedules /
Communication Routes

Configuration
Compiler

App A
Level B
Classified

App B
Level C
Unclassified

App C
Level A
Top Secret

C
Code

C
Code

Ada
Code

Autofocus
Model

Autocode

Simulink
Model

Autocode

A B

C

Implements/
Satisfies

MILS Policy Architecture

C2	

C4	
C1	

C3	

C5	

Circles represent���
architectural���
components ���
(subjects /���
objects)	

Arrows represent���
interactions	

Suitability of the architecture for some purpose���
presumes that the architect’s assumptions are met���
in the implementation of the architecture diagram.	

C6	

The absence of an ���
arrow is as significant���
as the presence of one	

This component���
has no interaction ���
with any other	

Components are���
assumed to perform���
the functions specified���
by the architect���
(trusted���
components enforce���
a local policy)	

The architecture���
expresses an ���
interaction policy���
among a collection ���
of components	

Trusted	

Subject	

© 2013 D-MILS Project 3

MILS Platform – Provides Straightforward Realization
of Policy Architecture

Architecture	

Realization	

SK, with other MILS ���
foundational components,���
form the MILS Platform���
allowing operational���
components to share���
physical resources while���
enforcing Isolation and ���
Information Flow Control	

Validity of the architecture���
assumes that the only���
interactions of the circles ���
(operational components)	

is through the arrows ���
depicted in the diagram	

R 1

R 2

R 3
R 5

R 4

MILS Platform	

© 2013 D-MILS Project 6

Distributed MILS (D-MILS):
Policy architecture deployment spanning nodes

Node Hardware	

SK	

MNS	

Node Hardware	

SK	

MNS	

Node Hardware	

SK ⊕ MNS ���
Foundational Plane	
+	
 →	

Node Hardware	

Subjects	
 Subjects	
Subjects	

MNS – MILS Networking System SK – Separation Kernel
D-MILS Project Overview 10 © 2015 D-MILS Project

D-MILS Research and Technology
Development Areas

Architecture
Analysis and

Design
Language

MILS-AADL

Inter-
mediate

Languages

Verification
Framework

MILS Platform
Configuration

Compiler

D-MILS
Platform
target

Extended
Separation

Kernel

Ext. Time
Triggered
Ethernet

Target
Configuration

tools

Assurance
Framework

Goal
Structuring
Notation

Behavior
Annotation Property

Annotation

D-MILS
Platform

Configuration
Synthesis

Integration
GSN & AADL

Graphical & Declarative Languages

Compositional
Verification

Compositional
Assurance Case

Representation
Semantics and
Transformations

Pre-existing
products LSK TTE

D-MILS Project Overview 9 © 2015 D-MILS Project

Information Flow Security

Content

The D-MILS Project

Information Flow Security

The Type Checking Approach

The Slicing Approach

9 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information flow security

VERIMAG 2 Munich Meeting 22-23 Mars 2014

n  Non-interference property includes:
t  Confidentiality (secrets kept)
t  Integrity (data not corrupted)

low-out

high-out

low-in

High-in

low-out

high-out

x
low-in

high-in

x

component1 component2

Non-interference:“High-security inputs have no effects on
 low-security outputs”

Information Flow Security

Some Security Concepts

• Here: two security levels L (low/public) and H (high/confidential/secret/private)
– partial order L v H (“can flow to”)
– extension to multi-level security by generalisation to lattice

• Analysis (can be) based on event traces in Evt∗

– security assignment σ : Evt → {L, H}
– projection t|E for t ∈ Evt∗, E ⊆ Evt
– t1, t2 ∈ Evt∗ called E-equivalent (t1 ∼E t2) iff t1|E = t2|E

Definition (Non-interference [Goguen/Meseguer 1982])

Let Evt = In] Out and T ⊆ Evt∗. Security assignment σ ensures (event)
non-interference if, for all t1, t2 ∈ T ,

t1 ∼In∩σ−1(L) t2 =⇒ t1 ∼Out ∩σ−1(L) t2

Interpretation: behaviour seen by “low” observer unaffected by changes in “high”
behaviour

