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Abstract

The topic of this thesis is roughly to be classified into the formal verification

of probabilistic systems. In particular, the generation of counterexamples for

discrete-time Markov Models is investigated. A counterexample for discrete-

time Markov Chains (DTMCs) is classically defined as a (finite) set of paths.

In this work, this set of paths is represented symbolically as a critical part of

the original system, a so-called critical subsystem. This notion is extended

to Markov decision processes (MDPs) and probabilistic automata (PAs). The

results are introduced in four parts:

1. A model checking algorithm for DTMCs based on a decomposition of the

system’s graph in strongly connected components (SCCs). This approach

is extended to parametric discrete-time Markov Chains.

2. The generation of counterexamples for DTMCs and reachability proper-

ties based on graph algorithms. A hierarchical abstraction scheme to

compute abstract counterexamples is presented, followed by a general

framework for both explicitly represented systems and symbolically rep-

resented systems using binary decision diagrams (BDDs).

3. The computation of minimal critical subsystems using SAT modulo theories

(SMT) solving and mixed integer linear programming (MILP). This is

investigated for reachability properties and ω-regular properties on

DTMCs, MDPs, and PAs.

4. A new concept of high-level counterexamples for PAs. Markov models can

be specified by means of a probabilistic programming language. An

approach for computing critical parts of such a symbolic description of

a system is presented, yielding human-readable counterexamples.

All results have been published in conference proceedings or journals. A

thorough evaluation on common benchmarks is given comparing all methods

and also competing with available implementations of other approaches.





Zusammenfassung

Das Thema dieser Doktorarbeit kann grob in die formale Verifikation probabi-

listischer Systeme eingeordnet werden. Genauer gesagt wird die Generierung

von Gegenbeispielen für Markow-Modelle mit diskreter Zeit untersucht. Ein Ge-

genbeispiel für Markow-Ketten mit diskreter Zeit (DTMCs) ist ursprünglich

als eine (endliche) Menge von Pfaden definiert. In dieser Arbeit repräsen-

tieren wir diese Menge von Pfaden symbolisch durch einen kritischen Teil

des originalen Systems, ein sogenanntes kritisches Teilsystem. Dieses Konzept

wird erweitert auf Markow-Entscheidungsprozesse (MDPs) und probabilis-

tische Automaten (PAs). Die Resultate werden unterteilt in vier Abschnitte

vorgestellt:

1. Ein Algorithmus zur Modellüberprüfung für DTMCs basierend auf der Zer-

legung des Systemgraphen in starke Zusammenhangskomponenten. Dieser

Ansatz wird auf parametrische Markow-Ketten mit diskreter Zeit erwei-

tert.

2. Die Generierung von Gegenbeispielen für DTMCs und Erreichbarkeitsbe-

dingungen basierend auf Graphalgorithmen. Ein hierarchisches Abstrakti-

onsschema zur Berechnung abstrakter Gegenbeispiele wird präsentiert,

gefolgt von einem generellen Rahmenwerk für sowohl explizit repräsen-

tierte Systeme als auch symbolisch repräsentierte Systeme unter Verwen-

dung von binären Entscheidungsdiagrammen (BDDs).

3. Die Berechnung minimaler kritischer Teilsysteme unter Nutzung von

Erfüllbarkeitsüberpüfung erweitert um Theorien (SMT) und gemischt

ganzzahlig-linearer Optimierung (MILP). Dies wird untersucht für Er-

reichbarkeitsbedingungen und ω-reguläre Eigenschaften für DTMCs,

MDPs und PAs.

4. Ein neues Konzept für high-level Gegenbeispiele für PAs. Markow-Modelle

können mit Hilfe einer probabilistischen Programmiersprache spezifi-

ziert werden. Ein Ansatz zur Berechnung kritischer Teile solch einer

symbolischen Systembeschreibung wird vorgestellt, resultierend in für

Menschen lesbaren Gegenbeispielen.

Alle Resultate wurden in Konferenzbänden oder Fachzeitschriften publiziert.

Eine ausführliche Evaluierung anhand bekannter Benchmarks vergleicht alle

Methoden untereinander und mit verfügbaren Implementierungen anderer

Ansätze.





Tomorrow may be hell,

but today was a good writing day,

and on the good writing days nothing else matters.

NEIL GAIMAN
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CHAPTER 1

Introduction

Over the last decades, the number of computer-controlled systems has been growing rapidly.

Nowadays, in almost every aspect of our lives we find some sort of complex computer system,

often in safety critical scenarios of essential importance such as airbags, autopilots, or train

scheduling, only to mention a few examples from the transport area. Even a very small mistake

in the underlying software can lead to disastrous consequences, consider, e. g., the crash of

the Ariane-5 rocket, which happened in 1996 due to an unintended floating point conversion.

Several popular examples report on very serious events resulting from errors like this; ranging

from mere nuisances over financial breakdowns to live-threatening disasters.

Although it must be ensured that systems work correctly in a sense that no undesired behavior

occurs, it is often not feasible to apply test-runs to a satisfiable extent. This might for instance be

due to financial reasons or tight time schedules. It is therefore of utmost importance to ensure a

certain safety already during the early stage of system development. One possibility is to simulate

a computer-based representation, a model of the system, for different scenarios. While this might

be a reasonable and economic way to rule out many errors, in theory, one would have to do this

for every possible scenario, i. e., for every possible input the model could be facing, in order to

rule out any possible error.

An important discipline in computer science is the formal verification of systems, where certain

properties can be proven. In the mid of the nineties, a new branch called model checking was

established [JGP99]. Having a reliable model of the system at hand together with a formal

specification of desired or undesired behavior, one can prove that the desired behavior occurs for

all possible scenarios or—in other words—that the undesired behavior can be excluded. For a

thorough introduction we refer to [BK08].

If an error is revealed, it is desirable to get some sort of diagnostic information in order to trace

the problem. This information is called a counterexample. This might, e. g., be an erroneous run



of the system. A famous quotation from 2008 by one of the founders of the concept of model

checking, Edmund Clarke, stresses the importance of counterexamples:

“It is impossible to overestimate the importance of the counterexample feature. The

counterexamples are invaluable in debugging complex systems. Some people use model

checking just for this feature. [Cla08]”

To give a first intuition, consider a so-called Kripke structure [Kri63] which is a simple model to

represent the behavior of a system. Intuitively, the states of the system are modeled by nodes of a

graph. Possibilities to move between the states are indicated by transitions. Moreover, every state

has a certain set of properties. A toy example can be found below, where from the initial state s1

transitions lead to the states s2 and s3. Additionally, every state is equipped with a self-loop. The

state s2 is labeled with the property CRITICAL indicating an undesired behavior.

s1

s3

s2

{CRITICAL}

The specification we want to investigate is that a critical state is never reached; formally we

have the LTL formula ¬◊CRITICAL, i. e., “it is not possible to finally reach a state which is labeled

with CRITICAL”. This property is clearly violated by the path leading from s1 to s2, which also

serves as a counterexample for this property.

Classic model checking is based on rigorous exploration of the state space, which leads to seri-

ous problems considering the large size of models for real-world scenarios. This is often referred

to as the state space explosion problem. Several approaches were developed to overcome this prob-

lem. An important one is symbolic model checking which was introduced in 1992 [BCM+92] and

which is based on a symbolic representation of the state space, e. g., by binary decision diagrams

(BDDs) [Bry86]. Dedicated algorithms for these symbolic representations were complemented

by SAT-based bounded model checking [CBRZ01], where a SAT solver is used to prove or disprove

properties by means of bounded system runs. Another technique is the counterexample-guided ab-

straction refinement framework (CEGAR) [CGJ+00]. Here, verification is performed on abstract

systems which—if the abstraction is too coarse—may be refined with the help of counterexamples

that are spurious, which means that they do not form a counterexample for the original system.

This procedure goes on until a counterexample is found that is not spurious or until the property

can be proven to be true.

Besides being a guide in debugging a system, counterexamples play an important role in auto-

mated verification techniques. As mentioned before, the key ingredient for CEGAR approaches,

2



besides a feasible abstraction, are counterexamples. Another application is in model-based test-

ing [FWA09]. A system is tested via a model, a so-called blueprint of the system. Counterexamples

which are obtained during this procedure can be used to correct the original system.

Amongst others, these applications, which are of great relevance in practical settings, led to

active research on the generation and the representation of counterexamples [GMZ04, CGMZ95,

BP12, SB05]. As illustrated by the example above, if a system is simple enough to be modeled

sufficiently accurate as a Kripke structure, and if the violated specification is given as a linear-time

property, a counterexample is given by a path through the Kripke structure inducing the viola-

tion. These counterexamples can be generated on-the-fly during the model checking procedure.

For CTL properties, the representation of counterexamples requires a more complex tree-like

structure [CJLV02]. For further information, we refer to [CV03].

All the above-mentioned methods were mainly developed for mere digital circuits. The real-

world behavior of many processes is inherently stochastic, take for instance randomized algo-

rithms, fault-tolerant systems, or communication networks where certain aspects can only be

captured via probabilities. For a network protocol, a useful property would be “The probability

of having a message delivered is at least 99.9%.” Referring to a benchmark we use in this thesis,

assume a crowd of nodes in a network [RR98], where each member has a probabilistic choice of

delivering a message or routing it to another—again randomly determined—node of the network

in order to establish anonymity. Assuming “bad” members of the crowd that want to identify the

sender of the message, a question would then be “What is the probability that the sender of a

message is identified by a bad member?”.

Answering such quantitative questions is the comprehensive topic of this thesis. Probabilistic

model checking summarizes techniques to analyze systems where transitions are augmented with

probabilities. Discrete-time Markov chains (DTMCs) are a popular model to represent probabilistic

behavior. Their invention can be traced back to the Russian mathematician Andrey Andreyevich

Markov in 1906. For standard textbooks we refer to [KS69, Kul95].

In a nutshell, DTMCs are Kripke structures whose transitions induce a discrete probability

distribution over successor states. For DTMCs, properties like “The probability of reaching a

critical state is at most 10−5” are considered. Markov decision processes (MDPs) and probabilistic

automata (PAs) add the feature of a nondeterministic choice of probability distributions to DTMCs.

To verify properties, a scheduler is needed to resolve this nondeterminism yielding a DTMC.

Such a scheduler then induces a probability measure on this DTMC, for instance the maximal

probability for a certain property. We formulate properties like “What is the maximal probability

of reaching a critical state”? Standard approaches reduce model checking for DTMCs to solving

a linear equation system, while for MDPs an optimization problem is used to compute maximal

or minimal probabilities depending on the scheduler, e. g., using linear programming. A detailed

description of the basic techniques can be found in [BK08]. For an overview of the state-of-the-art

we refer to [Kat13, KNP07].

As for other models, the state space explosion is also a problem for probabilistic systems. Much
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effort has been put into adapting well-known concepts to this setting. The usage of symbolic

data structures via BDDs and multi-terminal binary decision diagrams (MTBDDs) [FMY97] was

proposed [BCH+97]. For an overview of efficient algorithms and a discussion about hybrid

approaches regarding a mixture between symbolic and explicit approaches we refer to [Par02].

For many large or even infinite systems, these methods do still not work. Therefore, one research

branch is to develop dedicated abstraction techniques such as probabilistic CEGAR [HWZ08,

CV10] or game-based abstraction [KKNP10, Wac10].

The most prominent probabilistic model checker available for the largest variety of models

and properties is PRISM [KNP11] developed at the University of Oxford, UK. A very competitive

tool is MRMC [KZH+11] which has been developed at RWTH Aachen University, Germany. For a

comparison, see [JKO+07]. Moreover, PRISM offers a large selection of benchmarks [KNP12];

some of them are used throughout this thesis.

The generation of counterexamples for probabilistic systems is the main focus of this thesis.

Consider the DTMC which is depicted below. With probability 0.05, the successor of the initial

state s1 is s2, and with probability 0.45 the successor is s3. With probability 0.5, the successor

is s1 itself. The states s2 and s3 have self-loops with probability 1 which means that once an

execution enters one of those states it will stay there almost surely. For this DTMC, the overall

probability to reach the critical state s2 is 0.1. The underlying computations are discussed later.

Intuitively, the probability of all paths leading to s2 has to be considered.

s1

0.5

s3 1

s2

{CRITICAL}
1

0.05

0.45

Now consider the quantitative property “The probability of reaching the critical state is less

than or equal to 0.05”. This property is violated, as the actual probability is equal to 0.1. Forming

a counterexample is not as trivial as for the preceding Kripke structure. The path leading from s1

to s2 has probability 0.05. This path itself does not violate the property. However, the path looping

one time on state s1 and then taking the transition to s2 has probability 0.5 · 0.05= 0.025. The

two paths together have a probability mass of 0.075 which is larger than the allowed probability

of 0.05. The set of these two paths serves as a counterexample to the property.

The first publications on the generation of counterexamples for DTMCs were [AHL05, AL06,

HK07a, DHK08, ADvR08, HKD09, AL10]. The related work is discussed in the corresponding

chapter. Let us, however, give a short intuition on the approach that was made in [HK07a,

HKD09]: As mentioned before, a counterexample is a set of paths whose joint probability mass

exceeds a certain probability threshold. These paths are evidences for a certain property, e. g., for

reaching a target state. As only paths describing stochastically independent events are considered;
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their probabilities can just be added when computing the probability of a whole set of evidences.

In [HK07a, HKD09], graph algorithms are utilized to compute a minimal counterexample. In

particular, the probabilities are altered such that the most probable paths now correspond to the

shortest paths when adding the altered values. Then, a k-shortest path search [Epp98] yields the

k most probable paths leading to a target state. As soon as the probability mass of the thereby

computed paths is large enough, the search terminates yielding a counterexample that is minimal

in terms of the number of paths. Note that the value of k is determined on-the-fly such that the

search continues until enough probability mass is accumulated.

Consider again the DTMC depicted above and the property “The probability of reaching a

critical state is less than 0.1”. The first three paths leading from s1 to s2 in descending order of

their probabilities are:

π1 = s1, s2 probability: 0.05

π2 = s1, s1, s2 probability: 0.025

π3 = s1, s1, s1, s2 probability: 0.00125

The probability mass of these three paths is 0.07625, which is still too small to induce a counterex-

ample. In fact, to reach the bound of 0.1, all paths leading from s1 to s2 need to be considered,

which are infinitely many. The shortest path algorithm as described above would therefore not

terminate, while errors might occur as the probabilities of the paths become infinitesimally small.

This simple example illustrates one major drawback of counterexamples that are represented as

sets of paths: Many paths are similar except for their number of loop-iterations, which calls for a

special treatment of loops.

Although the generation of counterexamples covers the most important part of this thesis,

we have a short excursion to another research direction. Consider systems where no certain

probabilities are fixed. At an early design stage, this is a realistic assumption. Determining

appropriate probabilities is an own research field called fitting [SR13, TBT06]: In model-based

performance analysis, probability distributions are generated from experimental measurements.

Therefore, probabilities are handled as parameters yielding parametric discrete-time Markov

chains (PDTMCs). Transition probabilities are then interpreted as functions in the system’s

parameters. Using these functions, one can, e. g., find appropriate values of the parameters

such that certain properties are satisfied, or analyze the sensitivity of reachability probabilities

under small changes in the parameters. Standard methods for DTMC model checking such as

solving a linear equation system are not feasible for PDTMCs, since the resulting equation system

would be non-linear. Consider a modification of the DTMC shown above, where the probability

to reach the critical state s2 is now described by a parameter p ∈ [0,1]. Going from s1 to the

uncritical state s3 has probability 9p indicating that the probability of going there should be much

higher than going to s2, which happens with probability p. The self-loop on s1 is described by

q ∈ [0,1] which again has implicit dependencies to p, if well-defined probability distributions
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1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

are considered.

s1

q

s3 1

s2

{CRITICAL}
1

p

9p

Instantiating p with 0.05 yields that the probability of going from s1 to s3 is 0.45 as in the

DTMC above. Furthermore, as outgoing probabilities for each state have to sum up to 1 we know

that p+ 9p+ q = 1 yielding q = 0.5. What we already see in this simple example is that there

are certain additional constraints for parameter evaluations that need to be taken care of. These

complications demand dedicated model checking procedures, the only one publicly available so

far being implemented in PARAM [HHWZ10].

1.1 Contributions and structure of this thesis

In this section, we describe our approaches that are presented in this thesis and point to the

corresponding chapters. Apart from the contributions, we present detailed foundations needed

throughout this work in Chapter 2. The related work that has been done before or during the

period of this thesis is listed on an intuitive level in Chapter 3. After the theoretical approaches

we describe our implementations and tools followed by an experimental evaluation in Chapter 8.

The thesis concludes with a short summary and an outlook to future work in Chapter 9.

SCC-based model checking As we have indicated before, benchmarks with a complex loop

structure pose a difficult problem for probabilistic counterexample generation. Many paths have

to be collected that are similar to each other except for the number of iterations of the same

loops. In order to exploit this fact, we developed an abstraction scheme for DTMCs based on the

strongly connected components (SCCs) of the underlying directed graph of an input DTMC. First,

the SCCs are determined. By heuristically ignoring those states of an SCC to which there is a

transition from outside the SCC, it is decomposed into further SCCs. In the context of the original

graph we call these SCCs sub-SCCs. This process is iterated until only single states remain. By

a subsequent bottom-up computation, the probability of reaching states outside each sub-SCC

from its formerly ignored states is computed, while the sub-SCCs are replaced by abstract states.

In the end, this gives the probability of reaching the set of target states from the unique initial

state. This method was published in [11].

An extension of this work was applied to PDTMCs yielding rational functions that describe

reachability probabilities for each sub-SCC. As this induces very large functions even in the early

computation steps, they need to be cancelled in each step. This involves the costly computation
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1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

of the greatest common divisor (GCD) for two polynomials and is therefore not feasible for

large benchmarks. However, we were able to partly overcome this problem by developing a new

way to compute the GCD on factorizations of the given polynomials. These various methods

which were published in [2], improving the computation times in comparison with another

approach [HHWZ10] by several orders of magnitude for most of the benchmarks.

The approaches are explained in detail in Chapter 4. Summarized, the main contributions are:

1. A novel model checking method for DTMCs that—even in its prototype implementation—is

competitive to the well-established tools MRMC [KZH+11] and PRISM [KNP11] on many

benchmarks having up to one million states.

2. A hierarchical abstraction scheme for DTMCs with respect to their SCC structure. As one of

the major benefits, this offers the possibility to search for counterexamples on an abstract

graph while each of the abstract states can be refined upon request.

3. A new model checking method for PDTMCs that is faster than the only other available tool,

PARAM [HHWZ10], by orders of magnitude on many common benchmarks.

Counterexample generation based on path searching algorithms Based on the SCC abstrac-

tion described above, we developed a new method for generating counterexamples on possibly

abstract input DTMCs that violate a probabilistic reachability property. We shaped the notion of

a critical subsystem of a DTMC which is a sub-graph of the original system where the reachability

property is also violated. This highlights the critical parts of the system. Moreover, this subsystem

can be seen as a symbolic representation of a set of paths leading from the initial state to one of

the target states inside the subsystem; this set forms a counterexample.

The search is done in a hierarchical manner by offering the possibility of starting the search

on simple abstract graphs and concretizing important parts in order to explore the graph in

more detail. The first proposed search algorithm, which we call global search, enumerates

paths leading from initial states to target states of the system in descending order of their

probabilities, as proposed in [HKD09]. Using these paths, a subsystem is incrementally built until

the needed probability mass is reached, i. e., until the subsystem becomes critical. The second

search algorithm, called local search or fragment search, incrementally extends a subsystem by

finding most probable path fragments that connect paths which were considered before.

In comparison to [HKD09], these algorithms lead to improvements by several orders of magni-

tude in the number of paths that are needed to form counterexamples and for most benchmarks

also in terms of computation time. These methods were published in [10]; an extended version

is accessible as a technical report [16].

The implementation is publicly available as part of our open-source tool COMICS [6]. The tool

offers both a graphical user interface and a command-line version for benchmarking. The GUI

depicts the whole hierarchical refinement process which can be completely controlled by the

user. Alternatively, many heuristics are offered to automate the process. The only other publicly
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available tool is DiPro [ALFLS11] which was outperformed on most benchmarks having up to a

few million states.

These methods for explicit representations of DTMCs are presented in Chapter 5, Sections 5.2-

5.5. The main contributions are:

1. A new hierarchical scheme for finding counterexamples on DTMCs. This allows to search for

counterexamples on very large input graphs, as the abstract systems are very small and

simply structured. As abstract counterexamples can be concretized, no information is lost,

however, not the entire system has to be explored.

2. An improvement in terms of running time, the number of explicitly listed paths, and the pos-

sible size of input instances by orders of magnitude using the proposed search algorithms

in comparison to previous approaches.

3. The publicly available open-source tool COMICS, which is easy to use and comes with both

a command-line version for benchmarking and connecting it with other tools and a GUI

where the user can create specialized benchmarks and explore the hierarchical counterex-

amples in detail.

We now report on the adaptions of the aforementioned methods to symbolic data structures.

A very successful model checking method is bounded model checking [CBRZ01]. This technique

was adapted to counterexample generation for DTMCs in [WBB09] using BDDs and MTBDDs as

representations for the input systems. Proceeding from this symbolic representation, modern SAT

solvers are used to list the paths that form a counterexample. Thereby, paths leading from the

initial state to a target state are encoded by a formula in a way that a satisfying solution of the

formula corresponds to such a path.

As the bounded model checking approach itself finds arbitrary paths leading from an initial

state to one of the target states, the probabilities are ignored. It may therefore be the case that

many paths of low probabilities are found while it would lead to an earlier termination to find

the paths in descending order of their probabilities. While this informed search is not directly

possible for SAT solvers, we tackled this problem by using SAT modulo Theories (SMT) solving

instead. This gave us the opportunity to compute a path’s probability not by an external callback

but actually to encode the probability computation into the SMT formula and pose restrictions

on the minimal probability of a path: A formula is satisfied if and only if the corresponding path

has at least a certain probability. This new way of bounded model checking leads to fewer search

iterations in most of the cases. These approaches are part of the publications [25, 26] and are

not contributions of this thesis.

Subsequently, we adapted our previous explicit approaches—namely the counterexample rep-

resentation as critical subsystems and the fragment search approach—to the setting of bounded

model checking. In combination we were able to achieve remarkable improvements to the

applicability of bounded model checking for many test cases as reported in [7, 3].
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In order to prefer more probable paths during the search process, we guide the SAT solver

during its variable assignments. Considering partial assignments of variables that encode states

of the input system, one can determine which possible paths can be encoded by the remaining,

still unassigned, variables. We developed a heuristic which forces the SAT solver to choose

assignments that induce more probable path fragments.

Even though these bounded model checking approaches improved the previous works, they

were in general still not applicable to very large DTMCs. We therefore saw the need to inves-

tigate possibilities of working directly on the symbolic representations instead of letting a SAT

solver enumerate paths. By that time, the only available fully symbolic method for the genera-

tion of counterexamples was an adaption of the approach given in [HKD09] to symbolic data

structures [GSS10].

As this approach was only a sort of proof-of-concept to show that one can compute the k-

shortest paths directly on an MTBDD which was not applicable to large benchmarks, we strived

to develop new methods. The first result was presented in [7] and is basically an extension of the

search algorithms presented in [10]. Using this method symbolically, we were able to generate

counterexamples for systems with up to 108 states within reasonable time and with low memory

consumption. A comprehensive article further improving the methods such that systems with up

to 1015 states could be handled, is published in [3].

These symbolic approaches are presented in Chapter 5, Sections 5.6 and 5.7. Altogether the

achievements are:

1. An adaption of the usage of critical subsystems and a path-fragment search approach to

bounded model checking.

2. A new heuristics to guide a SAT solver to assign states such that more probable paths are

preferred.

3. New methods that work directly on the symbolic representation of a DTMC thus enabling

the generation of counterexamples for systems consisting of billions of states.

Counterexamples as minimal critical subsystems In [HKD09], the notion of minimal coun-

terexamples in terms of the number of paths was shaped. These might still be very large or even

infinite. According to our counterexample representation as critical subsystems, we wanted to

explore the possibilities of computing a minimal subgraph of an input DTMC that still violates a

certain property. Here, minimality can be defined both in terms of the number of states and in the

number of transitions. In any case, the size of the representation is always bounded by the size

of the original system. As a first approach we used (non-optimizing) SMT solvers combined with

a binary search over the number of involved states to compute such minimal critical subsystems.

During the experimental evaluation, it turned out that using mixed integer linear programming

(MILP) [Sch86] was more efficient by orders of magnitude than SMT for this setting. Together
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with a number of optimizations, we were able to solve this minimization problem for many bench-

marks with up to roughly ten thousand states. Thereby, we could not only compute very small

counterexamples but we could also measure the quality of our previous heuristic approaches

as described before. Although larger benchmarks could in general not be solved to optimality

within a predefined time limit, all state-of-the-art MILP solvers like SCIP [Ach09], CPLEX [cpl12],

or GUROBI [Gur13] are not only able to return the best solution found until the time limit but

also to give a lower bound on the value of the optimal solution. This allows to judge the quality

of an (possibly not yet optimal) intermediate solution and enables the applicability to larger

benchmarks.

Moreover, we extended this approach to MDPs, where the problem of finding a minimal critical

subsystem has been proven to be NP-hard [CV10]. We published our results for DTMCs and MDPs

in [9].

Subsequently, we developed the first directly usable method to compute counterexamples

for arbitrary ω-regular properties and DTMCs, which was published in [8]. A comprehensive

article containing a method to compute counterexamples for ω-regular properties of MDPs was

published in [4]; the correctness and completeness of all MILP and SMT encodings is also

included. A corresponding technical report is available [15].

We present these approaches in Chapter 6 where the methods are extended to probabilistic

automata (PAs). All in all we developed:

1. A method to compute minimal critical subsystems for reachability properties using SMT

and MILP solving.

2. The first method to compute counterexamples for arbitrary ω-regular properties both for

DTMCs and PAs.

High-level counterexamples All approaches summarized above use a state-based represen-

tation of counterexamples. A very common way to model probabilistic systems like DTMCs,

MDPs or PAs is to use an extension [HSM97] of Dijkstra’s guarded command language [Dij75].

Using this language, single modules describing the behavior of system components are specified.

These modules can be accumulated to build the entire system, usually a PA, by means of parallel

composition. This is the modeling formalism used for PRISM [KNP11], adapted from a stochastic

version of Alur and Henzinger’s reactive modules [AH99].

It seems a natural idea to provide counterexamples not at the state space level of the system

but at the actual modeling level. On the one hand, this is due to the fact that a system designer

likes to be pointed to errors at this level. On the other hand, while the high-level descriptions

in the PRISM language are often very compact, they might result in PAs with millions of states

where even minimal counterexamples or subsystems are incomprehensible.

The idea of such critical model descriptions is to automatically compute fragments of the original

description modules that are relevant for the violation of a property. In detail, we determine—
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a preferably small—set of guarded commands that together induce a critical subsystem when

composed. As a consequence, in order to correct the system description, at least one of the

returned guarded commands has to be changed.

Our methodology is as follows: First, the composition of the modules induces a full PA model

at the state space level. During the composition, each resulting transition is labeled with unique

identifiers of its constituting guarded command(s), i. e., the commands that actually induce

this transition. Then, model checking is applied to determine whether a property is violated.

The problem of computing a minimal critical command set is then reduced to computing a

minimal critical labeling of the PA. Utilizing this flexible problem formulation, we present several

alternatives of human-readable counterexamples. Furthermore, we show that this problem is

NP-hard, which justifies the usage of an MILP solver. Besides the theoretical principles of our

technique, we illustrate its practical feasibility by showing the results of applying a prototypical

implementation to various examples from the PRISM benchmark suite. This approach was first

presented in [5]. An extended version was published in [1]. This version is also accessible as a

technical report [13].

Finally, the high-level approach is explained in Chapter 7. The contributions are:

1. A new approach to constructing counterexamples based on the high-level modeling lan-

guage for probabilistic systems.

2. A flexible formulation in terms of a minimal critical labeling, enabling the possibility to

create human-readable counterexamples.

1.2 Relevant publications

In this section we list the articles that contain contributions presented in this thesis. We dis-

tinguish peer-reviewed publications such as conference proceedings or journals and technical

reports. Afterwards, we give a short note on how the author has contributed to the contents. The

section concludes with publications of the author that are not content of this thesis.

1.2.1 Peer-reviewed publications

[1] Ralf Wimmer, Nils Jansen, Erika Abraham, and Joost-Pieter Katoen. High-level coun-

terexamples for probabilistic automata. Logical Methods in Computer Science, 11(1:15),

2015.

[2] Nils Jansen, Florian Corzilius, Matthias Volk, Ralf Wimmer, Erika Ábrahám, Joost-Pieter

Katoen, and Bernd Becker. Accelerating parametric probabilistic verification. In Proc. of

QEST, volume 8657 of LNCS, pages 404–420. Springer, 2014.
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[3] Nils Jansen, Ralf Wimmer, Erika Ábrahám, Barna Zajzon, Joost-Pieter Katoen, Bernd

Becker, and Johann Schuster. Symbolic counterexample generation for large discrete-time

Markov chains. Science of Computer Programming, 91(A):90–114, 2014.

[4] Ralf Wimmer, Nils Jansen, Erika Ábrahám, Joost-Pieter Katoen, and Bernd Becker. Minimal

counterexamples for linear-time probabilistic verification. Theoretical Computer Science,

549:61–100, 2014.
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volume 8054 of LNCS, pages 18–33. Springer, 2013.
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ATVA, volume 7561 of LNCS, pages 349–353. Springer, 2012.
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Katoen, and Bernd Becker. Symbolic counterexample generation for discrete-time Markov
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[8] Ralf Wimmer, Nils Jansen, Erika Ábrahám, Joost-Pieter Katoen, and Bernd Becker. Minimal

critical subsystems as counterexamples for ω-regular DTMC properties. In Proc. of MBMV,

pages 169–180. Verlag Dr. Kovač, 2012.

[9] Ralf Wimmer, Nils Jansen, Erika Ábrahám, Joost-Pieter Katoen, and Bernd Becker. Minimal

critical subsystems for discrete-time Markov models. In Proc. of TACAS, volume 7214 of

LNCS, pages 299–314. Springer, 2012.

[10] Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter Katoen, and Bernd

Becker. Hierarchical counterexamples for discrete-time Markov chains. In Proc. of ATVA,

volume 6996 of LNCS, pages 443–452. Springer, 2011.
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1.2.2 Technical reports

[12] Nils Jansen, Florian Corzilius, Matthias Volk, Ralf Wimmer, Erika Ábrahám, Joost-Pieter
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Bernd Becker. High-level counterexamples for probabilistic automata. Technical report,

University of Freiburg, 2013.
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mer, Joost-Pieter Katoen, and Bernd Becker. The COMICS tool - Computing minimal

counterexamples for discrete-time Markov chains. CoRR, 2012.
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counterexamples for refuting ω-regular properties of Markov decision processes. Reports
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Becker. Hierarchical counterexamples for discrete-time Markov chains. Technical report,

RWTH Aachen University, 2011.

1.2.3 A note on contributions by the author

All publications listed above were the result of the work of many people, as can be seen by the

numerous authors. Most of the results were jointly achieved in many discussions via phoning,

texting and of course many meetings in Aachen, Freiburg, Dagstuhl, or at conferences.

However, for this thesis it is necessary to somehow measure my contributions. I will therefore

now chronologically, i. e., according to the publication date, explain what I explicitly contributed.

In general, I co-wrote all publications and technical reports. I will therefore only talk about the

development of the results.

To begin with, in [11] the basic idea was developed by me together with Erika Ábrahám in

various initial discussions while getting familiar with the topic of probabilistic systems. The

implementation was mainly done by me.

The results of [10, 16] again were developed together by Erika Ábrahám and me, while the

implementation was done by a student under my supervision. The tool presented in [6, 14]

was developed by me with great help of a number of students which are mentioned in the

acknowledgements.

Extending the former approaches on counterexample generation to symbolic data structures

was inspired by a previous work of Ralf Wimmer and initiated by me, which led to [7]. The imple-

mentation was done by a student and me. I was the main developer of the further improvements

which led to the extensions in [3].

The initial idea of [9] came up at a discussion in Dagstuhl and was initially carried out by

Ralf Wimmer. I developed several improvements to get scalable methods and worked with Ralf

Wimmer and Erika Ábrahám on most of the proofs. The key idea for some of the extensions

in [4, 15] was given by Joost-Pieter Katoen while Ralf Wimmer and I initiated the further

development. Most of the details were worked out in several discussions in Aachen and Dagstuhl.

The implementations for [4, 15] were done by Ralf Wimmer and me together with a student.

Ralf Wimmer had the idea for [5, 13] while he and I together worked on all the details and

again did the implementation together with a student.
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The part of the results of [2, 12] that is presented in this thesis were mainly developed by me

while the implementation was done by a student under the supervision of Florian Corzilius and

me.
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1.4 How to read this thesis

In order to ease the reading of this work, we begin every chapter with a short paragraph con-

taining a Summary of what is presented in this chapter. This is followed by a paragraph called

Background, which contains the preliminaries that are relevant for this chapter together with a

link to the according definitions or sections in the chapter about Foundations.

1.4.1 Algorithms

All algorithms are given in pseudo code and more or less mathematically formal, depending on

the problem at hand. For every algorithm we list all used parameters, variables and methods

afterwards. This is followed by an explanation on how the algorithm proceeds. A small toy

example can be seen below:

Algorithm 1

Integer ExampleAlgo(Integer x)
begin

Integer y := 0 (1)

y := x (2)

return testMethod(y) (3)

end

Parameters

y is an integer parameter.

Return value
The result of testMethod(y) is returned.

Variables

x is an integer variable. If variables are not initialized, they are considered to have the value ;.
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Methods

testMethod does something with integer parameter y and returns an integer value.

Procedure
The algorithm proceeds as follows: First, the variable y is initialized to 0. Then, it is set to the

value of the parameter x . Finally, the result of testMethod called with parameter y is returned.

1.4.2 Problem encodings

In some parts of this thesis, problems are handled by utilizing solving techniques. Therefore, we

have to encode a solution to a problem by means of constraints that have to be satisfied. As these

constraints are not very intuitive at some parts, we present all encodings in the following form.

Intuition Here we give the intuition of the problem that is to be encoded. In our toy example

we want to ensure that all used variables sum up to a value that is less than or equal to 1.

Variables

x ∈ [0,1]⊆ R is a real-valued variable between 0 and 1

y ∈ {0,1} is an integer variable that can take the values 0 or 1

Constraints

x + y ≤ 1 (1.1)

Explanation The sum of x and y is forced to take a value less than or equal to 1 by Con-

straint 1.1. This implies that if the integer variable y is assigned 1, x has to be assigned 0. If y is

assigned 0, x can be assigned any possible value out of R between 0 and 1.

Formula size The formula size is constant.
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CHAPTER 2

Foundations

In this chapter we lay the foundations needed for the results presented in this thesis. After

shortly fixing some basic notations we formalize the probabilistic models that are subject of our

methods. We present the different specification languages as well as corresponding verification

techniques for the introduced models. We also discuss the concept of symbolic representations

of state spaces, which is used for large systems.

We introduce some basic solving techniques which are used throughout the thesis as blackbox

algorithms. The chapter concludes with an introduction to probabilistic counterexamples.

2.1 Basic notations and definitions

Numbers, intervals and matrices We denote the set of real numbers by R, the rational

numbers by Q, the natural numbers including 0 by N, and the integer numbers by Z. By R>0 we

denote the positive real numbers and by R≥0 the nonnegative real numbers. The same holds for

Q>0,Q≥0,N>0,Z>0, and Z≥0, respectively.

Let [0,1] ⊆ R denote the closed interval of all real numbers between 0 and 1, including the

bounds; (0,1]⊆ R denotes the open interval of all real numbers between 0 and 1 excluding 0.

A ∈ Rm×n denotes a matrix A with m rows and n columns with values out of R. The same

holds for Nm×n, Qm×n and Zm×n, respectively.

Sets Let X , Y denote arbitrary sets. If X ∩ Y = ; holds, we write X ] Y for the disjoint union of

the sets X and Y . As usual, we write X ⊆ Y if X is subset of Y . If additionally Y \ X 6= ; holds,

we write X ⊂ Y .

By 2X = {X ′ | X ′ ⊆ X } we denote the power set of X . By (X i)i≥0 we denote an arbitrary family
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of sets X i . We call a set P ⊆ 2X \ ; a partition of X if

⋃

P ′∈P

P ′ = X and ∀P ′, P ′′ ∈ P : P ′ 6= P ′′⇒ P ′ ∩ P ′′ = ;

holds. The elements of the partition P are called blocks. By Xω we denote the set of all infinite

sequences of elements from X : x1, x2, . . . for x i ∈ X , i > 0. X n denotes the set of all finite

sequences x1, . . . , xn of X for x i ∈ X , 1≤ i ≤ n.

Distributions Let X be a finite or countably infinite set. A probability distribution over X

is a function µ: X → [0,1] ⊆ R1 with
∑

x∈X µ(x) = µ(X ) = 1. A sub-stochastic distribution

over X is a function µ: X → [0,1] ⊆ R such that
∑

x∈X µ(x) = µ(X ) ≤ 1. We denote the

set of all (sub-stochastic) distributions on X by Distr(X ) or subDistr(X ), respectively. The set

supp(µ) = {x ∈ X | µ(x)> 0} is called the support of µ for a (sub-stochastic) distribution µ. We

write µ′ ⊆ µ for µ,µ′ ∈ subDistr(X ), if for all x ∈ X it holds that µ′(x)> 0 implies µ′(x) = µ(x)
and µ′(x) = 0 for µ(x) = 0. If for µ ∈ Distr(X ) it holds that µ(x) = 1 for one x ∈ X and µ(y) = 0

for all y ∈ X \ {x}, µ is called a Dirac distribution.

Polynomials For an arbitrary function f : X → Y we denote the domain of f by dom( f ) = X .

Let V denote a set of variables. The domain of a variable x ∈ V is denoted by dom(x). The

domain of the whole set of variables is denoted by dom(V ) =
⋃

x∈V dom(x).

Definition 1 (Polynomial, monomial) Let V = {x1, . . . , xn} be a set of variables with

dom(V ) = R. A monomial m over V is the product of a coefficient a ∈ Z and variables

from V:

m := a · x e1
1 · . . . · x en

n

with ei ∈ N for all 1≤ i ≤ n. The set of all monomials over V is denoted by MonV . A polynomial

g over V is a sum of monomials over V :

g := m1+ . . .+ml

with mi ∈MonV , 1≤ i ≤ l. The set of all polynomials over V is denoted by PolV .

We also need the notion of a rational function, which is the fraction g1

g2
of two polynomials.

Thereby, this function is clearly not defined at the roots of the denominator. We additionally

restrict the denominator to be unequal to 0. By g2 6= 0 we state that the polynomial g2 cannot

be simplified to 0 which is necessary to define the division by g2. Moreover, the rational function
g1

g2
is not defined at the roots of g2. In order to have valid evaluations of a rational function for

our algorithms, we later restrict these evaluations accordingly.

1For the algorithms in this thesis, probabilities are from Q.
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Definition 2 (Rational function) Let V = {x1, . . . , xn} be a set of variables with dom(V ) =

R. A rational function f over V is given by f := g1

g2
with g1, g2 ∈ PolV and g2 6= 0. The set of

all rational functions over V is denoted by RatV .

2.2 Probabilistic models

We introduce the different probabilistic models which are used throughout this thesis. All our

models are based on discrete time, i. e., instantaneous transitions discretely model the advance

of time by one time unit. Possible interpretations are that scenarios like the ticks of clock are

modeled or that for the probabilistic information the amount of time that is used is irrelevant.

Continuous time models like continuous time Markov chains are out of the scope of this thesis.

For an overview of different models, both discrete-time and continuous-time, we refer to [Fel68,

How79].

2.2.1 Discrete-time Markov chains

Intuitively, Markov Chains are transition systems where at each state there is a probabilistic

choice for the successor state. If the time model is discretized such that we have instantaneous

transitions, we speak of discrete-time Markov chains. The probability of going from a state to

another one depends only the current state, i. e., this probability is history independent of the path

taken so far. This property is called the Markov property. This is due to the fact, that a DTMC is

actually a stochastic process whose random variables are all geometrically distributed. For details

we refer to [BK08, Chapter 10].

Let in the following AP be a finite set of atomic propositions.

Definition 3 (DTMC) A discrete-time Markov chain (DTMC) is a tuple D = (S, I , P, L) with:

• S a countable set of states

• I ∈ subDistr(S) an initial distribution

• P : S→ subDistr(S) a transition probability matrix

• L : S→ 2AP a labeling function.

Remark 1 (Finite state space) Note that although the set of states is allowed to be countably

infinite, for our algorithms we assume finite state spaces.

The probability of going to a state s′ ∈ S from a state s ∈ S in one step is given by the

corresponding entry P(s, s′) in the transition probability matrix. The probability to reach a set

S′ ⊆ S of states from s in one step is given by P(s, S′) =
∑

s′∈S′ P(s, s′). Analogously, P(S′, s) =
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Figure 2.1: Example DTMC D

∑

s′∈S′ P(s
′, s) holds. The initial distribution determines the probability of starting at certain

states. We denote the set of states where this probability is not 0, the initial states, by

InitD = {s ∈ S | I(s)> 0} .

Example 1 Consider a DTMC D = (S, I , P, L) with S = {s0, . . . , s8}, I(s0) = 1, L(s3) = {target}
and L(s) = ; for all s 6= s3. The transition probability matrix is given by:

P =





































0 0.5 0.25 0 0 0.25 0 0 0

0 0 0.5 0.5 0 0 0 0 0

0 0.5 0 0 0.5 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0.7 0 0.3 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0.5 0 0 0 0.5 0

0 0 0 0 0 0.25 0.25 0 0.5

0 0 0 0 0 0 0 0 1





































The DTMC D is depicted in Figure 2.1.

Every state has (possibly empty) sets of predecessors and successors:
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Definition 4 (Predecessors, successors) For a DTMC D = (S, I , P, L), the successors of a

state s ∈ S are given by

succD(s) = {s′ ∈ S | P(s, s′)> 0} .

The predecessors of s ∈ S are given by

predD(s) = {s′ ∈ S | P(s′, s)> 0} .

A state s ∈ S with succD(s) = {s} is called an absorbing state.

Remark 2 (Sub-stochastic distribution) Our definition of a DTMC allows sub-stochastic distri-

butions for the initial distribution I and for the transition probability matrix P. Usually, the sum

of probabilities is required to be exactly 1. This can be obtained by defining for a DTMC D a new

DTMC D′ = (S′, I ′, P ′, L′) where all “missing” probabilities are directed to a new sink state s⊥:

• S′ = S ] {s⊥}

• I ′(s) =







I(s) if s ∈ S

0 otherwise

• P ′(s, s′) =























P(s, s′) if s, s′ ∈ S

1 if s = s′ = s⊥
1−∑s′∈S P(s, s′) if s ∈ S, s′ = s⊥
0 if s = s⊥, s′ ∈ S

• L′(s) =







L(s) if s ∈ S

; if s = s⊥ .

We often directly or indirectly refer to the graph which is induced by a DTMC D:

Definition 5 (Graph of a DTMC) For a DTMC D = (S, I , P, L), the underlying directed

graph of D is given by GD = (S, ED) with the set of edges

ED = {(s, s′) ∈ S× S | s′ ∈ succD(s)}.
We call the edges of GD also transitions. A transition (s, s′) ∈ ED has a source state s and a

destination state s′. We denote the number of states by |S|= nD and the number of transitions by

|ED |= mD .
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Remark 3 (Explicit graph representation) If the matrix is explicitly stored in data-structures

like vectors or 2-dimensional matrices, we speak of an explicit graph representation. This rep-

resentation is used, for instance, by the probabilistic model checker MRMC [KZH+11]. This is the

counterpart of symbolic graph representations which are discussed in Section 2.4.

Sparse matrix representation As indicated by the previous example, typically the transition

probability matrices of DTMCs contain many entries having the value 0, i. e., the matrices are very

sparse. For many operations it is beneficial to use so-called sparse matrix representations. Three

vectors row, col and val are used to store A. The vector val stores all non-zero entries in a certain

order. Vector col stores the indices of the columns of the values in val. row stores pointers to the

other vectors such that the ith element of row points to the first entry of row i in the original

matrix A represented by col and val. This compact representation is beneficial for numerical

operations like matrix-vector multiplications. For more details, we refer to [Par02, Ste94].

If only a part of the states of a DTMC is to be considered, we use the notion of a subsystem.