11 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Some Security Concepts

• Here: two security levels L (low/public) and H (high/confidential/secret/private)
– partial order L v H (“can flow to”)
– extension to multi-level security by generalisation to lattice

• Analysis (can be) based on event traces in Evt∗

– security assignment σ : Evt → {L, H}
– projection t|E for t ∈ Evt∗, E ⊆ Evt
– t1, t2 ∈ Evt∗ called E-equivalent (t1 ∼E t2) iff t1|E = t2|E

Definition (Non-interference [Goguen/Meseguer 1982])

Let Evt = In] Out and T ⊆ Evt∗. Security assignment σ ensures (event)
non-interference if, for all t1, t2 ∈ T ,

t1 ∼In∩σ−1(L) t2 =⇒ t1 ∼Out ∩σ−1(L) t2

Interpretation: behaviour seen by “low” observer unaffected by changes in “high”
behaviour

11 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Some Security Concepts

• Here: two security levels L (low/public) and H (high/confidential/secret/private)
– partial order L v H (“can flow to”)
– extension to multi-level security by generalisation to lattice

• Analysis (can be) based on event traces in Evt∗

– security assignment σ : Evt → {L, H}
– projection t|E for t ∈ Evt∗, E ⊆ Evt
– t1, t2 ∈ Evt∗ called E-equivalent (t1 ∼E t2) iff t1|E = t2|E

Definition (Non-interference [Goguen/Meseguer 1982])

Let Evt = In] Out and T ⊆ Evt∗. Security assignment σ ensures (event)
non-interference if, for all t1, t2 ∈ T ,

t1 ∼In∩σ−1(L) t2 =⇒ t1 ∼Out ∩σ−1(L) t2

Interpretation: behaviour seen by “low” observer unaffected by changes in “high”
behaviour

11 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Cryptographically-Masked Information Flow

• Observation: encryption breaks traditional non-interference
• Public ciphertexts do depend on confidential contents!

Example (Password encryption)

• In = {pwd1H, pwd2H}, Out = {enc1L, enc2L}
• t1 = pwd1 · enc1, t2 = pwd2 · enc2
• t1|In∩ s−1(L) = ε = t2|In∩ s−1(L), but t1|Out ∩ s−1(L) = enc1 6= enc2 = t2|Out ∩ s−1(L)

⇒ Interference

Common approach: declassification
• Allows security level of incoming information to be lowered (here: password)
• Categorisation according to where/who/when/what [Sabelfeld/Sands 2005]
• Problems:

– exceptions to security policy might introduce unforeseen information release
– systematic handling of re-classification unclear

12 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Cryptographically-Masked Information Flow

• Observation: encryption breaks traditional non-interference
• Public ciphertexts do depend on confidential contents!

Example (Password encryption)

• In = {pwd1H, pwd2H}, Out = {enc1L, enc2L}
• t1 = pwd1 · enc1, t2 = pwd2 · enc2
• t1|In∩ s−1(L) = ε = t2|In∩ s−1(L), but t1|Out ∩ s−1(L) = enc1 6= enc2 = t2|Out ∩ s−1(L)

⇒ Interference

Common approach: declassification
• Allows security level of incoming information to be lowered (here: password)
• Categorisation according to where/who/when/what [Sabelfeld/Sands 2005]
• Problems:

– exceptions to security policy might introduce unforeseen information release
– systematic handling of re-classification unclear

12 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Cryptographically-Masked Information Flow

• Observation: encryption breaks traditional non-interference
• Public ciphertexts do depend on confidential contents!

Example (Password encryption)

• In = {pwd1H, pwd2H}, Out = {enc1L, enc2L}
• t1 = pwd1 · enc1, t2 = pwd2 · enc2
• t1|In∩ s−1(L) = ε = t2|In∩ s−1(L), but t1|Out ∩ s−1(L) = enc1 6= enc2 = t2|Out ∩ s−1(L)

⇒ Interference

Common approach: declassification
• Allows security level of incoming information to be lowered (here: password)
• Categorisation according to where/who/when/what [Sabelfeld/Sands 2005]
• Problems:

– exceptions to security policy might introduce unforeseen information release
– systematic handling of re-classification unclear

12 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Adapting Non-Interference

• Non-interference: if a program is run in two low-equivalent environments, the resulting
environments are low-equivalent
• Confidentiality thus requires: attacker may not distinguish between ciphertexts
• Naive approach: all ciphertexts are indistinguishable
• But: enables occlusion (i.e., security leaks by implicit data flow)

Example (Occlusion)

m0 -[then low1 := encrypt(val, key)]-> m1;
m1 -[when high then low2 := encrypt(val, key)]-> m2;
m1 -[when not high then low2 := low1]-> m2;

Cannot distinguish between low1 and low2 even though (in-)equality reflects high

Wanted: notion of low-equivalence that semantically rejects occlusion without
preventing intuitively secure uses

13 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Adapting Non-Interference

• Non-interference: if a program is run in two low-equivalent environments, the resulting
environments are low-equivalent
• Confidentiality thus requires: attacker may not distinguish between ciphertexts
• Naive approach: all ciphertexts are indistinguishable
• But: enables occlusion (i.e., security leaks by implicit data flow)

Example (Occlusion)

m0 -[then low1 := encrypt(val, key)]-> m1;
m1 -[when high then low2 := encrypt(val, key)]-> m2;
m1 -[when not high then low2 := low1]-> m2;

Cannot distinguish between low1 and low2 even though (in-)equality reflects high

Wanted: notion of low-equivalence that semantically rejects occlusion without
preventing intuitively secure uses

13 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Adapting Non-Interference

• Non-interference: if a program is run in two low-equivalent environments, the resulting
environments are low-equivalent
• Confidentiality thus requires: attacker may not distinguish between ciphertexts
• Naive approach: all ciphertexts are indistinguishable
• But: enables occlusion (i.e., security leaks by implicit data flow)

Example (Occlusion)

m0 -[then low1 := encrypt(val, key)]-> m1;
m1 -[when high then low2 := encrypt(val, key)]-> m2;
m1 -[when not high then low2 := low1]-> m2;

Cannot distinguish between low1 and low2 even though (in-)equality reflects high

Wanted: notion of low-equivalence that semantically rejects occlusion without
preventing intuitively secure uses

13 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Possibilistic Non-Interference [McCullough 1988]

• Encryption non-deterministically calculates a ciphertext out of a set
• Encrypted values low-equivalent if sets of possible results coincide

Definition

∼L is a low-equivalence relation on ciphertexts if ∀v1, v2, k1, k2:
1. safe usage: ∀u1 ∈ encrypt(v1, k1).∃u2 ∈ encrypt(v2, k2) : u1 ∼L u2

2. prevent occlusion: ∃u1 ∈ encrypt(v1, k1), u2 ∈ encrypt(v2, k2) : u1 6∼L u2

• Lifted to low-equivalence relation ∼L on values and environments

Definition (Possibilistic non-interference (informal))

If a program is run in two low-equivalent environments, there exists a possibility that
each environment produced from the first environment is low-equivalent to some that
can be produced from the second environment

14 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Possibilistic Non-Interference [McCullough 1988]

• Encryption non-deterministically calculates a ciphertext out of a set
• Encrypted values low-equivalent if sets of possible results coincide

Definition

∼L is a low-equivalence relation on ciphertexts if ∀v1, v2, k1, k2:
1. safe usage: ∀u1 ∈ encrypt(v1, k1).∃u2 ∈ encrypt(v2, k2) : u1 ∼L u2

2. prevent occlusion: ∃u1 ∈ encrypt(v1, k1), u2 ∈ encrypt(v2, k2) : u1 6∼L u2

• Lifted to low-equivalence relation ∼L on values and environments

Definition (Possibilistic non-interference (informal))