Definition 6 (Subsystem of a DTMC) For a DTMC D = (S, I , P, L), a subsystem of D is a

DTMC D′ = (S′, I ′, P ′, L′) with:

• S′ ⊆ S

• I ′(s) = I(s) for all s ∈ S′

• P ′(s, s′) = P(s, s′) for all s, s′ ∈ S′

• L′(s) = L(s) for all s ∈ S′.

We write D′ v D.

Paths of DTMCs Assume in the following a DTMC D = (S, I , P, L). We fix some notations

regarding the paths that go through a DTMC.

Definition 7 (Path of an DTMC) A path π of a DTMC D = (S, I , P, L) is a finite or infinite

sequence π= s0, s1, . . . of states such that si ∈ S and P(si , si+1)> 0 for all i ≥ 0.

If π is a finite path π= s0, s1, . . . , sn we define the length of π by |π|= n. The length of an infinite

path π is |π|=∞. The first state π of a path is denoted by first(π) = s0; the last state of a finite

path π is denoted by last(π) = sn. By πi we denote the prefix of π of length i. Let π(i) denote

the ith state of π. By s0, . . . , s j , (s j+1, . . . , sk)∗, . . . for 0 ≤ j < k ≤ |π| and s j = sk we denote a set

of paths that are equal except for the number of iterations of the loop s j , . . . , sk.
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Example 2 (Loops) Consider the DTMC D from Example 1. The path π1 = s0, s1, s2, s1, s3 contains

a loop πl = s1, s2, s1. The set of all paths differing only in the number of iterations of this loop is

denoted by Π = s0, s1, (s2, s1)∗, s3. For instance, π2 = s0, s1, s2, s1, s2, s1, s3 ∈ Π. Moreover, the path

π3 = s0, s1, s3 not traversing that loop is also part of Π.

By PathsD we denote the set of all paths of D and by PathsD(s) the set of all paths of D that start

in state s ∈ S. Analogously, we define the sets of finite paths PathsDfin and infinite paths PathsDinf as

well as PathsDfin(s) and PathsDinf (s), respectively. For states s and s′ we denote by PathsDfin(s, s′) the

set of finite paths that start in s′ and end in s′′. For sets of states S′ ⊆ S and S′′ ⊆ S we denote

by PathsDfin(S
′, S′′) the set of finite paths that start in a state s ∈ S′ and end in a state s′′ ∈ S′′,

formally PathsDfin(S
′, S′′) =

⋃

s′∈S′
⋃

s′′∈S′′ PathsDfin(s
′, s′′). Sometimes we omit the subscript D if it

is clear from the context.

The concatenation of a finite path π1 ∈ PathsDfin and a finite or infinite path π2 ∈ PathsD with

last(π1) = first(π2) is denoted by π = π1π2 = π1(0), . . . ,π1(|π1 − 1|),π2(0),π2(1), . . . The set

of all prefixes of π ∈ PathsD is prefD(π) = {πi | 0 ≤ i ≤ |π|}. If |π1| < |π| and π1 ∈ prefD(π)
hold, π1 is called a real prefix of π.

We call a set R of paths prefix-free, if for all π1,π2 ∈ R⊆ PathsD it holds that either π1 = π2 or

π1 /∈ prefD(π2). By PathsDk ⊆ PathsDfin we denote all finite paths of length k ∈ N.

Definition 8 (Trace) The trace of a finite or infinite path π = s0, s1, . . . of a DTMC D =
(S, I , P, L) is given by the sequence trace(π) = L(s0), L(s1) . . .

We sometimes use state names as atomic propositions, i. e., s ∈ L(s) for s ∈ S.

Probability measure on DTMCs In order to define a probability measure for sets of infinite

paths, we first have to recall the general notions ofσ-algebras and associated probability measures,

which together form a probability space.

Definition 9 (σ-algebra) Let X be a set. A set Σ⊆ 2X is called a σ-algebra over X if:

1. X ∈ Σ (underlying set contained)

2. Y ∈ Σ⇒ (X \ Y ) ∈ Σ (closed under complement)

3. Y1, Y2, . . . ∈ Σ⇒ (⋃
i≥1

Yi) ∈ Σ (closed under countable union).

From Conditions 1 and 2 it follows that ; ∈ Σ. In order to assign probabilities to the elements

of a σ-algebra, a probability measure is associated.

Definition 10 (Probability measure) Let Σ be a σ-algebra over a set X . A function µ: Σ→
[0,1]⊆ R is called a probability measure if:

• µ(;) = 0 (empty set is assigned zero)
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• ∀Y ∈ Σ: µ(Y ) = 1−µ(X \ Y ) (closed under complement)

• For all families (Yi)i≥1 of pairwise disjoint sets Yi ∈ Σ it holds that

µ(
⋃

i≥1

Yi) =
∑

i≥1

µ(Yi) (countable additivity).

These elements form a probability space.

Definition 11 (Probability space) Let Σ be a σ-algebra over a set X and µ: Σ→ [0, 1]⊆ R
an associated probability measure. The triple (X ,Σ,µ) is called a probability space.

In the literature, X is often referred to as the sample space and the elements of the σ-algebra

are called events. For more details we refer to standard books about measure theory, such

as [BW07, BT02].

We now associate a probability space to a DTMC D. The set Pathsinf of infinite paths of D
forms the sample space. In order to define a suitable σ-algebra over Pathsinf we define so-called

cylinder sets of finite paths.

Definition 12 (Cylinder set) The cylinder set of a finite path π= s0, s1, . . . , sn ∈ PathsDfin(s0)

is the set cyl(π) = {π′ ∈ PathsDinf (s0) |π ∈ prefD(π′)} of all infinite extensions of π.

For a DTMC D and a state s ∈ S, a probability space (Ω,F , PrDs ) can be defined as follows: The

sample space Ω = PathsDinf (s) is the set of all infinite paths starting in s. The events F ⊆ 2Ω are

given by the smallest σ-algebra that contains the cylinder sets of all finite paths in PathsDfin(s),

i. e., it is the closure of the cylinder sets under complement and countable union containing Ω.

For details we refer to [BK08, Definition 10.10]. The probability of a finite path π= s0, s1, . . . , sn

is given by the product of all transition probabilities:

PD(π) =
n−1
∏

i=0

P(si , si+1)

For paths π of length |π| = 1 we set PD(π) = 1. Two finite paths present two stochastically

independent events, if no path is a prefix of the other one, i. e., their cylinder sets are disjoint. If

we are interested in the probability of finite paths that start in a specific state, we have

PDs (π) =







PD(π) if s0 = s

0 otherwise
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The probability measure is extended to sets of paths: For a prefix-free set of finite paths R ⊆
PathsDfin we have

PD(R) =
∑

π∈R

PD(π).

For the concatenation of two paths π = π1π2 ∈ PathsDfin with π1,π2 ∈ PathsDfin and first(π2) =

last(π1) = s it holds that PD(π1) · PD(π2) = PD(π).
The probability of cylinder sets is defined using the measure for finite paths:

PrDs0

�

cyl(s0, s1, . . . , sn)
�

= PD(s0, s1, . . . , sn)

This measure can uniquely be extended to the whole σ-algebra associated with D, yielding the

probability measure PrDs0
: F → [0,1] ⊆ R [Nor97]. A set Π of paths is called measurable iff

Π ∈ F .

Remark 4 (Measure for finite paths) In the following we sometimes let finite paths denote their

cylinder sets.

Remark 5 (Initial distribution vs. initial state) Instead of defining an initial distribution I for

a DTMC D, we often use a single initial state sI. This is no restriction, as every DTMC having

an arbitrary initial distribution can be transformed to one having one unique initial state. This

transformation does not affect the satisfaction of the properties we investigate. Let D = (S, I , P, L)

be a DTMC. We define D′ = (S′, I ′, P ′, L′) with a fresh unique initial state sI /∈ S:

• S′ = S ] {sI}

• I ′(s) =







1 if s = sI

0 if s ∈ S

• P ′(s, s′) =











I(s′) if s = sI, s′ ∈ S

P(s, s′) if s, s′ ∈ S

0 otherwise

• L′(s) =







; if s = sI

L(s) if s ∈ S .

We also write D′ = (S′, sI, P ′, L′).

Sets of states Throughout this thesis, we often have to argue about certain sets of states. For

a DTMC D = (S, I , P, L) and a subset of states K ⊆ S we define the set of input states of K in D
by InpD(K) = {s ∈ K | I(s) > 0∨ ∃s′ ∈ S \ K . P(s′, s) > 0}, i. e., the states inside K that have an
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incoming transition from outside K . Analogously, we define the set of output states of K in D
by OutD(K) = {s ∈ S \ K | ∃s′ ∈ K . P(s′, s)> 0}, i. e., the states outside K that have an incoming

transition from a state inside K . The set of inner states of K in D is given by K \ InpD(K). We

sometimes omit the subscript D if it is clear from the context. A set of states K in D is called

absorbing in D if the probability to reach a state of OutD(K) is less than 1, i. e., if OutD(K) is not

reached with probability 1.

Special sets of states are strongly connected components.

Definition 13 (Strongly connected component) Let D = (S, I , P, L) be a DTMC and S′ ⊆ S

a subset of states with S′ 6= ;. S′ is called a strongly connected sub-component (SCS) of D, if

for all s, s′ ∈ S′ there is a path s0, s1, . . . , sn ∈ PathsDfin(s, s′) with si ∈ S′ for all i = 0, . . . , n.

A strongly connected subgraph of D is a called a strongly connected component (SCC) if it

is maximal, i. e., for all strongly connected subgraphs S′′ ⊆ S we have that S′ 6⊂ S′′.
S′ is a bottom SCC (BSCC) if it is an SCC and for all s ∈ S′ we have that

∑

s′∈S′ P(s, s′) = 1.

Intuitively, from every state of an SCS S′ every other state in S′ is reachable inside S′. The SCC

structure of a directed graph can be determined by Tarjan’s algorithm in linear time [Tar72].

As the set of output states of a BSCC is empty, the probability to visit each state in a BSCC

infinitely often is 1. Moreover, if we assume only stochastic distributions, the probability to finally

reach a set of absorbing states, i. e., the set of all BSCCs of a DTMC, is 1. This implies that the

probability to finally leave a non absorbing SCC is also 1. For details about these properties, we

refer to [BK08, Chapter 10.1.2].

2.2.2 Probabilistic automata and Markov decision processes

In order to allow both probabilistic and nondeterministic behavior, probabilistic automata and

Markov decision processes extend DTMCs by nondeterministic choices for probability distributions

over successor states.

Definition 14 (PA) A probabilistic automaton (PA) is a tupleM = (S, I , Act,P , L) with:

• S a countable set of states

• I ∈ subDistr(S) an initial distribution

• Act a finite set of actions

• P : S → 2Act×subDistr(S) a probabilistic transition relation where P (s) is finite for all

s ∈ S

• L : S→ 2AP a labeling function.

If every action α ∈ Act occurs only once at each state ofM , the model is called a Markov decision

process.
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Definition 15 (MDP) A discrete-time Markov decision process (MDP) is a probabilistic au-

tomatonM = (S, I , Act,P , L) where it holds for all s ∈ S and all α ∈ Act that

|{µ ∈ subDistr(S) | (α,µ) ∈ P (s)}| ≤ 1 .

For MDPs, the probabilistic transition relation can also be written as a three-dimensional tran-

sition probability matrix of the form P : S × Act → subDistr(S). If possible, we often use this

notation.

Remark 6 (Finite state space) As for DTMCs, we assume PAs and MDPs to have a finite state

space, see Remark 1.

We define sets of predecessors and successors for a state, for a pair of state and action, and for

a state and a pair of action and distribution.

Definition 16 For a PA M = (S, I , Act,P , L), the predecessors of s ∈ S for α ∈ Act and

µ ∈ subDistr(S) are given by:

predM (s,α,µ) = {s′ ∈ S | (α,µ) ∈ P (s′)∧ s ∈ supp(µ)}
predM (s,α) = {s′ ∈ S | ∃µ ∈ subDistr(S). s′ ∈ pred(s,α,µ)}

predM (s) =
⋃

α∈Act

predM (s,α).

The successors of s ∈ S for α ∈ Act and µ ∈ subDistr(S) are given by:

succM (s,α,µ) = {s′ ∈ S | (α,µ) ∈ P (s)∧ s′ ∈ supp(µ)}
succM (s,α) = {s′ ∈ S | ∃µ ∈ subDistr(S). s′ ∈ succ(s,α,µ)}

succM (s) =
⋃

α∈Act

succM (s,α).

We sometimes abbreviate pairs of action and distribution by (α,µ) = η ∈ P (s) for a state s ∈ S.

In the following, we overload some notations we originally defined for (sub-)distributions such

that they are also used for pairs of an action α ∈ Act and a (sub-)distribution µ ∈ subDistr(s). For

instance, the support of a distribution µ is also defined if a specific action is given: supp(η) =

supp(µ) for η ∈ Act× {µ}. We also call (s,η, s′) ∈ S×P (s)× S a branch of s.

For a state s ∈ S, a successor state is determined as follows: First, η ∈ P (s) is chosen nonde-

terministically. Then, s′ ∈ supp(η) is determined probabilistically according to the distribution in

η. This yields the transitions (s,η, s′) to be taken from s. This process can be repeated infinitely

often starting with an initial state sI such that I(sI)> 0.

We fix the set of actions that are enabled in state s ∈ S ofM by

ActMs = {α ∈ Act | ∃µ ∈ subDistr(S). (α,µ) ∈ P (s)}
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In order to avoid deadlock states in the corresponding PA with stochastic distributions, we assume

for a every PAM that |ActMs |> 0 for all s ∈ S. If |ActMs |= 1 for all s ∈ S holds for an MDPM , it

behaves like a DTMC where the actions are just omitted.

Remark 7 The Markov property holds also for PAs. After the nondeterministic choice has been

made in state s, the probability to move to another state depends only on the chosen probability

distribution and not on the history of already visited states.

Example 3 Consider a PAM = (S, I , Act,P , L) with S = {s0, . . . , s8}, I(s0) = 1 and I(s) = 0 for

all s 6= s0, Act= {α,β}, L(s3) = {target} and L(s) = ; for all s 6= s3. This PA is an extension of the

DTMC D from Example 1. In addition, there are nondeterministic choices for states s1 and s2 with

P (s1) = {(α,µ1), (β ,µ2)} and P (s2) = {(α,µ3), (β ,µ4)} with

µ1(s2) = 0.5 µ1(s3) = 0.5 µ2(s2) = 1

µ3(s1) = 0.5 µ3(s4) = 0.5 µ4(s1) = 1

For all other states si , i ∈ {0, 3, 4, 5, 6, 7, 8}, it holds that ActMsi
= {α}, i. e., there is no nondetermin-

ism involved. The PAM is graphically depicted in Figure 2.2. If there is only one action available in

a state, we omit the action. Otherwise, there is a thick edge leading to the action from where on the

probabilistic choice is depicted. Note that this PA is an MDP as for all states each action occurs at

most once. We therefore also omit the distributions.

In the following we often need the notion of a subsystem of a PA. The definition is analogous to

DTMCs:

Definition 17 (Subsystem of a PA) For a PAM = (S, I , Act,P , L), a subsystem ofM is a

PAM ′ = (S′, I ′, Act,P ′, L′) with

• S′ ⊆ S

• I ′(s) = I(s) for all s ∈ S′

• P ′(s) = {(α,µ) ∈ ActMs × subDistr(S′) | ∃µ′ ∈ subDistr(S). (α,µ′) ∈ P (s) ∧ µ ⊆ µ′ ∧
supp(µ) = supp(µ′)∩ S′} for all s ∈ S′

• L′(s) = L(s) for all s ∈ S′.

By using the notion µ⊆ µ′ for (α,µ′) ∈ P (s), see the paragraph about distributions in Section 2.1,

we ensure that µ(s) = µ′(s) for all s ∈ S′ inside the subsystem.

Paths of PAs Paths are defined analogously to DTMCs. Assume in the following a PAM =

(S, I , Act,P , L).
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Figure 2.2: Example PAM

Definition 18 (Path of a PA) A path π of a PA M is a sequence π = s0α0µ0, s1α1µ1, . . . of

states, actions, and distributions such that si+1 ∈ succM (si ,αi ,µi) for all i ≥ 0.

For a PA M , the notations PathsMfin , PathsMfin (s), PathsMinf , PathsMinf (s) for s ∈ S, and trace(π) for

a path π ofM are analogous to the definition for DTMCs, see the corresponding paragraph in

Section 2.2.1. The same holds for notations concerning the concatenation or the first or last state

of a path of a PA.

Remark 8 (Initial distribution vs. initial state for PAs) As for DTMCs, we often refer to a PA

M = (S, sI, Act,P , L) with a single initial state where I(sI) = 1 holds. For arbitrary PAs, a similar

construction as for DTMCs leads to PAs with a single initial state, see Remark 5. All our concepts are

equally adaptable for PAs with single or multiple initial states.

Probability measures on PAs For DTMCs, probabilities are defined on measurable sets of

paths. In case of PAs, the nondeterminism has to be resolved to define a similar measure. This is

done by so-called schedulers, often also referred to as adversaries or strategies.

Definition 19 (Scheduler) A scheduler for a PAM = (S, I , Act,P , L) is a function

σ : PathsMfin (sI)→ Distr(Act× subDistr(S))
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for every sI ∈ S with I(sI) > 0 such that supp(σ(π)) ⊆ P (last(π)) for each π ∈ PathsMfin (sI).

We denote the set of schedulers onM by SchedM .

A scheduler resolves the nondeterministic choices depending on the finite path which led to the

current state by assigning probabilities to the nondeterministic choices available in the last state

of a finite path. It therefore transforms the nondeterministic model into a fully probabilistic one.

The resulting PA is deterministic with respect to the choice of actions, which semantically yields

a DTMC whose states are the finite paths of the PA that start in the initial states.

Definition 20 (DTMC induced by a scheduler) For a PAM = (S, I , Act,P , L) and a sched-

uler σ for M , the DTMC induced by M and σ is given by Mσ = Dσ = (Sσ, Iσ, Pσ, Lσ)

with

• Sσ =
⋃

s∈supp(I)
PathsMfin (s)

• Iσ = I

• Pσ(π,π′) =







σ(π)((α,µ)) ·µ(s), if π′ = π (α,µ) s

0, otherwise

• Lσ(π) = L(last(π)) for all π ∈ Sσ.

The probability measure for a PA can now be defined on this induced DTMC, which is in general

countably infinite. For details we refer, e. g., to [dA97, BK08].

Remark 9 (Symbol for induced DTMC) In general, for all MDPs and PAs we use the symbolM
while we use D for DTMCs. However, to keep the reference to the PA we use bothMσ and Dσ for

the DTMC that is induced by a PA or an MDPM and a scheduler σ.

In the following, we do not need schedulers in their full generality. In many cases, a simple

subclass of schedulers suffices, namely memoryless deterministic schedulers. The unique action-

distribution pair assigned to a finite path by such a scheduler depends only on the last state of

the path and is assigned via a Dirac distribution. Note that for finite PAs this yields a finite DTMC.

Definition 21 (Memoryless deterministic scheduler) For a PA M = (S, I , Act,P , L), a

scheduler σ forM is memoryless iff for all s ∈ supp(I) and π,π′ ∈ PathsMfin (s) with last(π) =

last(π′) we have that σ(π) = σ(π′).
A scheduler σ for M is deterministic iff for all s ∈ supp(I), π ∈ PathsMfin (s) and (α,µ) ∈

Act× subDistr(S) we have that σ(π)((α,µ)) ∈ {0, 1}.

Remark 10 (DTMC induced by a memoryless deterministic scheduler) We can regard memo-

ryless deterministic schedulers as functions σ : S → Act× subDistr(S). The induced DTMCMσ =
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Dσ = (Sσ, Iσ, Pσ, Lσ) is given by Sσ = S, Iσ = I , Pσ(s, s′) = µ(s′) for σ(s) = (α,µ) ∈ P (s) and

Lσ = L.

Example 4 (Scheduler) Consider the PAM from Example 3. We define a memoryless deterministic

scheduler σ with σ(s) = α for all s ∈ S. The induced DTMC Dσ equals the DTMC D from Example 1.

2.2.3 Parametric Markov chains

To allow for DTMCs where not all probabilities are fixed numbers but parameters with unknown

values, we follow the way of [HHZ10, Daw04] and use rational functions, see Definition 2, for

defining probabilities.

Definition 22 (PDTMC) A parametric discrete-time Markov chain (PDTMC) is a tuple R =
(S, V , I ,P, L) with:

• S a countable set of states

• V = {x1, . . . , xn} a finite set of parameters

• I : S→ RatV an initial distribution

• P: S× S→ RatV

• L : S→ 2AP a labeling function.

Intuitively, for states s, s′ ∈ S with P(s, s′) = f , the rational function f ∈ RatV describes the

probability of going from s to s′. Instantiating all parameters from V with respect to certain

constraints yields a concrete probability. This is formalized later tailored to our algorithms.

The underlying graph GR = (S, ER) of a PDTMC R is defined analogously to DTMCs, see

Definition 5, while the set of transitions ER is defined for rational functions:

ER = {(s, s′) ∈ S× S |P(s, s′) 6= 0}

Example 5 (PDTMC) Consider the PDTMC in Figure 2.3 which is a parametrized version of the

DTMC in Example 1. Parameters are p and q, leaving transitions probabilities outgoing from states

s0 and s6 unspecified. Instantiating p by 0.25 and q by 0.25 yields the same DTMC as in Example 1.

2.3 Specifications for probabilistic models

We now introduce the specifications we use throughout this thesis to define properties. We start

with basic reachability properties followed by the probabilistic extension of computation tree

logic, namely PCTL. We conclude with ω-regular properties.
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Figure 2.3: Example PDTMC with parameters p and q

2.3.1 Reachability properties

Many important problems when analyzing probabilistic models as presented in Section 2.2 can

be reduced to so-called reachability properties. We are interested in a quantitative analysis such

as:

“What is the probability to reach a certain set of states T starting in state s?”

Such a set of target states T might, e. g., represent a bad event in the model at hand and should

only occur with a certain small probability. Formally, we formulate properties like P\λ(◊target)
for \ ∈ {<,≤,=,>,≥}, λ ∈ [0,1] ⊆ R, target ∈ AP and T = {s ∈ S | target ∈ L(s)}. Note

that in fact λ is from [0,1]∩Q as no real-valued probability bound can be used in practice. P
measures the probability for the property and is formalized later. For example, P≤0.1(◊target)
means that the probability of reaching a state labeled with target has to be less than or equal to

0.1. If the probability is higher at state s, this property evaluates to false for this state. We also

directly write P\λ(◊T) for these properties, thereby implying that the set T consists exactly of

the states that are labeled with target. Moreover, we restrict the properties to the form P≤λ(◊T )

and sometimes P<λ(◊T ). The cases ≥ and > can be reduced to ≤ and < using negation and the

complement probabilities, e. g., P>λ(◊T ) is equivalent to P≤1−λ(◊¬T ).

In the following we explain how such properties can be verified for DTMCs and PAs. For

PDTMCs, this is still ongoing research. We present some details later in this thesis.

2.3.1.1 Model checking reachability properties on DTMCs

Assume in the following a DTMC D = (S, sI, P, L) with a single initial state and a set of target

states T = {t ∈ S | target ∈ L(t)} uniquely labeled by target ∈ AP. To measure the probability
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of finally reaching a state from T when starting at a specific state s ∈ S, we consider all infinite

paths in PathsDinf (s) that contain a state from T . Formally, the set of paths that contribute to the

probability of reaching T from a state s is given by

◊T (s) = {π ∈ PathsDinf (s) | ∃i. target ∈ L(π(i))}

where we overload ◊T to both denote a set of paths and a reachability property. We sometimes

also omit s, if it is clear from the context, e. g., if s is the initial state of a DTMC.

The set ◊T(s) it measurable, as it corresponds to the union of all cylinder sets of finite paths

from PathsDfin(s, T ):

◊T (s) =
⋃

π∈PathsDfin(s,T )

cyl(π)

In order to compute probabilities, we first observe that for π,π′ ∈ PathsDfin(s, T) with π ∈
prefD(π′) it holds that cyl(π′)⊆ cyl(π). However, if π and π′ are not prefixes of each other then

cyl(π) ∩ cyl(π′) = ;. Thus we can restrict the considered paths to the ones that end when first

visiting a target state:

◊Tfin(s) = {π ∈ PathsDfin(s, T )
�

�∀0≤ i < |π|.π(i) /∈ T}

As no path is a prefix of another one in this set, the probability of this set can be computed by

the sum of the path probabilities using the measure for finite paths, see Section 2.2.1:

PrDs (◊T (s)) =
∑

π∈◊Tfin(s)

P(π)

Having a measurable set, we recall the property at hand: ϕ = P\λ(◊T) with \ ∈ {<,≤,>,≥},
λ ∈ [0, 1]⊆ R and T ⊆ S. We use the notation D |= P≤λ(◊T ) to express that PrDsI

(◊T (sI)) is less

than or equal to the bound λ ∈ [0,1]⊆ R.

Intuitively, the probability of all paths starting in the initial state sI has to be inside the interval

defined by \λ. Prior to checking D |= P≤λ(◊T), the states that cannot reach a target state can

be safely removed from the DTMC D.

Definition 23 (Relevant states of a DTMC) Given a DTMC D = (S, sI, P, L) and a set of

target states T , a state s ∈ S is called relevant for D and T if

PathsDfin(s, T ) 6= ;.

By SDrel(T ) we denote the set of relevant states for D and T. States from S \ SDrel(T ) are called

irrelevant for D and T.

The set SDrel(T ) can be determined in linear time by a backward reachability analysis from the
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target states, if we assume the state space to be finite.

The property P≤λ(◊T) for DTMC D is model checked by computing PrDs (◊T) for all states

s ∈ S and comparing this probability for the initial state with the bound λ. The probabilities

ps = PrDs (◊T ) are obtained as the unique solution of the following linear equation system [BK08,

p. 760]:

ps =











1 if s ∈ T

0 if s 6∈ SDrel(T )
∑

s′∈S P(s, s′) · ps′ otherwise.

For some applications it might be necessary to remove all irrelevant states together with their

incident transitions. In this case, ps > 0 holds for all remaining states.

2.3.1.2 Model checking reachability properties on PAs

For PAs, computing reachability probabilities gives rise to the question how the nondeterminism

should be resolved. For our setting, we require that a reachability property has to hold for all

possible schedulers.

Formally, for a formula ϕ = P≤λ(◊T) and a PA M we have M |= ϕ iff for all schedulers

σ ∈ SchedM it holds thatMσ |= ϕ, i. e., in the induced DTMCMσ the property is satisfied.

As a first step for verifying reachability properties on PAs, we identify again the set of relevant

states. For the complementary set of irrelevant states the reachability probability is 0.

Definition 24 (Relevant states of PAs) LetM = (S, sI, Act,P , L) be a PA and T ⊆ S a set of

target states. Then

SMrel(T ) = {s ∈ S | ∃σ ∈ SchedM . PrMσ
s (◊T (s))> 0}

is the set of relevant states for T . If s 6∈ SMrel(T ) then s is called irrelevant for T .

Intuitively, the irrelevant states for T are the ones for which no scheduler exists such that a state

from T is reachable. These states can be computed in linear time by a backward reachability

analysis on the PAM with a finite state space [BK08, Algorithm 46]. The removal of irrelevant

states does not affect the reachability probabilities. To check whetherMσ |= P≤λ(◊T ) holds for

all schedulers σ of the PA M , it suffices to consider a memoryless deterministic scheduler σ∗

which maximizes the reachability probability for ◊T and check whether PrMσ∗
sI
(◊T)≤ λ [BK08,

Lemma 10.102], i. e., if the probability bound is exceeded in the DTMC that is induced by σ∗.
We call this scheduler σ∗ a maximizing scheduler for M and T . The maximal probabilities
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ps = PrMσ∗
s (◊T ) for each s ∈ S can be characterized by the following equation system:

ps =















1 if s ∈ T

0 if s 6∈ SMrel(T )

max
�
∑

s′∈S
µ(s′) · ps′ | ∃α. (µ,α) ∈ P (s)	 otherwise.

This equation system can for instance be solved by using value iteration or policy iteration. It can

also be transformed into a linear optimization problem that yields the maximal reachability prob-

ability together with an optimal scheduler [BK08, Theorem 10.105]. In this case the probability

of irrelevant states needs to be explicitly set to 0.

2.3.2 Probabilistic computation tree logic

Although we mainly use reachability properties throughout this thesis, for the sake of complete-

ness we introduce the probabilistic computation tree logic (PCTL) [HJ94] which extends the

classical computation tree logic (CTL) by the quantitative operator P. As CTL, also PCTL defines

state and path formulas. Intuitively, a state formula ϕ is interpreted on the states of a DTMC and

a path formula ψ is interpreted over infinite paths of a DTMC.

Definition 25 (Syntax of PCTL) Let AP be a set of atomic propositions. PCTL formulae over

AP are built according to the following context-free grammar, starting with symbol ϕ:

ϕ ::= true | a | ¬ϕ | ϕ ∧ϕ | PJ (ψ)

ψ ::=©ϕ | ϕU ≤nϕ | ϕUϕ

for J ⊆ [0,1] ⊆ R with rational bounds and n ∈ N. The formula ϕ is called a PCTL state

formula and ψ is called a PCTL path formula.

We can abbreviate P[0,λ](ϕ) = P≤λ(ϕ) and P]λ,1](ϕ) = P>λ(ϕ) for λ ∈ [0,1] ⊆ R. This is

done analogously for < and ≥. As syntactic sugar for PCTL path formulae ϕ we derive the

“finally”-operator ◊ as PÃλ(◊ϕ) = PÃλ(trueUϕ) and the “globally”-operator � as PÃλ(�ϕ) =
PÂ1−λ(trueU¬ϕ) where Â is >, ≥, ≤, < if Ã is <, ≤, ≥, >, respectively.

We now shortly explain the semantics of PCTL formulae for a DTMC D. For details we refer

to [BK08, Chapter 10]. Consider in the following a DTMC D = (S, sI, P, L). Formally, the

satisfaction of a PCTL path formula for an infinite path π ∈ PathsDinf is defined as follows:

D,π |=©ϕ ⇔ D,π(1) |= ϕ
D,π |= ϕ1Uϕ2 ⇔ ∃i ≥ 0. (D,π(i) |= ϕ2 ∧∀0≤ k < i.D,π(i) |= ϕ1)

D,π |= ϕ1U ≤nϕ2 ⇔ ∃i ≥ 0. (i ≤ n∧D,π(i) |= ϕ2 ∧∀0≤ k < i.D,π(i) |= ϕ1)
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Consider a finite path π′ ∈ PathsDfin. If for all infinite paths π that are contained in its cylinder,

i. e., π ∈ cyl(π′), and for a PCTL path formula ψ it holds that π |= ψ, we also write π′ |= ψ.

Thereby, PCTL path formulae can also be satisfied by finite paths.

We define a state s of the DTMC D to satisfy a PCTL state formula ϕ, written D, s |= ϕ,

recursively as follows:

D, s |= true always,

D, s |= a ⇔ a ∈ L(s)

D, s |= ¬ϕ ⇔ D, s 6|= ϕ
D, s |= (ϕ1 ∧ϕ2) ⇔ D, s |= ϕ1 and D, s |= ϕ2

D, s |= PJ (ψ) ⇔ PrD
�{π ∈ PathsDinf (s) | D,π |=ψ}� ∈ J .

A DTMC D satisfies a PCTL state formula ϕ, written D |= ϕ, if its initial state sI does, i. e., if

D, sI |= ϕ.

For PAs, the semantics is again defined for all possible schedulers, i. e., a PCTL formula ϕ holds

for a PAM iff it holds for the DTMCsMσ with respect to all schedulers σ forM .

2.3.3 ω-regular properties

In this section we introduceω-regular properties for DTMCs and PAs and the corresponding model

checking procedures. We follow the standard automata-theoretic approach, as described, e. g.,

in [dA97, Var99, CSS03, BK08]. As a formalism for describing these properties, we introduce

deterministic Rabin automata. We expect the reader to be familiar with standard notions of

automata theory, for an introduction to this topic we refer to the standard textbook of Hopcroft

and Ullman [HJ79].

Remark 11 (Rabin automata vs. Büchi automata) The question might arise why as formalism

for ω-regular properties deterministic Rabin automata are chosen instead of non-deterministic Büchi

automata (NBAs), since a DRA describing the same language as an NBA can be exponentially larger.

The problem lies in the nondeterminism of the NBA. Building a product automaton would not

result in a model like a DTMC or a PA as two different kinds of nondeterminism would have to be

considered: On the one hand—in case of PAs—the choice of the probability distribution and on the

other hand the nondeterministic choice of the symbol to read for the NBA which would result in a

nondeterministic choice of atomic propositions.

Let us first define arbitrary linear-time properties.

Definition 26 (Linear time property) Assume a set of atomic propositions AP. A linear time

property over AP is a set L of traces γ0γ1γ2 . . . with γi ⊆ AP for i ∈ N.

Intuitively, a linear time property is a set of infinite traces. In this thesis we deal with a certain

class, namely the ω-regular properties. Note that the reachability properties as introduced in

Section 2.3.1 build a simple subclass of ω-regular properties.
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Definition 27 (Deterministic Rabin automaton) A deterministic Rabin automaton (DRA)

is a tupleA = (Q, qI,Σ,δ, F) with

• Q a finite nonempty set of states

• qI ∈Q an initial state

• Σ a finite input alphabet

• δ : Q×Σ→Q a transition function

• F ⊆ 2Q × 2Q an acceptance condition.

A run r ofA is a state sequence q0, q1, q2, . . . ∈Qω with q0 = qI such that for all i ≥ 0 there is a

γi ∈ Σ with qi+1 = δ(qi ,γi). We say that r is the run ofA on the infinite word w = γ0γ1 . . . over

Σ. Note that for every infinite word w ∈ Σω the run ofA on w is unique as this is a deterministic

automaton. By inf(r) we denote the set of all states which appear infinitely often in the run r.

Given the acceptance condition F =
�

(Ri , Ai) | i = 1, . . . , n
	

, a run r is accepting if there exists

an i ∈ {1, . . . , n} with inf(r) ∩ Ri = ; and inf(r) ∩ Ai 6= ;. Intuitively this means that at least

some state from Ai has to be visited infinitely often while the corresponding set Ri is visited only

finitely often by an accepting run ofA .

We call the set of all infinite words over Σ that have an accepting run on A the language of

A , denoted by L (A ). The class of ω-regular properties is defined by using this notion:

Definition 28 (ω-Regular property, Safra [Saf89]) A linear-time property L is ω-regular

if and only if there is a DRAA with L =L (A ).
Assume a set AP of atomic propositions, a DRA A with alphabet 2AP and the ω-regular

property L =L (A ). Intuitively, a path π of a DTMC D satisfies L if the run ofA on trace(π)

is accepting. Formally, the following set of paths of D that start in s satisfies L :

L Ds = {π ∈ PathsDinf (s) | trace(π) ∈ L}.

For each ω-regular property L and DTMC D, this set of paths is measurable in the probability

space defined in Section 2.2.2, see [Var85]. As a consequence, we measure the probability

PrDsI
(L DsI

), i. e., the probability of all paths that start in the initial state and whose traces satisfy

the ω-regular property, against the bound λ:

D |= P≤λ(L ) ⇔ PrDsI
(L DsI

)≤ λ

2.3.3.1 Model checking ω-regular properties on DTMCs

Let in the following D = (S, sI, P, L) be a DTMC. We consider an ω-regular property L and

assume that a DRAA = (Q, qI,Σ,δ, F) with Σ = 2AP and L =L (A ) is given.
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To compute the probability of L for a DTMC D we build the product automaton of the DTMC

D and the DRAA . Within this product automaton, which is again a DTMC, this problem reduces

to computing reachability probabilities as introduced in Section 2.3.1.

Definition 29 (Product automaton) Let D = (S, sI, P, L) be a DTMC and let

A = (Q, qI, 2
AP,δ, F) be a DRA with F =

�

(Ri , Ai)
�

� i = 1, . . . , n
	

. The product automaton of

D and A is a DTMC D ⊗A = (S ×Q, (s, q)I, P ′, L′) over the set AP′ of atomic propositions

such that:

• (s, q)I =
�

sI,δ(qI, L(sI))
�

• P ′
�

(s, q), (s′, q′)
�

=







P(s, s′) if q′ = δ
�

q, L(s′)
�

0 otherwise

• AP′ = {Ri , Ai | i = 1, . . . , n}

• Ai ∈ L′(s, q) iff q ∈ Ai , and Ri ∈ L′(s, q) iff q ∈ Ri , for i = 1, . . . , n

Intuitively, in the DTMC resulting from this product construction, states whose DRA component

is from Ai or Ri are labeled with this label enabling to measure the probability of reaching such

states.

The next step is to determine the BSCCs of the product automaton. According to the labels of

these absorbing states sets, we define a sort of target states.

Definition 30 (Accepting BSCC) Let D = (S, sI, P, L) be a DTMC, A = (Q, qI, 2
AP,δ, F) be

a DRA and D ⊗A = (S ×Q, (s, q)I, P ′, L′) be the product automaton of D and A . A BSCC

B ⊆ S×Q of D ⊗A is called accepting if there is (Ri , Ai) ∈ F such that Ai ∈ L′(s, q) for some

(s, q) ∈ B and Ri 6∈ L′(s′, q′) for all (s′, q′) ∈ B. The set of all accepting BSSCs for D andA is

denoted byB .

Intuitively, for an accepting BSCC at least one state has to be labeled with an Ai while no state

must be labeled with Ri. For convenience, we introduce the proposition accept and extend the

labeling by accept ∈ L′(s, q) iff (s, q) is a state in an accepting BSCC of D⊗A . Then the following

theorem holds:

Theorem 1 ([dA97]) Let D be a DTMC, L an ω-regular property, and A a DRA with L =
L (A ). Then:

PrDsI
(L DsI

) = PrD⊗A(s,q)I
(◊accept)

Using this theorem, the computation of the probability for an ω-regular property is reduced to

computing the probability of reaching an accepting BSCC in the corresponding product automa-

ton. This gives us a model checking procedure.
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2.3.3.2 Model checking ω-regular properties on PAs

As for other properties, a PAM satisfies the property P≤λ(L ) iff the property is satisfied for all

schedulers, i. e., ifMσ |= P≤λ(L ) for all σ ∈ SchedM .

Analogously to DTMCs, checking the property L for a PAM can be carried out by building

the product automaton of the PAM with the DRAA and computing reachability probabilities

in the resulting PA.

Definition 31 (Product automaton) Let M = (S, sI, Act,P , L) be a PA and

A = (Q, qI, 2
AP,δ, F) a DRA with F =

�

(Ri , Ai)
�

� i = 1, . . . , n
	

. The product automaton of

M andA is a PAM ⊗A = (S×Q, (s, q)I, Act,P ′, L′) over the set AP′ of atomic propositions

such that

• (s, q)I =
�

sI,δ(qI, L(sI))
�

,

• P ′�(s, q)
�

= {(α,µ) ∈ Act× subDistr(S×Q) | ∃(α,µ′) ∈ P (s) with

µ(s′,δ(q, L(s′))) = µ′(s) for all s′ ∈ S}

• AP′ = {Ri , Ai | i = 1, . . . , n}, and

• Ai ∈ L′(s, q) iff q ∈ Ai , and Ri ∈ L′(s, q) iff q ∈ Ri , for i = 1, . . . , n.

Again, we need to consider strongly connected components inside the product where the limit

behavior with respect to the acceptance condition is mirrored. However, as the product here is

a PA, an SCC depends on the choice of scheduler, i. e., a scheduler has to induce an SCC in the

induced DTMC. We introduce the notion of so-called end components.

Definition 32 (Sub-PA) LetM = (S, sI, Act,P , L) be a PA. A sub-PA ofM is a pair E = (S′, A)

with a non-empty set of states S′ ⊆ S and a function A: S′ → 2Act×subDistr(S) \ ; such that

succM (s,α,µ)⊆ S′ holds for all s ∈ S′ and (α,µ) ∈ A(s)⊆P (s).
A sub-PA is a subset of states such that for the pairs of actions and distributions at state s given

by A(s) all successors are again within this subset, i. e., it is closed under nondeterministic choices

according to A.

Definition 33 (Accepting end component) Given a PAM = (S, I , Act,P , L), a sub-PA E =
(S′, A) is an end component ofM if the directed graph G = (S′, V ) with V =

�

(s, s′) ∈ S′×S′ |
∃(α,µ) ∈ A(s). s′ ∈ succM (s,α,µ)

	

is strongly connected and µ ∈ Distr(S′) for all s ∈ S′ and

α ∈ A(s).

Let A = (Q, qI, 2
AP,δ, F) be a DRA with F =

�

(Ri , Ai)
�

� i = 1, . . . , n
	

and E = (S′, A) an end

component of the product automatonM ⊗A = (S ×Q, (s, q)I, Act,P ′, L′). E is accepting if

there is an i ∈ {1, . . . , n} such that for all (s, q) ∈ S′ it holds that Ri 6∈ L′(s, q) and ∃(s, q) ∈
E . Ai ∈ L′(s, q).

Intuitively, E is an end component if there is a memoryless scheduler σ such that E is a BSCC
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of the induced DTMC. An end component is accepting if there is a pair (Ri , Ai) ∈ F such that the

label Ai occurs in the end component while Ri does not. Note that by explicitly requiring that the

distributions are not sub-stochastic, it is ensured that the probability of staying in these BSCCs

is always 1. Furthermore, an end component (S′, A′) is called maximal, if there is no other end

component (S′′, A′′) such that (S′, A′) 6= (S′′, A′′) with S′ ⊆ S′′ and A′(s)⊆ A′′(s) for all s ∈ S.

To determine whether P≤λ(L ) is satisfied byM , it suffices to compute a maximizing scheduler

σ∗ as described in Section 2.3.1.2 and consider the induced DTMCMσ∗:

PrMσ∗
sI
(LMσ∗

sI
) = max

σ∈SchedM
PrMσ

sI
(LMσ

sI
)≤ λ

We extend the labeling of M ⊗A such that accept ∈ L′(s, q) iff (s, q) belongs to an accepting

end component. The model checking is now again reduced to compute a reachability probability

with respect to accepting end components:

Theorem 2 ([dA97]) LetM be a PA, L an ω-regular property andA a DRA with L (A ) =L .

Then:

PrMσ∗
sI
(LMσ∗

sI
) = PrMσ∗⊗A

(s,q)I
(◊accept) .

To determine the relevant states ofM ⊗A , we compute its maximal end components. This

can be done efficiently [CH11]. States from which a maximal end component containing a state

in
⋃n

i=1 Ai is reachable under at least one scheduler, are relevant. Strictly speaking, this condition

is not sufficient since end components additionally have to satisfy a condition on the Ri-states

to be accepting. However, exactly identifying the relevant states would require to determine all

end components, which is in general computationally infeasible. Therefore we always use an

over-approximation of the relevant states where no state from Ri is reachable.

2.4 Symbolic graph representations

In this section we give a short introduction on how we represent discrete-time Markov chains by

means of symbolic data structures. The key idea behind these implicit representations is that we

have a function and a variable encoding of states and transitions such that the function evaluates

to true for an assignment of variables if and only if this assignment corresponds to a state or

transition encoding. We also use symbolic representations to encode whole state and transition

sets, e. g., paths of a graph. Symbolic representations are in practice often smaller by orders of

magnitude than explicit ones and allow to reduce not only the memory consumption but also the

computational costs for operations on the data structures.

we introduce binary decision diagrams (BDDs) [Bry86] and multi-terminal binary decision

diagrams (MTBDDs) [FMY97]. (MT)BDDs have been applied very successfully for the verification

of digital circuits [BCM+92]. In the past, approaches have been extended to the verification

of probabilistic systems [KNP02, HKN+03, Par02]. Symbolic graph representations have the
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drawback that for some systems the representation is large (e. g., for multiplier circuits [Bry91]),

and that their size can strongly depend on the ordering of the variables. An optimal ordering,

however, is hard to find [BW96], but good heuristics are available [Rud93, Par02].

2.4.1 Ordered binary decision diagrams

Definition 34 (BDD and MTBDD) Let Var be a set of Boolean variables. A binary decision

diagram (BDD) over Var is a rooted, acyclic, directed graph B = (V, nroot, E) with

• V a finite set of nodes

• nroot ∈ V the root node

• E ⊆ V × V the set of edges

Each node is either an inner node with two outgoing edges or a leaf node with no outgoing edges,

denoted by Vinner ⊆ V or Vleaf ⊆ V , respectively. Let the two functions labelinner : Vinner → Var

and labelleaf : Vleaf → {0,1} define a BDD-labeling. The two successor nodes of inner nodes

n ∈ V are denoted by hi(n) and lo(n).