If a program is run in two low-equivalent environments, there exists a possibility that
each environment produced from the first environment is low-equivalent to some that
can be produced from the second environment

14 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Possibilistic Non-Interference [McCullough 1988]

• Encryption non-deterministically calculates a ciphertext out of a set
• Encrypted values low-equivalent if sets of possible results coincide

Definition

∼L is a low-equivalence relation on ciphertexts if ∀v1, v2, k1, k2:
1. safe usage: ∀u1 ∈ encrypt(v1, k1).∃u2 ∈ encrypt(v2, k2) : u1 ∼L u2

2. prevent occlusion: ∃u1 ∈ encrypt(v1, k1), u2 ∈ encrypt(v2, k2) : u1 6∼L u2

• Lifted to low-equivalence relation ∼L on values and environments

Definition (Possibilistic non-interference (informal))

If a program is run in two low-equivalent environments, there exists a possibility that
each environment produced from the first environment is low-equivalent to some that
can be produced from the second environment

14 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Possibilistic Non-Interference and Safe Usage of Encryption

Example (Safe usage of encryption)

m0 -[then low := encrypt(high, key)]-> m1;

• Let σ(high) = H and σ(key) = σ(low) = L

• Let environments η1, η2 with η1 ∼L η2 such that
1. η1(high) = v1, η1(key) = k
2. η2(high) = v2, η2(key) = k
• Execution respectively yields

1. E ′1 = {η1[low 7→ u1] | u1 ∈ encrypt(v1, k)}
2. E ′2 = {η2[low 7→ u2] | u2 ∈ encrypt(v2, k)}
• Now ∀u1 ∈ encrypt(v1, k1).∃u2 ∈ encrypt(v2, k2) : u1 ∼L u2 implies that
∀η′1 ∈ E ′1.∃η′2 ∈ E ′2 : η′1 ∼L η

′
2

⇒ Possibilistic non-interference

15 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

Information Flow Security

Possibilistic Non-Interference and Occlusion

Example (Occlusion)

m0 -[then low1 := encrypt(val, key)]-> m1;

m1 -[when high then low2 := encrypt(val, key)]-> m2;

m1 -[when not high then low2 := low1]-> m2;

• Let σ(high) = σ(val) = H and σ(key) = σ(low1) = σ(low2) = L
• Let environments η1, η2 with η1 ∼L η2 such that

1. η1(high) = true, η1(val) = v1, η1(key) = k
2. η2(high) = false, η2(val) = v2, η2(key) = k
• Execution respectively yields

1. E ′1 = {η1[low1 7→ u1, low2 7→ u2] | u1 ∈ encrypt(v1, k), u2 ∈ encrypt(v2, k)}
2. E ′2 = {η2[low1 7→ u, low2 7→ u] | u ∈ encrypt(v1, k)}
• Now ∃u1 ∈ encrypt(v1, k), u2 ∈ encrypt(v2, k) : u1 6∼L u2 implies that
∃η′1 ∈ E ′1 : η′1(low1) 6∼L η

′
1(low2)

• On the other hand, ∀η′2 ∈ E ′2 : η′2(low1) ∼L η
′
2(low2)

• Thus ∃η′1 ∈ E ′1.∀η′2 ∈ E ′2 : η′1 6∼L η
′
2

⇒ Possibilistic interference

16 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Type Checking Approach

Content

The D-MILS Project

Information Flow Security

The Type Checking Approach

The Slicing Approach

17 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Type Checking Approach

MILS-AADL Specifications

crypto controller

split merge

bypass

crypto

18 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Type Checking Approach

The Type Checking Approach

• Introduce typing environment T
– local variables and data ports→ security type τ (data type t + security level σ)
– modes and event ports→ security level σ

• Specify typing rules
– parametrised by T
– derive types of connections and transitions

• Example: encryption and decryption

T ` e1 : τ T ` e2 : key L

T ` encrypt(e1, e2) : enc τ L

T ` e1 : enc τ σ T ` e2 : key H

T ` decrypt(e1, e2) : τ
σ

Theorem ([MILS Workshop 2015])

If the system is typeable, it is possibilistically non-interfering.

19 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Type Checking Approach

The Type Checking Approach

• Introduce typing environment T
– local variables and data ports→ security type τ (data type t + security level σ)
– modes and event ports→ security level σ

• Specify typing rules
– parametrised by T
– derive types of connections and transitions

• Example: encryption and decryption

T ` e1 : τ T ` e2 : key L

T ` encrypt(e1, e2) : enc τ L

T ` e1 : enc τ σ T ` e2 : key H

T ` decrypt(e1, e2) : τ
σ

Theorem ([MILS Workshop 2015])

If the system is typeable, it is possibilistically non-interfering.

19 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Type Checking Approach

The Type Checking Approach

• Introduce typing environment T
– local variables and data ports→ security type τ (data type t + security level σ)
– modes and event ports→ security level σ

• Specify typing rules
– parametrised by T
– derive types of connections and transitions

• Example: encryption and decryption

T ` e1 : τ T ` e2 : key L

T ` encrypt(e1, e2) : enc τ L

T ` e1 : enc τ σ T ` e2 : key H

T ` decrypt(e1, e2) : τ
σ

Theorem ([MILS Workshop 2015])

If the system is typeable, it is possibilistically non-interfering.

19 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Type Checking Approach

Ongoing Work

• Exact characterisation of determinism requirements
– non-interference property is non-compositional in presence of non-determinism

• Elaboration of correctness proof for type system
• Improving usability by type inference (rather than type checking)

– based on given security-level assignment to (some) event and data ports

• Implementation of type checking/inference

20 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Content

The D-MILS Project

Information Flow Security

The Type Checking Approach

The Slicing Approach

21 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Motivation

Weaknesses of type checking approach:
• Analysis is flow-insensitive

Example

m0 -[when high then low := 42]-> m1;

m1 -[then low := 0]-> m2;

– choosing σ(low) = L is ok since m0 transition has “dead” effect
– but type system cannot handle this (as types are global)

• Analysis does not take (non-)knowledge of encryption keys into account:

T ` e1 : enc (int H) L T ` e2 : key H

T ` decrypt(e1, e2) : int H

yields σ(decrypt(e1, e2)) = H even if e2 cannot be the matching private key

22 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Motivation

Weaknesses of type checking approach:
• Analysis is flow-insensitive

Example

m0 -[when high then low := 42]-> m1;

m1 -[then low := 0]-> m2;

– choosing σ(low) = L is ok since m0 transition has “dead” effect
– but type system cannot handle this (as types are global)

• Analysis does not take (non-)knowledge of encryption keys into account:

T ` e1 : enc (int H) L T ` e2 : key H

T ` decrypt(e1, e2) : int H

yields σ(decrypt(e1, e2)) = H even if e2 cannot be the matching private key

22 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Slicing
Non-interference: which high inputs influence which low outputs?
Slicing: which outputs depend on which inputs?

• interesting output values define slicing criterion
• backward analysis of information flow based on program dependence graph
• analysis inherently flow-sensitive!

Applications:
• Debugging
• Testing
• Model checking
• Software security [Snelting et al.]

– relation to (classical)
non-interference: if no high variable
in the backward slice of any low
output, then system is
non-interfering

– interprocedural extension by
context-sensitive slicing

23 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Slicing
Non-interference: which high inputs influence which low outputs?
Slicing: which outputs depend on which inputs?

• interesting output values define slicing criterion
• backward analysis of information flow based on program dependence graph
• analysis inherently flow-sensitive!

Applications:
• Debugging
• Testing
• Model checking
• Software security [Snelting et al.]