A multi-terminal binary decision diagram (MTBDD) is defined similar to an BDD with the

exception that the MTBDD labeling for leaf nodes is given by labelleaf : Vleaf → R.

An (MT)BDD is called ordered if there is a linear order <⊆ Var× Var on the set of variables

such that for all inner nodes n either hi(n) is a leaf node or labelinner(n) < labelinner
�

hi(n)
�

,

and the same for lo(n). The relation < is called a variable ordering. Ordered (MT)BDDs are

denoted by B = (V, nroot, E,<).

In the following, we assume all (MT)BDDs to be ordered. Intuitively, BDDs represent Boolean

formulae. As all inner nodes are labeled by one variable from Var, a path from the root to a leaf

induces a partial assignment of the variables. The assignment is satisfying for the represented

Boolean formula, iff the path ends in a leaf labeled by 1.

More formally, let B be a BDD over Var and V (Var) =
�

ν : Var→ {0, 1}	 the set of all variable

valuations. Each ν ∈ V (Var) induces a path in B from the root to a leaf: If an inner node n ∈ V

is labeled by labelinner(n) = σ ∈ Var and we have the assignment ν(σ) = 1, the path takes the

edge hi(n) and vice versa for ν(σ) = 0 and lo(n).

A BDD B represents a function fB : V (Var)→ {0,1} assigning to each assignment ν ∈ V (Var)

the label of the leaf node reached in B by the path induced by ν . Analogously, each MTBDD B

represents a function fB : V (Var)→ R.

An (MT)BDD is reduced if all functions rooted at different nodes are different. For a fixed

variable ordering, reduced (MT)BDDs are canonical data structures for representing functions

f : V (Var)→ {0,1} resp. f : V (Var)→ R [Bry86]. In the following we assume all (MT)BDDs to

be reduced and ordered with respect to a fixed variable order.

By Var′ we denote the variable set Var with each variable x ∈ Var renamed to some x ′ ∈ Var′
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such that Var∩ Var′ = ; and x1 6= x2 ⇒ x ′1 6= x ′2. Our algorithms use standard BDD operations

like ITE (if-then-else) to implement the union B1∪B2, the intersection B1∩B2, variable renaming

B[x → x ′], and existential quantification ∃x .B for x ∈ Var, x ′ ∈ Var′. For MTBDDs additionally

APPLY and ABSTRACT are used to perform numerical operations. For details on these operations

we refer to [Sch12].

2.4.2 Symbolic representations of DTMCs

As shortly explained in Remark 3 on Page 22, DTMCs can easily be specified by explicit matrix

representations. However, for larger system consisting of millions of states, a symbolic represen-

tation of the state space as well as the transitions probability matrix are established, e. g., in the

probabilistic model checker PRISM [KNP11].

BDDs and MTBDDs can be used to represent DTMCs symbolically as follows: Let D =
(S, sI, P, L) be a DTMC and Var a set of Boolean variables such that for each s ∈ S there is a

unique binary encoding νs : Var → {0,1} with νs 6= νs′ for all s, s′ ∈ S with s 6= s′. For s, s′ ∈ S

we also define νs,s′ : Var ∪̇ Var′ → R with νs,s′(x) = νs(x) and νs,s′(x ′) = νs′(x) for all x ∈ Var,

x ′ ∈ Var′. A target state set T ⊆ S is represented by a BDD bT over Var such that bT(νs) = 1

iff s ∈ T . Similarly, we have a BDD bI for the initial state such that bI(νs) = 1 iff s = sI. The

probability matrix P : S×S→ [0, 1]⊆ R is represented by an MTBDD bP over Var ∪̇Var′ such that
bP(νs,s′) = P(s, s′) for all s, s′ ∈ S. For an MTBDD B over Var we use Bbool to denote the BDD over

Var with Bbool(ν) = 1 iff B(ν)> 0 for all valuations ν .

The transition matrices of practically relevant systems are usually sparse and well-structured

with relatively few different probabilities; therefore the symbolic MTBDD representation is in

many cases more compact by several orders of magnitude than explicit representations.

Remark 12 (Probabilistic model checking on symbolic graph representations) For symboli-

cally represented DTMCs, we only need model checking of reachability properties. This is done by

solving a linear equation system as described in Section 2.3.1 based on the symbolic representation

of the transition probability matrix. For details we refer to [BCH+97, Par02].

Example 6 Consider the DTMC D from Figure 2.1. To illustrate the symbolic representation of

this DTMC, we ignore the absorbing non-target state s8. We use a variable set Var = {x1, x2, x3}
with the ordering x1 < x2 < x3. Note that if we included state s8, we would need an additional

variable. To represent transitions, we extend the set of variables by a copy of itself: Var ∪̇ Var′ =
{x1, x2, x3, x ′1, x ′2, x ′3}. A possible unique encoding of the states as well as the transitions is given by

the following assignments:
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s0 s1

s2

s3

{target}
1

0.5

0.25 0.5

0.5

0.5

(a) Subsystem D ′ of M

n0

n1

n3 n4

n2

n5 n6

1 0 fB1
(x1, x2, x3)

x3

x2

x1

(b) BDD B1 representing the state space of DTMC D ′

n0

1 0 fB2
(x1, x2, x3)

x3

x2

x1

(c) BDD B2, reduced version of B1

Figure 2.4: This figure shows equivalent BDD representations of the state space of the subsystem D ′
of D, depicted in Figure 2.1.

x1 x2 x3

s0 0 0 0

s1 0 0 1

s2 0 1 0

s3 0 1 1

s4 1 1 1

s5 1 1 0

s6 1 0 0

s7 1 0 1

x1 x2 x3 x ′1 x ′2 x ′3
s0→ s1 0 0 0 0 0 1

s0→ s2 0 0 0 0 1 0

s0→ s5 0 0 0 1 1 0

s1→ s2 0 0 1 0 1 0

s1→ s3 0 0 1 0 1 1

s2→ s1 0 1 0 0 0 1

s2→ s4 0 1 0 1 1 1

s3→ s3 0 1 1 0 1 1

s4→ s1 1 1 1 0 0 1

s4→ s3 1 1 1 0 1 1

s5→ s6 1 1 0 1 0 0

s6→ s3 1 0 0 0 1 1

s6→ s7 1 0 0 1 0 1

s7→ s5 1 0 1 1 1 0

s7→ s6 1 0 1 1 0 0

Based on the above encoding, the BDD B1 in Figure 2.4(b) represents the state space of the

subsystem D′ v D from Figure 2.4(a). Node n0 is labeled by the variable x1, n1 and n2 are labeled
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n0

n1

n2

n4

n8

n13 n14

n5

n9

n3

n6

n11

n16

n7

n12

n17

0.5 00.25 1

x ′3

x ′2

x ′1

x3

x2

x1

Figure 2.5: MTBDD B3 representing the transition matrix of the DTMC D ′.

by x2, and n3, n4, n5, n6 by x3. Thus each level corresponds to the choice of the value for exactly one

variable. The leaves labeled by 0 and 1 indicate whether the function fB1
(x1, x2, x3) evaluates to 0

or 1. Dashed edges indicate lo(n), i. e., that the variable at whose level the edge starts, is set to 0,

solid edges depict hi(n), i. e., that it is set to 1.

Consider the path n0, n1, n3, 1 which results from choosing the low successor for each inner

node. This path is induced by the assignment νs0
with νs0

(x1) = νs0
(x2) = νs0

(x3) = 0 and has

the evaluation fB1
(0,0,0) = 1. Thus, state s0 is part of the set encoded by this BDD. Consider

furthermore the path n0, n2, n6, 0 which results from taking the high successor for all inner nodes,

i. e., fB1
(1,1,1) = 0. As this corresponds to state s4 and evaluates to 0, the state s4 is not included

in this set.

The BDD B2 in Figure 2.4(c) encodes the same state set as B1 but it is reduced. Since in B1 the

choice of assignment for variable x1 already determines the evaluation of the whole function, all

intermediate nodes after n0 can be eliminated.

Finally, the transition probability matrix of the DTMC D′ can be encoded by the MTBDD B3 in

Figure 2.5. For each s, s′ ∈ S, the path induced by the assignment νs,s′ leads to a leaf that is labeled

by the probability P(s, s′) to move from s to s′ in D′. For example, the path n0, n1, n2, n4, n8, n13, 0.5

is induced by the assignment νs0,s1
, which corresponds to the transition between the states s0 and

s1 with probability 0.5. This MTBDD is already reduced. Note that in our implementation we

use an interleaved variable ordering for the transition MTBDD, i. e., the levels would be in the

order x1, x ′1, x2, x ′2, x3, x ′3. We refrained from this ordering as a transition is easier to read with a

non-interleaved ordering.
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2.5 Probabilistic counterexamples

In this section we give a short introduction to counterexamples for probabilistic reachability

properties. The concepts presented here are basically taken from Han, Katoen and Damman

in [HKD09] as this work can be considered as the basic foundation for this thesis.

Intuitively, a counterexample for a DTMC D = (S, sI, P, L), a set of target states T ⊆ S, and an

upper probability bound λ ∈ [0, 1]⊆Q is a set of paths starting in sI and ending in a target state

out of T such that the combined probability mass of these paths exceeds the bound. For a PAM ,

a counterexample specifies a deterministic memoryless scheduler σ and a counterexample for the

induced DTMCMσ. Formally, we first fix the set of paths that can be part of a counterexample,

so-called evidences for the violation of a PCTL state formula of the form P≤λ(◊T ).

Definition 35 (Evidence and counterexample) Given a DTMC D = (S, sI, P, L) and a PCTL

state formula ψ = P≤λ(◊T) such that D 6|= ψ. A path π ∈ PathsDfin(sI, T), i. e., π |= ◊T, is

called an evidence for the violation of the PCTL path formula ◊T in D. Path π is called a

shortest evidence iff there exists no other evidence π′ which is a real prefix of π.

A counterexample for D and ψ is a set of shortest evidences Cψ ⊆ PathsDfin(sI, T) such that

Cψ 6|=ψ.

An evidence is a finite path contributing to the violation of a property with respect to the

probability. A counterexample is a set of finite paths—shortest evidences—whose cumulated

probability mass leads to violation of the PCTL property. For the reachability property ψ =

P≤λ(◊T), a counterexample is a set Cψ ⊆ PathsDfin(sI, T) such that PrDsI
(Cψ) =

∑

π∈Cψ
PD(π)> λ.

Note that as the shortest evidences are all stochastically independent paths, the probability

computation consists just of computing the sum over all paths. Analogously, if we have a strict

bound on the probability, i. e., ψ = P<λ(◊T), it suffices to actually reach the probability bound

for the counterexample Cψ : PrDsI
(Cψ) =

∑

π∈Cψ
PD(π)≥ λ

Counterexamples for reachability properties are the main focus of this thesis. The reduction of

Until-formulae can be done as follows.

Reduction of until-formulae to reachability for DTMCs Both model checking and coun-

terexample generation for PCTL properties like ψ = P≤λ(aU b) can be reduced to the han-

dling of mere reachability properties. Consider the following simple transformation of a DTMC

D = (S, sI, P, L) where ψ is violated:

• For all s ∈ S with b ∈ L(s) set P(s, s′) = 0 for all s′ ∈ S \ {s} and P(s, s) = 1.

• For all s ∈ S with a, b 6∈ L(s) set P(s, s′) = 0 for all s′ ∈ S \ {s} and P(s, s) = 1.

Basically, all states that are labeled with b as well as all states that are neither labeled with a

or with b are made absorbing. Now, the only non-absorbing states are those labeled with a.

Thereby, every path that reaches a b-labelled state satisfies aU b. By checking the probability of
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s0 s1

s2

s3

1

s5

1

{target}0.5
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Figure 2.6: DTMCDinf inducing an infinite set of paths as counterexample for property P<0.5(◊target)

reaching b-states we actually compute the probability of the path formula aU b in the original

DTMC.

Lower bounds on the probability for DTMCs If reachability properties together with a lower

bound on the probability occur, the computation of counterexamples can be reduced to the case

of upper bounds by considering sets of paths that don’t reach the target states T but end in bottom

SCCs without states from T . Formally, we fix B ⊆ S \ T as the set of these bottom SCCs. Then we

have ψ= P≥λ(◊T) and a counterexample Cψ ⊆ PathsDfin(sI, B) such that PD(Cψ) > (1−λ). The

intuition is that if the probability of not satisfying the reachability property is higher than 1−λ
then the lower bound λ on satisfying the reachability property cannot not be reached.

We refer again to [HKD09] for further details on counterexamples for, e. g., step bounded

reachability.

ω-regular properties for DTMCs We already discussed that model checking ω-regular prop-

erties on DTMCs can be reduced to computing reachability probabilities, see Section 2.3.3.1. The

same holds for computing counterexamples of ω-regular properties.

Definition 36 (Counterexample for ω-regular properties) LetD = (S, sI, P, L) be a DTMC,

L be an ω-regular property and A = (Q, qI,Σ,δ, F) be a DRA with L (A ) = L . Let

D ⊗A = (S×Q, (s, q)I, Act, P ′, L′) be the product of D andA . LetB = {B1, . . . , Bn} ⊆ 2S×Q

be the accepting BSCCs of D ⊗A and λ ∈ [0,1] ⊆ Q be an upper probability bound. Let

TB = {s ∈ S×Q | ∃B ∈B . s ∈ B}.
A counterexample for D and L is defined as a counterexample for D and the PCTL state

formula P≤λ(◊TB).

A counterexample for an ω-regular property is thereby simply a counterexample for a reacha-

bility property where the states of the accepting BSCCs fromB serve as target states.
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To give a short intuition on the problems of path-based counterexamples, we discuss a short

example. The number of paths that are needed to form a counterexample might be very large.

In case of strict probability bounds it can even be infinite [HKD09]. This is illustrated by the

following example.

Example 7 (Infinite number of paths) Consider the DTMC Dinf depicted in Figure 2.6, which is

a slightly modified version of the DTMC D of Figure 2.1 on Page 20, and the set of target states

T = {s3}. We are interested in the reachability property P<0.5◊(T) with a strict probability bound

of 0.5. The probability of reaching the only target state s3 is 0.5 here, so the property is violated.

In order for a set of paths to form a counterexample it would need to have the exact reachability

probability 0.5. The set of all paths leading to s3 from the initial state is given by:

C = {πi ∈ Paths
Dinf

fin | π= s0s1(s2s1)
is3, i ∈ N}= Paths

Dinf

fin (s0, s3)

The probability of this set of paths can be computed as follows:

Pr
Dinf
sI
(C) =

∑

i∈N
0.5 · (0.5 · 1)i · 0.5

= 0.5 ·
∑

i∈N
(0.5)i · 0.5

= 0.5 · 1

1− 0.5
· 0.5 (using the geometric series)

= 0.5

So, this infinite set of paths has exactly the probability Pr
Dinf
sI
(C) = 0.5 and forms the only possible

counterexample.

Although this example might seem unrealistic, there are actually many examples and practical

case studies where the number of needed paths is exponentially larger then the number of states

of the DTMC under consideration [HKD09].

What remains is to give a formal definition of counterexamples for PAs. As mentioned in the

beginning, the crucial point here is to compute a scheduler that induces a DTMC where the actual

counterexample is formed. Note that it might not be beneficial to just compute the maximizing

scheduler as explained in Section 2.3.1.2.

Definition 37 (Counterexample for PAs) Given a PAM = (S, I , Act,P , L) and a PCTL for-

mula ψ such thatM 6|=ψ, a counterexample forM and ψ is a pair (σ, Cψ) such that σ is a

scheduler forM and Cψ is a counterexample for ψ and the DTMCMσ.
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2.6 Solving technologies

We introduce three different concepts of solvers which are all used later on. We use classical

SAT solvers, their extension by “theories”, SAT modulo theories (SMT), and mixed integer linear

programming (MILP).

2.6.1 SAT solving

We present a short summary of SAT solving. We first need the syntax of quantifier-free Boolean

formulae.

Definition 38 (Boolean formula) Assume a set Var = {x1, . . . , xn} of Boolean variables. A

quantifier-free Boolean formula is given by the following grammar:

ϕ ::= x i | ¬ϕ | (ϕ ∧ϕ)

with x i ∈ Var.

The set of all Boolean formulae over Var is denoted by Bool(Var). We use syntactic sugar like

∨,→,↔. As for evaluations for BDDs, see Section 2.4.1, let V (Var) =
�

ν : Var → {0,1}	 be

the set of all variable valuations. An evaluation—also referred to as assignment—ν ∈ V (Var)

for Var assigns to every variable from Var a Boolean value. Using the Boolean connectives, this

can be used to define a valuation for Boolean formulae. We overload the evaluation function

by ν : Bool(Var)→ {0,1}. A formula ϕ ∈ Bool(Var) is called satisfiable if and only if there is an

evaluation such that ν(ϕ) = 1. The problem of checking the satisfiability of Boolean formulae

is called the satisfiability problem. Tools deciding whether a Boolean formula is satisfiable are

called SAT solvers. Though the satisfiability problem is known to be NP-hard [Coo71], in the past

there have been great advances developing SAT solvers such that practical examples with many

thousands of variables can be handled. Basic work was done by Davis, Putnam, Logemann and

Loveland by developing a method called DPLL algorithm [DP60, DLL62].

For instance, a famous open-source SAT solver is MiniSAT [ES03]; a modern extension is

Glucoser [AS09]. For further introduction to SAT solving we refer to [BHvMW09].

2.6.2 SMT solving

SMT refers to SAT-modulo-theories [dMB11], which is a generalization of the classical satisfia-

bility problem (SAT). An SMT formula allows for atoms of a given theory as atomic proposition;

here we use linear real arithmetic as theory.

Definition 39 (SMT formula) Assume a set Var = {x1, . . . , xn} of real-valued variables. A

quantifier-free linear real-arithmetic formula ϕ is given by the following grammar:

t ::= a | a · x i
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p ::= t | p+ p

c ::= p = p | p < p

ϕ ::= c | ¬ϕ | ϕ ∧ϕ

where a ∈ Z.
SMT problems can be solved by the combination of a DPLL-procedure (as used for deciding SAT

problems) and a theory solver that is able to decide the satisfiability of conjunctions of theory

atoms. For a description of such a combined algorithm see, e. g., [DdM06]. Popular SMT solvers

are, e. g., Z3 [dMB08] or MathSAT [BCF+08].

2.6.3 MILP solving

A mixed integer linear program optimizes a linear objective function under a condition specified

by a conjunction of linear inequalities. A subset of the variables in the inequalities is restricted

to take only integer values, which makes solving MILPs NP-hard [GJ79, Problem MP1].

Definition 40 (Mixed integer linear program) Let A ∈ Qm×n, B ∈ Qm×k, b ∈ Qm, c ∈ Qn,

and d ∈ Qk. A mixed integer linear program (MILP) consists in computing min cT x + dT y

such that Ax + B y ≤ b and x ∈ Rn, y ∈ Zk.

MILPs are typically solved by a combination of a branch-and-bound algorithm with the genera-

tion of so-called cutting planes. These algorithms heavily rely on the fact that relaxations of MILPs

which result by removing the integrality constraints can be solved efficiently. MILPs are widely

used in operations research, hardware-software co-design, and numerous other applications.

Efficient open source as well as commercial implementations are available like Gurobi [Gur13],

Scip [Ach09] or Cplex [cpl12] by IBM. We refer to, e. g., [Sch86] for more information on

solving MILPs.
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CHAPTER 3

Related work

In this chapter we discuss other works on counterexample generation for DTMCs and MDPs

or PAs, respectively. We explain the intuition of all available approaches that—to the best

of our knowledge—have been made so far. Differences and relations to our own work are

discussed at the end of each corresponding chapter. Roughly, we have two categories: path-based

counterexamples and subsystem-based counterexamples. For a detailed overview with numerous

examples we refer to [21].

3.1 Path-based counterexamples

Counterexamples based on paths of a system are the classic notion as in Definition 35 on Page 45.

We summarize all approaches that represent counterexamples in this way.

3.1.1 Minimal and smallest counterexamples

In [HK07a, HKD09], Han and Katoen shaped the notions of minimal and smallest counterexam-

ples. A minimal counterexample for a reachability property and a DTMC contains the minimal

number of evidences that is needed to form a counterexample. In general, a minimal counterex-

ample is not unique. To require a stronger condition, a smallest counterexample is a minimal

counterexample with maximal probability. Again, this stronger condition does not necessarily

induce a unique counterexample.

As a way to compute these counterexamples, the authors of [HK07a, HKD09] use a k-shortest

path algorithm for weighted directed graphs. They show that the k most probable paths in

a DTMC (forming a smallest counterexample) correspond to the k shortest paths in a related

weighted digraph. This digraph is constructed from the DTMC by considering the negative
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logarithms of the transition-probabilities as weights of the edges. In order to compute these k

shortest paths, the authors choose the recursive enumeration algorithm (REA) [JM99] by Jiménez

and Marzal, where the number k of paths is not determined beforehand but on-the-fly by an

external condition. In this case that means that the search terminates once a counterexample

has been found, i. e., that the paths have enough cumulated probability mass. This avoids fixing

some (arbitrary) k in advance, and allows for finding the smallest k yielding a counterexample.

Besides the mentioned publications, for more detailed information we refer to the dissertation of

Tingting Han [Han09].

As an alternative, Aljazzar and Leue proposed a K∗-algorithm [AL11] for finding the k short-

est paths. In contrast to other algorithms like the aforementioned REA or Eppstein’s algo-

rithm [Epp98], the state space of the graph at hand does not have to be generated to its full

extend. Starting from an initial state, the graph is expanded on-the-fly which is often beneficial

for large state spaces.

Another possibility to handle large state spaces is to use symbolic representations of DTMCs,

see Section 2.4.2. A first approach was made by Günther, Schuster and Siegle [GSS10], who

proposed a BDD-based algorithm for computing the k most probable paths of a DTMC. They use

an adaption of Dijkstra’s shortest path algorithm [Dij59], called flooding Dijkstra, to determine

the most probable path. In order to get the k-shortest paths, they transform the DTMC in each

step such that the most probable path of the transformed system corresponds to the second-most-

probable path in the original DTMC. This involves copying the DTMC and redirecting transitions

from the original system to the copy. In the end, this yields a symbolic representation of a minimal

counterexample. Details are explained in Section 5.7 as this is also relevant to our approaches.

Note that the underlying BDD grows exponentially when applying these transformations for all

needed paths.

3.1.2 Heuristic approaches

Instead of striving to compute minimal or even smallest counterexamples, it might be reasonable

to use heuristics and compute counterexamples more efficiently or for larger systems.

The only heuristic approach generating path-based counterexamples we are aware of is an

adaption of bounded model checking (BMC) [BCC+03] by Wimmer et al. in [WBB09, 26, 25]. A

SAT solver is used to generate evidences until enough probability mass is accumulated. The basic

idea of BMC is to formulate the existence of an evidence of a certain length as a satisfiability

problem. In [WBB09], purely propositional formulas are used which does not allow to take the

actual probability of an evidence into account; in [26, 25] this was extended to SMT formulas

over linear real arithmetic, which allows to enforce a lower bound on the probability of evidences.

In both cases, the starting point is a symbolic representation of the DTMC, see Section 2.4.2.

From the BDDs and MTBDDs, a SAT formula is generated where a satisfying variable assignment

corresponds to a path of the DTMC starting in an initial state and ending at a target state. Starting

with a small path length n, all paths of this length are enumerated. If afterwards the set of paths
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does not form a counterexample, n is incremented and again paths are collected. This approach

is explained in more detail in Section 5.6.

As an optimization, loops occurring on the found paths can be identified. The probability

of further paths containing states that occur on an already identified loop is then computed

considering arbitrary unrollings of that loop. Every found loop and path is excluded from the

further iterations.

3.1.3 Compact representations of counterexamples

As the number of paths needed to form a counterexample can be very high, several approaches

were made to obtain compact representations of a path-based counterexample. All of them

exploit the fact that many paths in a counterexample differ only in the number of loop iterations.

First, Han, Katoen and Damman [HKD09, DHK08] proposed the representation of counterex-

amples as regular expressions: Formally, a DTMC is transformed into a deterministic finite au-

tomaton (DFA) whose alphabet consists of pairs of states and probabilities and whose graph

structure is equal to the one of the DTMC. The transitions of the automaton are then labeled by

pairs of states and probabilities such that a path of the DTMC corresponds to a run of the au-

tomaton. The run corresponding to the most probable path of the DTMC is considered. Applying

the state elimination algorithm to obtain a regular expression from an automaton to this path

yields a compact representation of all paths that use loops occurring on this path. By defining

a measure for regular expressions, their probability mass is computed. If this is not enough,

another iteration with the next most probable path is started.

A different compaction of counterexamples based on the strongly connected components

(SCCs) of a DTMC is described by Andrés, D’Argenio and van Rossum in [ADvR08]. First, all

SCCs are determined. Then, direct edges leading from the input states of the SCCs to their

output states replace the inner states. These edges carry the whole probability mass of all paths

walking through the SCCs and leaving them. This is computed via model checking for DTMCs.

Counterexamples are then computed on this abstract, acyclic DTMC.

3.2 Subsystem-based counterexamples

Apart from what we are going to present in this thesis, the only other approach generating critical

subsystem as representations for counterexamples is [AL06, AL10] by Aljazzar and Leue. They

exploit a best-first search for various search algorithms. The main advantage is that this can

be pursued in an on-the-fly manner, avoiding an a priori generation of the state space. Using

the simulation engine of PRISM [KNP11], a successor relation on states delivers for one state

exactly the explicit representation of its successors. Starting from an initial state of the system,

the system is thereby successively extended along most probable local paths. Additionally, a

heuristic function enables the user to use specific knowledge about benchmarks to prefer or
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penalize certain states of the system.

As for many cases it is beneficial to represent a counterexample by a subsystem instead of

a set of paths, an extended best-first search (XBF) is used, where for each node not only the

predecessor inducing the optimal path is stored but also the other connections. Thereby, a

whole system instead of a single path is obtained. The approaches are implemented in the

tool DiPro [ALFLS11], which was the first publicly available tool supporting counterexample

generation for probabilistic systems.

This approach was transferred to MDPs (and therefore also PAs) in [AL09] presenting the first

approach to counterexamples for MDPs. The idea is to compute a maximizing scheduler and

compute a counterexample on the induced DTMC, see Section 2.2.2. The drawback is that again

the whole state space has to be generated and model checking has to be applied beforehand.

Therefore, another method was proposed which allows to not only compute the paths but also

the scheduler on the fly. The problem when applying on-the-fly algorithms like K∗ to a PA is

that the generated paths might not be compatible to the same scheduler. Therefore all paths

are kept and clustered according to the scheduler choice made in each state using dedicated

data structures. Using this, a (not necessarily memoryless) scheduler is determined which is

compatible to the set of paths that was computed.

3.3 Parametric systems

The only methods that were developed for the verification of parametric DTMCs are—to the

best of our knowledge—presented in [Daw04, HHZ10]. In [Daw04], it was proposed both for

DTMCs and PDTMCs to utilize the computation of regular expressions for deterministic finite

automata by state elimination. A state of the (P)DTMC is chosen for elimination. All transitions

having this state as source or destination state are then replaced by transitions that “bypass” the

former state. This is illustrated by the toy example below, where state s is to be eliminated.

s1 s s2

s3

s1 s2

s3

pa

pd

pc

pb

pd

pa · 1
1−pc
· pb

The shortest path from s1 to s2 has probability pa · pb, which is therefore the first summand

of the probability of going from s1 to s2. The probability of the self-loop on s has to be taken

into account for all possible paths leading from s1 to s2 over s. We get an infinite sum of

paths by the unrolling of this loop. This leads to the geometric series and to the probability
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pa · 1
1−pc
· pb. The parametric probability is represented by a rational function, see Definition 2

on Page 19. An instantiation of the parameters yields a concrete probability. For instance, let

pa = 0.5, pd = 0.5, pc = 0.9 and pb = 0.1. For this “concrete” DTMC we have the probability

0.5 · 1
1−0.9

· 0.1= 0.5 of going from s1 to s2.

This technique was optimized and implemented in [HHZ09]. The first publicly available tool

for the verification of PDTMCs was PARAM [HHWZ10]. A conclusive work with several extensions

is available in [HHZ10].
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CHAPTER 4

SCC-based model checking

Summary In this first main chapter we present a general scheme to abstract DTMCs with

respect to their strongly connected components. As we saw before, the size of counterexamples

strongly relies on the loop structure of the system: A large number of paths might have to

be collected that are similar except for the number of iterations of the same loops. Following

a partial order on states given by the loop structure of the SCCs, we determine reachability

probabilities by a bottom-up computation. This forms a model checking algorithm, published

in [11]. Subsequently, we describe how these approaches can be extended to parametric Markov

chains (PDTMCs). This was published in [2] together with a novel factorization technique for

polynomials which is out of the scope of this thesis.

Background This chapter does not need extensive background. It suffices to be familiar with

some properties of DTMCs, in particular the model checking of reachability properties, see

Sections 2.2.1 and 2.3.1.1. we make use of Tarjan’s Algorithm [Tar72] to compute the maximal

strongly connected components (SCCs) of a directed graph, see Definition 13. For the foundations

of PDTMCs we refer to Section 2.2.3.

4.1 SCC-based abstraction

Let us first lie the theoretical background we need for a definition of our abstraction scheme. In

the following, we assume a DTMC D = (S, I , P, L) with only stochastic distributions and a set of

absorbing target states T ⊆ S. Our goal is to compute for each initial state sI ∈ InitD and each

target state t ∈ T the probability of reaching t from sI.
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Remark 13 (Stochastic distributions) In this chapter we assume that both the initial distribution

is stochastic and the transition probabilities sum up to 1 for each state, i. e., for all s ∈ S it holds

that
∑

s′∈S P(s, s′) = 1, thereby also inducing stochastic distributions. This is necessary as we make

use of the fact that the probability of reaching a bottom SCC is always 1, see Section 2.2.1.

The basic concept of our model checking approach is to replace a non-absorbing subset of states

K ⊆ S and their transitions inside a DTMC D by transitions directly leading from the input states

Inp(K) of K to the output states Out(K) of K . These transitions carry the total probabilities of

all paths visiting only states in K . This concept is illustrated in Figure 4.1: In Figure 4.1(a), an

arbitrary, non-absorbing set of states K has one input state sI and two output states s1
out , s2

out .

The abstraction in Figure 4.1(c) hides every state of K except for sI; all transitions are directly

leading to the output states. Figure 4.1(b) can be ignored for the moment.

sI

s1
out

s2
outK

(a) Initial DTMC

sI

s1
out

s2
out

K

(b) Abstraction of K
with abstract loop

sI

s1
out

s2
out

K

(c) Abstraction of K

Figure 4.1: Concept of DTMC abstraction

As we need a probability measure for arbitrary subsets of states, we first define sub-DTMCs

that are induced by such sets of states.

Definition 41 (Induced DTMC) Given a DTMC D = (S, I , P, L) and a non-absorbing subset

K ⊆ S of states, the induced DTMC over K and D is given by DK = (SK , IK , PK , LK) with:

• SK = K ∪Out(K)

• ∀s ∈ SK . IK(s) 6= 0 ⇐⇒ s ∈ Inp(K)

• PK(s, s′) =











P(s, s′) if s ∈ K ∧ s′ ∈ SK

1 if s = s′ ∈ Out(K)

0 otherwise

• ∀s ∈ SK . LK(s) = L(s).

Intuitively, for inner states of K all incoming and outgoing transitions are preserved while the

output states are made absorbing.
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Remark 14 (Initial distribution for induced DTMCs) We allow an arbitrary input distribution

I with the only constraint that I(s) 6= 0 iff s is an input state of K, i. e., these states form the support

of I .

Example 8 Consider the DTMC D of Figure 2.1 on Page 20, again depicted in Figure 4.2(a) and a

subset of states K = {s6, s7}. The induced DTMC DK = (SK , IK , PK , LK) over K and D is shown in

Figure 4.2(b) with output states Out(K) = {s3, s5, s8} and input state Inp(K) = {s6}.

s0 s1

s2 s4

s3

{target}
1

s5 s6

s7

s8

1

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7

0.3

1

0.5

0.5

0.25
0.5

0.25

K

(a) DTMC D and set K = {s6, s7}

s51 s6

s31

s7

s8 1

0.5

0.5

0.25

0.5

0.25

K

(b) Induced DTMC DK

Figure 4.2: Induced DTMC DK for K = {s6, s7}

For our abstraction we take into account all finite paths that do not intermediately return to

the initial state. Consider now Figure 4.1(b), were abstract transitions lead to the output states

together with a self-loop on the initial state. The outgoing transitions abstract’ all paths that do

not visit the input state again, while the self-loop describes all paths that return to the input state.

These paths build the set of all paths that add to the probability of finally reaching one of the

output states. Note that inside a non-absorbing set of states, the probability of reaching the set

of all output states is 1. This is due to the fact that the probability to finally reach a BSCC, i. e.,

an absorbing set of states, is 1, see [BK08, Theorem 10.27].

Figure 4.1(c) shows the final abstraction where the probability of the self-loop is taken into

account for determining the transition probabilities of the outgoing transitions.

Formally, we now define the probability of all finite paths that start in a state s and finally

reach a state s′ without returning to s beforehand. Note that this includes the case where s = s′.
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s51 s6

s31

s7

s8 1

0.5

0.5

0.25

0.5

0.25

K

(a) Induced DTMC DK

s5

1

s6 0.125

s3 1

s8 1

0.5

0.25

0.125

(b) Abstracted DTMC

s5 s6 1

s3 1

s8 1

0.87

0.29

0.14

(c) Scaled probabilities

Figure 4.3: DTMC Abstraction

Definition 42 Given a DTMC D = (S, I , P, L), a non-absorbing state s ∈ S, and a state s′ ∈ S,

the path abstraction of s and s′ is given by:

pDabs(s, s′) = PD
�{π= s0, . . . , sn ∈ PathsDfin(s, s′) | si 6= s ∧ si 6= s′, 0< i < n}�.

Using this we are now ready to define the abstraction of a DTMC D with respect to initial states

and target states. The probabilities are the total reachability probabilities between these states.

Let us first consider an example.

Example 9 Consider again the DTMC DK = (SK , IK , PK , LK) in Figure 4.2(b) which is again

depicted in Figure 4.3(a) and let the set of target states T K = {s3, s5, s8} correspond to the ab-

sorbing states of DK . The abstract DTMC DK
abs = (S

K
abs, IK

abs, PK
abs, LK

abs) has the state space SK
abs =

{s3, s5, s6, s8} and edges from s6 to all other states. The first abstraction step according to the path

abstraction pD
K

abs as in Definition 42 is depicted in Figure 4.3(b). The abstract edges, drawn boldface,

include a self-loop on the input state s6 with probability pD
K

abs(s6, s6).

The probabilities of all finite paths that either leave K without visiting state s6 again or starting

and ending in s6 are:

ps6,s3
= pD

K

abs(s6, s3) = 0.5 ps6,s5
= pD

K

abs(s6, s5) = 0.125

ps6,s6
= pD

K

abs(s6, s6) = 0.125 ps6,s8
= pD

K

abs(s6, s8) = 0.25

Note that ps6,s6
is given implicitly by 1− ps6,s6

= ps6,s3
+ ps6,s5

+ ps6,s8
. The total probability of

reaching the output states is given by paths which first use the loop on s6 arbitrarily many times

(including zero times) and then take a transition to an output state. For example, using the geometric
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series, the probability of all paths leading from s6 to s3 is given by

∞
∑

i=0

(ps6,s6
)i · ps6,s3

=
1

1− ps6,s6

· ps6,s3
≈ 0.57

As the probability of finally reaching the set of absorbing states in DK is 1, we can directly scale the

probabilities of the outgoing edges such that their sum is equal to 1. This is achieved by dividing each

outgoing probability by the sum of all outgoing probabilities, pout = 0.5+ 0.125+ 0.25 = 0.875.

The abstract and scaled DTMC is depicted in Figure 4.3(c) with the probabilities given by

p̂s6,s3
= 0.5 /pout ≈ 0.57 p̂s6,s5

= 0.125 /pout ≈ 0.14

p̂s6,s8
= 0.25 /pout ≈ 0.29

We now define the final abstraction formally.

Definition 43 (Abstract DTMC) For a DTMC D = (S, I , P, L) with all BSCCs being single

absorbing states from T ⊆ S, the abstract DTMC Dabs = (Sabs, Iabs, Pabs, Labs) is given by:

• Sabs = {s ∈ S | I(s) 6= 0∨ s ∈ T}

• ∀s ∈ Sabs. Iabs(s) = I(s)

• Pabs(s, s′) =



















pDabs(s, s′)
∑

s′′∈T pDabs(s, s′′)
if I(s)> 0∧ s′ ∈ T

1 if s = s′ ∈ T

0 otherwise.

To summarize, we are able to replace the transitions of a PDTMC by abstract transitions

carrying the correct probabilities of reaching target states. The correctness of this abstraction is

formulated in the following theorem.

Remark 15 (Abstraction/concretization) We often call DK the concretization and DK
abs the ab-

straction.

Theorem 3 For a DTMC D = (S, I , P, L) and its abstraction Dabs = (Sabs, Iabs, Pabs, Labs) according

to Definition 43 it holds for all initial states sI ∈ InitD and all absorbing states t ∈ T that

PD(PathsDfin(sI, t)) = PDabs (Paths
D

abs
fin (sI, t)).

Proof 1 First note that for this setting, the bottom SCCs of the DTMC D are exactly the absorbing

states in T . Thus, the probability of reaching a state from T is 1, see again [BK08, Theorem

10.27]. The probability pDabs(sI, sI) can therefore be expressed with respect to the probabilities of
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reaching an absorbing state without revisiting sI:

pDabs(sI, sI) = 1−
∑

t∈T

pDabs(sI, t). (4.1)

To reduce notation, we define the set of paths Rloop looping on sI and the set of paths Rout going

to some t ∈ T without revisiting sI.

Rloop ={sI, s0, . . . , sn, sI ∈ PathsDfin | si /∈ {sI} ∪ T, 0≤ i ≤ n} (4.2)

Rout ={sI, s0, . . . , sn, t ∈ PathsDfin | si /∈ {sI} ∪ T, 0≤ i ≤ n, t ∈ T} (4.3)

As the self-loop in sI represents the paths of Rloop, it holds that

pDabs(sI, sI) = P(Rloop). (4.4)

We now have for all sI ∈ InitD and t ∈ T :

PD(PathsDfin(sI, t))

= PD(
∞
⋃

i=0

{π1 · · · · ·πi ·πout | π j ∈ Rloop, 1≤ j ≤ i; πout ∈ Rout})

=
∞
∑

i=0

PD({π1 · · · · ·πi ·πout | π j ∈ Rloop, 1≤ j ≤ i; πout ∈ Rout})

=
∞
∑

i=0

(PD(Rloop))
i · PD(Rout)

=
∞
∑

i=0

(pDabs(sI, sI))
i · PD(Rout) (Equation (4.4))

=
1

1− pDabs(sI, sI)
· PD(Rout) (Geometric Series)

=
1

∑

sout∈T
pDabs(sI, sout)

· PD(Rout) (Equation (4.1))

=
1

∑

sout∈T
pDabs(sI, sout)

· pDabs(sI, t) (Definition 42)

= Pabs(sI, t) (Definition 43)

= PDabs(PathsDabs
fin (sI, t))

Thus the probabilities of reaching the absorbing states from initial states coincide in D and

Dabs. �
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It remains to define the substitution of subsets of states by their abstractions. Intuitively, a subset

of states is replaced by the abstraction as in Definition 43, while the incoming transitions of the

initial states of the abstraction as well as the outgoing transitions of the absorbing states of the

abstraction are not changed.

Definition 44 (Substitution) Assume a DTMC D = (S, I , P, L), a non-absorbing set of states

K ⊆ S, the induced DTMC DK = (SK , IK , PK , LK), and the abstraction

DK
abs = (S

K
abs, IK

abs, PK
abs, LK

abs) of DK . The substitution of DK by its abstraction DK
abs in D is

given by DK 7→abs = (SK 7→abs, IK 7→abs, PK 7→abs, LK 7→abs) with:

• SK 7→abs = (S \ K)∪ SK
abs

• ∀s ∈ SK 7→abs. IK 7→abs(s) = I(s)

• PK 7→abs(s, s′) =











P(s, s′) if s /∈ K

PK
abs(s, s′) if s ∈ K ∧ s′ ∈ Out(K)

0 otherwise.

Due to Theorem 3, it directly follows that this substitution does not change the satisfaction of

reachability properties from input states to the absorbing states of a DTMC.

Corollary 1 Given a DTMC D = (S, I , P, L) with absorbing states T ⊆ S and a non-absorbing

subset K ⊆ S of states, it holds for all initial states sI ∈ InitD and absorbing states t ∈ T that

PD(PathsDfin(sI, t)) = PDK 7→abs(PathsDK 7→abs
fin (sI, t)).

4.2 SCC-based model checking

In the previous section we gave the theoretical background for our model checking algorithm.

Now we describe how to compute the abstractions efficiently.

As a heuristic for forming the sets of states that are abstracted, we choose an SCC-based

decomposition of the graph: Tarjan’s algorithm [Tar72] is called to determine the SCCs of

the graph. Afterwards, for each SCC K the input states Inp(K) are ignored. On the resulting

decomposed graph, a new search is performed. This yields a new set of SCCs which are strongly

connected subcomponents (SCSs) in the context of the original graph. This procedure is iterated

until only single states remain. The subset relation forms a partial order on these sets. The

smallest sets according to this partial order can only loop via their input state, otherwise there

would be other included SCSs. Note, that ignoring the input states is only one possible heuristic

for a decomposition of the graph. An example explaining the SCC heuristic is given later.

During the model checking, we store every (sub-)DTMC together with its abstraction. This is

necessary for later concretization where it shall be possible to replace not only a concrete DTMC
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by its abstraction but vice versa.

Definition 45 (Abstraction pairs) Given a DTMC D and a set of non-absorbing state sets

K = {K1, . . . , Kn} with Ki ⊆ S for all 1 ≤ i ≤ n, let Sub be the set of all abstraction pairs

(DKi ,DK
abs
).

The general model checking algorithm is depicted in Algorithm 2.

Algorithm 2 Model checking DTMCs

abstract(DTMC D, Abstractions SubD)
begin

for all non-bottom SCCs K in DS\InitD do (1)

DTMC DK
abs := abstract(DK , Sub) (2)

D := DK 7→abs (3)

SubD := Sub∪D (DK ,DK
abs) (4)

end for (5)

States K := {non-absorbing states in D} (6)

D := DK 7→abs (7)

SubD := SubD ∪ (DK ,DK
abs) (8)

return (D, SubD) (9)

end

model_check(DTMC D = (S, I , P, L), T ⊆ S)
begin

Abstractions SubD := ; (1)

(Dabs, SubD) := abstract(D, SubD) (2)

return
�

∑

sI∈InitD
I(sI) ·

�
∑

t∈T
Pabs(sI, t)

�

,Dabs, SubD
�

(3)

end

Parameters

D is the input DTMC with all BSCCs being single absorbing states

T ⊆ S is the set of absorbing target states

SubD stores the substitution pairs according to Definition 45

Return values

abstract returns the abstracted DTMC D and the abstraction pairs SubD as in Definition 45

model_check returns the probability of reaching target states from the initial state
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Variables

K is the current set of states to be abstracted, here a non-absorbing SCC of D

DK
abs stores the abstracted DTMC according to Definition 43

DK 7→abs stores the substitution of the induced DTMC DK by DK
abs according to Definition 44

Procedure

The recursive method abstract(DTMC D, Abstractions SubD) computes the abstraction Dabs by

iterating over all SCCs of the graph when ignoring the input states of D (Line 1). For each SCC

K , the abstraction DK
abs of the induced DTMC DK is computed by a recursive call of the method

(Line 2, Definitions 41, 43). Afterwards, DK is substituted by its abstraction inside D (Line 3,

Definition 44). Finally, the abstraction of D is computed and returned (Line 9, Definition 43).

Note, that in case of multiple input states D might still have loops on the input states. This

dedicated computation is explained later. This method is called by the model checking method

(Line 2) which yields the abstract system Dabs, in which transitions lead only from the initial

states to the absorbing states. All transitions are labeled with the corresponding reachability

probabilities. Then the whole reachability probability is computed by building the sum of these

transition probabilities (Line 3). The algorithm returns this reachability property, the abstract

DTMC and the abstraction pairs stored in SubD .

The correctness of Algorithm 2 follows directly from Theorem 3 and Corollary 1: We suc-

cessively substitute sets of states K according to Definition 43 until only edges leading from

the initial states to the target states remain carrying the total reachability probabilities. As we

consider only finite states-spaces here, there is a finite number of SCSs in the graph, therefore

the algorithm terminates.