– relation to (classical)
non-interference: if no high variable
in the backward slice of any low
output, then system is
non-interfering

– interprocedural extension by
context-sensitive slicing

23 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Slicing AADL Specifications for Model Checking [NFM 2010]

D := S;E := ∅;M := ∅;
}

Initialization based on slicing criterion S (= subset of data elements)
repeat

for all m
e,g,f−→ m′ ∈ Trn with ∃d ∈ D : f updates d

or ∃d ∈ D : d inactive in m but active in m′

or e ∈ E do
M := M ∪ {m};

Transitions that affect interesting data elements or
have interesting triggers

for all m
e,g,f−→ m′ ∈ Trn with m ∈ M or m′ ∈ M do

D := D ∪ {d ∈ Dat | g reads d}
∪ {d ∈ Dat | f updates some d ′ ∈ D reading d};

E := E ∪ {e};
M := M ∪ {m};

Transitions from/to interesting modes

for all a d ∈ Flw with d ∈ D do
D := D ∪ {d ′ ∈ Dat | a reads d ′};
M := M ∪ {m ∈ Mod | d := a active in m};

Data flows to interesting ports

for all e e′ ∈ Con with e ∈ E or e′ ∈ E do
E := E ∪ {e, e′};
M := M ∪ {m ∈ Mod | e e′ active in m};

Connections involving interesting event
ports

until nothing changes;

24 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Slicing AADL Specifications for Model Checking [NFM 2010]

D := S;E := ∅;M := ∅;
}

Initialization based on slicing criterion S (= subset of data elements)
repeat

for all m
e,g,f−→ m′ ∈ Trn with ∃d ∈ D : f updates d

or ∃d ∈ D : d inactive in m but active in m′

or e ∈ E do
M := M ∪ {m};

Transitions that affect interesting data elements or
have interesting triggers

for all m
e,g,f−→ m′ ∈ Trn with m ∈ M or m′ ∈ M do

D := D ∪ {d ∈ Dat | g reads d}
∪ {d ∈ Dat | f updates some d ′ ∈ D reading d};

E := E ∪ {e};
M := M ∪ {m};

Transitions from/to interesting modes

for all a d ∈ Flw with d ∈ D do
D := D ∪ {d ′ ∈ Dat | a reads d ′};
M := M ∪ {m ∈ Mod | d := a active in m};

Data flows to interesting ports

for all e e′ ∈ Con with e ∈ E or e′ ∈ E do
E := E ∪ {e, e′};
M := M ∪ {m ∈ Mod | e e′ active in m};

Connections involving interesting event
ports

until nothing changes;

24 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Slicing AADL Specifications for Model Checking [NFM 2010]

D := S;E := ∅;M := ∅;
}

Initialization based on slicing criterion S (= subset of data elements)
repeat

for all m
e,g,f−→ m′ ∈ Trn with ∃d ∈ D : f updates d

or ∃d ∈ D : d inactive in m but active in m′

or e ∈ E do
M := M ∪ {m};

Transitions that affect interesting data elements or
have interesting triggers

for all m
e,g,f−→ m′ ∈ Trn with m ∈ M or m′ ∈ M do

D := D ∪ {d ∈ Dat | g reads d}
∪ {d ∈ Dat | f updates some d ′ ∈ D reading d};

E := E ∪ {e};
M := M ∪ {m};

Transitions from/to interesting modes

for all a d ∈ Flw with d ∈ D do
D := D ∪ {d ′ ∈ Dat | a reads d ′};
M := M ∪ {m ∈ Mod | d := a active in m};

Data flows to interesting ports

for all e e′ ∈ Con with e ∈ E or e′ ∈ E do
E := E ∪ {e, e′};
M := M ∪ {m ∈ Mod | e e′ active in m};

Connections involving interesting event
ports

until nothing changes;

24 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Slicing AADL Specifications for Model Checking [NFM 2010]

D := S;E := ∅;M := ∅;
}

Initialization based on slicing criterion S (= subset of data elements)
repeat

for all m
e,g,f−→ m′ ∈ Trn with ∃d ∈ D : f updates d

or ∃d ∈ D : d inactive in m but active in m′

or e ∈ E do
M := M ∪ {m};