What remains to be explained is the computation of the abstract probabilities pDabs. This can be

done by standard model checking as explained in Section 2.3.1.1 applied to parts of the DTMC.

However, we present a different strategy.

We distinguish the cases where the set K has one or multiple input states.

One input state. Recall the set of paths Rloop looping on sI and the set of paths Rout going to

some t ∈ T without revisiting sI as in Equations 4.2 and 4.3, see the proof for Theorem 3.

Consider a DTMC DK induced by K with one initial state sI and the set of absorbing states

T = {t1, . . . , tn}. We determine the probabilities pD
K

abs(sI, t
i) for all 1 ≤ i ≤ n. As K \ Inp(K) has

no non-trivial SCSs, the set Rout of outgoing paths consists of finitely many loop-free paths. The
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probability is computed by the following set of equations for all s ∈ SK :

pD
K

abs(s, ti) =







1, if s = ti ,
∑

s′∈(succ(s)∩K∪Out(K))\Inp(K)
PK(s, s′) · pDK

abs(s
′, ti), otherwise.

(4.5)

These probabilities can be computed by direct or indirect methods for solving linear equation

systems, see, e. g. [QSS00, Chapters 3,4]. Note that also the state elimination as in [HHZ10] can

be applied here.

The probabilities of the abstract DTMC DK
abs = (S

K
abs, IK

abs, PK
abs, LK

abs) as in Definition 43 can now

directly be computed for all sI ∈ InitDK
abs

and Out(K) in D:

PD
K

abs (sI, t) =
pD

K

abs(sI, t)
∑

t′∈T pDK

abs(sI, t′)
(4.6)

Remark 16 In case there is only one absorbing state t ∈ S, we have pD
K

abs(sI, t) = 1. This is directly

exploited without further computations.

Multiple input states. Given a DTMC DK = (SK , IK , PK , LK) with the set of initial states

SI = {s1
I , . . . , sm

I } with IK(si
I)> 0 for all 1≤ i ≤ m and the set of absorbing states T = {t1, . . . , tn}.

The intuitive idea would be to maintain a copy of d tmcK for each initial state and handle the

other initial states as inner states in this copy. Then, the method as described in the previous

paragraph could be used. However, this would be both very time and memory consuming.

Therefore, we first formulate the linear equation system as in Equation (4.5). All variables

pD
K

abs(s, s′) with s′ ∈ K \ Inp(K) are eliminated from the equation system. For each of the variables

pD
K

abs(sI, s′), the equation system is then solved separately by eliminating all other variables.

Example 10 we now give a conclusive example about SCC-based model checking. Consider the

DTMC D as in Figure 4.2(a) on Page 59.
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s0 s1

s2 s4

s3

{target}
1

s5 s6

s7

s8

1

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7
0.3

1

0.5

0.5

0.25
0.5

0.25

S1

S2 S2.1

The rectangles indicate the SCC-decomposition of D with SCCs S1 = {s1, s2, s4} and S2 =

{s5, s6, s7}. If the input states s1 and s2 of S1 are ignored and another search is performed for

S1 \ {s1, s2}, no further SCC is found. In the case of S2 \ {s5}, one further SCC S2.1 = {s6, s7} ⊆ S2 is

found.

First, we abstract the SCS S2.1 as already done in Example 9.

s0 s1

s2 s4

s3

{target}
1

s5 s6

0.125

s8

1

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7
0.3

1
0.5

0.25

0.125

S1

S2 S2.1

The picture shows the intermediate abstraction for S2.1. We depict abstract states hiding SCCs

by a rectangular shape and abstract transitions by drawing them thicker then the other ones. The

probabilities were already given in Example 9, however, for the sake of completeness we recall them

here:

ps6,s3
= pD

K

abs(s6, s3) = 0.5 ps6,s5
= pD

K

abs(s6, s5) = 0.125

ps6,s6
= pD

K

abs(s6, s6) = 0.125 ps6,s8
= pD

K

abs(s6, s8) = 0.25

Now we can compute the final abstraction for s6 where the probability of returning to s6 is

distributed to the outgoing transitions by scaling by the cumulated outgoing probability pout(s6) =
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0.5+ 0.125+ 0.25= 0.875:

p̂s6,s3
= 0.5 /pout(s6) ≈ 0.57 p̂s6,s5

= 0.0625 /pout(s6) ≈ 0.14

p̂s6,s8
= 0.25 /pout(s6) ≈ 0.29

s0 s1

s2 s4

s3

{target}
1

s5 s6 s8

1

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7
0.3

1
0.57

0.29

0.14

S1

S2 S2.1

Using the results of abstracting S2.1, the containing SCC S2 is now handled.

s0 s1

s2 s4

s3

{target}
1

s5

0.14

s8

1

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7
0.3

0.57

0.29

S1

S2
S2.1

The only input state is s5, so this will be the abstract state. We have probabilities for the interme-

diate abstraction:

ps5,s3
= pD

K

abs(s5, s3) = 0.57 ps5,s5
= pD

K

abs(s5, s5) = 0.14

ps5,s8
= pD

K

abs(s5, s8) = 0.29

The outgoing accumulated outgoing probability of s5 is pout(s5) = 0.57+ 0.29= 0.86. This leads to
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the final abstraction of s5:

p̂s5,s3
= 0.57 /pout(s5) ≈ 0.66 p̂s5,s8

= 0.308 /pout(s5) ≈ 0.34

s0 s1

s2 s4

s3

{target}
1

s5 s8

1

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7
0.3

0.66

0.34

S1

S2
S2.1

We now handle the more complicated case of SCC S1 which has two input states, s1 and s2.

s0 s1

0.425

s2

0.425

s3

{target}
1

s5 s8

1

0.5

0.25

0.25

0.575

0.575

0.66

0.34

S1

S2
S2.1

For s1, all paths that lead to the only output state s3 without returning to s1 have to be considered;

that includes the paths that visit s2. We have the following paths and their probabilities:

π1 = s1, s2, s4, s3 PrD(π1) = 0.075

π2 = s1, s3 PrD(π2) = 0.5

For s2, the computation is analogous:

π′1 = s2, s1, s3 PrD(π′1) = 0.25

π′2 = s2, s4, s1, s3 PrD(π′2) = 0.175

π′3 = s2, s4, s3 PrD(π′3) = 0.15
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The outgoing probabilities of the abstract states are now computed by adding the path probabilities,

yielding the intermediate abstractions:

ps1,s3
= pD

K

abs(s1, s3) = 0.575 ps1,s1
= pD

K

abs(s5, s5) = 0.425

ps2,s3
= pD

K

abs(s2, s3) = 0.575 ps2,s2
= pD

K

abs(s2, s2) = 0.425

s0 s1

s2

s3

{target}
1

s5 s8

1

0.5

0.25

0.25

1

1

0.66

0.34

S1

S2
S2.1

For both states, the cumulated outgoing probability is pout(s1) = pout(s2) = 0.575. As s3 is the only

output state, the probability of reaching s3 is 1 for both states:

p̂s1,s3
= 0.575 /pout(s1) = 1 p̂s2,s3

= 0.575 /pout(s2) = 1

For this acyclic graph, which for convenience we denote by D′, it remains to compute the path

abstraction. The paths to be considered are:

π1 = s0, s2, s3 PrD
′
(π1) = 0.25

π2 = s0, s1, s3 PrD(π′2) = 0.5

π3 = s0, s5, s3 PrD(π′3) = 0.1675

These paths form the set PathsD
′
(s0, s3), i. e., the set of paths that lead from the initial to the target

states. Therefore, their combined probability mass 0.9175 corresponds to the probability of reaching

state s3 in D′ and by assuming the correctness of the abstraction also in D. We have the model

checking result:

PrD(◊s3) = 0.9175

The resulting abstract graph is depicted below.
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s0 s3

{target}
1

s8

1

0.9175

0.0825

S1

S2
S2.1

For the reader’s convenience, we again depict the whole model checking procedure in Figure 4.4.
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(a) SCC decomposition
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(b) Intermediate abstraction s6
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(c) Abstraction s6
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(d) Intermediate abstraction s5
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(e) Abstraction s5
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(f) Intermediate abstraction s1, s2
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(g) Abstraction s1, s2

s0 s3

{target}
1

s8
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0.9175

0.0825

S1

S2
S2.1

(h) Path abstractions

Figure 4.4: SCC-based model checking

72



4.3. EXTENSION TO PDTMCS

4.3 Extension to PDTMCs

We now present the extension of the SCC-based model checking approach to parametric discrete-

time Markov Chains (PDTMCs). This approach was published in [2] together with a novel

factorization technique for polynomials, which is out of the scope of this thesis.

Basically, all concepts introduced in Section 4.1 can directly be adapted for PDTMCs. The

crucial point is to assume for every PDTMC and intermediate computation that all parameters

can only be instantiated in a way such that a well-defined DTMC results. Formally, we instantiate

variables by defining an evaluation.

Definition 46 (Evaluation) Let V be a set of variables. An evaluation u of V is a function

u: V → R. The evaluation g[V/u] of a polynomial g ∈ PolV under u substitutes each x ∈ V

by u(x), using the standard semantics for + and ·. For f = g1

g2
∈ RatV we define f [V/u] =

g1[V/u]
g2[V/u]

∈ R if g2[V/u] 6= 0.

In our setting, g2[V/u] 6= 0 means that g2 is not evaluated to 0. Given an evaluation function,

all parameters occurring in the rational functions of a PDTMC can be instantiated as follows.

Definition 47 (Evaluated PDTMC) For a PDTMC R = (S, V , I ,P, L) and an evaluation u,

the evaluated PDTMC is the tuple Du = (Su, Iu, Pu, Lu) given by:

• Su = S

• Iu : Su→ R with Iu(s) = I(s)[V/u]

• Pu : S× S→ R with Pu(s, s′) =P(s, s′)[V/u] for all s, s′ ∈ Su

• Lu = L

An evaluation u substitutes each parameter by a real number yielding concrete values for all

transition probabilities. By ensuring that the parameters are assigned values in such a way

that the evaluated PDTMC is a DTMC, this directly induces a probability measure for the eval-

uated PDTMC. Due to algorithmic reasons, we allow only stochastic distributions for the initial

distribution and the transition probability matrix.

Remark 17 (Partial evaluation) It is also possible to define partial evaluations where not all of

the parameters are replaced by real numbers. However, for the algorithms we propose this is not

necessary.

Definition 48 (Well-defined evaluation) LetR = (S, V , I ,P, L) be a PDTMC. An evaluation

u of V is well-defined if for the evaluated PDTMC Du = (Su, Iu, Pu, Lu) it holds that:
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Figure 4.5: Example PDTMC with parameters p and q

• Iu : Su→ [0,1] with
∑

s∈Su
Iu(s) = 1

• Pu : Su× Su→ [0, 1] with ∀s ∈ Su.
∑

s′∈Su
Pu(s, s′) = 1

A well-defined evaluation u is called graph preserving, if it holds that:

• ∀s ∈ S. I(s) 6= 0 =⇒ Iu(s)> 0

• ∀s, s′ ∈ S. P(s, s′) 6= 0 =⇒ Pu(s, s′)> 0

Note that we require Pu(s, s′) ∈ R for well-defined evaluations, i. e., no division by 0 will

occur during the computations. For our algorithms, we always require the evaluation u to be

graph-preserving, i. e., GR = GDu
. This is necessary as by altering the graph certain states might

become unreachable.

Example 11 (PDTMC) Consider the PDTMC in Figure 4.5 as in Example 5 on Page 31. A well-

defined evaluation for these parameters would impose the following constraints: p+q+0.5= 1 and

2p+ 2q = 1. Intuitively, by increasing values of p the probability of reaching the target state will

increase. An evaluation u with u(p) = 0.25 and u(q) = 0.25 is well-defined and graph preserving.

The goal is now to compute reachability probabilities for PDTMCs. The common approach is to

compute a rational function which describes the probability to reach a set of target states from

the initial states, see [HHZ10] and Section 3.3. The formal definition of the model checking

problem for parametric DTMCs reads as follows.

Definition 49 Given a PDTMCR = (S, V , I ,P, L) where all BSCCs are absorbing states T ⊆ S,

the parametric probabilistic model checking problem is to find for each initial state sI ∈ InitR
and each t ∈ T a rational function fsI,t ∈ RatV such that for all graph-preserving evaluations
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u : V → R and the evaluated PDTMC Ru = (Su, V u, Iu,Pu, Lu) it holds that fsI,t[V/u] =

PrRu
�

PathsRu(sI, t)
�

.

Given the functions fsI,t for all sI ∈ InitR and t ∈ T , the probability of reaching a state in T

from an initial state is
∑

sI∈InitR I(sI) ·
�

∑

t∈T fsI,t

�

∈ RatV .

we now discuss under which prerequisites the SCC-based abstraction can be directly adapted

to PDTMCs using the aforementioned concepts of well-defined evaluations.

First, the adaption of Definition 41 for forming an induced PDTMC RK from a subset of states

K ⊆ S is considered. This is straightforward, as we only operate on the induced graph of the

PDTMC or DTMC, respectively. We have to take care that for the induced PDTMC it is required

that I(s) 6= 0 for all states s ∈ S. In this context this means that the rational function I(s) cannot

be simplified to 0. Moreover, in a corresponding parameter instantiation it has to be taken care

of that no value less or equal to 0 is derived which is ensured by requiring graph-preserving

evaluations.

Consider now Definition 42 and Definition 43 concerning abstracted DTMCs. For a PDTMC

R and two states s, s′ ∈ S, the abstract probability pRabs(s, s′) is computed by multiplication and

addition of the rational functions describing the corresponding transition probabilities along

paths from s to s′. Definition 43 also involves the division of rationals functions.

Remark 18 (Operations on rational functions) Note that performing operations on rational

functions such as multiplication and especially addition is quite costly. The latter involves the

computation of the greatest common divisor (gcd). Applying the approaches as described for DTMCs

directly to PDTMCs does not scale very well. Therefore, these operations were sped up by maintaining

a (partial) factorization of every occurring polynomial. For details we refer to [2].

Theorem 3 holds for PDTMCs under the condition that only graph-preserving evaluations are

used to instantiate parameters when evaluating the resulting rational function. This evaluation

can be done by a SAT modulo theories solver which can handle non-linear arithmetic over the

reals [JdM12]. In order to allow only graph-preserving evaluations, we perform a preprocessing

where conditions are added according to Definition 48 as well as the ones from Equation 4.6. In

case the solver returns an evaluation which satisfies the resulting constraint set, the property is

satisfied. If the solver returns unsatisfiability, the property does not hold. If the solver is capable

of returning a minimal unsatisfiability core, i. e., a minimal parameter evaluation for which the

constraints are already violated, this can serve as a counterexample to the property.

Example 12 Reconsider the PDTMC as in Example 5 on Page 20 to be seen below. This is a

parametric version of the DTMC in Example 10. We are again interested in computing the probability

of reaching the absorbing state s3 from the initial state s0. In a preprocessing step, we identify the

following constraints that need to be satisfied by any graph-preserving evaluation for this PDTMC:

p+ q+ 0.5= 1 (4.7)

2p+ 2q = 1 (4.8)
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p > 0∧ p ≤ 1 (4.9)

q > 0∧ q ≤ 1 (4.10)

2p > 0∧ 2p ≤ 1 (4.11)

2q > 0∧ 2q ≤ 1 (4.12)

Note that some of these constraints might be redundant. we now again show all the (identical) steps

of the SCC-based model checking tailored to computing rational functions.
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SCC S2.1 is abstracted first.
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The intermediate abstraction for S2.1 is as follows. fs,s′ denotes the rational function representing

the probability of going from state s to s′. The cumulated outgoing probability of s5 is fout(s6) =

2.5p+ q. Subtracting this function from 1 yields the probability of returning to s6.

fs6,s3
= pD

K

abs(s6, s3) = 2p fs6,s5
= pD

K

abs(s6, s5) = 0.5q

fs6,s6
= pD

K

abs(s6, s6) = 1− ( fs6,s3
+ fs6,s5

+ fs6,s8
) fs6,s8

= pD
K

abs(s6, s8) = q

The final abstraction for s6 is built by distributing the probability of returning to s6 to the outgoing
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transitions. This is—as for mere DTMCs—done by scaling via the cumulated outgoing probability

fout(s6):

f̂s6,s3
=

2p

2p+ 1.5q
f̂s6,s5

=
0.5q

2p+ 1.5q
f̂s6,s8

=
q

2p+ 1.5q
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Using the results of abstracting S2.1, the functions for SCC S2 can now be computed. The functions

for the intermediate abstraction of s5 are:

fs5,s3
= f̂s6,s3

=
2p

2p+ 1.5q
fs5,s5

= 1− ( fs5,s3
+ fs5,s8

)

fs5,s8
= f̂s6,s8

=
q

2p+ 1.5q

s0 s1
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s5
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s0 s1

s2 s4

s3

{target}
1

s5 s8
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The accumulated outgoing probability of s5 is fout(s5) = fs5,s3
+ fs5,s8

= 2p+q
2p+1.5q

. This leads to the

final abstraction of s5:

f̂s5,s3
=

fs5,s3

fout(s5)
=

2p · (2p+ 1.5q)
(2p+ 1.5q) · (2p+ q)

f̂s5,s8
=

fs5,s8

fout(s5)
=

q · (2p+ 1.5q)
(2p+ 1.5q) · (2p+ q)

SCC S1 with the two input states s1 and s2 does not contain any parameters. Therefore, we will have

the result as in Example 10 where we don’t need any additional constraints.

s0 s1

s2

s3

{target}
1

s5 s8

1

0.5

p

q

1

1

f̂s5,s3

f̂s5,s8

S1

S2
S2.1

The functions, in this case being constant, are as follows.

f̂s1,s3
= 1 f̂s2,s3

= 1

Now we compute the path abstraction for the acyclic graph R ′. The paths leading to the target state

s3 are:

π1 = s0, s2, s3 PrR
′
(π1) = p

π2 = s0, s1, s3 PrR
′
(π′2) = 0.5

π3 = s0, s5, s3 PrR
′
(π′3) = q · f̂s5,s3

=
2pq

2p+ q

These paths form the set PathsR
′
(s0, s3), i. e., the set of paths that lead from the initial to the target
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state. Therefore, their combined probability mass corresponds to the probability of reaching state

s3 in R ′ and by assuming the correctness of the abstraction also in R . We have the model checking

result:

PrD(◊s3) = PrR
′
(π1) + PrR

′
(π2) + PrR

′
(π3) (4.13)

= p+ 0.5+
2pq

2p+ q
(4.14)

=
p(2p+ q) + 0.5(2p+ q) + 2pq

2p+ q
(4.15)

=
2p2+ 3pq+ p+ 0.5q

2p+ q
(4.16)

= fs0,s3
(4.17)

The resulting abstract graph is depicted below.

s0 s3

{target}
1

s8

1

fs0,s3

1− fs0,s3

S1

S2
S2.1

Assume now an upper probability bound λ ∈ [0, 1]⊆ R. If we find a satisfying assignment for

the parameters p and q such that for the rational function it holds that fs0,s3
≤ λ with respect to

constraints 4.7- 4.12, the property P≤λ(◊s3) is satisfied at the initial state s0 of R .

79





CHAPTER 5

Path-based counterexample generation

Summary In this chapter we present concepts for the computation of counterexamples for

DTMCs and violated probabilistic reachability properties. All methods are heuristic algorithms

which are based on the search for certain paths of a DTMC. A counterexample is now not longer

solely based on a set of paths whose combined probability mass violates a certain property, see

Section 2.5. Instead, we introduce a sort of symbolic representation by the notion of a critical

subsystem, which is a critical part of the original system where the property at hand is already

violated. Critical subsystems were introduced in [AL10, 10].

Following the SCC-based abstraction scheme, see Chapter 4, we develop the notion of hier-

archical counterexamples. Embedded into a hierarchical abstraction scheme, critical subsystems

are computed on the abstraction. These abstract subsystems can hide the loop-structure of the

original system to any degree. If more details are needed, a refinement is possible up to the

original, concrete system. Together with dedicated path searching algorithms, this was presented

in ATVA 2011 [10].

Two main search algorithms have been investigated: The global search approach, where most

probable paths are found that lead from the initial state to target states of an input DTMC, and

the fragment search approach, where most probable path fragments connect already examined

parts of original DTMC. Both of these approaches have been introduced in [10, 16] for explicit

graph representations and embedded in the hierarchical DTMC-abstraction. Experimentally,

improvements in orders of magnitude could be achieved in comparison to other approaches.

These concepts were adapted to symbolic graph representations on the one hand utilizing SAT

solvers for a bounded model checking approach and on the other hand using symbolic graph

algorithms. A first version of these extensions was presented in [7]. The results presented in this

thesis are improvements that are published in [3]. With these improvements, the generation of

counterexamples is pushed to DTMCs with billions of states.



5.1. COUNTEREXAMPLES AS CRITICAL SUBSYSTEMS

Outline First, we introduce the notion of critical subsystems in Section 5.1. Hierarchical

counterexamples are introduced in Section 5.2. A framework for generating critical subsystems

on explicit graph representations is given in Section 5.3 as well as a framework for symbolic

graph representations in Section 5.4. we present methods to generate these subsystems based

on explicit graph search in Section 5.5, by SAT-based algorithms in Section 5.6, and by symbolic

graph algorithms in Section 5.7.

Background The following foundations are needed in this section: Model checking reachability

properties of DTMCs (Section 2.3.1.1), basic operations on BDDs and MTBDDs (Section 2.4.1),

and symbolic representations of DTMCs (Section 2.4.2). Furthermore, we use Dijkstra’s algorithm

for computing the shortest path in a weighted directed graph [Dij59]. Finally, we need an

algorithm for computing the k shortest paths, in particular the recursive enumeration algorithm

by Jimenez and Marzal [JM99].

5.1 Counterexamples as critical subsystems

As mentioned before, the representation of counterexamples as a set of paths, see Section 2.5,

has two major drawbacks: The number of paths needed might be very large or even infinite,

and as a consequence, the number of search iterations in terms of path searches is equally high.

Consider therefore again Example 7 on Page 47, where for a relatively simple system an infinite

number of paths is needed to form a counterexample.

An alternative is to use what we call critical subsystems, which are subsystems of DTMCs,

see Definition 6 on Page 22. These subsystems also violate the property that is violated by the

original DTMC. As we see in our experimental evaluations, it is often possible to generate critical

subsystems whose size is smaller by orders of magnitude in comparison to the input system.

Thereby, the critical part of the original system leading to the violation is highlighted. Recall that

we only consider counterexamples for reachability properties, see Section 2.5.

Definition 50 (Critical subsystem) Given a DTMC D = (S, I , P, L) and a PCTL state formula

ψ = P≤λ(◊T) such that D 6|=ψ. A critical subsystem of D for ψ is a subsystem D′ v D with

D′ 6|=ψ.

If all relevant paths for violating the property inside the subsystem are considered, these paths

form a counterexample in the classical sense as in Definition 35 on Page 45. Thereby, a critical

subsystem can be seen as a symbolic representation of a counterexample.

Definition 51 (Induced counterexample) For a DTMCD, a PCTL state formulaψ= P≤λ(◊T ),

and a critical subsystem D′ v D, a counterexample is given by the set of paths Cψ :=

PathsD
′

fin(InitD , T ).
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Figure 5.1: DTMC D and subsystem D ′ v D

Example 13 Consider the DTMC of Figure 2.1 on Page 20 again depicted in Figure 5.1(a). The

probability of reaching the target state s3 is 0.9175. We are interested in a counterexample for

the property ψ = P≤0.4(◊s3). Building a smallest path-based counterexample as in [HKD09], see

Section 3.1.1, would yield the following 4 most probable paths and their probabilities:

π1 = s0, s1, s3 PrD(π1) = 0.25

π2 = s0, s5, s6, s3 PrD(π2) = 0.125

π1 = s0, s2, s1, s3 PrD(π1) = 0.0625

These paths together have probability 0.4375, so this set forms a counterexample for ψ.

As an alternative, consider the subsystem D′ v D in Figure 5.1(b). The probability of reaching s3

inside D′ is 0.416̄ . So, this small subsystem is critical for ψ. For higher probability bounds near

the actual model checking probability, the set of paths would grow rapidly, while the subsystem can

never be larger than the original system in terms of the number of states.

Remark 19 (Size of induced counterexample) Even if a critical subsystem for a DTMC is min-

imal in size, e. g., in terms of the number of states or transitions, this does not induce a smallest

or minimal counterexample as in [HKD09], see Section 3.1. Consider therefore again Example 13,

where all paths from s0 to s3 inside D′ form the induced counterexample. As there are infinitely

many of such shortest evidences, see Definition 35 on Page 45, the size of the counterexample is not

minimal.

Critical subsystems can be generated in various ways. In this chapter, they are computed

incrementally by adding transitions or states to an initial (possibly) empty) subsystem until it

becomes critical. In every computation step, a set of transitions or states of the original system is

used to build a subsystem which is induced by this set and the previous subsystem.
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We have to conceptually distinguish subsystems induced by transitions or by states. If a set of

transitions is considered, the subsystem consists if the source and destination states connected

by these transitions. For states, we take the states and all transitions connecting them.

We first define the extension of a subsystem by a set of transitions. Recall that ED denotes the

set of transitions of a DTMC D, see Definition 5 on Page 21.

Definition 52 (Extension of subsystem by transitions) Let D = (S, I , P, L) and

D′ = (S′, I ′, P ′, L′) be DTMCs with D′ v D and let Ee ⊆ ED be a set of transitions of D.

extend(D′, Ee) = D′′ = (S′′, I ′′, P ′′, L′′) is the extension of D′ by Ee with:

• S′′ = S′ ∪ {s ∈ S | ∃s′ ∈ S. ((s, s′) ∈ Ee ∨ (s′, s) ∈ Ee)}

• I ′′(s) = I(s) for all s ∈ S′′

• P ′′(s, s′) =







P(s, s′) for all (s, s′) ∈ Ee ∪ ED′

0 for all (s, s′) ∈ (S′′, S′′) \ (Ee ∪ ED′)

• L′′(s) = L(s) for all s ∈ S′′

Intuitively, exactly those transitions are added to the subsystem that are in Ee together with their

source and destination states. Only original transitions from D can be added.

Analogously, we define the extension by a set of states. The only difference is that now all

induced edges are added, i. e., all edges that are adjacent to states of the extended subsystem.

Definition 53 (Extension of a subsystem by states) Let D = (S, I , P, L) be a DTMC and

D′ = (S′, I ′, P ′, L′) be a subsystem D′ v D of D and let Se ⊆ S be a set of states of D.

extend(D′, Se) = D′′ = (S′′, I ′′, P ′′, L′′) is the extension of D′ by Se with:

• S′′ = S′ ∪ Se

• I ′′(s) = I(s) for all s ∈ S′′

• P ′′(s, s′) = P(s, s′) for all s, s′ ∈ S′′

• L′′(s) = L(s) for all s ∈ S′′

The states from Se are added to the subsystem D′. All transitions that are between both the new

and old states of D′ are implicitly added, including self-loops.

Analogously to extending a system, a DTMC can be restricted to a certain set of edges or states.

We give the formal definition of the restriction by transitions.
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Definition 54 (Restriction of a DTMC by transitions) Let D = (S, I , P, L) be a DTMC and

Er ⊆ ED be a set of transitions of D. restrict(D, Er) = D′ = (S′, I ′, P ′, L′) is the restriction of D
to Er with:

• S′ = {s ∈ S | ∃s′ ∈ S. (s, s′) ∈ Er ∨ (s′, s) ∈ Er}

• I ′(s) = I(s) for all s ∈ S′

• P ′(s, s′) =







P(s, s′) if (s, s′) ∈ Er

0 otherwise

• L′(s) = L(s) for all s ∈ S′

Remark 20 The extension and the restriction of DTMCs pose no formal problems as we allow sub-

stochastic distributions for the DTMCs, see Definition 3 on Page 19. Therefore it does not matter if

the sum of outgoing probabilities of a state is less than 1 or even 0.

5.2 Hierarchical counterexample generation

Based on the SCC abstraction described in Chapter 4 we present a new method for generating

counterexamples on possibly abstract input DTMCs. A counterexample, here a critical subsystem,

is computed in a hierarchical manner by offering the possibility of starting the computation on

simple abstract graphs and concretizing important parts in order to explore the system in more

detail.

This allows to search for counterexamples on very large input graphs, as the abstract input

systems are often very small and simply structured. As concretization up to the original system

can be restricted to the critical parts, no information is lost and yet not the whole system has to

be explored.

We first introduce the formalisms that are needed to perform both the abstraction and reverse

operation, the concretization, according to the SCC-based abstraction. Using this, we present the

general algorithm for the hierarchical counterexample generation.

5.2.1 Concretizing abstract states

Let us recall Chapter 4, where the substitution of a non-absorbing set of states by its abstraction

was introduced, see Definition 44 on Page 63. In order to allow for a more general setting, we

can identify induced DTMCs as in Definition 41, see Page 58, and replace them either by their

abstractions or by their concretizations, respectively.

Definition 55 (DTMC substitution) Assume a DTMC D = (S, I , P, L), a non-absorbing set

of states K ⊆ S and the induced DTMC DK = (SK , IK , PK , LK). Let D′ = (S′, I ′, P ′, L′) be a

85



5.2. HIERARCHICAL COUNTEREXAMPLE GENERATION

DTMC with InitD′ = InitDK , OutD(K) ⊆ S′ absorbing in D′, and S′ \OutD(K) non-absorbing

and disjoint from S \ K. Then the substitution of DK by D′ in D is given by DDK 7→D′ =
(SDK 7→D′ , IDK 7→D′ , PDK 7→D′ , LDK 7→D′) with:

• SDK 7→D′ = (S \ K)∪ S′

• ∀s, s′ ∈ SDK 7→D′ . IDK 7→D′(s) = I(s)

• PDK 7→D′(s, s′) =











P(s, s′) if s /∈ K

P ′(s, s′) if s, s′ ∈ S′

0 otherwise

• LDK 7→D′(s) =











L(s) if s /∈ K

L′(s) if s ∈ S′

; otherwise.

Note that SK = K ] OutD(K), see Definition 41 on Page 58. Having this, we now present a

method to compute the concretization of an abstract DTMC D resulting from the SCC-based

model checking procedure, see Algorithm 2 on Page 64. Recall that we stored every abstraction

pair for the DTMC D in the set SubD , see Definition 45 on Page 64.

Remark 21 (Abstract states) An abstract DTMC consists of one or more input states that have

transitions to other states. These states are replaced by their concretization. In what follows we also

speak of abstract states.

We now present the concretization algorithm dedicated to the hierarchical counterexample

generation. Intuitively, a number of abstract states are replaced by their concrete counterpart

according to the abstraction pairs that were saved during SCC-based model checking. In the

resulting DTMC, which we call Dmax, the probabilities of reaching target states is preserved so

this concretized system can be seen as an upper bound on a critical subsystem that could be

computed. In order to achieve a refined solution, we also maintain a DTMC Dmin where all

concretized parts are “cut out”. This forms a lower bound on the critical subsystem we want to

compute. The algorithm is given in Algorithm 3.
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Figure 5.2: Concretizing state s6, resulting DTMCs Dmin and Dmax

Algorithm 3

Concretize(DTMC D, Abstractions SubD)

begin

Boolean concretized := false (1)

DTMC Dmin := ; DTMC Dmax := D (2)

State sa :=⊥ (3)

while true do (4)

sa := FindAbstractState(D, SubD) (5)

if (sa =⊥) then (6)

return (concretized,Dmin,Dmax) (7)

else (8)

concretized := true (9)

Let (Dabs,Dconc) ∈ SubD such that sa ∈ InitDabs
(10)

Dmin := Restrict(D, ED \ EDabs
) (11)

Dmax := DDabs 7→Dconc
(12)

end if (13)

end while (14)

end
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Parameters

D is an abstract DTMC D = (S, I , P, L) which results from SCC-based model checking, see

Chapter 4.

SubD contains all abstraction pairs (D
abs

,D
conc
) resulting from SCC-based model checking, see

Definition 45 on Page 64.

Variables

concretized is a flag and indicates whether at least one state was concretized or not.

Dmin represents the DTMC D where all abstract states due for concretization are removed.

Intuitively, this DTMC has “holes” at these parts such that Dmin puts a lower bound on the

reachability probability with respect to the concretization.

Dmax represents the DTMC D where the chosen abstract states are replaced by their concretiza-

tions.

sa represents the current abstract state which is to be concretized. Its reachability probability is

the maximal one that can be achieved by a counterexample.

Return value
The algorithm returns the DTMCs Dmin and Dmax as well as the Boolean variable concretized
indicating whether at least one state was concretized.

Methods

FindAbstractState(DTMC D, Abstraction SubD) chooses heuristically an abstract state sa

of D which is one of the initial states of an abstract DTMC. Details on suitable heuristics

are discussed later.

Restrict(D, ED \ EDabs
) restricts the DTMC with respect to a set of transitions, see Definition 54

on Page 85.

Procedure

First, concretized is set to false (Line 1). Two DTMCs Dmin and Dmax are created, the

former one is empty, the latter one is the input DTMC (Lines 2-3). The while-loop runs until

FindAbstractState() returns no abstract state, i. e., sa = ⊥ (Line 6). If this is the case, the

resulting DTMCs Dmax and Dmin are returned (Line 7). If no abstract state was chosen during

the procedure, concretized has never been assigned true. In case an abstract state sa ∈ S

was chosen, concretized is assigned true (Line 1). Then, the abstraction pair (D
abs

,D
conc
) is
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selected from SubD such that sa is one of their input states (Line 10). The result is saved in Dmin

(Line 11). Finally, the abstraction D
abs

is replaced by its concretization D
conc

(Line 12). This is

saved in Dmax.

Lemma 1 (Correctness of Concretize) Assume a DTMC D = (S, I , P, L), a set SubD according

to Definition 45 on Page 64 and a set of absorbing target states T ⊆ S in D. Let (true,Dmin,Dmax)

be the result of the method Concretize(D,SubD). It holds for all sI ∈ InitD and for all t ∈ T that

PrD(PathsDfin(sI, t)) = PDmax(PathsDmax
fin (sI, t)).

The correctness of this lemma follows straightforward from the assumption that all pairs

(D
abs

,D
conc
) ∈ Sub have the same reachability probabilities, see Theorem 3 on Page 61 and

Corollary 1 on Page 63.

Example 14 To explain the procedure of concretizing states, consider the DTMC D depicted in

Figure 5.2(a), where states s1, s2 and s6 are abstract while s0 and s5 have already been concretized.

For the abstraction procedure, see Example 10 on Page 66.

Assume, s6 is chosen to be concretized. The resulting DTMCs Dmin and Dmax are depicted in

Figures 5.2(b) and 5.2(c). All abstract transitions leaving s6 are removed in Dmin yielding a “hole”

of transitions indicated by the grey rectangle. In Dmax the original transitions of s6 and s7 replace

the abstract ones. Now, Dmin can be locally extended inside this hole by transitions of Dmax.

5.2.1.1 How to choose abstract states

In our tool COMICS [6] the user has the possibility to choose the states that are to be concretized

via the graphical user interface. Besides, we offer several heuristics that govern how these states

are chosen and how many states are chosen. For instance, all available abstract states are ordered

with respect to the combined probability of their adjacent edges in the current subsystem. The

states are then chosen in descending order. In our benchmarks, it performed best to concretizep
n out of n available abstract states.

5.2.2 The hierarchical algorithm

We have now collected the needed formalisms for computing hierarchical counterexamples. The

method we present here uses as blackbox a method to compute critical subsystems as introduced

in Section 5.1. Various variants of this method are introduced in the remainder of this thesis. To

recall the general idea, consider Figure 5.3. First, SCC-based model checking is applied to decide

whether in the DTMC D the probability to reach target states from T exceeds the bound λ ∈ Q
or not. Moreover, D is abstracted. If the probability is smaller than or equal to λ, the property

is not violated and no counterexample is computed. If—on the other hand—the probability is

greater than λ, a first critical subsystem on the abstract DTMC is computed. If no states shall be

concretized, this subsystem is returned. If states are to be concretized, a new critical subsystem
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SCC-based model
checking for D, T

find critical sub-
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concretize states of D′

DTMC D, target
states T ⊆ S,

probability bound λ
return ⊥

return D′

≤ λ

“no”

> λ

“yes”

D := D′

Figure 5.3: Hierarchical counterexample generation

is computed on the concretized DTMC. States are concretized, if the intermediate result is too

coarse. Then, parts of the subsystem are refined by concretizing. This is done until no further

refinement is possible, i. e., the system is concrete, or some heuristics or the user decide that no

further refinement is necessary. The method is formalized in Algorithm 4.
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Algorithm 4

SearchAbstractCex(DTMC Dconc = (Sconc, I conc, Pconc, Lconc), T ⊆ Sconc, λ ∈ [0, 1]⊆Q)

begin

result ∈ [0, 1]⊆Q DTMC D,Dmin,Dmax Abstractions SubD (1)

Boolean concretized:=false (2)

(result,D, SubD) := SCCModelCheck(Dconc, T) (3)

if result≤ λ then (4)

return ⊥ (5)

else (6)

D := FindCriticalSubsystem(Dmin,D, T,λ) (7)

while true do (8)

(concretized,Dmin,Dmax) := Concretize(D, SubD) (9)

if (concretized= false) then (10)

return Dmax (11)

else (12)

D := FindCriticalSubsystem(Dmin,Dmax, T,λ) (13)

end if (14)

end while (15)

end if (16)

end

Parameters

Dconc is the original concrete input DTMC where all target states are absorbing.

T ⊆ S is the set of absorbing target states.

λ ∈ [0,1]⊆Q is the probability bound that shall be met.

Variables

result ⊆ [0,1]⊆Q is a rational number that will be assigned the model checking result.

All other variables are already explained for the SCC-based model checking (Algorithm 2) on

Page 64 and the concretization method (Algorithm 3) on Page 87.

Return value
If the reachability property is violated, the algorithm returns the possibly abstract critical subsys-

tem Dmax.
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Methods

SCCModelCheck(DTMC Dconc, States T) calls SCC-based model checking (Algorithm 2, Page 64),

for the DTMC Dconc and the set of target states T .

Concretize(DTMC D, Abstraction SubD) calls the concretization method (Algorithm 3,

Page 87) for the DTMC D and the abstraction pairs SubD .

FindCriticalSubsystem(DTMC Dmin, DTMC Dmax, States T, λ ∈ [0,1] ⊆ Q) returns a

critical subsystem of Dmax for target states T and probability bound λ. For some implemen-

tations Dmin is used to build this subsystem.

Procedure
First, SCC-based model checking returns the model checking result, the abstract DTMC D and

the set of abstraction pairs SubD (Line 3). If the model checking result is positive (Line 4), there

is no counterexample and the algorithm terminates without result (Line 5). Initially, a critical

subsystem is computed for the abstract DTMC D 7, where Dmin is empty.

The main loop runs until either the user does not wish to further concretize the system or the

critical subsystem stored in Dmax is fully concretized (Line 11). Inside the loop first Concretize
is called to refine the current abstract system by concretizing zero, one or more abstract states

(Line 9). A triple is returned, consisting of the flag concretized and the DTMCs Dmin and

Dmax. If no state was concretized, the search stops and the current critical subsystem is returned

(Line 11). If this happens in the first run of the loop, no state at all was concretized. In this case,

the abstract system consisting only of transitions from initial states to target states is the result.

Otherwise, a search for a critical subsystem is performed (Line 13).

As the motivation for the hierarchical counterexample generation is the possibility to have

abstract counterexamples where a user can examine small system parts, it seems most suited

to rely on actual user input. For instance, a user might decide that he doesn’t more details and

therefore concretization. To embed this in a fully automatic procedure, a user can also fix the

maximal number of states that are visible beforehand. Then, the method terminates the search

if this number is reached. These aspects are considered in our tool COMICS. The tool has a

graphical user interface where the current abstraction is displayed and the user can guide the

whole search process. If the GUI is not used, he can set different parameters to influence the

grade of concretization. Details are given later when the tool is presented.

5.3 Framework for explicit graph representations

We present the general framework to incrementally determine critical subsystems for explicit

representations. For an overview, consider Figure 5.4. In every iteration a set of states or

transitions of the original system is selected by heuristics. The current subsystem is extended
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Find set of states S′ ⊆ S
or transitions E′D ⊆ ED

Extend subsystem
D′ v D by S′ or E′D

Model check-
ing for D′, T

DTMC D, target
states T ⊆ S,

probability bound λ

Return critical
subsystem D′

> λ

≤ λ

Figure 5.4: Incremental generation of critical subsystems

via these sets until a certain probability is reached. Formally, we use Definition 52 on Page 84

and Definition 53 on Page 84. In general, the extension by states or transitions differs in the

following way: If a set of states is added to the subsystem and thereby adding all transitions

between old and new states, more probability mass might be “added” in one step, while the

extension by transitions might induce finer results with respect to the probability bound. The

following example illustrates this.

Example 15 (Extension by states vs. extension by transitions) Assume a subsystem D′ of the

DTMC D from Example 1 on Page 20 in Figure 5.5(a). We can now extend D′ by a set of transitions

Ee ⊆ ED , say Ee = {(s1, s2), (s2, s1)}. The result is depicted in Figure 5.5(b). Contrary, if we just

extend D′ by one state, say Se = {s2}, the result also contains all induced transitions of s0, s1, s3 and

the new state s2. The result is depicted in Figure 5.5(c).

Remark 22 The extension by states was not used in [10]. It showed to be way more efficient,

as many transitions are induced by the states, including self-loops. The number of iterations was

significantly reduced.

For the sake of completeness, we parametrize the algorithm by the mode of extension. Let the

variable type Mode have the values “trans-extension” or “state-extension”, i. e., Mode m ∈
{trans-extension,state-extension}, depending on whether subsystems shall be extended

by states or by transitions. The framework is depicted in Algorithm 5.
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s0 s1 s3

{target}
1

0.5 0.5

(a) Subsystem D ′ v D

s0 s1
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(b) Subsystem extended by transitions

s0 s1

s2

s3

{target}
1

0.5

0.25 0.5

0.5
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(c) Subsystem extended by states

Figure 5.5: The extension of DTMC D ′ v D by states and transitions

Algorithm 5 Incremental generation of critical subsystems

FindCriticalSubsystem(DTMC D = (S, I , P, L), T ⊆ S, λ ∈ [0,1]⊆Q, Mode m)

begin

DTMC subSys := ; States newStates := ; Transitions newTrans := ; (1)

if ModelCheck(D, T) > λ then (2)

while ModelCheck(subSys, T) ≤ λ do (3)

if m = state-extension then (4)

newStates := FindNewStates(D,subSys) (5)

if newStates 6= ; then (6)

subSys := Extend(subSys,newStates) (7)

end if (8)

end if (9)

if m = trans-extension then (10)

newTrans := FindNewTransitions(D,subSys) (11)

if newTrans 6= ; then (12)

subSys := Extend(subSys,newTrans) (13)

end if (14)

end if (15)

end while (16)

end if (17)

return subSys (18)

end
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Parameters

D is the input DTMC D = (S, I , P, L) for which a critical subsystem shall be computed.

λ is the upper probability bound for reaching target states. The PCTL property is P≤λ(◊T ).

T ⊆ S is the set of absorbing target states.

m is the mode deciding whether the subsystem is to be extended by states or transitions.

Variables

subSys represents a DTMC that forms a subsystem of D.

newStates⊆ S is a set of states by which the subsystem is extended.

newTrans⊆ ED is a set of transitions by which the subsystem is extended.

Return value
If a counterexample exists, the algorithm returns the critical subsystem subSys.

Methods

ModelCheck(DTMC subSys, States T) performs probabilistic model checking for reachability

of the target states T for the input system subSys, see Section 2.3.1.1. Also the SCC-based

model checking, see Chapter 4, can be used. However, we assume only the resulting

probability to be returned here.

FindNewStates(DTMC D, DTMC D′) returns a set of states of the original system D depending

on the current subsystem D′. The method might for instance only return states that are

not already contained in D′. Implementations are discussed in the following sections.

FindNewTransitions(DTMC D, DTMC D′) returns a set of transitions of D depending on the

current subsystem D′.

Extend(DTMC subSys, States newStates) extends the current subsystem by the states stored

in newStates, see Definition 53 on Page 84.

Extend(DTMC subSys, Transitions newTrans) extends the subsystem by transitions from

newTrans, see Definition 52 on Page 84.
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Procedure

The algorithm proceeds as follows. First, the variables are initialized (Lines 1-3). If

ModelCheck(D, T) shows that the probability for reaching T exceeds λ, the property is vio-

lated and the search for a counterexample is to be started (Line 2). Otherwise, the algorithm

just terminates, returning an empty subsystem indicating that no counterexample exists. The

condition of the while-loop invokes model checking for the current subsystem subSys and the

target states T(Line 3). Let subSys = D′ = (S′, I ′, P ′, L′). The result is the probability of reach-

ing target states in T ∩ S′ from initial states InitD ∩ S′, i. e., those target states and initial states

that are contained in the subsystem D′. If either no target or no initial state is contained in

the subsystem, the reachability probability will be 0. The loop runs until a value is returned

which is greater than λ. In this case, the current subsystem is critical. While the subsystem

has not enough probability mass, the subsystem is extended. If the mode is to extend by states

(Line 4), method FindNewStates returns a set of states newStates (Line 4). If newStates is

not empty, the current subsystem is extended by states (Line 7). For the extension by transitions,

the procedure is analogous (Lines 10-12).

Remark 23 In our implementations, the method FindNewStates is based on path searching al-

gorithms. The subsystem is then extended by all states or transitions on a path. Nevertheless, this

method might also choose a number of states by an arbitrary heuristic. It might also be the case,

that no new states are returned, i. e., the subsystem is not extended. We therefore need to make sure

that the implementations of FindNewStates eventually explore the whole input system in order to

guarantee termination.

5.3.1 Heuristics for model checking

Calling a model checking algorithm in each iteration is quite costly. Depending on the input

system, in our implementation we extend the subsystem several times until we invoke model

checking. One might think of many different heuristics for the number of iterations until model

checking is performed. We tried the following, where λ ∈ [0,1] ⊆ Q is the probability bound,

probcur is the current probability of the subsystem, probold is the probability of the subsystem

when we last performed model checking and n is the number of iterations we suspend model

checking.

• Apply model checking every n iterations until prob= 0.9 ·λ, then in every step. Thereby, n

is chosen statically, e. g., with respect to the size of the input system.

• Compute the number of iterations n′ to suspend model checking dynamically by

n′ =
λ− probcur

probcur− probold
· n
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Note that in our algorithms, one iteration corresponds to one path search.

5.4 Framework for symbolic graph representations

We now present our framework for the generation of counterexamples for probabilistic reach-

ability properties suited to use symbolic data structures. For the symbolic representation of a

DTMC as input, a critical subsystem is computed which is again symbolically represented. A

method returning states of the input DTMC is again seen as blackbox here. Implementations of

this method are presented later. As for explicitly represented DTMCs, see Section 5.3, the critical

subsystem is initially empty and will incrementally be extended by states that occur on found

paths.

For simplicity, we restrict input DTMCs D = (S, I , P, L) to having one unique initial state

sI ∈ S. This poses no restriction, see Remark 5 on Page 25. The algorithm for finding a symbolic

counterexample is depicted in Algorithm 6. Recall the symbolic representation of DTMCs, see

Section 2.4.2.

Algorithm 6 Incremental generation of symbolic critical subsystems

FindCriticalSubsystem(MTBDD bP, BDD bI , BDD bT , λ ∈ [0, 1]⊆Q)

begin

BDD subSysStates := ; BDD newStates := ; MTBDD subSys := ; (1)

if SymbModelCheck(bP,bI , bT) > λ then (2)

while SymbModelCheck(subSys,bI , bT) ≤ λ do (3)

newStates := FindNewStates(bP,bI , bT ,subSys) (4)

if newStates 6= 0 then (5)

subSysStates := subSysStates∪ newStates (6)

subSys := ToTransitionBDD(subSysStates) · bP (7)

end if (8)

end while (9)

end if (10)

return subSys (11)

end

Parameters

bP is the symbolic representation of the transition probability matrix of the input DTMC defined

over variable sets Var and Var′.

bI is the BDD representing the initial state of the input DTMC defined over variables Var.

bT is the BDD representing the set of target states defined over variables Var.
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λ is the probability bound out of [0,1] ⊆ Q which should be exceeded by the resulting critical

subsystem.

Variables

subSysStates is a BDD used to symbolically represent the set of states which are part of the

current subsystem.

newStates is a BDD used to store the states occurring on a path or on a set of paths which

extend the current subsystem.

subSys stores the transition MTBDD of the current subsystem.

Return value
If a counterexample exists, the algorithm returns an transition MTBDD representing a critical

subsystem.

Methods

SymbModelCheck(MTBDD bP, BDD bI, BDD bT) performs probabilistic model checking for sym-

bolically represented DTMCs [BCH+97, Par02], see Section 2.4.2, and returns the proba-

bility of reaching target states in bT from initial states in bI via transitions in bP.

FindNewStates(MTBDD bP, BDD bI, BDD bT, MTBDD subSys) invokes a method computing a

set of states which occur on a path or a set of paths leading through the DTMC represented

by the transition MTBDD bP, the initial state bI , and the set of target states bT . Which paths

are found next may depend on the current subsystem subSys and therefore on the set of

previously found paths. Different symbolic implementations of this method are discussed

in the Sections 5.6 and 5.7.

ToTransitionBDD(BDD subSysStates) first computes a BDD subSysStates′ by renaming

each variable x ∈ Var occurring in subSysStates to x ′ ∈ Var′ and returns the transi-

tion BDD subSys in which there is a transition between all pairs of states occurring in

subSysStates, i. e., (subSys)(νs1,s2
) = 1 iff subSysStates(νs1

) = subSysStates(νs2
) =

1. Intuitively, this yields a BDD inducing the complete directed graph over subSysStates,

i. e., all states of the subsystem are connected to each other. Multiplying this BDD with the

transition probability matrix bP removes all transitions from bP which do not connect two

states of the subsystem. Recall Section 2.4.1 for details on BDDs.

Procedure
The algorithm proceeds similar to Algorithm 5 for explicit graph representations on Page 94.

Nevertheless, we shortly explain the crucial steps. First, the three empty objects subSysStates,
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newStates, and subSys are created (Line 3). If SymbModelCheck(bP,bI , bT) shows that λ is

exceeded, the reachability property is violated and the search for a counterexample starts

(Line 2). Otherwise, the algorithm just terminates, returning an empty subsystem since no

counterexample exists. The condition of the while-loop invokes model checking for the cur-

rent subsystem subSys and the initial states and target states (Line 3). The loop runs until

SymbModelCheck(subSys,bI , bT) returns a value which is greater than λ, in which case the cur-

rent subsystem is critical. In every iteration, first the method FindNewStates(bP,bI , bT ,subSys) re-

turns a set of states which occur on a path or a set of paths through the system (Line 4). If this set

is not empty, the current set of states is extended by these new states (Line 6). Afterwards, the cur-

rent subsystem is extended (Line 7) in the following way: ToTransitionBDD(subSysStates)
generates a transition relation between all pairs of found states. Multiplying the resulting BDD

and the original transition MTBDD bP induces a probability matrix P ′ ⊆ P restricted to transitions

between the states in subSysStates. These transitions define the updated subsystem subSys.

Remark 24 The extension as performed in this framework is a symbolic implementation of the

extension of a subsystem by states, see Definition 53 on Page 84.

5.5 Explicit path searching algorithms

We now present two search concepts, namely the global search and the fragment search. The first

one lists paths leading from initial states to target states of the system in descending order of their

probability, as proposed in [HKD09]. The second one was developed in [10] and dynamically

finds most probable path fragments that extend the current subsystem.

We give the general concepts in detail and explain how they are implemented for explicit graph

representations. We use well-known graph algorithms which are not explained in detail here.

5.5.1 Explicit global search

For finding paths in descending order of their probability we follow the way proposed in [HKD09],

see Section 3.1. Here, we call this approach fitted to the generation of critical subsystems a global

search.

By transforming a DTMC into a weighted directed graph where the weights are the negative

logarithm of the corresponding probabilities, the k shortest paths are the associated k most

probable paths. As we cannot fix beforehand how many paths are needed for a counterexample,

the k is determined according to an external condition on the fly. As already explained in

Section 3.1.1, we therefore use the k shortest paths algorithm by Jiminez and Marzal [JM99].

After a path has been found, the framework for explicit counterexample generation, see

Algorithm 5 on Page 94, extends the current subsystem by the states or transitions on this path.

This procedure is repeated until the subsystem has enough probability mass to be critical. If this

is the case, the k shortest path algorithm terminates.
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To describe the next path to be found formally, let D = (S, I , P, L) be a DTMC and T ⊆ S a

set of target states. Let F ⊆ PathsDfin(InitD , T) be the set of paths that were already found. The

candidates for the next global path are therefore Cglob = PathsDfin(InitD , T )\ F . The next path πnext

is then given by

πnext := arg max
π∈Cglob

PD(π).

Note that this path is not unique.

Example 16 Consider again the DTMC D from Example 1 on Page 20:

s0 s1

s2 s4

s3

{target}
1

s5 s6

s7

s8

1

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7

0.3

1

0.5

0.5

0.25
0.5

0.25

The model checking probability of reaching the target state s3 is PrDs0
(◊target) = 0.9175. We are

interested in a counterexample for the violated property P≤0.7(◊target). Subsystems will always be

extended by states. The most probable path for this system is

π1 = s0, s1, s3, PD(π1) = 0.25

Thus, we will extend the currently empty subsystem D′ by the states of π1. We will always highlight

the latest paths by thick edges in the subsystem. The reachability probability in this first subsystem

is PrD
′

s0
(◊target) = 0.25< 0.7.

s0 s1 s3

{target}
1

0.5 0.5

Now, the set of already found paths is F = {(s0, s1, s3)}. The candidate set for the next most

probable path is therefore Cglob = PathsDfin(s0, s3) \ F. We have:

π2 = s0, s5, s6, s3, PD(π2) = 0.125

The subsystem is then extended by these states. The probability is now PrD
′

s0
(◊target) = 0.375 which

is still not high enough.
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s0 s1 s3

{target}
1

s5 s6

0.5

0.25

0.5

1

0.5

The next path is

π3 = s0, s2, s1, s3, PD(π3) = 0.0625

This effectively extends the subsystem by state s2 as the other states are already included. The model

checking result is now PrD
′

s0
(◊target) = 0.542, so another search iteration is started.

s0 s1

s2

s3

{target}
1

s5 s6

0.5

0.25

0.25

0.5

0.5

0.5

1

0.5

The next path is the first one containing a loop and has the same probability as π3:

π4 = s0, s1, s2, s1, s3, PD(π4) = 0.0625

As there are no new states on the path, the subsystem is not extended and the model checking result

remains 0.524:

s0 s1

s2

s3

{target}
1

s5 s6

0.5

0.25

0.25

0.5

0.5

0.5

1

0.5

The next path is:

π5 = s0, s2, s4, s1, s3, PD(π5) = 0.04375

Although this path has a relatively small probability, state s4 is added which induces three transitions

yielding the probability mass PrD
′

s0
(◊target) = 0.875 for the subsystem. Therefore, the subsystem is

critical and the search is terminated with the following final subsystem representing a counterexam-

ple:
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s0 s1

s2 s4

s3

{target}
1

s5 s6

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7

0.3

1

0.5

The problem of the global search approach is illustrated by Example 16. Paths containing loops

can be found. For large systems, where most of the paths have very small probability, many paths

are found that only differ in the iteration of loops. As these paths do not extend the subsystems,

this is unwanted behavior which cannot easily be prevented.

Adaption for hierarchical counterexample generation The global search can directly be used

for generating hierarchical counterexamples. Consider the DTMCs Dmax and Dmin as described

in Section 5.2. Paths from Dmax according to the global search are incrementally added to Dmin

by the explicit framework, see Algorithm 5 on Page 94. Note that the “holes” in Dmin resulting

from concretization steps are not particularly treated here.

5.5.2 Explicit fragment search

In contrast to the global search approach, the fragment search does not aim at finding paths from

initial to target states but to identify connected fragments of the search graph. This is achieved

by searching for the most probable path that starts and ends in states of the current subsystem.

In the context of the whole graph, these paths are called path fragments.

Let D′ = (S′, I ′, P ′, L′) with D′ v D be the current subsystem for D and the set of absorbing

target states T . The candidate set for the next path fragment is Cfrag = {π ∈ PathsDfin(S
′ \ T, S′) \

PathsD
′

fin}, i. e., the finite paths of the original DTMC D that both start and end in a state of D′
while the starting states are not target states. The next path πnext is then given by

πnext := arg max
π∈Cfrag

PD(π)

Initially, we set S′ := InitD ∪ T . Therefore, the first path is a most probable path leading from an

initial state sI ∈ InitD to a target state t ∈ T .

Remark 25 Algorithmically, for every state of D′ Dijkstra’s algorithm has to be called which is of

course very expensive. In our implementation we use a simple trick: We introduce a dummy state

which has transitions of equal probability leading to each state of D′. Then, the most probable

path is determined starting from this dummy state which speeds up the computation by orders of

magnitude.
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Example 17 We give an example similar to Example 16 on Page 100 for the global search approach

by means of DTMC D from Example 1 on Page 20:

s0 s1

s2 s4

s3

{target}
1

s5 s6

s7

s8

1

0.5

0.25

0.25

0.5

0.5

0.5

0.5

0.7

0.3

1

0.5

0.5

0.25
0.5

0.25

The model checking probability of reaching the target state s3 is PrDs0
(◊target) = 0.9175. We are

again interested in a counterexample for the violated property P≤0.7(◊s3). Subsystems are extended

by states. As the initial subsystem is empty except for initial and target states, the first path is the

same as for the global search:

π′1 = s0, s1, s3, PD(π′1) = 0.25

The reachability probability in the first subsystem D′ is PrD
′

s0
(◊target) = 0.25< 0.7.

s0 s1 s3

{target}
1

0.5 0.5

Now, we search for path fragments starting and ending in states s0, s1 or s3. The most probable

path fragment is the loop:

π′2 = s1, s2, s1, PD(π′2) = 0.25

The resulting subsystem D′ has a reachability probability of PrD
′

s0
(◊target) = 0.542 as three transi-

tions are induced:

s0 s1

s2

s3

{target}
1

0.5

0.25 0.5

0.5

0.5

As the probability is not yet high enough, the search for the next fragment is started, now search
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for fragments connecting states s0, s1, s2, s3. The most probable fragment is:

π′3 = s2, s4, s1, PD(π′3) = 0.35

By effectively adding state s4 to the system, three transitions are induced and the resulting subsystem

has already a reachability probability of PrD
′

s0
(◊target) = 0.75 which renders the subsystem critical

and terminates the search:

s0 s1

s2 s4

s3

{target}
1

0.5

0.25 0.5

0.5

0.5

0.5

0.7

0.3

Example 17 illustrates the advantage of the fragment search approach: In every iteration at least

one new state is added to the system. Therefore, the number of search iteration is bounded by

the number of states of the input system. However, the search itself is quite costly as mentioned

before.

Adaption for hierarchical counterexample generation Originally, the fragment search was

explicitly developed for the concept of hierarchical counterexample generation. By starting with

the DTMC Dmin as initial subsystem, the “holes” which are formally exactly the transitions that

were removed by the last concretization step, are then extended by transitions from Dmax. For

details, see again Section 5.2. As thereby transitions are incrementally added via these local

parts of the original DTMC, we call the fragment search in this context the local search.

5.6 Path searching by bounded model checking

As described in Chapter 3, Wimmer et. al. adapted bounded model checking for digital circuits

to generate counterexamples for DTMCs and reachability properties in [WBB09]. A SAT solver is

used to enumerate arbitrary paths starting in an initial state and ending in a certain target state.

This search is uninformed regarding the probability of the paths that were found. Every path

is processed to determine its probability and to detect loops, which can be connected to other

paths that visit one of their states and contribute to the probability mass. The drawbacks of this

approach are on the one hand the uninformed search which may lead to a very high number of

paths that need to be found while only a few paths of high probability would suffice. On the

other hand, paths are enumerated explicitly which equalizes the advantage of symbolic methods,

i. e., the handling of very large systems.

The input for all search algorithms is a symbolic representation of a DTMC D = (S, I , P, L)

together with a set of target states T , as described in Section 2.4.2: An BDD bI for the initial

state sI ∈ S, a BDD bT for the set of target states T , and an MTBDD bP over variable set Var =
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{σ1, . . . ,σm} and Var′ = {σ′1, . . . ,σ′m} for the transition probability matrix P. As in bounded

model checking the probabilities are no considered, we transform bP into the BDD describing the

induced non-probabilistic transition relation bPbool, without any transitions leaving target states

from T .

Having this symbolic representation, first, Tseitin’s transformation [Tse83] is applied to gen-

erate formulae in conjunctive normal form (CNF) for the BDDs bI , bT and bPbool. We denote the

resulting CNF predicates by Ǐ(Var), Ť (Var) and P̌(Var, Var′), respectively.

5.6.1 Adaption of global search

We utilize the path search as in [WBB09] for our first implementation of the FindNewStates-

method of the symbolic framework, see Algorithm 6 in Section 5.4. Thereby, a critical subsystem

is generated incrementally by the states that occur on paths that are computed by the SAT

solver. This is a global search approach as already described for explicit graph representations

in Section 5.5.1, while not the most probable paths are found but arbitrary paths leading from

initial states to target states.

The BMC formula is parametrized in k ∈ N and uses the CNF predicates Ǐ(Var), Ť(Var) and

P̌(Var, Var′):

BMC(k) = Ǐ(Var0) ∧
k−1
∧

i=0

P̌(Vari , Vari+1) ∧ Ť (Vark) (5.1)

The set of solutions for BMC(k) corresponds to the set of paths of length k from the initial state

to a target state, where for each i = 0, . . . , k the set Vari = {σi,1, . . . ,σi,m} of Boolean variables is

used to encode the state at depth i on a path. We overload BMC(k)⊆ PathsDk to describe this set

of paths.

Let ν :
⋃k

i=0 Vari → {0,1} be a satisfying assignment of BMC(k). The ith state on the path is

then encoded by νi : Vari → {0,1} with νi(σ j) = ν(σi, j) for each j = 1, . . . , m. If there is no

satisfying assignment, there is no such path.

Usually multiple paths need to be found in order to form a counterexample or a critical

subsystem, thus the solver has to enumerate satisfying solutions for BMC(k), k = 0,1, . . ., until

enough probability mass has been accumulated.

Remark 26 (Stochastically independent paths) As target states have no outgoing transitions, a

path ends at the first target state that is reached. Thus, two different paths from the initial state to

a target state are never prefixes of each other, i. e., their corresponding cylinder sets are disjoint and

their joint probability is the sum of their individual probabilities.

5.6.1.1 Exclusion of paths

To assure that a path is not considered several times, each time a solution is found it is excluded

from further search by adding new clauses to the SAT solver’s clause database. Assume that
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the solver has found a solution ν :
⋃k

i=0 Vari → {0,1} for BMC(k). The found path is uniquely

described by the following conjunction:

k
∧

i=0

m
∧

j=1

σ
ν(σi, j)
i, j (5.2)

where σ1
i, j = σi, j and σ0

i, j = ¬σi, j . To exclude the found path from the solution space of BMC(k),

the negation of the above conjunction according to deMorgan’s law is added to the solver’s clause

database:
k
∨

i=0

m
∨

j=1

σi, j
1−ν(σi, j) (5.3)

This ensures that for a new path at least one state variable has to be assigned differently as it is

done by ν .

5.6.1.2 Termination

Termination of the iterative construction of a critical subsystem is guaranteed, as the SAT solver

ultimately finds all finite paths of length k. Eventually, the subsystem will consist of all states

that are part of paths from initial to target states. This subsystem induces the whole probability

mass of reaching a target state in the original system. As the counterexample generation in

Algorithm 6 on Page 97 only starts if the probability bound is exceeded, the probability mass of

this system will also exceed the bound. Therefore, the algorithm always terminates.

Example 18 Assume the symbolic representation of the DTMC D from Figure 2.1 as explained in

Example 6 in Section 2.4. We use the same set of variables Var= {σ1,σ2,σ3} while we add another

index for the depth of the path at which each variable is used to encode a state. For example, the

formula σ0
2,1 ∧σ1

2,2 ∧σ0
2,3 encodes state s2 at depth 2 of a path. As the shortest path leading from

the initial state s0 to the target state s3 has length 2, there will be no satisfying assignments for

BMC(0) and BMC(1). For k = 2, the formula

σ0
0,1 ∧σ0

0,2 ∧σ0
0,3

︸ ︷︷ ︸

s0

∧ σ0
1,1 ∧σ0

1,2 ∧σ1
1,3

︸ ︷︷ ︸

s1

∧ σ0
2,1 ∧σ1

2,2 ∧σ1
2,3

︸ ︷︷ ︸

s3

encodes the first path π1 = s0, s1, s3 of the global search explained for explicit graph representations

in Section 5.5.1, see Example 16 on Page 100. The predicates P̌, Ǐ , and Ť are all satisfied. Adding

the negation of this formula to BMC(2) prevents the SAT solver from finding this path again.

5.6.2 Adaption of fragment search

The previously described approach of using a SAT solver to find paths leading from the initial

state of the DTMC to the target states is now extended according to the fragment search approach
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as described in Section 5.5.2. We therefore aim at finding path fragments that extend the already

found system iteratively.

The intuition is as follows: We first define a maximal length of paths nmax ∈ N which can be

increased if necessary. This nmax might, e. g., correspond to the length of the longest loop-free

path leading from one of the initial states to a target state. In this case, ultimately all reachable

states will be visited.

Consider in the following a DTMC D = (S, sI, P, L) with a single initial state sI and a single

target state t ∈ S, i. e., T = {t}. If the DTMC has originally several initial states, a transformation

as in Remark 5 on Page 25 can be applied. A similar construction is possible for target states. In

the first search iteration 0, the CNF formula given to the SAT solver is satisfied if and only if the

assignment corresponds to a path of arbitrary but bounded length nmax through the input DTMC

D leading from the initial state sI to the target state t. This path is returned to the symbolic

framework, see Algorithm 6 on Page 97, and thereby induces the initial subsystem. Subsequently,

this system is extended by paths whose first and last states are included in the current subsystem,

while all states in between are fresh states.

To accomplish this by means of an incremental method without completely restarting the

solving process in every iteration, we need to consider already found states for all possible depths

d of a path π= s0, . . . , sn, 0≤ d ≤ n. It needs to be ensured that at least one new state is found

in every iteration. Recall that the state at depth d of a path π is the d th state on this path. First,

we need to identify states of the original DTMC by the assignment of variables: For a state sd let

νd
s : Vard → {0,1} be the unique assignment of Vard corresponding to state sd .

We introduce a state flag f d
s for each state s and each depth d. This flag is assigned 1 if and

only if the assignment of the state variables at depth d corresponds to the state s. Thereby, we

can “switch” the occurrence of a state s at level d by setting its flag f d
s to 0 or 1.

f d
s ↔ (σ

νd
s (σd,1)

d,1 ∧ · · · ∧σν
d
s (σd,m)

d,m ) (5.4)

Furthermore, we need to be able to reason about whole sets of states. Using the state flags, we

introduce the notion of state set flags: Kd
j describes the whole set of states that have been found

so far, namely in the iterations 0, . . . , j of the search process (again in terms of the variables

Vard for depth d). Note, that in our setting these are exactly the states of the current subsystem

subSys after iteration j. We define Kd
−1 := false. Assume that in iteration j of the search

process the path π j = s0s1 . . . sn is found. We then define

Kd
j ↔

�

Kd
j−1 ∨

n
∨

i=0

f d
si

�

(5.5)

This formula evaluates to true if and only if either one of the state flags f d
s0

, . . . f d
sn

is true or

if one of the state flags that are implicitly given by the previous state set flag Kd
j−1 is true. Kd

j is

thereby true if and only if the assignment corresponds to one of the states that were encountered

107



5.6. PATH SEARCHING BY BOUNDED MODEL CHECKING

so far including the current path π j .

We are now ready to introduce the bounded model checking formulae that enable the adaption

of the fragment search to bounded model checking.

First search iteration j = 0: In the first search iteration j = 0 we need a formula which is true

iff the variable assignment corresponds to a path of arbitrary length—bounded by nmax—leading

from the initial state to the target state of the DTMC. In more detail, this is done by enforcing

that up to length nmax at some depth there will occur the target state on the path and that before

this target state occurs, transitions will be taken, starting in one of the initial states.

BMC0
frag = Ǐ(Var0) ∧

nmax
∨

i=0

Ť (Vari)∧

nmax−1
∧

i=0

h

�¬Ť (Vari)→ P̌(Vari , Vari+1)
� ∧ �Ť (Vari)→ (Vari = Vari+1)

�

i

(5.6)

Assume an assignment ν :
⋃k

i=0 Vari → {0,1} that satisfies BMC0
frag. This corresponds to a path

s0, . . . , snmax
, where the ith state on the path is encoded by νi : Vari → {0, 1} with νi(σ j) = ν(σi, j)

for each j = 1, . . . , m and 0≤ i ≤ nmax. If there is no satisfying assignment, there is no such path

and nmax has to be increased or the search has to be terminated.

BMC0
frag ensures that the first state s0 is the initial state as variables from Var0 have to be

assigned such that Ǐ(Var0) is satisfied. One of the states s0, . . . sn has to be the target state, as at

least for one i the variables from Vari have to be assigned such that Ť (Vari) is satisfied.

If a state si is not the target state, i. e., Vari is not assigned such that Ť(Vari) is satisfied, a

valid transition will be taken to the next state. Therefore, Vari and Vari+1 have to be assigned

such that P̌(Vari , Vari+1) is satisfied. On the other hand, if si is the target state, Vari+1 is assigned

exactly as Vari. This implies, that all variables from Varh with h > i will be assigned the same

value as the variables Vari and thereby satisfy Ť(Varh), which creates an implicit self-loop on

the corresponding target state si . This is done since otherwise the solver would be free to assign

arbitrary values to the states following the target state which would not be desired behavior. The

path returned to Algorithm 6 then ends with the first target state that is encountered.

Search iterations j > 0: For the following iterations we require that each solution corresponds

to a path fragment that starts and ends with a state of the current subsystem, i. e., the states

found so far. Furthermore, it shall contain at least one new state in between. We make use of

the previously defined state set flags K j
d , for j > 0, see Formula 5.5, to describe the states that

occurred so far.
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BMC j
frag = K0

j−1 ∧ P̌(Var0, Var1) ∧¬K1
j−1 ∧

nmax
∨

d=2

Kd
j−1

∧
nmax−1
∧

d=1

h�

¬Kd
j−1→ P̌(Vard , Vard+1)

�

∧
�

Kd
j−1→ Vard = Vard+1

�i

(5.7)

BMC j
frag ensures that the first state s0 of a solution path π j = s0, . . . , snmax

is contained in the set

of previously found states, as the variables of Var0 have to be assigned such that K0
j−1 is satisfied.

From the first state, a transition is taken to a state s1 that has not been found yet. This is ensured

as Var has to be assigned such that P̌(Var0, Var1) is satisfied. One of the states s2, . . . , snmax
has to

be in the set of states found so far again, so there has to be a d with 2≤ d ≤ nmax such that Vard

is assigned such that Kd
j−1 is true.

As in Formula 5.6 for the first iteration, we enforce regular transitions between states that are

not target states: If Vard doesn’t satisfy Kd
j−1, the transition predicate P̌(Vard , Vard+1) has to be

true. If Vard does satisfy Kd
j−1, all following variable sets are assigned as Vard enforcing again an

implicit self-loop on the corresponding states.

5.6.2.1 Termination

Termination is guaranteed, as the length of the paths is bounded by nmax and in each iteration

a new state is found. If no further satisfying assignment exists, either all states of the DTMC D
have been encountered, or nmax has to be increased. However, the diameter, i. e., the longest

cycle-free path of the underlying graph, is an upper bound on the length of loop-free paths from

initial states to target states. Therefore, nmax needs to be increased only finitely many times, such

that a critical subsystem is always determined in finite time.

Example 19 Consider again the assignment σ0,1 7→ 0,σ0,2 7→ 0,σ0,3 7→ 0,σ1,1 7→ 0,σ1,2 7→
0,σ1,3 7→ 1,σ2,1 7→ 0,σ2,2 7→ 1,σ2,3 7→ 1 which encodes the first path π′1 = s0, s1, s3 for the

fragment search as in Example 17 on Page 103. Having this in search iteration 0, Formula 5.6 is

satisfied, as for the variables from Var0 = {σ0,1,σ0,2,σ0,3} the assignment encodes the initial state,

and for variables from Var2 = {σ2,1,σ2,2,σ2,3} the target state is assigned. For the states encoded

by the variables Var0 and Var1, which are not target states, transitions are available leading to the

state at the next depth. As the variables from Var2 are assigned to a target state, all the following

variable sets Varm with 2≤ m≤ n will be assigned equally, thereby again encoding the target state.

This causes an implicit self-loop on the target state. According to Formula 5.5, we build the state set

variables:

K0
0 ↔ ( f 0

s0
∨ f 0

s1
∨ f 0

s3
), K1

0 ↔ ( f 1
s0
∨ f 1

s1
∨ f 1

s3
), K2

0 ↔ ( f 2
s0
∨ f 2

s1
∨ f 2

s3
) .

Intuitively, Kd
0 is true for 0≤ d ≤ 2 iff the variables at depth d are assigned to any state out of s0, s1
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or s3.

For search iteration 1, consider the assignment σ0,1 7→ 0,σ0,2 7→ 0,σ0,3 7→ 1,σ1,1 7→ 0,σ1,2 7→
1,σ1,3 7→ 0,σ2,1 7→ 0,σ2,2 7→ 0,σ2,3 7→ 1. This encodes the second path π′ = s1, s2, s1 of the

fragment search, see again Example 17. Formula 5.7 is satisfied: The variables from Var0 are

assigned such that K0
0 is true as f 0

s1
is true for σ0,1 7→ 0,σ0,2 7→ 0,σ0,3 7→ 1; a valid transition leads

from s1 to s2; s2 satisfies ¬K1
0 , and at d = 2 again a state satisfying K2

0 is assigned, namely again s1.

For state s2—not satisfying K1
0 —a valid transition is taken. Once Kd

0 for 0 < d ≤ n is satisfied, all

states at the following depths are assigned the same, again creating an implicit self-loop.

5.6.3 Heuristics for probable paths

As mentioned before, a drawback of the SAT-based search strategies is that paths are found

without considering their probability beforehand. If paths or transitions with higher probabilities

are preferred, the process can be accelerated.

We therefore developed a heuristic which guides the SAT solver to choose assignments that

induce more probable path fragments. SAT solvers have efficient variable selection strategies,

i. e., strategies to decide which variable should be assigned next during the solving process. We

modify the choice of the value the solver assigns to the selected variable in order to prefer paths

with higher probabilities.

The decision how to assign a variable is based on the transition probabilities. If a variable

σi+1, j is to be assigned at depth 0 < i + 1 ≤ n, its value partly determines si+1, being the

destination state of a transition with source si . We choose the value for σi+1, j which corresponds

to the state si+1 to which the transition with the highest probability can be taken under the

current partial assignment). This can be applied for several consecutive transitions in the future

up to the complete path. However, as this computation is very expensive, we restrict the number

of time steps we look ahead. For our test cases, assigning variables for 3 possible consecutive

transitions in one step led to the best results.

Example 20 Consider the DTMC D from Figure 2.1 on Page 20. Assume the binary encoding as

described in Example 6 on Page 42. In the table below, a partial assignment νpart of the variables for

a state si and its successor si+1 is shown; “?” indicates, that this variable is not yet assigned, “next”

indicates that this variable will be assigned next.

si si+1

σi,1 σi,2 σi,3 σi+1,1 σi+1,2 σi+1,3

νpart 1 1 ? next ? ?

The current assignment determines state si to either be s4 or s5. Assigning 1 to the next variable,

σi+1,1, which is the first variable for the successor state si+1, would lead to state s6, inducing the

transition from s5 to s6 having probability 1. As the most probable transition outgoing from s4 or
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s5 would be the one leading to state s1 with probability 0.7, we guide the SAT solver to assign a

1 here such that the transition (s5, s6) is chosen.

5.7 Symbolic path searching algorithms

In this section we present BDD-based graph algorithms to implement the path searching procedure

FindNewStates(...) as invoked by Algorithm 6, see Section 5.7. We first explain how one can

find the most probable path of a symbolically represented DTMC using a set-theoretic variant

of Dijkstra’s algorithm, called Flooding Dijkstra [GSS10]. This method is extended to allow the

computation of the k most probable paths of a DTMC. This procedure can be directly embedded

into the symbolic framework resulting in a symbolic global search. However, the direct application

leads to an exponential blow-up of the search graph. Therefore we introduce an improved

variant which—amongst other improvements—avoids this growth, called adaptive global search.

Afterwards we present a new search method which symbolically searches for the most probable

path fragments that extend the current subsystem. We call this approach the symbolic fragment

search.

5.7.1 Flooding Dijkstra algorithm

The Flooding Dijkstra algorithm was introduced in [GSS10]. The algorithm computes a shortest

path, which is in our context a most probable path, from the initial state of a DTMC to a target

state. This is done by a forward fixpoint computation: For all states s of the DTMC an under-

approximation of the largest probability of a path leading from the initial state sI to s is iteratively

improved.

Initially, the under-approximation is set to 1 for the initial states and 0 for all other states. An

update set, which initially consists of the initial state, stores those states whose approximation

was improved. This improvement needs to be propagated to their successors. The difference

to the standard Dijkstra algorithm [Dij59] for computing shortest paths in a directed graph

is that Flooding Dijkstra updates the approximations of the successors of all states from the

update set in each iteration, instead of restricting the propagation to an optimal element with

the minimal currently known cost (highest probability). That means, in contrast to the depth-

first search of the standard Dijkstra algorithm, the Flooding Dijkstra algorithm operates in a

breadth-first-style over sets of states. Therefore it can be efficiently implemented using MTBDD

operations. The algorithm maintains a directed acyclic graph (DAG) which contains all most

probable paths of minimal length from the initial state to all other states (with respect to the

current approximation). These paths need to be saved in a DAG and not as a tree, as there may

be two or more paths of the same (highest) probability and length leading to the same state.

After the fixpoint is reached, i.e., when the approximation becomes exact, the last step of the

algorithm extracts a single most probable path.
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For details on the differences between the Flooding and standard Dijkstra variant we refer to

the dissertation of Johann Schuster [Sch12, Sec. 5.2.1].

The Flooding Dijkstra algorithm is sketched in Algorithm 7. Assume a DTMC D = (S, I , P, L)

and a set of target states T ⊆ S.

Algorithm 7 The Flooding Dijkstra algorithm for symbolic DTMCs

FloodingDijkstra(MTBDD bP, BDD bI , BDD bT)

begin

BDD UD := bI MTBDD PR1 := bI MTBDD PR2 := ; (1)

MTBDD SP := ; MTBDD SPG := ; (2)

while UD 6= ; do (3)

PR2 := CalcProbs(UD, PR1, bP) (4)

UD := GetStates(PR2, PR1) (5)

PR1 := UpdatePR(UD, PR1, PR2) (6)

SPG := UpdateSPG(UD, bP, SPG) (7)

end while (8)

SP := GetPath(SPG,bI , bT) (9)

return (SP, SPG) (10)

end

Parameters

bP is an MTBDD representing the transition probability matrix P defined over variable sets Var

and Var′.

bI is a BDD representing the set of initial states InitD ⊆ S of D.

bT is a BDD representing the set of target states T ⊆ S.

Variables

UD is a BDD that stores the update set of those states that gained higher probabilities in the last

iteration.

PR1 is an MTBDD that stores the probability approximations before improved probabilities are

propagated to successor states.

PR2 is an MTBDD that stores the probability approximations after a propagation step.

SPG is a an MTBDD representing a directed acyclic graph (DAG) which contains all most probable

paths of minimal length in D.

SP is a an MTBDD representing a most probable paths of D
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Return value
Returned is both the DAG SPG and the path SP.

Methods

CalcProbs(BDD UD, MTBDD PR1, MTBDD bP) propagates the improved probability values of

states in UD to their successors. It calculates the maximal currently known path probability

to go from the initial state sI to a state in UD (as stored in PR1) for all states s′ with

at least one predecessor s ∈ UD and from there in one step to s′ (according to bP). The

name “flooding” indicates that hereby the maximum is formed over all states s ∈ UD with

P(s, s′)> 0.

Using (MT)BDD operations this is done as follows: PR1 stores the probabilities of the

most probable paths detected so far. Initially, only the initial state has probability 1 and

all other states 0. PR1 · UD restricts the probabilities to the states in UD that shall be

updated. PR1 ·UD · bP yields an MTBDD defined over Var and Var′. For an assignment νs,s′

this MTBDD gives the probability to go from sI to s (according to PR1) and then takes the

direct transition from s to s′. We quantify over the source states of the transitions, i. e.,

the variables Var, taking the maximum over all possibilities. Since the resulting MTBDD is

defined over Var′, we rename these variables to Var. This yields PR2.

GetStates(MTBDD PR2, MTBDD PR1) determines those states whose probability approxima-

tions were improved during the last propagation step. The resulting BDD contains those

states whose probability in PR2 is higher than in PR1. In detail, the operation APPLY(>,

PR2, PR1) is carried out.

UpdatePR(BDD UD, MTBDD PR1, MTBDD PR2) computes the maximum over the MTBDDs PR1

and PR2, where UD is assumed to contain those states whose values in PR2 are higher than

in PR1. This function is implemented using ITE(UD, PR2, PR1).

UpdateSPG(BDD UD, MTBDD bP, MTBDD SPG) maintains the DAG according to the improved

probabilities for the update set UD. Those transitions of SPG that lead to a state in UD, i.e.,

to a state whose probability was improved, are removed. The transitions that cause the

higher probabilities in PR2 are added.

GetPath(MTBDD SPG, BDD bI, BDD bT) extracts one most probable path from the DAG SPG by

walking backward from bT to one of its predecessors until bI is reached.

Procedure
First, the empty BDD and MTBDD variables are created (Line 1- 3). The while-loop runs until no

further states can be improved, i. e., UD= ;. Inside the loop, first the probabilities are propagated

and PR2 is computed (Line 4). This is used to calculate the improved states and save them in the
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update set (Line 5). The maximum over the probabilities is computed and saved in PR1 (Line 6).

Finally, the DAG is updated according to the improved states and saved in SPG (Line 7).

When the while-loop terminates, the MTBDD SPG contains, for each state s, all most probable

paths with a minimal number of transitions from sI to s. One of these paths is extracted (Line 9).

For both path searching methods that we describe in the following, it is often beneficial not to

return only a single path, but all paths in SPG to a target state. Then we perform a backward

breadth-first search in SPG starting from bT in order to have only states from which the target

state is reached inside SPG. Therefore, the algorithm returns both SP and SPG (Line 10).

Example 21 If the Flooding Dijkstra algorithm is run on the DTMC from Figure 2.1 on Page 20, a

DAG containing all paths of maximal probability from the initial state to all other states is computed.

This graph and the most probable path to the target state s3 of probability 0.25 and length 2 are

depicted below. The framed values above the nodes of the DAG show the computed probability values

from PR1. The path is determined by invoking a backward breadth-first search from the target state.

Please note that in case there was another path of the same probability and length to the target

state s3 in the DTMC, there would be another path from s0 to s3 in the DAG. Please note also that

standard Dijkstra would compute the same result, only the way of computation differs.

s0

s1 s3

s2 s4

s5 s6 s7 s8

1

0.5

0.25

0.25

0.125

0.25 0.25 0.125 0.0625

s0 s1 s3

Figure 5.6: Result of the Flooding Dijkstra Algorithm for DTMC D

5.7.2 Adaptive symbolic global search

In [GSS10], a symbolic version of a k-shortest path search was presented. This corresponds to the

k most probable paths, leading from the initial state to a target state ordered with respect to their

probabilities. Utilized for a counterexample search, the value of k is not fixed beforehand but the

search terminates if enough probability mass is accumulated [HKD09]. The main components

are the calculation of a most probable path by the Flooding Dijkstra, see Section 5.7.1, and a

transformation of the DTMC such that the most probable path in the altered system corresponds

to the second-most probable path in the original system. For details on the MTBDD operations

we refer to the appendix of [GSS10].
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5.7.2.1 Symbolic global search

The adaption to our symbolic framework for the computation of critical subsystems is straightfor-

ward. Intuitively, for every new path the states on this path are available in BDD-representation

and returned to Algorithm 6 on Page 97 as the BDD newStates. As long as still further states

are needed to form a critical subsystem, the k-shortest path search continues to deliver the next

shortest path. This adaption is shown in Algorithm 8.

Algorithm 8 The global search algorithm for symbolic DTMCs

SymbolicGlobalSearch(MTBDD bP, BDD bI , BDD bT , BDD SP)
begin

MTBDD SPG (1)

if SP 6= 0 then (2)

(bP,bI , bT) := Change(bP,bI , bT , SP) (3)

end if (4)

(SP, SPG) := ShortestPath(bP,bI , bT) (5)

return SP (6)

end

Parameters

bP is an MTBDD representing the transition probability matrix P defined over variable sets Var

and Var′.

bI is a BDD representing the set of initial states InitD ⊆ S of D.

bT is a BDD representing the set of target states T ⊆ S.

SP is a BDD storing the states of the current shortest respectively most probable path.

Variables

SPG is a an MTBDD representing a directed acyclic graph (DAG) which contains all most probable

paths of minimal length in D.

Return value
This algorithm returns an MTBDD SP representing a most probable path.

Methods

ShortestPath(MTBDD bP, BDD bI, BDD bT) is a symbolic implementation of the Flooding Di-

jkstra algorithm as described in Section 5.7.1. It returns a BDD that represents the states

occurring on a most probable path from the initial state represented by bI to a target state

from the set represented by bT .
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Figure 5.7: Altered system

Change(MTBDD bP, BDD bI, BDD bT, MTBDD SP) changes the DTMC (bP,bI , bT) such that the

most probable path in the new DTMC corresponds to the second-most probable path

of the original DTMC.

The idea is to use two copies of the DTMC. The initial state is in the first copy while the

target states are in the second copy. In the first copy, only edges that belong to the shortest

path SP remain unchanged. All other edges are redirected to the corresponding states in

the second copy, in which all edges remain unchanged. Then all paths—with the exception

of SP—lead from the initial state to a target state in this modified graph. As a consequence,

every path to a target state needs to take at least one transition at a certain depth that does

not occur in SP at the same depth. Therefore, the most probable path in the modified graph

corresponds to the second-most probable path in the original model. These modifications

can be performed symbolically by adding an additional state variable that indicates which

copy is used. The MTBDD bP is therefore extended by two variables: One for the source

and one for the target state. The adaptation of the transition relation is straightforward.

Procedure
First, the algorithm checks whether there has been a previous shortest path (Line 2). Only in

that case, the system has to be altered according to the Change-method (Line 3). Otherwise, the

algorithm is called for the first time and no path needs to be excluded. The current shortest path

is then computed, stored in the BDD SP and returned (Lines 5- 6).

Example 22 To explain the procedure of altering the system using the above method, assume that

the first global path π1 = s0, s1, s3 of the DTMC shown in Figure 2.1 on Page 20 is found (the first

global path in Example 16 on Page 100). The altered system is depicted in Figure 5.7. The two copies
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of the DTMC are marked by dashed rectangles. The initial state is still s0 while the new target state

is the copy s′3 of s3. Only the transitions of the most probable path reside in the left copy. States, that

are not reachable any more are drawn gray and we omit the transitions. The dashed transitions are

the ones that do not belong to the most probable path and lead from the left to the right copy. The

most probable path in this altered system is now the path π2 = s0, s′5, s′6, s′3. This corresponds to the

second-most probable path of the original system as in Example 16. Note, that in order to find the

next path, this whole altered system is again copied.

As the whole modified system is copied again in every iteration (after each path), this proce-

dure leads to an exponential blow-up in the system size. The MTBDD resulting from the iterative

application of this altering grows also rapidly and renders this method inapplicable to systems

which require a large number of paths, as our test cases show. A further drawback is that many

of the computed paths do not extend the subsystem and therefore do not lead to any progress.

Nevertheless, we have implemented this approach in order to compare it to other ones, and call

it symbolic global search.

5.7.2.2 Adaptive symbolic global search

To present a symbolic global search approach that is usable for practical instances, we developed

a new improved variant. In comparison to the straightforward approach this on the one hand

avoids the exponential blow-up of the system size and on the other hand saves many search

iterations by adding sets of paths. Furthermore, the search algorithm uses an adaptive strategy

in order to find small counterexamples. We call this approach the adaptive symbolic global search,

depicted in Algorithm 9.