Transitions that affect interesting data elements or
have interesting triggers

for all m
e,g,f−→ m′ ∈ Trn with m ∈ M or m′ ∈ M do

D := D ∪ {d ∈ Dat | g reads d}
∪ {d ∈ Dat | f updates some d ′ ∈ D reading d};

E := E ∪ {e};
M := M ∪ {m};

Transitions from/to interesting modes

for all a d ∈ Flw with d ∈ D do
D := D ∪ {d ′ ∈ Dat | a reads d ′};
M := M ∪ {m ∈ Mod | d := a active in m};

Data flows to interesting ports

for all e e′ ∈ Con with e ∈ E or e′ ∈ E do
E := E ∪ {e, e′};
M := M ∪ {m ∈ Mod | e e′ active in m};

Connections involving interesting event
ports

until nothing changes;

24 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Slicing AADL Specifications for Model Checking [NFM 2010]

D := S;E := ∅;M := ∅;
}

Initialization based on slicing criterion S (= subset of data elements)
repeat

for all m
e,g,f−→ m′ ∈ Trn with ∃d ∈ D : f updates d

or ∃d ∈ D : d inactive in m but active in m′

or e ∈ E do
M := M ∪ {m};

Transitions that affect interesting data elements or
have interesting triggers

for all m
e,g,f−→ m′ ∈ Trn with m ∈ M or m′ ∈ M do

D := D ∪ {d ∈ Dat | g reads d}
∪ {d ∈ Dat | f updates some d ′ ∈ D reading d};

E := E ∪ {e};
M := M ∪ {m};

Transitions from/to interesting modes

for all a d ∈ Flw with d ∈ D do
D := D ∪ {d ′ ∈ Dat | a reads d ′};
M := M ∪ {m ∈ Mod | d := a active in m};

Data flows to interesting ports

for all e e′ ∈ Con with e ∈ E or e′ ∈ E do
E := E ∪ {e, e′};
M := M ∪ {m ∈ Mod | e e′ active in m};

Connections involving interesting event
ports

until nothing changes;

24 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Slicing criterion: {outframe}

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Add sources and modes of flows with interesting
targets

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Add source modes of transitions that affect
interesting data elements

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Add data elements, events and source modes of
interesting transitions

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Add sources and modes of flows with interesting
targets

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Add source modes of transitions that affect
interesting data elements

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Add data elements, events and source modes of
interesting transitions

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Add sources and modes of flows with interesting
targets

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Add source modes of transitions that affect
interesting data elements

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Add data elements, events and source modes of
interesting transitions

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Add sources and modes of flows with interesting
targets

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: The Crypto Controller

system cryptocontroller(
inframe: in data (int,int)
outframe: out data (int,enc int)
mykeys: key pair

system split(
frame: in data (int,int)
header: out data int
payload: out data int
m0: initial mode
m0 -[then header := frame[0];

payload := frame[1]]-> m0
)
system bypass(
inheader: in data int
outheader: out data int
m0: initial mode
m0 -[then outheader := inheader]-> m0

)

Thus: (low) outframe depends on (high)
inframe =⇒ (classical) interference!

system crypto(
inpayload: in data int 0
outpayload: out data enc int
k: key pub(mykeys)
m0: initial mode
m0 -[then outpayload := encrypt(inpayload,k)]-> m0

)
system merge(
header: in data int
payload: in data enc int
frame: out data (int,enc int)
m0: initial mode
m0 -[then frame := (header,payload)]-> m0

)
flow inframe -> split.frame
flow split.header -> bypass.inheader
flow split.payload -> crypto.inpayload
flow bypass.outheader -> merge.header
flow crypto.outpayload -> merge.payload
flow merge.frame -> outframe

)

25 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Handling Encryption and Decryption