Algorithm 9 The adaptive global search algorithm for symbolic DTMCs

AdaptiveSymbolicGlobalSearch(MTBDD bP, BDD bI , BDD bT , BDD subSys)
begin

MTBDD SPG MTBDD SP MTBDD bP ′ BDD bI ′ BDD bT ′ (1)

if subSys= ; then (2)

(bP ′,bI ′, bT ′) := (bP,bI , bT ) (3)

else (4)

(bP ′, bI ′, bT ′) := Change(bP, bI, bT, subSys) (5)

end if (6)

(SP, SPG) := ShortestPath(bP ′,bI ′, bT ′) (7)

return SPG (8)

end

Parameters Parameters are as for Algorithm 8 on Page 115: bP, bI , bT and subSys symbolically

represent the input DTMC and its target states. Furthermore, the BDD subSys stores the current

subsystem.
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Variables

SP is an MTBDD storing the shortest path.

SPG is a an MTBDD representing a directed acyclic graph (DAG) which contains all most probable

paths of minimal length in D.

bP ′,bI ′, bT ′ are an MTBDD and BDDs as usual to maintain a copy of the system.

Return value
The algorithm returns the MTBDD SPG.

Methods The methods differ from the ones for Algorithm 8 as follows.

ShortestPath(MTBDD bP, BDD bI, BDD bT) returns the BDD representation of the DAG SPG

containing all most probable paths from a state of bI to a state of bT . A symbolic implemen-

tation of the Flooding Dijkstra algorithm as described in Section 5.7.1 is used to obtain the

DAG SPG. Performing a backward reachability analysis from the target states given by bT

yields all states that induce the shortest path that lead to target states.

Change(MTBDD bP, BDD bI, BDD bT, MTBDD subSys): In the improved version, the idea is to

not only exclude the most probable path from the system, but all paths at once which

contain only edges that are already contained in the current subsystem. This can be done

by applying the transformation to the original DTMC and the current subsystem subSys
instead of only the most probable path SP. This avoids doubling the search graph after each

path and therefore the exponential blow-up, as in every step again the original system is

used; the system size only increases linearly. Furthermore, we always obtain a path having

a transition that is not yet contained in the subsystem at each time. Since the subsystem

contains all transitions of the original DTMC connecting two states in the subsystem, each

new transition also contributes a new state. Therefore the subsystem is extended in each

iteration. Note that bP stays always unmodified.

Procedure
First, the variables SPG, bP ′,bI ′, bT are initialized (Lines 1-5). If the MTBDD subSys is empty, i. e.,

this is the first search iteration, the input system is just copied (Lines 2- 3). Otherwise, the

Change-method is applied with respect to the current subsystem as described above (Line 5). For

the resulting system the set of shortest paths of minimal length is computed (Line 7). Returned

to Algorithm 6 is this set of paths, stored in the DAG SPG (Line 8). To further speed up the

calculation, we add all states of this DAG to the subsystem at once. As we see in our experiments,

the search process is accelerated by orders of magnitude.

Adding many paths to the subsystem at once involves the risk that the computed counterexam-

ple has more states than needed and is of a probability that is not close to the probability bound.
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We overcome this problem by using an adaptive search strategy: In case the current subsystem

is critical, i. e., its probability exceeds the probability bound, we measure the difference of these

probabilities. If the difference is higher than a predefined δ > 0, we perform backtracking to the

state of the search procedure before the last spanning tree was added. We now add only single

paths and terminate as soon as the probability bound is again exceeded.

5.7.3 Adaptive symbolic fragment search

In contrast to the previous approach, where we search for whole paths through the system, we

now aim at finding most probable path fragments as described in Section 5.5.2. This symbolic

version is depicted in Algorithm 10.

Algorithm 10 The adaptive fragment search for symbolic DTMCs

AdaptiveSymbolicFragmentSearch(MTBDD bP, BDD bI , BDD bT , MTBDD subSys)
begin

MTBDD SPG MTBDD SP BDD subSysStates (1)

if subSys= ; then (2)

SPG := ShortestPath(bP, bI, bT) (3)

else (4)

subSysStates := ToStateBDD(subSys) (5)

(SP, SPG) := ShortestPath(bP \ subSys, SubSysStates, SubSysStates) (6)

end if (7)

return (SP, SPG) (8)

end

Parameters All parameters are as in Algorithm 9 on Page 117 with the exception that the

subsystem is now stored by an MTBDD representing the transition probability matrix instead of

only the state set.

Variables

SP is an MTBDD storing the shortest path.

SPG is a an MTBDD representing a directed acyclic graph (DAG) which contains all most probable

paths of minimal length in D.

subSysStates is a BDD storing the states of the current subsystem.

Return value
This algorithm returns the MTBDDs SP and SPG.
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Methods

ShortestPath(MTBDD bP, BDD bI, BDD bT) returns again the DAG SPG describing all paths of

the highest probability leading to a target state.

ToStateBDD(MTBDD subSys) computes a BDD describing all states that occur as source state

or destination state for one of the transitions of subSys. When subSys is defined over

the variables Var = {x1, . . . , xn} and Var′ = {x ′1, . . . , x ′n}, this is done by first building the

set OUT := ∃x ′1, . . . , x ′n. subSysbool of all states with an outgoing transition. Afterwards,

the set IN′ := ∃x1, . . . , xn. subSysbool of states with incoming transitions is built. These

resulting BDDs have to be defined over the same variable set, therefore we perform variable

renaming for the set of states with incoming transitions: IN := IN′[x ′1→ x1] . . . [x ′n→ xn].

Building the union IN ∪OUT yields the needed BDD.

Procedure

First, the variables are initialized (Lines 1- 3). The algorithm then checks whether the pa-

rameter subSys is empty, i. e., whether this is the first search iteration (Line 2). If this is the

case, the base paths leading from the initial state to a target state are computed by invoking the

most probable path search (Line 3). The resulting paths, stored in the BDD SPG are returned to

Algorithm 6 (Line 8). If subSys is not empty, then a part of the subsystem has already been deter-

mined. In this case we compute the state BDD subSysStates by invoking ToStateBDD(subSys)
(Line 5). The most probable path algorithm is called to find the most probable paths from a state

in SubSysStates to a state in subSysStates inside the DTMC induced by bP without using direct

transitions from subSysStates to subSysStates (Line 6). Note again that the resulting DAG

might describe a large number of such paths.

In contrast to the symbolic global search described in Section 5.7.2, the MTBDD for the transi-

tion relation needs no significant modification. We only need to exclude the current subsystem

from the further search in every iteration, which didn’t lead to any remarkable overheads in our

experiments. We also use the adaptive search algorithm in order to gain small critical subsystems

and call this the adaptive symbolic fragment search.

Example 23 To illustrate the advantages of the adaptive fragment search, consider the following

toy example DTMC with a single target state s3.
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Using the adaptive global search, first the path π1 = s0, s1, s2, s3 of probability 0.24 is found.

The self-loop on s1 is a transition starting and ending at states of the above path and will thus be

automatically contained in the DAG SPG. The next path is π2 = s0, s6, s3 having probability 0.2.

Each of the next steps will extend π1 by traversing the loops π3 = s1, s2, s4, s1 and π3 = s1, s2, s5, s1.

On the contrary, the fragment search will first find the path π1 and then the path fragments π3

and π4, both in one step. If the probability bound was not higher than λ = 0.8, this suffices to be

a critical subsystem. As in most of the available benchmarks such symmetric loop-behavior is very

common, this example is illustrative.

5.8 Discussion of related work

The approaches introduced in this chapter can be roughly categorized in such that work on

explicit and such that work on symbolic representations of DTMCs.

As already discussed, the explicit global search approach follows the k shortest path approach

in [HKD09]. In contrast to that approach, we represent a counterexample in the more compact

way of a critical subsystem. Moreover, this method is mostly superior in terms of running times.

The hierarchical counterexample generation has to be compared to [ADvR08] where the SCCs

of a DTMC are abstracted as a whole. The main difference lies in the finer consideration of

sub-SCCs, such that the whole loop-structure of a graph is exploited.

In [AL10], also critical subsystems are used, there called diagnostic subgraphs. The generation

is done in a different way, as no global information about the system is exploited while an a

priori generation of the state space is avoided using on-the-fly algorithms.

The only other approach for the symbolic generation of counterexamples using MTBDDs is

given in [GSS10]. We adopted this for the global search approach, but as opposed to their work

we do not obtain an MTBDD representing a set of k shortest paths, but rather a representation

as a critical subsystem of the DTMC. In addition, we improved the running time of [GSS10] by

reducing the number of variable shiftings for the transition MTBDD in our implementation.

Details about the experimental comparison to other approaches are given in Chapter 8, as long

as implementations are publicly available.
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CHAPTER 6

Minimal critical subsystems for discrete-time Markov models

Summary In this chapter we present several dedicated approaches for the counterexample

generation for DTMCs and PAs. As properties, we handle both reachability properties and ω-

regular properties. Our goal is—as in the previous Chapter 5—to compute critical subsystems

of the original system, see Definition 50 on Page 82. The difference is, that here we want to

determine the actual minimal critical subsystem in terms of the number of states.

For reachability properties, we give both for DTMCs and for PAs an encoding suited for (non

optimizing) SMT solvers, that—if satisfiable for input system and property—yields a critical

subsystem of a certain size n in terms of the number of the states. A binary search over n is used

to compute the actual minimal critical subsystem. In order to achieve better running times and to

handle larger input systems, we define an alternative mixed integer linear programming [Sch86]

(MILP) formulation of these problems. Together with a number of optimizations, we are able to

solve this minimality problem for many benchmarks. As further result we present MILP encodings

suited to compute minimal critical subsystems for DTMCs or PAs and ω-regular properties. Note

that this is the first approach directly able to compute counterexamples for this kind of properties.

The results presented in this chapter are summarized in [4], while there instead of PAs only

MDPs were used.

Using MILP solvers not only enables to compute very small counterexamples but also to

measure the quality of the heuristic approaches as described in Chapter 5. Using intermediate

results without a proof of minimality, small—and in many cases already minimal—subsystems

can be computed in a few seconds, which renders the MILP approach practically feasible if no

proof of minimality is desired.

Background The foundations needed for this chapter are—besides the definitions of the prob-

abilistic models that are used here—the explicit model checking of DTMCs and MDPs based on
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solving linear equation systems, see Sections 2.3.1.1 and 2.3.1.2. The reader is assumed to be

familiar with the basics and the model checking of ω-regular properties for DTMCs and MDPs,

see Section 2.3.3. For basic information about SMT solving and MILP see the introduction to

solving techniques in Sections 2.6.

6.1 Minimal critical subsystems for DTMCs

In this section we present two approaches for computing a minimal critical subsystem (MCS)

of a DTMCs based on SMT solving or MILP solving, respectively. Although our experiments

revealed the MILP approach to be superior, we start by representing both encodings, as the SMT

constraints give a better intuition on how the subsystems are computed. Besides performance, an

important advantage of using MILP solvers is that during the solving process a lower bound on

the optimal solution is obtained while both the current solution—the currently obtained critical

subsystem—and the lower bound are successively improved. This leads to the possibility of

halting the MILP solver at an arbitrary point in time and still obtaining the best solution so far,

as well as a precise indication of the size of an MCS.

Additionally to the problem encodings, we provide several optimizations in the form of redun-

dant constraints that are aimed at speeding up the solving process by detecting conflicts at an

earlier stage.

6.1.1 Reachability properties

In the following we assume a DTMC D = (S, sI, P, L) with a unique initial state and a set of

target states T ⊆ S. All approaches are also applicable for multiple initial states, see Remark 5

on Page 25. The task is to find a critical subsystem for D and the reachability property P≤λ(◊T ).

This computed subsystem should be minimal in terms of the number of states. We assume that

all irrelevant states have been removed beforehand, see Definition 23 on Page 33.

Remark 27 (Minimality of subsystems) Minimal critical subsystems are not unique. However,

in our method we are able to compute a minimal critical subsystem with the highest probability of

reaching a target state from the initial state (which of course is, again, not necessarily unique).

Moreover, a minimal number of transitions is not induced. All approaches presented in the

following can easily be adapted to the minimization in terms of the number of transitions.

Complexity The complexity of computing a minimal critical subsystem for reachability proper-

ties of DTMCs is to the best of our knowledge unknown. However, for arbitrary (nested) PCTL

properties the problem is known to be NP-complete [CV10].
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6.1.1.1 SMT formulation

Intuition We give an SMT formula over linear real arithmetic whose set of satisfying variable

assignments corresponds to the set of critical subsystems of D. It is crucial to assign correct prob-

abilities to all states, i. e., states inside the subsystem are assigned their reachability probability

to reach a target state inside the subsystem while states outside need to explicitly be assigned

0. Otherwise, they could contribute to the reachability probability inside the subsystem which

would yield wrong results. Furthermore, the probability of the initial state has to exceed the

probability bound λ.

Variables

xs ∈ [0, 1]⊆ R is introduced for each s ∈ S. This characteristic variable is assigned 1 if and only

if the corresponding state s is contained in the subsystem.

ps ∈ [0, 1]⊆ R is to be assigned the probability of reaching a target state inside the subsystem

from each s ∈ S, if and only if s is contained in the subsystem, i. e., xs = 1. Otherwise this

probability variable is assigned 0.

Constraints

minimize
∑

s∈S

xs (6.1a)

such that

∀s ∈ T.
�

xs = 0∧ ps = 0
�⊕ �xs = 1∧ ps = 1

�

(6.1b)

∀s ∈ S \ T.
�

xs = 0∧ ps = 0
�⊕ �xs = 1∧ ps =

∑

s′∈succ(s)

P(s, s′) · ps′
�

(6.1c)

psI
> λ (6.1d)

where ⊕ denotes exclusive or.

Explanation As we are interested in a minimal critical subsystem, we have to minimize the

number of xs-variables that are assigned value 1. This corresponds to minimizing the sum over

all characteristic variables xs for s ∈ S (Constraint 6.1a). Since most state-of-the-art SMT solvers

for LRA cannot cope with the optimization of objective functions, we apply a binary search in

the range {1, . . . , |S|} to obtain the optimal value of the objective function. Starting with kl = 1

and ku = |S|, we iteratively search for critical subsystems whose number of states is between kl

and km := kl + (ku − kl)/2. If we find such a subsystem with k states then we set ku to k−1;

otherwise, we set kl to km+1. The search is repeated until ku < kl . The smallest k for which a

solution was found yields the size of the MCS at hand.
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If xs is zero, the corresponding state s does not belong to the subsystem. Then its reachability

probability is forced to be 0 (first summand in Constraint 6.1b). Otherwise, target states that are

contained in the subsystem have probability 1 (second summand in Constraint 6.1b). Note that

an MCS does not need to contain all target states. The reachability probability of all non-target

states in the subsystem is given as the weighted sum over the probabilities of their successor states

(Constraint 6.1c), see Section 2.3.1.1 for the standard computation of reachability probabilities

for DTMCs. In order to obtain a critical subsystem we additionally require the probability variable

psI
of the initial state to be assigned such that the “critical” probability threshold λ is exceeded.

(Constraint 6.1d).

Formula size Recall our input DTMC D = (S, sI, P, L) and assume the number of states to be

nD and the number of transitions mD .

Constraint 6.1b introduces a subformula of constant size for each target state t ∈ T ⊆ S.

Constraint 6.1c introduces a subformula for each state s ∈ S\T while the size of these subformulae

depends on the number of transitions. As in the context of the whole formula each transition

occurs only once, the size of the resulting SMT formula is in O(nD +mD).
Soundness and completeness of the SMT encoding are stated by the following theorem. The

proof is given at the end of this chapter in Section 6.3.1. Intuitively, for all encodings soundness

refers to the fact that each satisfying assignment induces a minimal critical subsystem for the

model and the property present. Furthermore, completeness states that there is a satisfying

assignment for each minimal critical subsystem.

Theorem 4 The SMT formulation (6.1a)–(6.1d) is sound and complete.

6.1.1.2 MILP formulation

As mentioned before, experiments show that obtaining a solution for larger DTMCs is rather

time-consuming using this SMT formulation up to being infeasible. Consider the high number

of disjunctions present in this formula. This leads to the fact that when assigning variables,

there are often only a few implications. Therefore, many different cases have to be tried while

searching for a solution.

We now provide an MILP formulation for finding an MCS for reachability properties.

Intuition In contrast to the SMT constraints we now have to argue using upper and lower

bounds on variables instead of implications. Formally, instead of disjunctions we use sums over

variables. The idea of the encoding stays the same.

Variables

xs ∈ {0,1} ⊆ Z is the characteristic variables for each s ∈ S, now explicitly required to be integer

within the range of 0 and 1.
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ps ∈ [0, 1]⊆ R is the probability variable for each s ∈ S as before.

Encoding

minimize − 1

2
psI
+
∑

s∈S

xs (6.2a)

such that

∀s ∈ T. ps = xs (6.2b)

∀s ∈ S \ T. ps ≤ xs (6.2c)

∀s ∈ S \ T. ps ≤
∑

s′∈succ(s)

P(s, s′) · ps′ (6.2d)

psI
> λ . (6.2e)

Explanation The probability variable ps of a state s ∈ T is assigned 1 iff the state is contained in

the MCS, i. e., xs = 1 (Constraint 6.2b). Analogously, for each state s ∈ S\T which is not included

in the subsystem, i. e., xs = 0, ps is assigned 0. This is done by requiring ps ≤ xs (Constraint 6.2c).

Note that for states included in the critical subsystem, this does not restrict the value of ps. An

additional upper bound on the probability ps is given by the weighted sum of the reachability

probabilities ps′ of the successor states s′ (Constraint 6.2d). The final constraint requires again

the probability variable of the target state to have a value greater than the probability bound λ

(Constraint 6.2e).

Constraints 6.2b–6.2e together with the same objective function as in the SMT formulation

(Constraint 6.1a) already yield a minimal critical subsystem. However, the objective function

can be improved in two aspects. Since Constraint 6.2d only imposes an upper bound on ps, we

only obtain a lower bound on the desired reachability probability as the value of psI
while we

would like to obtain the concrete value. Additionally, we want to obtain an MCS with maximal

probability. Both can be achieved by maximizing the value of psI
. To that end, we add psI

to the

minimizing objective function together with a negative coefficient. A factor 0< c < 1 is needed

because if we only subtracted psI
, then the solver could add an additional state if this would yield

psI
= 1. Here, we choose c = 1

2
. This yields the objective function (Constraint 6.2a).

Formula size The number of real and integer variables as well as the number of constraints

is in O(nD). As before, Constraint 6.2d depends on the number of transitions, all in all the size

of the formula, i. e., the number of non-zero variable coefficients in the MILP formulation, is in

O(nD +mD).

Theorem 5 The MILP formulation (6.2a)–(6.2e) is sound and complete.

The proof of this theorem can be found in Section 6.3.2.
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Figure 6.1: DTMC D
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Figure 6.2: Minimal critical subsystem D ′ v D for property P≤0.7(◊target)

Example 24 Consider again the DTMC D from Example 1 on Page 20, again depicted in Figure 6.1

and the reachability property P≤0.7(◊target), which is violated for D. The relevant states for this

property, see Definition 23, consist of the set S \ {s8}. For the MILP formulation we can therefore

ignore s8. Note that this will result in sub-stochastic distributions already for the input DTMC. We

introduce the binary variables xs0
, . . . , xs7

∈ {0,1} ⊆ Z and the real-valued variables ps0
, . . . , ps7

from [0,1]⊆ R. The MILP is then given by:

minimize −1
2

ps0
+ xs0

+ xs1
+ xs2

+ xs3
+ xs4

+ xs5
+ xs6

+ xs7

such that ps3
= xs3

ps0
≤ xs0

ps0
≤ 0.5ps1

+ 0.25ps2
+ 0.25ps5

ps1
≤ xs1

ps1
≤ 0.5ps2

+ 0.5ps3

ps2
≤ xs2

ps2
≤ 0.5ps1

+ 0.5ps4

ps4
≤ xs4

ps4
≤ 0.7ps1

+ 0.3ps3

ps5
≤ xs5

ps5
≤ ps6

ps6
≤ xs6

ps6
≤ 0.5ps3

+ 0.5ps7

ps7
≤ xs7

ps7
≤ 0.25ps5

+ 0.25ps6

ps1
> 0.7 .
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Solving this MILP yields the following optimal solution:

Variable xs0
ps0

xs1
ps1

xs2
ps2

xs3
ps3

xs4
ps4

xs5
ps5

xs6
ps6

xs7
ps7

Value 1 0.75 1 1 1 1 1 1 1 1 0 0 0 0 0 0

This solution corresponds to the MCS shown in Figure 6.2.

6.1.2 Optimizations

In the following we propose a number of optimizations in the form of redundant constraints that

help the solver to prune the search space and to detect unsatisfiable or non-optimal branches of

the search space at an early stage of the solving process. Imposing extra constraints to the MILP

formulations intuitively means adding cutting planes which tighten the LP-relaxation of the MILP

and may lead to better lower bounds on the optimal value.

In a nutshell, all constraints aim to a certain extent at guiding the MILP solver to only add

states that are on paths from the initial state to a target state inside the MCS, as only such states

will be part of an MCS.

6.1.2.1 Forward and backward constraints

Intuition We want to ensure that every non-target state has a successor state in the MCS by

adding constraints which we call forward cuts. Likewise, we add backward cuts, which enforce

every state except the initial state sI to have a predecessor in the MCS. To avoid self-loops, we

exclude a state itself from its successor and predecessor states.

Constraints

∀s ∈ S \ T. − xs +
∑

s′∈succ(s)\{s}
xs′ ≥ 0 (6.3a)

∀s ∈ S \ sI. − xs +
∑

s′∈pred(s)\{s}
xs′ ≥ 0 (6.3b)

Explanation Both the forward cuts (Constraint 6.3a) and the backward cuts (Constraint 6.3b)

are trivially satisfied if state s is not contained in the subsystem: xs assigned 0 ensures that the

left side of both inequations is at least 0. If state s is chosen to be contained in the subsystem,

i. e., xs = 1, then at least one successor/predecessor state s′ must be contained, i. e., xs′ = 1, to

achieve a positive number of successors/predecessors.

These constraints ensure that each initial state has a successor and every target state has

a predecessor, while other states have at least one predecessor and successor. However, if a

connected subset of inner states is selected during the solving process these constraints might be

satisfied while this subset is not reachable from the initial state or cannot reach a target state.
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Example 25 Consider the DTMC D from Example 24 depicted in Figure 6.1 on Page 128. Assume,

the characteristic variable xs1
for state s1 is assigned xs1

= 1. Applying Constraint 6.3a yields

− xs1
+ xs2

+ xs3
≥ 0

xs1=1
===⇒ xs2

+ xs3
≥ 1

which implies that either xs2
or xs3

needs to be assigned 1 which is true in the subsystem D′ v D
from Figure 6.2 on Page 128. Assume contrary now the characteristic variable xs6

to be assigned

xs6
= 0. Applied to Constraint 6.3a this yields

− xs6
+ xs3

+ xs7
≥ 0

xs1=0
===⇒ xs3

+ xs7
≥ 0

which does not enforce a value greater than 0 for both xs3
and xs7

. The case for the backward

constraints is analogous.

6.1.2.2 SCC constraints

Intuition To prevent the solver from selecting isolated connected sets of states, we utilize the

SCC decomposition of the input DTMC D. Let S ⊆ P (S) be the set of all nontrivial SCCs of

D. States of an SCC S′ ∈ S (not containing the initial state sI) can be reached from outside S′

through one of the input states Inp(S′) only. Therefore we ensure that a state of an SCC can only

be selected if at least one of the SCC’s input states is selected. The corresponding constraints are

referred to as the SCC input cuts.

Analogously we define SCC output cuts: Paths from a state inside an SCC S′ ∈ S that do not

contain a target state have to go through one of the SCC’s output states Out(S′) to actually reach

a target state. Therefore, if no output state of an SCC S′ is selected, we do not select any state of

the SCC.

Constraints

∀S′ ∈ {S′′ ∈ S | S′′ ∩ {sI}= ;}.∀s ∈ S′ \ Inp(S′). xs ≤
∑

s′∈Inp(S′)
xs′ (6.4a)

∀S′ ∈ {S′′ ∈ S | S′′ ∩ T = ;}.∀s ∈ S′. xs ≤
∑

s′∈Out(S′)
xs′ . (6.4b)

Explanation Again both the SCC input cuts (Constraint 6.4a) and the SCC output cuts (Con-

straint 6.4b) are trivially satisfied for a state s that is not contained in the subsystem, as xs = 0 is

always less or equal than the sum over the input state of the SCC. Contrary, for the input cuts, if a

state s ∈ S′ is contained in the subsystem, i. e., xs = 1, at least one of the input states s′ ∈ Inp(S′)
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of the SCC also has to be contained in order to achieve a value that is greater or equal to 1. For

output cuts, at least for one of the output states s ∈ Out(S′) of the SCC the characteristic variable

xs′ has to be assigned 1.

Note that using these SCC constraints, still isolated loops inside an SCC can be selected without

a connection to the input and output states of the SCC.

Example 26 Consider DTMC D from Figure 6.1 on Page 128 and the SCC consisting of the states

s1, s2, s4, where s1 and s2 are input states. Applying Constraint 6.4a to the characteristic variable

xs4
yields:

xs4
≤ xs1

+ xs2

xs4=1
===⇒ xs1

+ xs2
≥ 1

which implies that one of the input states needs to be included in the subsystem, which is again true

for D′ v D from Figure 6.2 on Page 128. If xs4
is assigned 0, the constraint is trivially true. The

case for the SCC output cuts is analogous.

6.1.2.3 Reachability constraints

We now present a set of constraints which precisely enforce the reachability of a certain set of

states. An assignment will satisfy these additional constraints only if all selected states lie on a

path from the initial to a target state inside the selected subsystem. Without these constraints,

this is only ensured by the state-minimality as enforced by the objective function, where isolated

states do not contribute to the probability of reaching target states from the initial state and are

therefore not part of a minimal subsystem.

Intuition We introduce the notions of forward and backward reachability constraints. For both,

the concept is to define a partial order on the states by using real-valued variables for each state:

Along a loop-free path, these variables are assigned increasing values, i. e., each state has a higher

value than its predecessor. Each state needs to have a transition that is part of such a path. For

the forward reachability the only state that does not need to have a predecessor that is lower

in the partial ordering is the initial state. Thereby, every state included in the subsystem needs

to be reachable via a loop-free path from the initial state. Analogously, we define the backward

reachability of target states, where every state except the target states needs a successor with a

higher value associated. For this optimization we present both an SMT and an MILP encoding to

ease the understanding.

Variables – forward reachability

r→s ∈ [0, 1]⊆ R for all s ∈ S \ {sI} are used to associate to each state a real number. These

variables define a partial order on the states with respect to <.
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t→s,s′ ∈ [0,1]⊆ Z for all s, s′ ∈ S \ {sI} are integer variables indicating whether transition (s, s′) ∈
ED is chosen for a path or not. These variables are only needed for the MILP encoding.

SMT-constraints – forward reachability

∀s′ ∈ S \ {sI}.
�

xs′ = 0∨
∨

s∈pred(s′)

(xs ∧ r→s < r→s′ )
�

. (6.5a)

Explanation If s′ ∈ S is selected and reachable from sI then there is a loop-free path sI =

s0, . . . , sn = s′ such that r→si
< r→si+1

for all 0≤ i < n and all states on the path are selected for the

subsystem, i. e., xsi
= 1 for all 0 ≤ i ≤ n. This is ensured by the fact that every state s′ is either

not selected (xs′ = 0) or it hast at least one predecessor s that has a lower rs value than s′. This

ensures a loop-free path, as a loop would revisit a state that already has a higher value. The path

can only terminate at the initial state sI for which this constraint is not defined. As seen by this

encoding, a backward reachability from each state to the initial state is defined. However, in the

intuitive sense this yields a forward reachability from the initial state.

MILP-constraints – forward reachability

∀s′ ∈ S \ {sI}.∀s ∈ pred(s′). t→s,s′ ≤ xs (6.6a)

∀s′ ∈ S \ {sI}. ∀s ∈ pred(s′). r→s < r→s′ + (1− t→s,s′) (6.6b)

∀s′ ∈ S \ {sI}.
∑

s∈pred(s′)
t→s,s′ = xs′ . (6.6c)

Explanation Again, we encode a loop-free path sI = s0, . . . , sn = s′ such that r→si
< r→si+1

for

all 0 ≤ i < n. As we are not able to encode a disjunction over all predecessors where for one

specific predecessor the ordering has to hold, we have to explicitly choose transitions using the

t→s,s′ variables.

In detail, each transition (s, s′) ∈ ED with t→s,s′ = 1 starts in a selected state s (Constraint 6.6a).

If xs′ = 0 then Constraint 6.6c ensures that all variables ts,s′ equal 0 for s ∈ pred(s′), i. e., ts,s′ = 1

implies xs′ = 1. Therefore ts,s′ = 1 implies that both s and s′ are contained in the subsystem.

If a transition (s, s′) is selected, i. e., t→s,s′ = 1, r→s < r→s′ has to hold (Constraint 6.6b), which

defines the partial order on selected states. The constraints defined in Constraint 6.6c imply

that from each selected state s′ not being the initial state, one incoming transition t→s,s′ has to be

selected. One can show by induction that this ensures that for each selected state s′ there is a

path in the subsystem from sI to s′.
The constraints defining backward reachability from target states are defined analogously:

Variables – backward reachability
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r←s ∈ [0, 1]⊆ R for all s ∈ S \ T again define a partial order on all states except the target states.

t←s,s′ ∈ [0,1]⊆ Z for all s, s′ ∈ S \ T for choosing transitions are again only needed for the MILP

constraints.

SMT-constraints – backward reachability

∀s ∈ S \ T.
�

xs = 0∨
∨

s′∈succ(s)

(xs′ ∧ r←s < r←s′ )
�

. (6.7a)

Explanation Analogously to forward reachability from the initial state, we encode a loop-free

path terminating at a target state, where every successor is required to have a higher value with

respect to the partial ordering.

MILP-constraints – backward reachability

∀s ∈ S \ T.∀s′ ∈ succ(s). t←s,s′ ≤ xs′ (6.8a)

∀s ∈ S \ T.∀s′ ∈ succ(s). r←s < r←s′ + (1− t←s,s′) (6.8b)

∀s ∈ S \ T.
∑

s′∈succ(s)

t←s,s′ = xs . (6.8c)

Explanation A partial ordering on all states except the target states is defined. To that end, each

state s needs to have an associated loop-free path defined by the choice of transition variables

t←s,s′ which “terminates” in a target state as these are the only states where Constraint 6.8b is not

defined.

During the assignment process, the forward and backward reachability constraints prevent all

critical subsystems with unreachable states. However, as there are additional variables for all

states and for all transitions, the usage of these cuts is expensive.

Example 27 Consider the following path of DTMC D from Figure 6.1 on Page 128:

s0

0
4

s1

1
4

s2

2
4

s4

3
4

s3

4
4

0.5 0.5 0.5 0.3

The numbers above the states indicate possible values of the r→s -variables satisfying the MILP

forward constraints. Note that r→s ∈ [0,1] ⊆ R. Consider the forward constraints (6.6a)-(6.6c):

For this path, we have for instance that t→s0,s1
= t→s1,s2

= t→s2,s4
= t→s4,s3

= 1. Constraint 6.6b now

applied to s2 and s1 yields:

r→s1
< r→s2

+ (1− t→s1,s2
)
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t→s1,s2
=1

====⇒ r→s1
< r→s2

which implies that the r→-value of s2 has to be larger than the one for s1. This holds for the

values we assigned in our example. As for each selected state exactly one t→-variable is assigned 1

by Constraint 6.6c and each state except of the initial state s0 needs a predecessor with a smaller

r→-value, each path has to start with the initial state.

Remark 28 (Usage of reachability constraints) In this section, the reachability constraints are

specifically defined for the forward reachability from initial states and the backward reachability

from target states. However, in the remainder we use these constraints for other sets of states, too.

For instance, for Markov decision processes we need to ensure the reachability of states with certain

properties. For convenience, we always reference the explanations given above.

6.1.2.4 Correctness of the optimizations

The three kinds of optimizations we presented, namely the forward and backward cuts, the SCC

cuts, and the reachability cuts prune the search space. However, these constraints do not restrict

the solution space, i. e., each minimal critical subsystem satisfies these constraints. This is stated

in the following theorem. The proofs are given in Section 6.3.3.

Theorem 6 Both the SMT formulation (6.1a)–(6.1d) and the MILP formulation (6.2a)–(6.2e)

together with any (combination) of the three above optimizations are sound and complete.

6.1.3 ω-regular properties

In this section we describe an approach to enable the computation of minimal critical subsystems

for ω-regular properties. we first present an SMT encoding offering an intuitive understanding

of the crucial parts and then give a formulation suited for MILP. For the MILP approach we later

on state its soundness and completeness.

Let in the following D = (S, sI, P, L) be a DTMC with a set of atomic propositions AP. Let L
be an ω-regular property andA = (Q, qI,Σ,δ, F) the corresponding DRA with L (A ) =L and

Σ = 2AP. We assume that for sI the probability of satisfying L is higher than a certain upper

probability bound λ ∈ Q, i. e., PrDsI
(L ) > λ. The goal is to compute an MCS D′ v D for which

PrD
′

sI
(L )> λ also holds. As always, we assume all irrelevant states to be removed.

6.1.3.1 SMT encoding

Intuition For our encoding, we proceed as in the model-checking algorithm for ω-regular

properties on DTMCs as described in Section 6.1.3. First, we compute the product D ⊗A of the

DTMC D and the DRA A as in Definition 29 on Page 38. The model checking is now reduced

to compute the probability of reaching accepting BSSCs from B inside the product. We denote
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T =
⋃

B∈B B. This is utilized in the implicit probability computation via the SMT constraints.

The critical subsystem we compute will not be a part of the product automaton but of the original

DTMC. This is achieved via an implicit projection from the product.

Variables

xB ∈ {0,1} ⊆ Z for all accepting BSSCs B ∈ B of D ⊗A are characteristic variables indicating

whether B is included in the subsystem or not. Note that either all states of an accepting

BSCC are included or none of them.

xs ∈ {0,1} ⊆ Z for all states s ∈ S are characteristic variables indicating whether a state is in-

cluded in the subsystem. Note that these variables are not defined over the product

automaton D ⊗A as the result will be projected to the DTMC.

psq ∈ [0, 1]⊆ R for every state (s, q) ∈ S×Q is assigned the reachability probability of the states

of the product automaton. Let psqI
denote the variable for the initial state (s, q)I ∈ S×Q of

the product.

Constraints

minimize
∑

s∈S

xs (6.9a)

such that

psqI
> λ (6.9b)

∀B ∈B .∀(s, q) ∈ B. (xB = 0∧ psq = 0)⊕ (xB = 1∧ psq = 1∧ xs = 1) (6.9c)

∀(s, q) ∈ (S×Q) \ T.
�

xs = 0∧ psq = 0
�⊕

�

xs = 1∧ psq =
∑

(s′,q′)∈succD⊗A (s,q)
P ′
�

(s, q), (s′, q′)
� · ps′q′

�

(6.9d)

Explanation First, as for mere reachability, the number of characteristic variables xs is min-

imized (Constraint 6.9a) while the probability variable psqI
for the initial state of the product

has to be assigned such that its value exceeds the probability bound λ rendering the subsystem

critical (Constraint 6.9b).

The handling of the accepting BSSCs B ∈B is as follows: The probability of a state (s, q) ∈ B

is 1 (i. e., psq = 1) if and only if that BSCC is selected, (i. e., xB = 1). Furthermore, a BSCC

B ⊆ S ×Q can only be selected if all states (s, q) ∈ B are selected via their projection to S, i. e.,

xs = 1 (Constraint 6.9c).

If the projection of a state (s, q) ∈ (S×Q) \ T—that does not belong to an accepting BSCC—is

select for containment in the subsystem, i. e., xs = 1, the probability of reaching an accepting

BSCC inside the subsystem is computed. This is similar to the formulation for reachability

properties (Constraint 6.9d).
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6.1.3.2 MILP encoding

Intuition The MILP encoding for this problem ensures—basically similar to the corresponding

SMT encoding—that accepting BSCCs B ∈ B are assigned probability 1 iff contained in the

subsystem. For the other states, the probability of reaching the contained accepting BSCCs is

computed, while the number of all states satisfying these requirements is minimized.

Variables All variables are as for the SMT encoding, see Section 6.1.3.1.

Constraints

minimize − 1

2
psqI
+
∑

s∈S

xs (6.10a)

such that

psqI
> λ (6.10b)

∀B ∈B ∀(s, q) ∈ B. psq = xB (6.10c)

∀B ∈B ∀(s, q) ∈ B. xs ≥ xB (6.10d)

∀(s, q) ∈ SD⊗A \ T. psq ≤ xs (6.10e)

∀(s, q) ∈ SD⊗A \ T. psq ≤
∑

(s′,q′)∈succD⊗A ((s,q))
P
�

(s, q), (s′, q′)
� · ps′q′ (6.10f)

Explanation As for reachability, the number of involved states is minimized via the xs variables

while the probability of the initial state is maximized and exceeds the probability bound λ,

(Constraints 6.10a and 6.10b), see Section 6.1.1.2.

For all states (s, q) ∈ B ∈ B that belong to an accepting BSCC the probability variable psq is

assigned 1 if and only if the whole BSCC B is included (Constraint 6.10c).

A BSCC B of the product can only be selected if all of its states (s, q) ∈ B are selected via the

projection to the DTMC D, i. e., xs = 1 (Constraint 6.10d).

If the probability contribution of a state (s, q) exceeds 0, the DTMC-state s is selected (Con-

straint 6.10e). Using Constraint 6.10f, a lower bound on the probability of reaching accepting

BSCCs inside the MCS is computed.

Formula size The MILP formulation contains O(nD⊗A ) real variables, O(nD) integer variables,

O(nD⊗A ) constraints and O(nD⊗A +mD⊗A ) non-zero coefficients.

The correctness of the MILP formulation, proven in Section 6.3.4, reads as follows.

Theorem 7 The MILP formulation (6.10a)–(6.10b) is sound and complete.
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6.2 Minimal critical subsystems for PAs

This section addresses the generation of minimal critical subsystems for probabilistic automata.

As for DTMCs we are going to present approaches for reachability properties as well as arbitrary

ω-regular properties. There are two main challenges: First, we have to find a scheduler resolving

the nondeterminism that induces a minimal critical subsystem. Second, for ω-regular properties

we meet the problem that in contrast to DTMCs the sets of accepting states are now dependent

on possible schedulers. Computing these sets is expensive, see Definition 33 on Page 39.

We refrain from giving an SMT encoding because for this computationally more involved

problem this is not feasible. We present MILP encodings both for reachability and for ω-regular

properties.

6.2.1 Reachability properties

Let in the followingM = (S, sI, Act,P , L) be a PA together with a set of target states T ⊆ S. We

assume the PCTL reachability property P≤λ(◊T) for λ ∈ R to be violated forM . Please recall

that we sometimes write (α,µ) = η ∈ Act× subDistr(S) for an action-distribution pair. By η(s)

we denote the probability assigned to s by the distribution µ for all s ∈ S. Furthermore, we use

supp(η) to denote supp(µ).

One would suppose the critical subsystem we want to compute to be a subsystemM ′ vM ,

i. e., a PA as in Definition 17 on Page 29. Consider such a PA M ′ that is a minimal critical

subsystem for M and the property P≤λ(◊T). SinceM ′ is critical, it violates this property. As

explained in Section 2.3.1.2, there exists a memoryless deterministic scheduler σ ∈ SchedM

inducing a DTMC Dσ with a probability mass of reaching T exceeding λ. Furthermore, since

M ′ is minimal and Dσ is a subsystem ofM ′, D is also minimal. Therefore, our task is to find a

DTMC D with D vM of minimal size in terms of the number of states.

Complexity For PAs, the complexity of computing a minimal critical subsystem is known and

stated in the following theorem.

Theorem 8 ([CV10]) Let M be a PA with M 6|= P≤λ(◊T) and k ∈ N. The problem to decide

whether there exists a critical subsystemM ′ vM for P≤λ(◊T ) with at most k states is NP-complete.

6.2.1.1 Problematic states

For DTMCs, we excluded all irrelevant states, i. e., the ones from where no target state can be

reached. For PAs, we also assume that our models have only relevant states, see Definition 24 on

Page 34: We basically remove all states for which no scheduler exists such that there is path that

leads to a target state. However, for a relevant state s, the target states T might not be reachable

under certain schedulers, which poses a problem in our computations.
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Figure 6.3: PAM with problematic states

Definition 56 (Problematic states and actions) For a PA M = (S, I , Act,P , L) and a set

of target states T ⊆ S, the set of problematic states is given by Sprobl(T ) = {s ∈ S | ∃σ ∈
SchedM . PrMσ

s (◊T ) = 0}. The states S \ Sprobl(T ) are called unproblematic states.

We call Hprobl(T )(s) = {η ∈ P (s) | supp(η)⊆ Sprobl(T )} for s ∈ Sprobl(T ) the set of problematic

action-distribution pairs for problematic state s.

When computing the probability of reaching target states, where not the actual maximizing

scheduler is considered but—as in our case—the one inducing a minimal critical subsystem, the

corresponding equation system does not have a unique solution for problematic states, as the

following example shows.

Example 28 To illustrate problematic states, consider the MDP (PA)M in Figure 6.3 as in Exam-

ple 3 on Page 28. States s1 and s2 are both problematic since the scheduler which selects the action

β in both states s1 and s2 prevents reaching the target state s3. We cannot remove the outgoing

transitions belonging to action β in a preprocessing step since a scheduler may choose β in one state

and α in the other one. However, if a scheduler chooses β in both states, the following equations

would be obtained for the probability computation as explained in Section 2.3.1:

ps1
= 1.0 · ps2

ps2
= 1.0 · ps1

.
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A solution is ps1
= ps1

= 1 which means that the probability of reaching a target state is 1 for both

states although no target state is reachable having this scheduler.

In our encoding we have to take care of these states. We do this implicitly by imposing

additional constraints to assure that we consider only schedulers under which the target states

are reachable from all subsystem states. Note that these constraints are not optional: Without

these additional constraints, the reachability probabilities for states in a bottom SCC of the

induced DTMC could be incorrectly determined to be 1 even if it does not contain a target state,

leading to wrong results.

We are now ready to present the dedicated MILP encoding.

6.2.1.2 MILP encoding

Intuition The crucial part is to encode the nondeterministic choices to be made into the MILP

formula, which shall be resolved by a deterministic memoryless scheduler, see Definition 21

on Page 30. This is done by introducing binary variables indicating the choice of an action-

distribution pair at certain states. Moreover, the reachability of target states from problematic

states has to be enforced.

Variables

σs,η ∈ {0,1} ⊆ Z for each state s ∈ S \ T and each pair of action and distribution η ∈ P (s) that

are available at s is a binary variable such that σs,η = 1 iff η is selected in state s by the

scheduler that induces the critical subsystem.

xs ∈ {0,1} ⊆ Z for each state s ∈ S is the characteristic variable as for DTMCs to encode whether

s belongs to the subsystem or not.

ps ∈ [0, 1]⊆ R for each state s ∈ S is a real-valued variable which is assigned the probability of

s with respect to the scheduler determined by the σs,η variables.

r←s ∈ [0, 1]⊆ R for all problematic states s ∈ Sprobl(T ) are used to encode the backward reacha-

bility of non-problematic states.

t←s,s′ ∈ {0, 1} ⊆ Z are used for the backward reachability of non-problematic states to assure the

existence of a transition in the MCS between problematic states s, s′ ∈ SMprobl(T ) where the

selected action-distribution pair η ∈ Hprobl(T )(s) is problematic.

Constraints

minimize − 1

2
psI
+
∑

s∈S

xs (6.11a)

such that
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psI
> λ (6.11b)

∀s ∈ T. ps = xs (6.11c)

∀s ∈ S \ T. ps ≤ xs (6.11d)

∀s ∈ S \ T.
∑

η∈P (s)
σs,η = xs (6.11e)

∀s ∈ S \ T.∀η ∈ P (s). ps ≤ (1−σs,η) +
∑

s′∈succM (s,η)
η(s′) · ps′ (6.11f)

∀s ∈ Sprobl(T ).∀η ∈ Hprobl(T )(s).∀s′ ∈ supp(η). t←s,s′ ≤ xs′ (6.11g)

∀s ∈ Sprobl(T ).∀η ∈ Hprobl(T )(s).∀s′ ∈ supp(η). r←s < r←s′ + (1− t←s,s′) (6.11h)

∀s ∈ Sprobl(T ).∀η ∈ Hprobl(T )(s). (1−σs,η) +
∑

s′∈supp(η)

t←s,s′ ≥ xs . (6.11i)

Explanation As for DTMCs, the number of states is minimized while the probability of the

initial state is maximized (Constraint 6.11a). Moreover, it has to exceed the probability bound

λ (Constraint 6.11b). Target states are assigned probability 1 (ps = 1) if and only if they are

included in the subsystem (xs = 1), see Constraint 6.11c, while for all other states it is ensured

that—if not included in the subsystem—they are assigned probability 0, see Constraint 6.11d.

Constraint 6.11e ensures that in each selected non-target state a single action-distribution pair

is selected by the scheduler: If xs = 0, no distribution on s is selected, if xs = 1, the sum of all

scheduler variables σs,η has to be exactly 1.

Constraint 6.11f ensures the correct probability computation for non-target states s ∈ S \T and

action-distribution pairs η ∈ P (s) available in s: If η is not selected by the scheduler (σs,η = 0),

the constraint is trivially satisfied due to the term (1 − σs,η). Otherwise, the probability is

computed as for DTMCs.

The following three Constraints 6.11g–6.11i ensure the backward reachability of each prob-

lematic state from a non-problematic state, see Section 6.1.2.3 for details.

To summarize, the MILP formulation yields a memoryless deterministic scheduler σ such that

the probability of reaching the target states T in the DTMC induced by σ on the MCS exceeds λ.

Together with the objective function, this DTMC is minimal in terms of the number of states and

maximal in terms of the probability of the initial state.

Formula size The number of real-valued variables of the MILP is in O(nM ). Due to the choice

of action-distribution pairs, the number of integer variables depends also on the number of

transitions, which yields O(nM +mM ). The same holds for the number of non-zero coefficients

in O(nM +mM ).
The correctness of the MILP formulation is captured by the following theorem; its proof is

provided in Section 6.3.5.

Theorem 9 The MILP formulation (6.11a)–(6.11i) is sound and complete.
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Figure 6.4: MDP (PA)M
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Figure 6.5: Minimal critical subsystemM ′ vM for property P≤0.7(◊target)

Example 29 We recall the MDP (PA)M as in Example 28 on Page 138, again depicted in Figure 6.4.

The property P≤0.7(◊T) is violated for T = {s3}. We observe that state s8 is irrelevant for T , as

it is absorbing (see Definition 24 on Page 34). As we saw in Example 28, the problematic states

are Sprobl(T ) = {s1, s2}. AsM is an MDP, for every action the choice of distribution is unique. we

therefore refrain from using action-distribution pairs but for the sake of simplicity just actions. That

means, that we now have problematic actions instead of problematic action-distribution pairs for

each problematic state, which are Hprobl(T )(s1) = {β} and Hprobl(T )(s2) = {β}.
We use the following characteristic variables: xs0

, . . . , xs7
∈ {0,1} ⊆ Z for s0, . . . s7 ∈ S. Accord-

ingly, we have the real-valued probability variables ps0
, . . . , ps7

∈ [0, 1]⊆ R. The scheduler variables

will only be needed for the states where there are different actions, i. e., s1 and s2. Moreover, as

for each action the choice of distribution is unique, we only need scheduler variables of the form

σs,α for s ∈ S and α ∈ Act. For this example, we have: σs1,α,σs1,β ,σs2,α,σs2,β ∈ {0,1} ⊆ Z.
For the reachability constraints (6.11g)–(6.11i) we need the variables r←s1

, r←s2
∈ [0,1] ⊆ R and
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t←s1,s2
, t←s2,s1

∈ [0,1] ⊆ R. This will be needed if the solver chooses to take action β from one of the

states s1 or s2, as then it will be enforced that for one state, an action α will be taken in order to

ensure the reachability of a target state.

minimize −1
2

ps0
+ xs0

+ xs1
+ xs2

+ xs3
+ xs4

+ xs5
+ xs6

+ xs7

such that

ps0
> 0.7

ps3
= xs3

ps0
≤ xs0

ps0
≤ 0.5ps1

+ 0.25ps2
+ 0.25ps5

ps1
≤ xs1

σs1,α+σs1,β = xs1
ps1
≤ (1−σs1,α) + 0.5ps2

+ 0.5ps3

ps1
≤ (1−σs1,β) + ps2

ps2
≤ xs2

σs2,α+σs2,β = xs2
ps2
≤ (1−σs2α

) + 0.5ps1
+ 0.5ps4

ps2
≤ (1−σs2,β) + ps1

ps4
≤ xs4

ps4
≤ 0.7ps1

+ 0.3ps3

ps5
≤ xs5

ps5
≤ ps6

ps6
≤ xs6

ps6
≤ 0.5ps3

+ 0.5ps7

ps7
≤ xs7

ps7
≤ 0.25ps5

+ 0.25ps6

︸ ︷︷ ︸

(6.11b)–(6.11d)
︸ ︷︷ ︸

(6.11e)
︸ ︷︷ ︸

(6.11f)

For the encoding above note the following: For a constraint having the term 1 − σs,α where we

didn’t introduce a σ-variable, we assume this to be trivially true and do not explicitly write it in the

example. We now add the constraints needed for the reachability of target states.

t←s1,s2
≤ xs2

r←s1
< r←s2

+ (1− t←s1,s2
) (1−σs1,β) + t←s1,s2

≥ xs1

t←s2,s1
≤ xs1

r←s2
< r←s1

+ (1− t←s2,s1
) (1−σs2,β) + t←s2,s1

≥ xs2

︸ ︷︷ ︸

(6.11g)
︸ ︷︷ ︸

(6.11h)
︸ ︷︷ ︸

(6.11i)

Solving this MILP yields the following optimal variable assignment:

xs0
ps0

xs1
ps1

xs2
ps2

xs3
ps3

xs4
ps4

xs5
ps5

xs6
ps6

xs7
ps7

1 0.75 1 1 1 1 1 1 1 1 0 0 0 0 0 0

σs1,α σs1,β σs2,α σs2,β

1 0 1 0

t←s1,s2
t←s2,s1

r←s1
r←s2

0 0 0 0
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The resulting subsystem that corresponds to this variable assignment corresponds to the DTMC as

in Example 24. The subsystemM ′ vM is depicted in Figure 6.5. Note that without changing the

probability of the initial state and the number of states, e. g., in state s1 action β could be chosen. In

this case we had σs1,β = 1 and σs1,α = 0. Furthermore, as β is a problematic action at state s1, we

had ts1,s2
= 1 and we would need values for the r← variables, e. g., r←s1

= 4
5

and r←s2
= 5

5
.

6.2.2 ω-regular properties

In this section we present our approach to determine a minimal critical subsystem for ω-regular

properties and PAs.

Unlike model checking these properties, we cannot compute a maximizing scheduler but we

have to consider all schedulers that might induce a minimal critical subsystem. Therefore we

need to know the set of accepting end components of the product PA, see Definition 33 on

Page 39. As this is dependent on the chosen scheduler, this is not feasible here.

Our approach encompasses the computation of these sets by the MILP solver which is well-

suited to solve NP-hard problems. We encode the state sets that almost surely satisfy theω-regular

property directly into the MILP where these state sets define the target states.

Let in the following M = (S, sI, Act,P , L) be a PA and A = (Q, qI,Σ,δ, F) be a DRA with

the acceptance condition F =
�

(Ri , Ai)
�

� i = 1, . . . , n
	

such that L (A ) = L for an ω-regular

property L . We assume for a probability bound λ ∈ R thatM 6|= P≤λ(L ). LetM ⊗A =M ′ =
(S×Q, (s, q)I, Act,P ′, L′) be the product ofM andA , see Definition 31 on Page 39. We assume

thatM ′ has no irrelevant states, i. e., maximal endcomponents are reachable from all states of

S×Q, see Definition 24 on Page 34 for removing irrelevant states and Section 2.3.3 for (maximal)

end components.

In order to simplify notation we use U = S ×Q, u = (s, q), and u′ = (s′, q′) to abbreviate the

states of the product automaton. We also refer to a state s ∈ S as the PA-state of u= (s, q) ∈ U . Let

nu,α,µ = |succM⊗A (u,α,µ)| denote the number of successor states of u under action-distribution

pair (α,µ) ∈ Act×subDistr(S×Q). Recall the notations η= (α,µ) ∈ Act×subDistr(S), η(s) = µ(s),

and supp(η) = supp(µ).

We now explain the background for encoding the computation of accepting end components

which are used as sets of target states. We use the following lemma:

Lemma 2 Let (Ri , Ai) ∈ 2Q × 2Q be a pair of a Rabin acceptance condition, σ : U → Act ×
subDistr(S × Q) a memoryless deterministic scheduler, and Mi ⊆ U a set of states with the fol-

lowing properties:

1. ∀u ∈ Mi .
∑

u′∈succ(u,σ(u))∩Mi

σ(u)(u′) = 1

2. Mi ∩ (S× Ri) = ;

3. for each state u ∈ Mi there is a path from u to a state in S× Ai .
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Then the probability of satisfying the acceptance condition F because of the pair (Ri , Ai) is 1 for all

u ∈ Mi .

For an acceptance pair (Ri , Ai) ∈ F the set Mi ⊆ U is intuitively built as follows: First, it is

ensured that with respect to the scheduler σ the successors of all states of Mi are also inside

Mi (Condition 1). Note that the sum of the outgoing probabilities has to be 1 here. No state of

S × Ri must be part of Mi (Condition 2). Finally, a state from S × Ai has to be reachable from

every state of Mi (Condition 3).

A set Mi encompasses an accepting end component together with the states that reach the end

component with probability 1. The probability of reaching these sets of states corresponds to the

probability of satisfying the ω-regular property.

Intuition The crucial part is to define the target states. This is achieved by encoding the

Conditions as in Lemma 2 directly into the MILP formulation. By implicitly assuming a set of

states that meet these conditions this reduces to computing an MCS for reachability probabilities

as explained in Section 6.2.1. The goal is to determine a DTMC D vM⊗A which is a subsystem

of the product. A projection on the original PAM does not yield a DTMC in general, as different

states (s, q), (s, q′) ∈ U are projected on the same state ofM but might have different outgoing

action-distribution pairs.

Variables

xs ∈ {0,1} ⊆ Z for each state s ∈ S is the characteristic variable to encode whether s belongs to

the subsystem or not.

pu ∈ [0,1]⊆ R for each state u ∈ U is a real-valued variable which is assigned the probability of

each state of the product automaton.

σu,η ∈ {0, 1} ⊆ Z for each state u ∈ U and each action-distribution pair η ∈ P (u) stores the

selected scheduler such that σu,η = 1 iff η is selected in state u by the scheduler that

induces the critical subsystem.

mi
u ∈ {0,1} ⊆ Z for each (Ri , Ai) ∈ F and u ∈ U is a characteristic variable, i. e., mi

u = 1 iff state

u is contained in set Mi .

r i
u ∈ [0, 1]⊆ R for all states u ∈ U is used to define a partial order on states as backward

reachability of S× Ai within Mi is needed.

t i
u,u′ ∈ {0,1} ⊆ Z for all states u, u′ ∈ U with u′ ∈ supp(η) and η ∈ P (u) is used to determine

the transitions of a path that reaches a state from S× Ai according to the partial order on

states defined by the r i
u variables.
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rM
u ∈ [0, 1]⊆ R for all states u ∈ U is used to define a partial order on states for backward

reachability of M =
⋃n

i=1 Mi .

tM
u,u′ ∈ {0, 1} ⊆ Z for all states u, u′ ∈ U with u′ ∈ supp(η) and η ∈ P (u) is used to determine

the transitions of a path that reaches a state of M according to the partial order on states

defined by the r i
u variables.

Constraints Please recall the abbreviations we introduced in the beginning of this section. We

augment the encoding by some explanation in order to ensure readability.

minimize − 1

2
psqI
+
∑

s∈S

xs (6.12a)

such that

• Selection of at most one action-distribution pair per state:

∀u= (s, q) ∈ U .
∑

η∈P (u)
σu,η ≤ xs (6.12b)

• Definition of the set Mi for all i = 1, . . . , n:

∀u ∈ U .∀η ∈ P (u) with
∑

u′∈U

η(u′)< 1. mi
u ≤ 1−σu,η (6.12c)

∀u ∈ U .∀η ∈ P (u). nu,η · (2−σu,η−mi
u) +

∑

u′∈supp(η)

mi
u′ ≥ nu,η (6.12d)

∀u ∈ S× Ri . mi
u = 0 (6.12e)

• Backward reachability of S× Ai within Mi for all i = 1, . . . , n:

∀u ∈ U .∀η ∈ P (u).∀u′ ∈ supp(η). t i
u,u′ ≤ mi

u′ + (1−σu,η) (6.12f)

∀u ∈ U .∀η ∈ P (u).∀u′ ∈ supp(η). r i
u < r i

u′ + (1− t i
u,u′) + (1−σu,η) (6.12g)

∀u ∈ S× (Q \ Ai).∀η ∈ P (u). (1−σu,η) +
∑

u′∈supp(η)

t i
u,u′ ≥ mi

u (6.12h)

• Probability computation:

psqI
> λ (6.12i)

∀i = 1, . . . , n.∀u ∈ U . pu ≥ mi
u (6.12j)

∀u ∈ U . pu ≤
∑

η∈P (u)
σu,η (6.12k)

∀u ∈ U .∀η ∈ P (u). pu ≤ (1−σu,η) +
n
∑

i=1

mi
u+

∑

u′∈supp(η)

η(u′) · pu′ (6.12l)
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• Backward reachability of M =
⋃n

i=1 Mi within the subsystem:

∀u ∈ U .∀η ∈ P (u).∀u′ = (s′, q′) ∈ supp(η). tM
u,u′ ≤ xs′ + (1−σu,η) (6.12m)

∀u ∈ U .∀η ∈ P (u).∀u′ ∈ supp(η). rM
u < rM

u′ + (1− tM
u,u′) + (1−σu,η) (6.12n)

∀u= (s, q) ∈ U .∀η ∈ P (u). (1−σu,η) +
n
∑

i=1

mi
u+

∑

u′∈supp(η)

tM
u,u′ ≥ xs . (6.12o)

Explanation The target function is defined as before, see the encoding for reachability proper-

ties in Section 6.2.1. Constraint 6.12b defines a valid scheduler by ensuring that for each selected

state at most one action-distribution pair is chosen. Contrary to reachability, it is not possible

to select exactly one pair: If a subsystem is determined by the selected states S′ ⊆ S of the PA,

we implicitly select the subsystem S′×Q of the product automaton. By this it is not guaranteed

that in the DTMC induced by the scheduler of the product automaton from each state (s, q) an

accepting BSCC is reachable. Since we later require that from each state in S′×Q an accepting

BSCC is reachable under the selected action-distribution pair, we solve this problem by allowing

not to select an action. If no action is chosen, Constraint 6.12k ensures that the probability pu is

assigned 0, as the sum will be equal to 0.

The sets Mi (i = 1, . . . , n) are built according to Conditions 1– 3 of Lemma 2. Condition 1 states

that for each u ∈ Mi the probability of staying in Mi has to be 1. This is ensured in two steps:

First we forbid that a state u is in Mi if under the selected action the sum of the probabilities of

the outgoing edges is less than 1, see Constraint 6.12c.

Note that for each state in Mi at least one out-going action-distribution pair is selected, since

the probability of states without selected action is 0, but Constraint 6.12j sets the probability of

Mi-states to 1. Secondly we ensure the closure of Mi under successors by Constraint 6.12d. If

state u belongs to Mi (i. e., mi
u = 1) and the action-distribution pair η is chosen by the scheduler

(i. e., σu,η = 1), all successors of u with respect to the pair η have to belong to Mi. The term

nu,η · (2−σu,η − mi
u) is 0 if and only if η is selected for u and u ∈ Mi holds. In this case the

sum over the corresponding variables mi
u′ of the successors u′ of u has to be assigned at least the

number of the successors of u. Constraint 6.12e ensures that Mi does not contain any Ri state,

see Condition 2.

In order to ensure backward reachability from S × Ai within Mi and thereby the satisfaction

of Condition 3, we use the constraints known from the DTMC optimizations and PA reachability

properties (cf. Section 6.1.2.3). The corresponding constraints are given in Constraints 6.12f–

6.12h. These constraints are defined separately for all sets (Ri , Ai) ∈ F . They ensure that from

each state in Mi an Ai-state is reachable with respect to the chosen scheduler, as requested in the

third condition of Lemma 2. The constraints are satisfied for a set Mi that contains accepting

BSCCs of the induced DTMC, which are reachable from all states in Mi. If no element of S× Ai

is contained, no partial order on the states can be defined by the Constraints 6.12f–6.12h. For

details of the reachability constraints we again refer to Section 6.1.2.3.
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The remaining constraints are defined analogously to the MILP for reachability properties:

Constraint 6.12i ensures criticality of the subsystem. Constraints 6.12k and 6.12j force the states

of the sets Mi to be included in the subsystem and to have probability 1. Constraint 6.12k assigns

probability 0 to all states not in the subsystem and Constraint 6.12l computes the probability of

reaching a state in Mi for all remaining states. Since we do not know the target states in advance,

we have to allow Constraint 6.12l to be satisfied for target states, too. This is the case due to the

expression
∑n

i=1 mi
u which is at least 1 if u is a target state.

The last three constraints are again backward reachability constraints, analogous to the reach-

ability constraints for problematic states in the case of reachability properties. They ensure that

from each state with a selected action-distribution pair in the subsystem an Mi state is reachable

with non-zero probability.

Formula size The number of integer variables in the MILP, its number of constraints, and

the number of non-zero coefficients are in O(n · (nM⊗A +mM⊗A )), while the number of real

variables is in O(n · nM⊗A ), where n is the number of acceptance pairs ofA .

Theorem 10 The MILP formulation (6.12a)–(6.12o) is sound and complete.

A proof of this theorem can be found in Section 6.3.6.

Remark 29 The optimizations for DTMCs in Section 6.1.2 can, with the exception of the SCC cuts,

be directly transferred to PAs.

6.3 Correctness proofs

In this section we give formal proofs for all encodings presented in this chapter. Let in the

following Var be the set of variables of an SMT or MILP problem formulation, see Section 2.6

for details on valuations or assignments, respectively. Let D = (S, sI, P, L) be a DTMC. When we

consider reachability properties P≤λ(◊T), we assume that all BSCCs of D contain at least one

target state from T ⊆ S. This is a justified assumption, as by removing all irrelevant states of

a DTMC, see Definition 23 on Page 33, only states remain from where a target state is reached

with positive probability. For a state set S′ ⊆ S with sI ∈ S′ we use DS′ = (S′, sI, P ′, L′) to denote

the restricted DTMC with P ′(s, s′) = P(s, s′) and L′(s) = L(s) for all s, s′ ∈ S′.
For some proofs we need additional results. These are stated as Requirements and used later

on.

6.3.1 SMT-formulation for reachability properties of DTMCs

6.3.1.1 Requirements

First, we need to ensure that within subsystems the linear equation system for computing the

reachability probability for reaching target states has a unique solution. This is in question,
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as subdistributions occur. For the construction of the linear equation system see Section 2.3.1.

The following lemma states the uniqueness and correctness of the solution of the corresponding

equation system.

Lemma 3 Let S′ ⊆ S with sI ∈ S′. Then the linear equation system

∀s ∈ S′ \ T. ps =
∑

s′∈S′\T
P(s, s′) · ps′ +

∑

s′∈T

P(s, s′) (6.13a)

has a unique satisfying assignment mapping the probability Pr
DS′
s (◊T ) to each variable ps.

Proof 2 Consider the assignment ν : Var → R that maps the probability ν(ps) = Pr
DS′
s (◊T) of

reaching T from s in DS′ to each variable ps. We observe that ν is a satisfying assignment. The

proof can be found in [BK08, Theorem 10.15].

Following the proof idea of [BK08, Theorem 10.19] we show that this satisfying assignment

is unique. Suppose that there are two different satisfying assignments ν1,ν2 : Var→ R, ν1 6= ν2,

and let ν : Var→ R be their absolute difference, i. e., ν(ps) = |ν1(ps)−ν2(ps)| ≥ 0 for each s ∈ S′.
Since the set of states S′ is finite, there exists a state s∗ ∈ S′ \ T such that ν(ps∗) ≥ ν(ps)

for all s ∈ S′ \ T . Let s∗ be such a “maximal” state. Because P(s∗, s) ≥ 0 for all s ∈ S′ and
∑

s∈S′ P(s
∗, s) ≤ 1, the following (in)equations hold due to the definition of ν and the choice of

s∗:

ν(ps∗) =
�

�ν1(ps∗)− ν2(ps∗)
�

�

=
�

�

�

�

∑

s∈S′\T
P(s∗, s) · ν1(ps) +

∑

s∈T

P(s∗, s)
�− �

∑

s∈S′\T
P(s∗, s) · ν2(ps) +

∑

s∈T

P(s∗, s)
�

�

�

�

=
�

�

�

∑

s∈S′\T
P(s∗, s) · (ν1(ps)− ν2(ps))

�

�

�

≤
∑

s∈S′\T
P(s∗, s) ·

�

�ν1(ps)− ν2(ps)
�

�

=
∑

s∈S′\T
P(s∗, s) · ν(ps)

≤ ν(ps∗) ·
∑

s∈S′\T
P(s∗, s)

≤ ν(ps∗) .

We conclude that

ν(ps∗) =
∑

s∈S′\T
P(s∗, s) · ν(ps) .

Since we have the inequality of ν1 and ν2 and the maximal property for s∗, we know that

ν(ps∗) > 0. Thereby, the equations
∑

s∈S′\T P(s∗, s) = 1 and ν(ps) = ν(ps∗) must hold for all

s ∈ S′ \ T . By induction it follows that
∑

s′∈S′\T P(s, s′) = 1 for all states s ∈ S′ \ T which are
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reachable from s∗ in D. That means, T is not reachable from s∗ which contradicts our assumption

that S contains no irrelevant states. �

6.3.1.2 Soundness and completeness

Having this result, we are ready to prove the soundness and completeness of the SMT-formulation

for reachability properties of DTMCs, see Theorem 4 on Page 126. We start by proving the

soundness, stated in the following lemma.

Lemma 4 The SMT formulation (6.1a)–(6.1d) on Page 125 is sound.

Proof 3 We have to prove that for each satisfying assignment ν of the SMT formulation (6.1a)–

(6.1d) the restricted DTMC DS′ with S′ = {s ∈ S | ν(xs) = 1} is an MCS for D and P≤λ(◊T ) with

ν(psI
) = Pr

DS′
sI
(◊T ).

Let ν be a satisfying assignment for Constraints 6.1a–6.1d and let S′ = {s ∈ S | ν(xs) = 1}.

1. We first show that DS′ is a subsystem of D as in Definition 6 on Page 22. From Con-

straint 6.1d we can conclude that ν(psI
) > λ ≥ 0. By the satisfaction of Constraints 6.1b–

6.1c we have that ν(xsI
) = 1, i. e., sI ∈ S′. The remaining conditions for DS′ being a

subsystem of D hold by the definition of DS′ .

2. We show that DS′ is critical with the assigned probability ν(psI
) = Pr

DS′
sI
(◊T). Con-

straints 6.1b–6.1c assure that (i) ν(ps) = 0 for all s ∈ S \ S′ and (ii) ν(ps) = 1 for all

s ∈ S′ ∩ T . Therefore, due to the satisfaction of Constraint 6.1c, ν is also a satisfying

assignment to the constraints

∀s ∈ S′ \ T. ps =
∑

s′∈S′\T
P ′(s, s′) · ps′ +

∑

s′∈S′∩T

P ′(s, s′) . (6.14)

Lemma 3 implies that this satisfying assignment is unique, assigning to each variable ps for

each state s ∈ S′ the probability Pr
DS′
s (◊T). From (6.1d) we conclude that this probability

exceeds the probability bound for the initial state, i. e., ν(psI
) = Pr

DS′
sI
(◊T )> λ.

3. It remains to show that DS′ is minimal. Assume the opposite. Then there is some S′′ ⊆ S

with |S′′|< |S′| such that DS′′ is an MCS for D and P≤λ(◊T ). In Constraints (6.1a)–(6.1d)

we syntactically replace xs by 1 if s ∈ S′′ and by 0 otherwise. Lemma 3 applied to S′′ implies

that the constraint system resulting from the above substitution has a unique satisfying

assignment. However, for this satisfying assignment the number of positive xs variables is

smaller than for ν , which contradicts our assumption that ν is a satisfying assignment to

the optimization problem. �

Lemma 5 The SMT formulation (6.1a)–(6.1d) is complete.
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Proof 4 We prove that for each MCS for D and ψ = P≤λ(◊T) with state set S′ there is a

satisfying assignment ν of the SMT formulation (6.1a)–(6.1d) with S′ = {s ∈ S | ν(xs) = 1} and

ν(psI
) = Pr

DS′
sI
(◊T ).

Assume that D violates the property P≤λ(◊T), and assume a DTMC D′ = (S′, I ′, P ′, L′) with

D′ v D which is an MCS for D and ψ. Then DS′ is also an MCS for D and ψ. Note, that DS′ has

the same states as D′ but possibly more transitions. We define the assignment ν : Var→ R by (i)

ν(xs) = 1 and ν(ps) = Pr
DS′
s (◊T) for s ∈ S′ and (ii) ν(xs) = ν(ps) = 0 otherwise. We show that

ν satisfies the SMT constraints (6.1a)–(6.1d).

1. By syntactically replacing the xs variables by their values given by ν , the constraints (6.1b)–

(6.1c) reduce to ps = 0 for each s /∈ S′, ps = 1 for each s ∈ S′ ∩ T and

∀s ∈ S′ \ T. ps =
∑

s′∈S′\T
P(s, s′) · ps′ +

∑

s′∈S′∩T

P(s, s′) . (6.15a)

By Lemma 3, we know that ν is the unique satisfying assignment for this constraint system.

That means that ν is also a satisfying assignment to (6.1b)–(6.1c).

2. Since DS′ is critical, it holds that ν(psI
) = Pr

DS′
sI
(◊T) > λ. Thereby, Constraint 6.1d also

holds.

3. If the defined assignment did not minimize the number of states, then there would be

another satisfying assignment that evaluates xs to 1 for a smaller number of states. Due to

soundness of the SMT formulation (Lemma 4), there would exist an MCS smaller than DS′ ,

which contradicts the minimality assumption for DS′ . �

The correctness of Theorem 4 follows then directly by the correctness of Lemma 4 and

Lemma 5.

6.3.2 MILP-formulation for reachability properties of DTMCs

6.3.2.1 Requirements

Before we can prove the correctness for the dedicated MILP formulation, we need the following

prerequisite. In the MILP encodings presented in Sections 6.1 and 6.2, we require that the values

of the probability variables ps are assigned at most the probability of moving to a direct successor

state s′ multiplied by the corresponding value ps′ of the successor state. In contrast, the model

checking equations require equality at this place, see Section 2.3.1. Enforcing only an upper

bound is necessary, as we have to assign 0 to ps if s is not part of the subsystem we want to

compute. Therefore, we first have to show that the satisfying assignments for the inequalities are

always below the actual reachability probabilities. This is then used to show the soundness and

completeness of our MILP encodings.
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Lemma 6 Let S′ ⊆ S with sI ∈ S′. For each satisfying assignment ν of the constraint system

∀s ∈ S′ \ T. ps ≤
∑

s′∈S′\T
P(s, s′) · ps′ +

∑

s′∈S′∩T

P(s, s′) (6.16a)

we have that ν(ps)≤ Pr
DS′
s (◊T ) for each s ∈ S′ \ T.

Proof 5 According to Lemma 3, the assignment ν with ν(ps) = Pr
DS′
s (◊T) for each s ∈ S′ \ T is

the unique satisfying assignment fulfilling the constraints (6.16a) with equality.

Now we show that for each satisfying assignment µ of (6.16a) we have that µ(ps)≤ ν(ps) for

each s ∈ S′ \ T . Assume that the converse is true. Then there exists a satisfying assignment µ∗ for

Constraint 6.16a such that µ∗(ps∗) > ν(ps∗) for some s∗ ∈ S′ \ T . Let µ∗ be such an assignment

and s∗ such a state, and let ε = µ∗(ps∗). Then

maximize
∑

s∈S′\T
ps (6.17a)

such that

∀s ∈ S′ \ T. ps ≤
∑

s′∈S′\T
P(s, s′) · ps′ +

∑

s′∈S′∩T

P(s, s′) (6.17b)

ps∗ ≥ ε (6.17c)

has a satisfying assignment, since µ∗ is a satisfying assignment for (6.17b)–(6.17c) and the

maximum under all satisfying assignments exists because on the one hand the variable domains

are all bounded by closed intervals and on the other hand all involved constraints are non-strict

(linear) inequalities. Let µmax be a satisfying assignment to (6.17a)–(6.17c).

From (6.17c) we conclude that µmax 6= ν . Since ν satisfies all constraints (6.17b) with equality

and µmax 6= ν , there exists at least one smax ∈ S′ \ T such that:

µmax(psmax
) <

∑

s′∈S′\T
P(smax, s′) ·µmax(ps′) +

∑

s′∈S′∩T

P(smax, s′) =: d .

Let smax be such a state. We define the assignment µ′max by µ′max(psmax
) = d and µ′max(ps) =

µmax(ps) for all other states s ∈ S′ \ (T ∪ {smax}). Note that P(s, s′) ≥ 0 and µ′max(ps) ≥ µmax(ps)

for all s, s′ ∈ S′ \ T , therefore µ′max also satisfies (6.17b)–(6.17c):

µ′max(ps) = d

=
∑

s′∈S′\T
P(smax, s′) ·µmax(ps′) +

∑

s′∈S′∩T

P(smax, s′)

≤
∑

s′∈S′\T
P(smax, s′) ·µ′max(ps′) +

∑

s′∈S′∩T

P(smax, s′)
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∀s ∈ S′ \ (T ∪ {smax}). µ′max(ps) = µmax(ps)

≤
∑

s′∈S′\T
P(s, s′) ·µmax(ps′) +

∑

s′∈S′∩T

P(s, s′)

≤
∑

s′∈S′\T
P(s, s′) ·µ′max(ps′) +

∑

s′∈S′∩T

P(s, s′)

µ′max(ps∗) ≥ µmax(ps∗)

≥ ε �

= µ∗(ps∗)
�

.

However, µ′max yields a larger sum over the ps variable values than µmax, which contradicts the

fact that µmax is optimal with respect to (6.17a). That means, our assumption about the existence

of µ∗ was wrong, which proves the statement. �

6.3.2.2 Soundness and completeness

Now we prove soundness and completeness of the MILP encoding for computing MCSs of D for

P≤λ(◊T ) see Constraints 6.2a–6.2e on Page 127.

Lemma 7 The MILP formulation (6.2a)–(6.2e) is sound.

Proof 6 We show that for each satisfying assignment ν of the MILP formulation (6.2a)–(6.2e)

the DTMC DS′ with S′ = {s ∈ S |ν(xs) = 1} is an MCS of D for P≤λ(◊T ) with a maximal

probability ν(psI
) = Pr

DS′
sI
(◊T ) to reach T from the initial state sI under all MCSs.

Let ν be a satisfying assignment for (6.2a)–(6.2e) and S′ = {s ∈ S | ν(xs) = 1}.

1. We show that DS′ is a subsystem of D. From Constraint 6.2e we conclude 0 ≤ λ < ν(psI
),

and therefore by the satisfaction of (6.2b)–(6.2c) we have that ν(xsI
) = 1, i. e., sI ∈ S′. The

remaining conditions for DS′ being a subsystem of D hold by the definition of DS′ .

2. We show that ν(psI
) = Pr

DS′
sI
(◊T). The constraints (6.2b)–(6.2d) assure that (i) ν(ps) = 0

for all s ∈ S \ S′ and (ii) ν(ps) = 1 for all s ∈ S′ ∩ T . Therefore, due to the satisfaction of

(6.2d), ν is a satisfying assignment to

∀s ∈ S′ \ T. ps ≤
∑

s′∈S′\T
P ′(s, s′) · ps′ +

∑

s′∈S′∩T

P ′(s, s′) . (6.18)

Lemma 6 implies ν(psI
) ≤ Pr

DS′
sI
(◊T), and Lemma 3 implies that there is also a satisfying

assignment mapping Pr
DS′
sI
(◊T ) to psI

and thereby satisfying the inequations with equality.

Since ν is a satisfying assignment maximizing psI
in (6.2a), ν(psI

) = Pr
DS′
sI
(◊T ) has to hold.

3. We show that DS′ is critical. In (2) we have shown that ν(psI
) = Pr

DS′
sI
(◊T ). Together with

0≤ λ < ν(psI
) ensured by Constraint 1 we get λ < Pr

DS′
sI
(◊T ).
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4. We show that DS′ is minimal. Assume the opposite. Then there is some S′′ ⊆ S with |S′′|<
|S′| such that DS′′ is an MCS for D and the property Pr

DS′
sI
(◊T). We define the assignment

µ: Var→ R by (i) µ(xs) = 1 and µ(ps) = Pr
DS′′
sI
(◊T) for s ∈ S′′ and (ii) µ(xs) = µ(ps) = 0

otherwise. Lemma 3 applied to S′′ implies that µ satisfies (6.2b)–(6.2d) and thereby

satisfying all constraints with equality. However, it holds that
∑

s∈S µ(xs) <
∑

s∈S ν(xs),

what contradicts our assumption that ν is optimal with respect to (6.2a).

5. It remains to show that the probability to reach T from sI in DS′ is maximal under all MCSs.

This proof is analogous to the previous item. Assume the opposite. Then there is some set of

states S′′ ⊆ S such that DS′′ is an MCS for D and P≤λ(◊T ) with Pr
DS′
sI
(◊T )< Pr

DS′′
sI
(◊T ). We

define µ as above. Again, Lemma 3 implies for S′′ that µ satisfies (6.2b)–(6.2d), satisfying

all constraints with equality. Since DS′ and DS′′ are both minimal,
∑

s∈S ν(xs) =
∑

s∈S µ(xs).

By (2) we know that ν(psI
) = Pr

DS′
sI
(◊T ), i. e.,

ν(psI
) = Pr

DS′
sI
(◊T )< Pr

DS′′
sI
(◊T ) = µ(psI

) .

Thus −1
2
µ(psI

) +
∑

s∈S µ(xs) < −1
2
ν(psI

) +
∑

s∈S ν(xs) holds, contradicting the optimality

of ν . �

Lemma 8 The MILP formulation (6.2a)–(6.2e) is complete.

Proof 7 Assume that D violates the property ψ = P≤λ(◊T ), and assume a DTMC D′ v D with

state set S′ that is an MCS for D and ψ such that the probability to reach T from sI in D′ is

maximal under all MCSs. We show that there is a satisfying assignment ν of the MILP formulation

(6.2a)–(6.2e) with S′ = {s ∈ S |ν(xs) = 1} and ν(psI
) = Pr

DS′
sI
(◊T ).

Note again thatDS′ has the same state set but possibly more transitions thanD′, thereforeDS′ is

also an MCS for D and the given property with PrD
′

sI
(◊T )≤ Pr

Ds′
sI
(◊T ). We define the assignment

ν : Var → R by (i) ν(xs) = 1 and ν(ps) = Pr
DS′
sI
(◊T) for s ∈ S′ and (ii) ν(xs) = ν(ps) = 0

otherwise. We show step by step that ν satisfies the MILP constraints (6.2a)–(6.2e).

1. We show that ν satisfies (6.2b)–(6.2d). By syntactically replacing xs by the assignment

ν(xs) for each s ∈ S, the constraints (6.2b)–(6.2d) reduce to ps = 0 for each s ∈ S \ S′,
ps = 1 for each s ∈ S′ ∩ T , and it holds that

∀s ∈ S′ \ T. ps ≤
∑

s′∈S′\T
P(s, s′) · ps′ +

∑

s′∈S′∩T

P(s, s′) . (6.19a)

By Lemma 3, ν is a satisfying assignment for this constraint system.

2. Since DS′ is critical, ν(psI
) = Pr

DS′
sI
(◊T )> λ. Therefore, (6.2e) also holds.
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3. We show that ν is optimal with respect to (6.2a).

If ν did not minimize
∑

s∈S xs, then there would be another satisfying assignment that

evaluates xs to 1 for a lesser number of states. Due to the soundness shown in Lemma 7,

there would exist an MCS that is smaller than DS′ , which contradicts the minimality

assumption for the MCS DS′ .

Similarly, if ν did not maximize psI
, there would be another satisfying assignment selecting

the same (minimal) number of states but assigning a larger value to psI
than ν . Again, by

soundness (Lemma 7), there would exist an MCS in that the probability to reach T from

the initial state is larger than in DS′ , which contradicts the assumption that DS′ maximizes

the probability to reach a state in T from sI under all MCSs. �

The correctness of Theorem 5 follows directly by Lemma 7 and by Lemma 8.

6.3.3 Optimizations

Next we prove that the following optimizations are optional for both the SMT and MILP formula-

tions for reachability properties of DTMCs. All optimizations are redundant in a sense that they

might be be helpful to speed up the solution process but they do not modify the set of optimal

satisfying assignments. This is basically proved by showing that any satisfying assignment for

either the SMT or the MILP encoding are also satisfying assignments for the optimizations.

6.3.3.1 Forward/backward constraints

Recall the forward and backwards cuts, given as an MILP encoding by Constraints 6.3a and 6.3b

on Page 129.

∀s ∈ S \ T. − xs +
∑

s′∈succ(s)\{s}
xs′ ≥ 0 (6.20a)

∀s ∈ S \ {sI}. − xs +
∑

s′∈pred(s)\{s}
xs′ ≥ 0 . (6.20b)

Lemma 9 The forward and backward cuts are satisfied by any satisfying assignment of either the

SMT formulation (6.1a)–(6.1d) on Page 125 or the MILP formulation (6.2a)–(6.2e) on Page 127.

Proof 8 Let ν be an arbitrary optimal satisfying assignment of either the SMT or the MILP

formulation and let S′ = {s ∈ S | ν(xs) = 1}. For states s ∈ S \S′ it holds that ν(xs) = 0; for states

s ∈ S we have ν(xs)≥ 0.

Assume that Constraint 6.20a is violated by ν for a state s ∈ S′ \ T , i. e., ν(xs) = 1, but

ν(xs′) = 0 for all s′ ∈ succD(s) \ {s}. Then we have
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ν(ps)≤
∑

s′∈succD(s)
P(s, s′) · ν(ps′) =

�

∑

s′∈succD(s′)\{s}
P(s, s′) · 0

�

+P(s, s) · ν(ps)

since ν(ps′) = 0 for all s′ ∈ S with ν(xs′) = 0. As we assumed the DTMC D to have only states

that are relevant for the set of target states T , which implies that P(s, s)< 1, the only solution is

ν(ps) = 0. Therefore state s can be removed from the MCS DS′ without altering the reachability

probability of the initial state. This contradicts the minimality of DS′ .

Assume now that Constraint 6.20b is violated for a state s ∈ S′ \ {sI}, i. e., ν(xs) = 1, but

ν(xs′) = 0 for all s′ ∈ predD(s) \ {s}. Then s is not reachable from sI in DS′ , therefore DS′\{s}
is a subsystem which is also critical and has the same probability to reach T from sI as DS′ . In

contrast, it has less states, which is a contraction to DS′ being an MCS. �

6.3.3.2 SCC constraints

Recall the SCC cuts given by Constraints 6.4a and 6.4b on Page 130. Let again S denote the set

of all SCCs of the underlying graph of D.

∀S′ ∈ {S′′ ∈ S | S′′ ∩ {sI}= ;}.∀s ∈ S′ \ Inp(S′). xs ≤
∑

s′∈Inp(S′)
xs′ (6.21a)

∀S′ ∈ {S′′ ∈ S | S′′ ∩ T = ;}.∀s ∈ S′. xs ≤
∑

s′∈Out(S′)
xs′ . (6.21b)

Lemma 10 The input and output SCC cuts are satisfied by any optimal satisfying assignment of

either the SMT formulation (6.1a)–(6.1d) or the MILP formulation (6.2a)–(6.2e).

Proof 9 Let ν be an arbitrary optimal satisfying assignment of either the SMT or the MILP

formulation and let S′ = {s ∈ S | ν(xs) = 1}.
Assume an SCC C ⊆ S \ {sI} which violates Constraint 6.21a. All paths in D from sI to T going

through C contain a state from Inp(C). If S′ ∩ Inp(C) = ; then there is no path in DS′ from sI to

T containing a state from C . Therefore all states in C ∩ S′ 6= ; can be removed from DS′ without

alternating the probability of sI, which contradicts the minimality of DS′ .

Now assume that (6.21b) is violated. With the same argument as before we can show that all

states in C ∩ S′ 6= ; are irrelevant in DS′ , contradicting the minimality assumption. �

6.3.3.3 Forward reachability constraints

Recall the forward reachability cuts originally given in Constraints 6.6a–6.6c. Consider the

forward reachability constraints with xs ∈ {0,1} ⊆ Z, t→s,s′ ∈ {0,1} ⊆ Z and r→s ∈ [0,1] ⊆ R for

all s, s′ ∈ S:

∀s′ ∈ S \ {sI}.∀s ∈ pred(s′). t→s,s′ ≤ xs (6.22a)
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∀s′ ∈ S \ {sI}. ∀s ∈ pred(s′). r→s < r→s′ + (1− t→s,s′) (6.22b)

∀s′ ∈ S \ {sI}.
∑

s∈pred(s′)
t→s,s′ = xs′ . (6.22c)

The following lemma states the redundancy of these constraints.

Lemma 11 For each optimal satisfying assignment ν of either the SMT formulation (6.1a)–(6.1d)

or the MILP formulation (6.2a)–(6.2e) there exists an extending satisfying assignment µ of Con-

straints 6.22a–6.22c with ν(v) = µ(v) for all v ∈ {xs, ps | s ∈ S}.

Proof 10 Let ν be an arbitrary optimal satisfying assignment of either the SMT or the MILP

formulation and let S′ = {s ∈ S | ν(xs) = 1}. By the soundness of the SMT and MILP formulations

(Theorems 4 and 7) we know that DS′ is an MCS for D and P≤λ(◊T ).

We consider a tree which contains for each state s ∈ S′ one shortest path (in terms of the

number of states) from sI to s. (Such a tree exists, since minimality of the MCS DS′ implies that

all states in S′ are reachable from sI in DS′ .) We define a function f : S′ \ {sI} → S′ by assigning

to each state s ∈ S′ \ {sI} the predecessor state of s in this tree. We fix the assignment µ by

• ν(v) = µ(v) for all v ∈ {xs, ps | s ∈ S},

• for all s, s′ ∈ S, µ(t→s,s′) = 1 if s′ ∈ S′ \ {sI} and s = f (s′), and µ(t→s,s′) = 0 otherwise, and

• for all s ∈ S we have that µ(r→s ) = n/d where n is the length of a shortest path from sI to s

in DS′ , and d is the maximum of the lengths of all shortest paths from sI to any state in DS′ .

It directly follows that µ satisfies the constraint system (6.22a)–(6.22c). �

To show that these constraints fulfill their purpose, we consider them in isolation. Then, for all

solutions for (6.22a)–(6.22c), all states in the selected subsystem are reachable from the initial

state.

Lemma 12 Let ν be a satisfying assignment of the forward reachability constraints (6.22a)–(6.22c).

Then for all s′ ∈ S, if ν(xs′) = 1 then there is a path s0s1 . . . sn = s′ from s0 = sI to s′ with ν(xsi
) = 1

for all 0≤ i ≤ n.

Proof 11 Constraint 6.22c enforces that each state s′ ∈ S \{sI} with ν(xs′) = 1 has a predecessor

state s ∈ pred(s′) with ν(t→s,s′) = 1. Constraint 6.22a ensures that for this predecessor state

ν(xs) = 1 holds. Constraint 6.22b finally ensures that ν(r→s )< ν(r
→
s′ ).

Assume there is a state u0 ∈ S \{sI} such that the statement of the lemma is false. Then we can

construct an infinite sequence u0u1u2 . . . such that ui+1 ∈ pred(ui), ν(xui
) = 1, ν(t→ui+1,ui

) = 1,

and ν(r←ui+1
)< ν(r←ui

) for all i ≥ 0.

Since S is finite there are i < k with ui = uk. However ν(r←uk
) < ν(r←ui

) holds, which is a

contradiction. Therefore our assumption was wrong and the lemma is valid. �
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6.3.3.4 Backward reachability constraints

Consider the backward reachability constraints with xs ∈ {0,1} ⊆ Z, t←s,s′ ∈ {0,1} ⊆ Z and

r←s ∈ [0, 1]⊆ R for all s, s′ ∈ S:

∀s ∈ S \ T.∀s′ ∈ succ(s). t←s,s′ ≤ xs′ (6.23a)

∀s ∈ S \ T.∀s′ ∈ succ(s). r←s < r←s′ + (1− t←s,s′) (6.23b)

∀s ∈ S \ T.
∑

s′∈succ(s)

t←s,s′ = xs . (6.23c)

Lemma 13 For each optimal satisfying assignment ν of either the SMT formulation (6.1a)–(6.1d)

or the MILP formulation (6.2a)–(6.2e) there exists an extending satisfying assignment µ of (6.8a)–

(6.8c) with ν(v) = µ(v) for all v ∈ {xs, ps | s ∈ S}.