• Security concepts in MILS-AADL:
– declaration of key pairs as global constants on top level (mykeys)
– assignment of (public/private) subkeys to data subcomponents (k)
– forwarding via data ports possible
⇒ static pool of keys with dynamic distribution

• Analysis approach: conditional slicing w.r.t. knowledge of keys
– attach security level to each data element (ports and subcomponents)
– encrypt(val,key):
� maintain sets of data elements (D) and public keys (U) that may be used in first/as second

argument
� result depends on all elements of D
� result always declassified to L

– decrypt(val,key):
� maintain sets of (D,U)-pairs and private keys (P) that may be used in first/as second argument
� result depends on D′ =

⋃
{D | U ∩ P 6= ∅}

� resulting security level is maximal level in D′

26 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Handling Encryption and Decryption

• Security concepts in MILS-AADL:
– declaration of key pairs as global constants on top level (mykeys)
– assignment of (public/private) subkeys to data subcomponents (k)
– forwarding via data ports possible
⇒ static pool of keys with dynamic distribution
• Analysis approach: conditional slicing w.r.t. knowledge of keys

– attach security level to each data element (ports and subcomponents)
– encrypt(val,key):
� maintain sets of data elements (D) and public keys (U) that may be used in first/as second

argument
� result depends on all elements of D
� result always declassified to L

– decrypt(val,key):
� maintain sets of (D,U)-pairs and private keys (P) that may be used in first/as second argument
� result depends on D′ =

⋃
{D | U ∩ P 6= ∅}

� resulting security level is maximal level in D′

26 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: Secure Communication

split1

bypass1

crypto

merge1 split2

bypass2

decrypto

merge2
(L, H)

H L

(L, L)

L

L L L L

H

(L, H)

1. outpayload := encrypt(inpayload,k1) with k1 = pub(mykeys)
– D = {split1.payload, split1.frame, inframe}
– U = {mykeys}

2. outpayload := decrypt(inpayload,k2) with k2 = priv(mykeys)
– P = {mykeys}
⇒ P ∩ U = {mykeys} 6= ∅
⇒ D′ = {split1.payload, split1.frame, inframe}

27 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: Secure Communication

split1

bypass1

crypto

merge1 split2

bypass2

decrypto

merge2
(L, H)

H L

(L, L)

L

L L L L

H

(L, H)

1. outpayload := encrypt(inpayload,k1) with k1 = pub(mykeys)
– D = {split1.payload, split1.frame, inframe}
– U = {mykeys}

2. outpayload := decrypt(inpayload,k2) with k2 = priv(mykeys)
– P = {mykeys}
⇒ P ∩ U = {mykeys} 6= ∅
⇒ D′ = {split1.payload, split1.frame, inframe}

27 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Example: Secure Communication

split1

bypass1

crypto

merge1 split2

bypass2

decrypto

merge2
(L, H)

H L

(L, L)

L

L L L L

H

(L, H)

1. outpayload := encrypt(inpayload,k1) with k1 = pub(mykeys)
– D = {split1.payload, split1.frame, inframe}
– U = {mykeys}

2. outpayload := decrypt(inpayload,k2) with k2 = priv(mykeys)
– P = {mykeys}
⇒ P ∩ U = {mykeys} 6= ∅
⇒ D′ = {split1.payload, split1.frame, inframe}

27 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The Slicing Approach

Ongoing Work

• Work out details of conditional slicing algorithm
• Correctness proof w.r.t. possibilistic non-interference

– if no low output conditionally depends on any high input, the system is possibilistically non-interfering
• Relation to type checking approach

– conjecture: if the system is typeable, then no low output conditionally depends on any high input
– reverse inclusion does not hold due to flow-(in-)sensitivity

28 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

The End

Questions?

29 of 29 Analysing Cryptographically-Masked Information Flows in D-MILS Architectures
Thomas Noll
MOVES Söllerhaus Workshop; March 4, 2015

	The D-MILS Project
	Information Flow Security
	The Type Checking Approach
	The Slicing Approach