Proof 12 Let ν be an arbitrary optimal satisfying assignment of either the SMT or the MILP

formulation and let S′ = {s ∈ S |ν(xs) = 1}. By the soundness of the SMT and MILP formulations

(Theorems 4 and 7) we now that DS′ is an MCS for D and P≤λ(◊T ).

We consider a set Π of paths of DS′ such that Π is postfix-closed and it contains for each state

s ∈ S′ exactly one shortest path from s to T in DS′ . (Such a set exists, since minimality of the MCS

DS′ implies that T can be reached from all states in DS′ .) We define the function f : S′ \ T → S′

by assigning to each state s ∈ S′ \ T the unique successor state of s on the shortest path from s to

T in Π. We fix the assignment µ by

• ν(v) = µ(v) for all v ∈ {xs, ps | s ∈ S},

• for all s, s′ ∈ S, µ(t←s,s′) = 1 if s ∈ S′ \ T and s′ = f (s), and µ(t←s,s′) = 0 otherwise, and

• for all s ∈ S, µ(r←s ) = 1− n/d where n is the length of a shortest path from s to T in DS′ ,

and d is the maximum of the lengths of all shortest paths from any state to T in DS′ .

It directly follows that µ satisfies the constraint system (6.23a)–(6.23c). �

We show that for all solutions for (6.23a)–(6.23c) T is reachable from all states in the selected

subsystem.

Lemma 14 Let ν be a satisfying assignment of the backward reachability constraints (6.23a)–

(6.23c). Then for all s ∈ S, ν(xs) = 1 implies that there is a path s = s0s1 . . . sn from s to a state

sn ∈ T with ν(xsi
) = 1 for all 0≤ i ≤ n.

Proof 13 Constraint 6.23c enforces that each state s ∈ S \ T with ν(xs) = 1 has a successor state

s′ ∈ succ(s) with t←s,s′ = 1. Constraint 6.23a ensures that for this successor state ν(xs′) = 1 holds.

Constraint 6.23b finally ensures that ν(r←s )< ν(r
←
s′ ).
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Assume now that there is a state u0 ∈ S \ T such that the statement of the lemma is false. Then

we can construct an infinite path u0u1u2 . . . such that ui+1 ∈ succ(ui), ν(xui
) = 1, ν(t←ui ,ui+1

) = 1,

and ν(r←ui
)< ν(r←ui+1

) for all i ≥ 0.

Since S is finite there are i < k with ui = uk. However, ν(r←ui
)< ν(r←uk

) leads to a contradiction.

Therefore our assumption was wrong and the lemma is valid. �

Recall now finally Theorem 6 on Page 134, whose proof we give below.

Proof 14 Since each satisfying assignment for the SMT or MILP formulation with optimization

constraints is also a satisfying assignment for the SMT or MILP formulation without optimization

constraints, soundness follows directly from the soundness of the SMT and MILP formulations

(Theorems 4 and 7).

For completeness assume an MCS. By the completeness results for the SMT and MILP for-

mulations (Theorems 5 and 8) we know that they have a satisfying assignment inducing the

given MCS. Above we have shown that this satisfying assignment also satisfies the optimization

constraints. �

6.3.4 MILP-formulation for ω-regular properties of DTMCs

6.3.4.1 Requirements

Let in this section D = (S, sI, P, L) be a DTMC, ψ = P≤λ(L ) an ω-regular property, which is

violated by D, and A = (Q, qI, 2
AP,δ, F) a DRA with L (A ) = L . We consider the product

D ⊗A of the DTMC D and the DRAA as in Definition 29 on Page 38 with distribution function

P ′, and assume that all irrelevant states have been removed, see Definition 23 on Page 33. To

simplify notation we use U = S ×Q and u = (s, q), u′ = (s′, q′), etc. as typical elements from U .

LetB be the set of accepting BSCCs of D ⊗A and T =
⋃

B∈B B.

we make use of the following fact regarding accepting BSCCs for restricted DTMCs.

Lemma 15 Let S′ ⊆ S with sI ∈ S′ and letBS′ be the set of all accepting BSCCs of DS′ ⊗A . Then

BS′ = {B ∈B | B ⊆ S′}.

Proof 15 Let S′ and BS′ be as above. It is easy to see that each accepting BSCC B ∈ B of

DS ⊗A with B ⊆ S′ is also an accepting BSCC of DS′ ⊗A .

For the other direction fix some B ∈ BS′ . By definition, B is an accepting BSCC in DS′ ⊗A ,

i. e., B is strongly connected, maximal, bottom and accepting in DS′ ⊗A . We show that B is an

accepting BSCC also in DS ⊗A , i. e., B is strongly connected, maximal, bottom and accepting in

DS ⊗A .

• Strongly connected: Since DS′ is a subsystem of D, also DS′ ⊗A is a subsystem of DS ⊗A ,

therefore B is also a strongly connected state set in DS ⊗A .
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• Maximal: Since B is a bottom SCC in DS′ ⊗A , we have that
∑

u′∈B P ′(u, u′) = 1 for all

u ∈ B. Thus B cannot be extended to any larger strongly connected state set in DS ⊗A ,

i. e., B is maximal in DS ⊗A .

• Bottom: The bottom property of B in DS′ ⊗A directly implies its bottom property in

DS ⊗A .

• Accepting: As B is accepting in DS′ ⊗A , it is also accepting in DS ⊗A .

Thus, B is an accepting BSCC in DS ⊗A . �

6.3.4.2 Soundness and completeness

Recall the MILP-formulation for an MCS of D for ψ= P≤λ(L ), see Section 6.1.3, which reads as

follows:

minimize − 1

2
psqI
+
∑

s∈S

xs (6.24a)

such that

psqI
> λ (6.24b)

∀B ∈B ∀(s, q) ∈ B. psq = xB (6.24c)

∀B ∈B ∀(s, q) ∈ B. xs ≥ xB (6.24d)

∀(s, q) ∈ SD⊗A \ T. psq ≤ xs (6.24e)

∀(s, q) ∈ SD⊗A \ T. psq ≤
∑

(s′,q′)∈succD⊗A ((s,q))
P
�

(s, q), (s′, q′)
� · ps′q′ (6.24f)

Lemma 16 The MILP formulation (6.24a)–(6.24f) is sound.

Proof 16 We show that for each satisfying assignment ν of the MILP constraints (6.24a)–(6.24f)

there is a corresponding MCS D′ ⊆ D for ψ with state space S′ = {s ∈ S | ν(xs) = 1} and a

maximal probability ν(psqI
) = Pr

DS′
sI
(L ) to satisfy L under all MCSs.

Let ν be a satisfying assignment of the MILP constraints (6.24a)–(6.24f) and S′ = {s ∈ S |
ν(xs) = 1}. Let furthermore againB ′ be the set of all accepting BSCCs of DS′ ⊗A . Lemma 15

states that each accepting BSCC B′ ∈ B ′ is also an accepting BSCC of DS ⊗A , i. e., B′ ∈ B .

For simplicity, in the following we also write xB to denote xB′ with B′ = B ∈ B , and define

Bν = {u ∈ B | B′ ∈B ′ ∧ ν(xB′) = 1} ⊆ T to be the set of all states in selected accepting BSCCs of

DS′ ⊗A .

1. We show that DS′ is a subsystem of D. From Constraint 6.24b we imply ν(psqI
) > λ ≥

0. Using (6.24c)–(6.24e) we get that ν(xsI
) = 1. The other conditions for DS′ being a

subsystem of D are straightforward by the definition of DS′ .
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2. Now we show that no state from T \ Bν is reachable from sqI in DS′ ⊗A . Assume the

opposite. Then there is an accepting BSCC B′ of DS′ ⊗A that is reachable from sqI in

DS′ ⊗A such that ν(xB′) = 0. Assume a shortest path π = u0 . . . um from sqI = u0 to

B′ 3 um in DS′ ⊗A , and define ci = Π
m−1
l=i P ′(ul , ul+1)> 0 for i = 0, . . . , m (with cm = 1) to

be the probabilities of the postfixes of π starting at position i. We define an assignment µ

by

• µ(xs) = ν(xs) for all s ∈ S,

• µ(xB′) = 1 and µ(xB) = ν(xB) for all B ∈B with B 6= B′, and

• µ(pu) =











1, for u ∈ B′,

ν(pui
) + ci , for u= ui , i = 0, . . . , m− 1,

ν(pu), otherwise.

Note that µ(pu)≥ ν(pu) for all u ∈ U . We show that µ is a satisfying assignment to (6.24b)–

(6.24e). The only interesting case is (6.24f). For those states from U \T that are not on the

path π, the left-hand-side evaluates equal under µ and ν , and the right-hand-side evaluates

under µ to a value that is at least as large as under ν . For states ui , i = 0, . . . , m−1, on the

path π we have the following relations:

µ(pui
)

= ci + ν(pui
)

= P ′(ui , ui+1) · ci+1+ ν(pui
)

≤ P ′(ui , ui+1) · ci+1+
∑

u′∈U P ′(ui , u′) · ν(pu′)

= P ′(ui , ui+1) · ci+1+ P ′(ui , ui+1) · ν(pui+1
) +

∑

ui+1 6=u′∈U P ′(ui , u′) · ν(pu′)

= P ′(ui , ui+1) · (ci+1+ ν(pui+1
)) +

∑

ui+1 6=u′∈U P ′(ui , u′) · ν(pu′)

= P ′(ui , ui+1) ·µ(pui+1
) +

∑

ui+1 6=u′∈U P ′(ui , u′) · ν(pu′)

≤ P ′(ui , ui+1) ·µ(pui+1
) +

∑

ui+1 6=u′∈U P ′(ui , u′) ·µ(pu′)

=
∑

u′∈U P ′(ui , u′) ·µ(pu′)

Thus (6.24f) is satisfied for all states from U \ T . However, having µ(psqI
) = ν(psqI

)+ c0 >

ν(psqI
) and µ(xs) = ν(xs) for all s ∈ S, the objective function would have a smaller value

for µ than for ν , which contradicts the optimality of ν .

3. Now we are able to show that ν(psqI
) = Pr

DS′
sI
(L ) holds. Let D′ be DS′ ⊗A without the

unreachable states T \ Bν and their connected transitions and let A= (S′ ×Q) \ (T \ Bν)

denote its state space. By Theorem 1 and the above item (2) we have that

Pr
DS′
sI
(L ) = Pr

DS′⊗A
sqI

(◊T ) = PrD
′

sqI
(◊Bν) .

By (6.24c)–(6.24e) it holds that ν(pu) = 0 for all u ∈ U \ A. Since ν satisfies (6.24f), we

have for all states u ∈ A of D′:
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ν(pu)≤
∑

u′∈U

P ′(u, u′) · ν(pu′)

=
∑

u′∈A

P ′(u, u′) · ν(pu′)

=
∑

u′∈A\Bν
P ′(u, u′) · ν(pu′) +

∑

u′∈A∩Bν

P ′(u, u′) .

Using Lemma 6 we get that ν(pu) ≤ PrD
′

u (◊Bν) for each u ∈ A. Lemma 3 furthermore

states that there is a satisfying assignment µ with µ(pu) = PrD
′

u (◊Bν) for each u ∈ A.

Since ν minimizes the objective function (6.24a), it maximizes the value of psqI
, therefore

ν(psqI
) = PrD

′
sqI
(◊Bν).

4. Now it is easy to see that DS′ is critical: Item (1) above showed that ν(psqI
)> λ and item

(3) showed that ν(psqI
) = Pr

DS′
sI
(L ), together implying Pr

DS′
sI
(L )> λ.

5. We show that DS′ is also minimal. Assume the opposite. Then there is some S′′ ⊆ S

with |S′′| < |S′| such that DS′′ is an MCS for D and ψ = P≤λL . In (6.24a)–(6.24f) we

syntactically replace xs by 1 if s ∈ S′′ and by 0 otherwise, and xB by 1 if B ⊆ S′′ and T

is reachable from sqI in DS′′ ⊗A and by 0 otherwise. Lemma 3 applied to S′′ implies

that the constraint system resulting from (6.24c)–(6.24f) by the above substitution has a

satisfying assignment; following the argumentation in item (3) above we have that this

assignment maps Pr
DS′′
sI
(L ) > λ to psqI

, thus also satisfying (6.24b). However, for this

satisfying assignment the number of positive xs variables is smaller than for ν , which

contradicts our assumption that ν minimizes the objective function.

6. It remains to show that the probability to satisfy L from sI in DS′ is maximal under all

MCSs. This proof is analogous to the previous item. Assume the opposite. Then there is

some S′′ ⊆ S such that DS′′ is an MCS for D and P≤λL with a higher probability to satisfy

L in the initial state.

We apply the same replacement as above to (6.24a)–(6.24f) to get a satisfying assignment

µ inducing DS′′ . Since DS′ and DS′′ are both minimal,
∑

s∈S ν(xs) =
∑

s∈S µ(xs), however

ν(psqI
)< µ(psqI

), contradicting the optimality of ν . �

Lemma 17 The MILP formulation (6.24a)–(6.24f) is complete.

Proof 17 Let D′ v D with state space S′ ⊆ S be an MCS of D for ψ = P≤λ(L ) with a maximal

probability to satisfy L under all MCSs. We show that there is a satisfying assignment ν of the

MILP constraints (6.24a)–(6.24f) such that ν(xs) = 1 iff s ∈ S′, and ν(psqI
) = Pr

DS′
sI
(L ).
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Note that DS′ is also an MCS for D and ψ with the same state space and a maximal probability

to satisfy L under all MCSs. Let Π = {π ∈ Paths
DS′
inf (sI) | π �L} denote the set of infinite paths

within the subsystem that satisfy L . Since DS′ is a critical subsystem, Pr(Π)> λ holds.

Forπ= s0, s1, . . . ∈ Π letπ∗ = (s0, q0)(s1, q1) . . . with q0 = δ
�

qI, L(sI)
�

and qi+1 = δ
�

qi , L(si+1)
�

be the unique extension of π to the product automaton D ⊗A . Let Π∗ = {π∗ | π ∈ Π} and

inf(π) be the set of states which occur infinitely often on π. Since all stepwise probabilities are

preserved by the extension, we have that PrD(Π) = PrD⊗A (Π∗)> λ.

We now consider the subsystem S′×Q of D⊗A . Π∗ contains only paths in S′×Q. B denotes

the set of bottom SCCs of D ⊗A . Then Pr({π ∈ PathsD⊗Ainf (sqI) | inf(π) ∈ B}) = 1 [BK08,

Theorem 10.27]. Contrarily, Pr({π ∈ PathsD⊗Ainf (sqI) | inf(π) 6∈ B}) = 0. We can conclude:

0≤ Pr({π∗ ∈ Π∗ | inf(π∗) 6∈ B})
≤ Pr({π∗ ∈ PathsD⊗Ainf (sqI) | inf(π∗) 6∈ B})
= 0

and

λ < Pr(Π∗) = Pr({π∗ ∈ Π∗ | inf(π∗) ∈B}) .

We now set C := {inf(π∗) | π∗ ∈ Π∗} ∩B . We make the following observations:

• all elements of C are BSCCs, and

• ∀c ∈ C .∃i ∈ {1, . . . , n}. (∀u ∈ c. Ri 6∈ L′(u)) ∧ (∃u ∈ c. Ai ∈ L′(u)), i. e., C contains only

accepting BSCCs. Otherwise the paths in Π∗ were not accepted.

We define the following variable assignment ν for the decision variables: ν(xs) = 1 iff s ∈ S′

and ν(xB) = 1 iff B ∈ C . These assignments trigger the following implications in the MILP

constraints above:

pu =















0, if u= (s, q) and s 6∈ S′,

1, if u ∈ B ∈ C ,
∑

u′∈U
P ′(u, u′) · pu′ , otherwise.

Using Lemma 3, we can show that this linear equation system has a satisfying assignment ν

which describes the probability of reaching a target state within the subsystem S′×Q. Therefore

ν(psqI
) = PrD⊗AsqI

(◊accept)≥ PrD⊗A (Π∗) = PrD(Π)> λ.

We show that ν is optimal with respect to Constraint 6.24a.

• If ν did not minimize the number of states, then there would be another satisfying assign-

ment that evaluates xs to 1 for a fewer number of states. Due to soundness of the MILP
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formulation (Lemma 16), there would exist an MCS smaller than DS′ , which contradicts

the minimality assumption for DS′ .

• Similarly, if ν did not maximize psI
, then there would be another satisfying assignment

selecting the same (minimal) number of states but mapping a larger value to psI
than ν

does. By soundness (Lemma 16), there would exist an MCS in which the probability to

satisfy L in the initial state is larger than in DS′ , which contradicts the assumption that

DS′ maximizes this probability under all MCSs. �

Theorem 11 7 The MILP formulation (6.24a)–(6.24f) is sound and complete.

Proof 18 The MILP formulation is sound by Lemma 16 and complete by Lemma 17.

6.3.5 MILP-formulation for reachability properties of PAs

Let in the followingM = (S, sI, Act,P , L) be a PA, ψ= P≤λ(◊T ) a reachability property violated

byM , and T ⊆ S be a set of target states. The MILP formulation for ψ andM reads as follows:

minimize − 1

2
psI
+
∑

s∈S

xs (6.25a)

such that

psI
> λ (6.25b)

∀s ∈ T. ps = xs (6.25c)

∀s ∈ S \ T. ps ≤ xs (6.25d)

∀s ∈ S \ T.
∑

η∈P (s)
σs,η = xs (6.25e)

∀s ∈ S \ T. ∀(α,µ) ∈ P (s). ps ≤ (1−σs,α,µ) +
∑

s′∈succM (s,α,µ)

µ(s′) · ps′ (6.25f)

∀s ∈ Sprobl(T ).∀η ∈ Hprobl(T )(s).
∑

s′∈succM (s,η)
t←s,s′ ≤ xs′ (6.25g)

∀s ∈ Sprobl(T ).∀η ∈ Hprobl(T )(s).∀s′ ∈ supp(η). r←s < r←s′ + (1− t←s,s′) (6.25h)

∀s ∈ Sprobl(T ).∀η ∈ Hprobl(T )(s). (1−σs,η) +
∑

s′∈succM (s,η)
t←s,s′ ≥ xs . (6.25i)

Lemma 18 The MILP formulation (6.25a)–(6.25i) is sound.

Proof 19 Let ν be a satisfying assignment of the MILP constraints (6.25a)–(6.25i) and let S′ =
{s ∈ S | ν(xs) = 1} as before. We define the (partial) memoryless deterministic scheduler

σ : S′ \T → Act× subDistr(S) by σ(s) = η iff ν(σs,η) = 1 for η ∈ Act× subDistr(S). The scheduler
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σ is well-defined, since Constraint 6.25e ensures that for each s ∈ S′ \ T there is exactly one

action α ∈ Act with σs,η = 1.

We show that the DTMC DS′ = (S′, sI, P ′, L′) with P ′(s, s′) = η(s′) for η ∈ P (s) and σ(s) = η

and L′(s′) = L(s′) for all s ∈ S′ \ T and s′ ∈ S′ is an MCS ofM for ψ with maximal probability to

reach T from sI under all MCSs.

1. We show that DS′ is a subsystem of M . From (6.25b) we conclude 0 ≤ λ < ν(psI
), and

therefore by the satisfaction of (6.25c)–(6.25d) we have that ν(xsI
) = 1, i. e., sI ∈ S′. The

remaining conditions for DS′ being a subsystem ofM hold by the definition of DS′ .

2. We show that all states of DS′ are relevant for T , see Definition 24 on Page 34. By definition,

from all unproblematic states s ∈ S′ \ SMprobl(T ) there is a path inMσ′ to a target state for

all schedulers σ′. This holds also for each extension of the (partial) scheduler σ. Due

to the backward reachability given by Constraints 6.25g–6.25i, from all states that are

problematic inM an unproblematic state and therefore also a target state is reachable in

DS′ .

3. We show that ν(psI
) = Pr

DS′
sI
(◊T ). The constraints (6.25c)–(6.25d) assure that (i) ν(ps) = 0

for all s ∈ S \ S′ and (ii) ν(ps) = 1 for all s ∈ S′ ∩ T . Therefore, due to the satisfaction

of (6.25f) for the action-distribution pairs selected by σ, the assignment ν satisfies the

following constraint system:

∀s ∈ S′ \ T. ps ≤ (1−σs,σ(s)) +
∑

s′∈succM (s,σ(s))
σ(s)(s′) · ps′

=
∑

s′∈S′\T
P ′(s, s′) · ps′ +

∑

s′∈S′∩T

P ′(s, s′) .

As shown in (2), all states of DS′ are relevant for a. Lemma 6 implies ν(psI
) ≤ Pr

DS′
sI
(◊T),

and Lemma 3 implies that there is also a satisfying assignment mapping Pr
DS′
sI
(◊T) to psI

(satisfying the inequations with equalities). Since ν is a satisfying assignment maximizing

psI
in (6.25a), ν(psI

) = Pr
DS′
sI
(◊T ) must hold.

4. We show that DS′ is critical. In (3) we have shown that ν(psI
) = Pr

DS′
sI
(◊T). Combined

with 0≤ λ < ν(psI
) from (1) we get λ < Pr

DS′
sI
(◊T ).

5. We show thatDS′ is minimal. Assume the opposite. Then there is a schedulerσ′′ and a state

set S′′ ⊆ S with |S′′|< |S′| such that the DTMC DS′′ = (S′′, sI, P ′′, L′′) with P ′′(s, s′) = η(s′)
for σ′′(s) = η ∈ Act× subDistr(S) and L′′(s) = L(s) for all s, s′ ∈ S′′ is an MCS of M for

P≤λ(◊T ).

Note that, since DS′′ is minimal, it has only states that are relevant for T , i. e., T is reachable

from all of its states. We consider a set Π of paths of DS′′ such that Π is postfix-closed and
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it contains for each state s ∈ S′′ exactly one shortest path from s to T in DS′′ . We define the

function f : S′′ \ T → S′′ by assigning to each state s ∈ S′′ \ T the unique successor state of

s on the shortest path from s to T in Π.

Now we define an assignment µ: Var→ R by

• µ(xs) = 1 and µ(ps) = Pr
DS′′
sI
(◊T ) for s ∈ S′′, and µ(xs) = µ(ps) = 0 otherwise

• µ(σs,η) = 1 if s ∈ S′′ and σ′′(s) = η, and µ(σs,η) = 0 otherwise

• for all s, s′ ∈ S we have that µ(t←s,s′) = 1 if s ∈ S′′ \ T and s′ = f (s), and µ(t←s,s′) = 0

otherwise

• for all s ∈ S we have that µ(r←s ) = 1− n/d where n is the length of a shortest path

from s to T in DS′′ , and d is the maximum of the lengths of all shortest paths from

any state to T in DS′′ .

Lemma 3 applied to the induced DTMCMσ′′ and S′′ implies that µ satisfies the constraints

(6.25f) with equality. The satisfaction of the other constraints is easy to see.

However,
∑

s∈S µ(xs)<
∑

s∈S ν(xs), what contradicts our assumption that ν is optimal with

respect to Condition (6.25a).

6. It remains to show that the probability to reach T from sI in DS′ is maximal under all

MCSs. This proof is analogous to the previous item (5). Assume the opposite. Then there

is a scheduler σ′′ and some S′′ ⊆ S such that DS′′ defined as above is an MCS forM and

P≤λ(◊T) with Pr
DS′
sI
(◊T) < Pr

DS′′
sI
(◊T). We define µ as above. Again, with the help of

Lemma 3 we can show that µ satisfies all constraints. Since DS′ and DS′′ are both minimal,
∑

s∈S ν(xs) =
∑

s∈S µ(xs). From Condition (3) we know that ν(psI
) = Pr

DS′
sI
(◊T ), i. e.,

ν(psI
) = Pr

DS′
sI
(◊T )< Pr

DS′′
sI
(◊T ) = µ(psI

) .

Thus −1
2
µ(psI

)+
∑

s∈S µ(xs)<−1
2
ν(psI

)+
∑

s∈S ν(xs), contradicting the optimality of ν . �

Lemma 19 The MILP formulation (6.25a)–(6.25i) is complete.

Proof 20 Since M 6|= P≤λ(◊T), there is a scheduler σ and a state set S′ such that the DTMC

DS′ = (S′, sI, P ′, L′) with P ′(s, s′) = P(s,σ(s), s′) and L′(s) = L(s) for all s, s′ ∈ S′ is an MCS ofM
for P≤λ(◊T) having a maximal probability to reach T under all MCSs. We show that there is a

satisfying assignment ν of the MILP formulation (6.25a)–(6.25i) with S′ = {s ∈ S | ν(xs) = 1}
and ν(σs,α) = 1 iff σ(s) = α such that ν(psI

) = Pr
DS′
sI
(◊T ).

As in the proof of Lemma 13, we consider a set Π of paths of DS′ such that Π is postfix-closed

and it contains for each state s ∈ S′ exactly one shortest path from s to T in DS′ . We know that

such a set exists, since minimality of the MCS DS′ implies that T can be reached from all states
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in DS′ . We define the function f : S′ \ T → S′ by assigning to each state s ∈ S′ \ T the unique

successor state of s on the shortest path from s to T in Π.

We define the assignment ν : Var→ R by

• ν(xs) = 1 and ν(ps) = Pr
DS′
sI
(◊T ) for s ∈ S′, and ν(xs) = ν(ps) = 0 otherwise,

• ν(σs,η) = 1 if s ∈ S′ and σ(s) = η, and ν(σs,η) = 1 otherwise,

• for all s, s′ ∈ S, ν(t←s,s′) = 1 if s ∈ S′ \ T and s′ = f (s), and ν(t←s,s′) = 0 otherwise, and

• for all s ∈ S, ν(r←s ) = 1− n/d where n is the length of a shortest path from s to T in DS′ ,

and d is the maximum of the lengths of all shortest paths from any state to T in DS′ .

Lemma 3 implies that µ satisfies the constraints (6.25f) with equality. The satisfaction of the

other constraints is easy to show by replacing the variables by their values under ν (see also the

proof of Lemma 8). �

Theorem 12 9 The MILP formulation (6.25a)–(6.25i) is sound and complete.

Proof 21 The MILP formulation is sound by Lemma 18 and complete by Lemma 19. �

6.3.6 MILP-formulation for ω-regular properties of PAs

6.3.6.1 Requirements

LetM = (S, sI, Act,P , L) be a PA, P≤λ(L ) an ω-regular property which is violated byM , and

A = (Q, qI, 2
AP,δ, F) a DRA with F =

�

(Ri , Ai)
�

� i = 1, . . . , n
	

and L (A ) =L .

We consider the productM ⊗A of the PAM and the DRA A as in Definition 31 with the

probabilistic transition relation P ′, and assume that all irrelevant states have been removed, see

Definition 24. To simplify notation we use U = S ×Q and u = (s, q), u′ = (s′, q′), etc. as typical

elements from U .

Lemma 20 2 Let (Ri , Ai) ∈ 2Q × 2Q be a pair of a Rabin acceptance condition, σ : U → Act ×
subDistr(U) a scheduler, and Mi ⊆ U a set of states with the following properties:

1. ∀u ∈ Mi .
∑

u′∈succ(u,η)∩Mi

η(u′) = 1, where σ(u) = η,

2. Mi ∩ (S× Ri) = ;, and

3. for each state u ∈ Mi there is a path from u to a state in S× Ai .

Then the probability of satisfying the acceptance condition F inM because of the pair (Ri , Ai) is 1

for all u ∈ Mi .
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Proof 22 Since Mi is closed under successors w. r. t. scheduler σ, this set forms a sub-PA ofM .

The probability to reach a BSCC under scheduler σ is 1 for every state of Mi. Let M ′i ⊆ Mi be

such a BSCC. As M ′i is strongly connected, it forms an end component ofM . As a state out of

S × Ai is reachable from every state of Mi, at least one state of S × Ai has to be included in M ′i .
Hence, M ′i is an accepting end component ofM . As this holds for every BSCC included in Mi,

the probability to reach an accepting end component inside Mi is one. �

6.3.6.2 Soundness and completeness

Recall the MILP-formulation for an MCS ofM for ψ= P≤λ(L ) as given in Section 6.2.2.

minimize − 1

2
psqI
+
∑

s∈S

xs (6.26a)

such that

• Selection of at most one action-distribution pair per state:

∀u= (s, q) ∈ U .
∑

η∈P (u)
σu,η ≤ xs (6.26b)

• Definition of the set Mi for all i = 1, . . . , n:

∀u ∈ U .∀η ∈ P (u) with
∑

u′∈U

η(u′)< 1. mi
u ≤ 1−σu,η (6.26c)

∀u ∈ U .∀η ∈ P (u). nu,η · (2−σu,η−mi
u) +

∑

u′∈supp(η)

mi
u′ ≥ nu,η (6.26d)

∀u ∈ S× Ri . mi
u = 0 (6.26e)

• Backward reachability of S× Ai within Mi for all i = 1, . . . , n:

∀u ∈ U .∀η ∈ P (u).∀u′ ∈ supp(η). t i
u,u′ ≤ mi

u′ + (1−σu,η) (6.26f)

∀u ∈ U .∀η ∈ P (u).∀u′ ∈ supp(η). r i
u < r i

u′ + (1− t i
u,u′) + (1−σu,η) (6.26g)

∀u ∈ S× (Q \ Ai).∀η ∈ P (u). (1−σu,η) +
∑

u′∈supp(η)

t i
u,u′ ≥ mi

u (6.26h)

• Probability computation:

psqI
> λ (6.26i)

∀i = 1, . . . , n.∀u ∈ U . pu ≥ mi
u (6.26j)

∀u ∈ U . pu ≤
∑

η∈P (u)
σu,η (6.26k)
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∀u ∈ U .∀η ∈ P (u). pu ≤ (1−σu,η) +
n
∑

i=1

mi
u+

∑

u′∈supp(η)

η(u′) · pu′ (6.26l)

• Backward reachability of M =
⋃n

i=1 Mi within the subsystem:

∀u ∈ U .∀η ∈ P (u).∀u′ = (s′, q′) ∈ supp(η). tM
u,u′ ≤ xs′ + (1−σu,η) (6.26m)

∀u ∈ U .∀η ∈ P (u).∀u′ ∈ supp(η). rM
u < rM

u′ + (1− tM
u,u′) + (1−σu,η) (6.26n)

∀u= (s, q) ∈ U .∀η ∈ P (u). (1−σu,η) +
n
∑

i=1

mi
u+

∑

u′∈supp(η)

tM
u,u′ ≥ xs . (6.26o)

Lemma 21 The MILP formulation (6.26a)–(6.26o) is sound.

Proof 23 Assume a satisfying assignment ν of the MILP (6.26a)–(6.26o). Analogously to DTMCs,

we define the restricted PAM ′ = (S′, sI, Act,P ′, L′) with S′ = {s ∈ S | ν(xs) = 1},

P ′(s) = {η ∈ P (s) | ∃q ∈Q.ν(σ(s,q),η) = 1}

and L′(s) = L(s) for all s, s′ ∈ S′. We show thatM ′ is an MCS ofM for P≤λ(L ), with a maximal

probability to satisfy L under all MCSs.

1. We show thatM ′ is a subsystem ofM . From Constraint 6.26i we imply ν(psqI
) > λ ≥ 0.

Using Constraints 6.26b and 6.26k we get that ν(xsI
) = 1, i. e., sI ∈ S′. The other conditions

forM ′ being a subsystem ofM are straightforward by the definition ofM ′.

2. For Constraint 6.26b we observe that
�

�{η ∈ P (u) | ν(σu,η) = 1}
�

� ≤ 1 for all u ∈ U .

Therefore the deterministic memoryless scheduler σ forM ′⊗A with σ(u)(η) = ν(σu,η)

for all u ∈ S′ ×Q is well-defined, and it induces a DTMC D′ = (M ′ ⊗A )σ with state set

U ′ = S′×Q. In the following we use the notation def(σ) = {u ∈ U ′ | ∃η ∈ P (u): σ(u)(η) =
1} as the set of states where an action-distribution pair is chosen by the scheduler. We

show that PrD
′

u (◊accept) = ν(pu) for all states in u ∈ U ′ (where all states in all accepting

end components of D′ are labeled with accept).

For i = 1, . . . , n let Mi = {u ∈ U | ν(mi
u) = 1} and M =

⋃n
i=1 Mi . Using

ν(mi
u)

(6.26j)
≤ ν(pu)

(6.26k)≤
∑

η∈P (u)
ν(σu,η)

(6.26b)≤ ν(xs) (6.27)

for all u= (s, q) ∈ U and i = 1, . . . , n, we have that M ⊆ U ′.

• We start by showing that PrD
′

u (◊accept) = ν(pu) = 1 holds for all u ∈ M . First, all

prerequisites of Lemma 2 on Page 143 are satisfied for each Mi as state set and the Ai-

states in Mi as target states. The Constraints 6.26j–6.26k assure that Mi ⊆ def(σ), i. e.,
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that, the scheduler σ selects an action for all Mi-states, for which by Constraint 6.26c

it holds that

∑

u′∈succM⊗A (u,σ(u))

η(u′) = 1

where σ(u) = η.

Mi is closed under successors with respect to the action-distribution pairs selected

by σ because of Constraint 6.26d. Furthermore, Mi does not contain any Ri-states

according to Constraint 6.26e. Given the assignment of σu,η, Constraints 6.26f–6.26h

are backward reachability constraints with the Ai-states as the target states. According

to Lemma 14 on Page 157, an assignment ν is satisfying these constraints iff from all

states in Mi an Ai-state state is reachable inside Mi . Therefore by Lemma 2 it follows

that PrD
′

u (◊accept) = 1 for all states u ∈⋃n
i=1 Mi , which coincides with ν(pu) because

of Constraint 6.26j. It follows that PrD
′

u (◊accept) = ν(pu) = 1 for all u ∈ M .

• Now we show that PrD
′

u (◊accept) = ν(pu) for all u ∈ U ′ \M .

Constraints 6.26m–6.26o ensure that for all states u ∈ U ′ \M either u 6∈ def(σ) or a

state in M is reachable from u (cf. Lemma 14).

For states u ∈ U \ def(σ) without any action selected by σ, Constraint 6.26k implies

ν(pu) = 0= PrD
′

u (◊accept). Assume that these states and their connected (incoming)

transitions are removed from D′.
Note that for non-selected states u ∈ U \ U ′, Constraints 6.26b and 6.26k enforce

ν(pu) = 0. Recall furthermore that ν(pu) = 1 for each u ∈ M . Therefore, for each

u ∈ (U ′ \M)∩ def(σ) and η ∈ P (u) with σ(u) = η, according to Constraint 6.26l it

holds that

ν(pu)≤
∑

u′∈(U ′∩def(σ))\M
η(u′) · ν(pu′) +

∑

u′∈M

η(u′) .

Lemma 6 applied to the state set U ′ ∩ def(σ) and target set M gives us ν(pu) ≤
PrD

′
u (◊accept). According to the objective function in Constraint 6.26a, ν maximizes

the probability psqI
. Lemma 3 states that the maximal solution satisfies PrD

′
u (◊accept) =

ν(pu) for all u ∈ (U ′ ∩ def(σ)) \ M . We conclude that ν(pu) = PrD
′

u (◊accept) for all

u ∈ U ′.

3. Above we have shown that ν(psqI
) = PrD

′
sqI
(◊accept), and by Constraint 6.26i we have

that ν(psqI
) > λ. Thus PrD

′
sqI
(◊accept) > λ. Using Theorem 2 we get that PrMσ

sI
(L ) =

PrD
′

sqI
(◊accept)> λ, i. e.,M ′ is critical.

4. We show that M ′ is minimal. Assume the opposite. Then there is an MCS M ′′ for M
and P≤λ(L ) with state set S′′ ⊆ S such that |S′′| < |S′|. SinceM ′′ is an MCS, there is a
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deterministic memoryless scheduler σ forM ′′⊗A such that Pr(M
′′⊗A )σ

sqI
(◊accept)> λ.

In the Constraints 6.26a–6.26o we syntactically replace (i) xs by 1 if s ∈ S′′ and by 0

otherwise, (ii) mi
u by 1 if u ∈ S′′×Q is in an end component ofM ′′⊗A accepting for the

ith accepting condition and by 0 otherwise, and σu,η by σ(u)(η) ∈ {0, 1}.
Lemma 3 applied to S′′ implies that the constraint system resulting from the above sub-

stitution has a satisfying assignment; following the argumentation in Item (2) above we

get that this assignment maps Pr
DS′′
sI
(L ) > λ to psqI

, thus also satisfying Constraint 6.26i.

However, for this satisfying assignment the number of positive xs variables is smaller than

for ν , which contradicts our assumption that ν minimizes the objective function.

5. It remains to show that the probability to satisfy L from sI inM ′ is maximal among all

MCSs. This proof is analogous to the previous item. Assume the opposite. Then there is

some MCSM ′′ of D for P≤λ(L ) with state set S′′ ⊆ S such that the probability to satisfy

L in the initial state is higher inM ′′ as inM ′.

We apply the same replacement as above to the constraint system (6.26a)–(6.26o) to get a

satisfying assignment µ inducingM ′′. SinceM ′ andM ′′ are both minimal,
∑

s∈S ν(xs) =
∑

s∈S µ(xs), however ν(psqI
)< µ(psqI

), contradicting the optimality of ν . �

Lemma 22 The MILP formulation (6.26a)–(6.26o) is complete.

Proof 24 LetM ′ = (S′, sI, Act,P ′, L′) be an MCS ofM for P≤λ(L ), in which the probability to

satisfy L in the initial state is the highest among all MCSs.

Since the subsystemM ′ is critical, there is a memoryless deterministic scheduler σ forM ′×A
such that Pr(M

′⊗A )σ
sqI

(◊accept) > λ. Let B be the set of accepting BSCCs of the induced DTMC

(M ⊗A )σ and Mi =
⋃{C ∈B | C ∩ Ri = ; ∧ C ∩ Ai 6= ;} for i = 1, . . . , m.

We define the following partial assignment ν:

• ν(xs) = 1 iff s ∈ S′

• ν(σu,η) = 1 iff u= (s, q)∧ s ∈ S′ ∧σ(u)(η) = 1, and

• ν(pu) = Pr(M
′⊗A )σ

u (◊accept),

• ν(mi
u) = 1 iff u ∈ Mi .

Now we show that there is a total extension of this assignment that satisfies all constraints:

(6.26a) The defined assignment minimizes this function, since the MCS is minimal with maximal

probability to satisfy L under all MCSs.

(6.26b) This constraint is satisfied since we do not select any action for states u = (s, q) with

s 6∈ S′ and σ selects exactly one action-distribution pair for each state u= (s, q) with s ∈ S′.
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(6.26c) Since all states of Mi are contained in a BSCC, and—for all states in a BSCC—the

probability that a successor state is also in a BSCC is 1, this constraint is satisfied.

(6.26d) For states u outside Mi and for action-distribution pairs not chosen by σ, the constraint

is satisfied because in these cases (2−mi
u−σu,η)≥ 1. For states u= (s, q) with s ∈ S′ and

η= σ(u), ν(mi
u′) = 1 is required for all successor states u′ of u. This is the case since Mi is

a union of BSCCs.

(6.26e) In the definition of Mi we have required that Mi ∩ Ri = ;. Therefore this constraint is

satisfied.

(6.26f)–(6.26h) Each accepting BSCC in Mi contains by construction a state from Ai . Since in a

BSCC each state is reachable from each state, we can apply Lemma 13 to obtain a satisfying

assignment for these backward reachability constraints.

(6.26i) ν(psqI
) = Pr(M

′⊗A )σ
sqI

(◊accept)> λ holds since the subsystem is critical.

(6.26j) For target states, which are the states in the accepting BSCCs, the reachability probability

is one.

(6.26k) For each deadlock state u without outgoing transitions it holds that ν(pu) =

Pr(M
′⊗A )σ

u (◊accept) = 0. Therefore, the inequality is trivially satisfied. For non-deadlocking

states, this inequation puts no constraints on the probability values, thus it holds also in

that case.

(6.26l) For states from an Mi this constraint is trivially satisfied since the right-hand side eval-

uates at least to one. The case for σ(u) 6= η is similarly straightforward. The reachability

probabilities for the remaining states which can reach the accepting BSCCs satisfy the

equality

pu =
∑

u′∈succM′⊗A (u,η)

η(u′) · pu′

and therefore satisfy also this constraint. For the remaining states ν(pu) = 0 holds, also

satisfying the constraint.

(6.26m)–(6.26o) These are the backward reachability constraints ensuring reachability of the

accepting BSCCs. We distinguish different cases:

• s 6∈ S′: Set ν(tM
u,u′) = 0 for all q ∈ Q, u = (s, q), u′ ∈ succM ′⊗A (u) and ν(rM

u ) = 0.

Then all three constraints are satisfied.

• s ∈ S′, but from u no accepting BSCC can be reached. Choose ν(tM
u,u′) = 0 and

ν(rM
u ) = 0 as in the previous case. Since ν(σu,η) = 0 for all η ∈ P (u), the three

constraints are satisfied.
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• s ∈ S′ and from u a BSCC can be reached. According to Lemma 13 we can find a

satisfying assignment for these backward reachability constraints.

We have shown that the constructed assignment ν satisfies all constraints of the MILP. �

Theorem 13 10 The MILP formulation (6.26a)–(6.26o) is sound and complete.

Proof 25 The MILP formulation is sound by Lemma 21 and complete by Lemma 22. �
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CHAPTER 7

High-level counterexamples for probabilistic automata

Summary In this chapter we present a new approach to the computation and representation

of counterexamples. All previous approaches, be it the ones described in Chapter 3 concerning

related work or the ones described in Chapters 5 and 6, explicitly or symbolically present the

state-space of a counterexample. Although these methods are often able to generate small

counterexamples in a compact representation, they might still be too large to be understandable

for human users.

It is therefore only natural to present counterexamples at the modeling level of the system

at hand. Following our previous approaches, we want to determine a minimal critical model

description, i. e., a high-level description of a counterexample that is as small as possible. In

detail, we assume the general class of PAs to be described by the PRISM [KNP11] input language,

which is a stochastic version of Alur and Henzinger’s reactive modules [AH99]. As many models

are inherently concurrent, a model for a PA can be specified as the parallel composition of

single modules, where modules communicate by shared variables or synchronization on common

actions. Here, we determine a subset of guarded commands that together induce a critical

subsystem as presented in Section 5.1. Furthermore, as an extension we are able to simplify the

commands by removing command branches which are not necessary to obtain a counterexample.

We present this as a special case of a method where the number of different transition labels

for a probabilistic automaton is minimized, again by developing dedicated MILP encodings.

Background This chapter does not need extensive background, as the PRISM language is

introduced here. Apart from this, we need again the explicit model checking of DTMCs and PAs

based on solving linear equation systems, see Sections 2.3.1.1 and 2.3.1.2. Moreover, recall the

introduction to solving techniques in Sections 2.6.



7.1. PRISM’S GUARDED COMMAND LANGUAGE

7.1 PRISM’s guarded command language

First, we give an overview to the input language PRISM used to define PAs. This language has

also semantics fit to describe DTMCs and CTMCs, however, this is out of the scope of this thesis.

Let in the following for a set Var of Boolean variables VVar denote the set of all variable

assignments. We first introduce the notions of PRISM-models, that consist of modules which in

turn consist of commands that are defined over a finite set of variables.

Definition 57 (Model, module, command) A model is a tuple (Var, sI, {M1, . . . , Mk}) with

• a finite set of Boolean variables Var

• an initial assignment sI ∈ VVar

• a finite set of modules {M1, . . . , Mk}.

A module is a tuple Mi = (Vari , Acti , Ci) with

• a subset of variables Vari ⊆ Var such that Vari ∩ Var j = ; for i 6= j

• a finite set of synchronizing actions Acti

• a finite set of commands Ci .

The action τ with τ 6∈⋃k
i=1 Acti denotes the internal non-synchronizing action. A command

c ∈ Ci has the form

c = [α] g → p1 : f1+ . . .+ pn : fn

with α ∈ Acti ] {τ}, g a Boolean predicate (“guard”) over the variables in Var, p j ∈ [0,1] a

rational number with
∑n

j=1 p j = 1, and f j : VVar→VVari
a variable update function.

We denote the action α of command c by act(c). Intuitively, each model contains a set of modules

that might interact via the commands that have common actions. A command has a guard which

is a Boolean expression over the set of variables. If this is true for a variable evaluation—a

state—the guard can be executed.

Note that each module may only change the values of its own variables while the updated

values may depend on variables of other modules. To flatten a model, each one is equivalent

to a model with a single module. This is possible by defining a suitable parallel composition of

these modules. We only give a short intuition on how this composition works and refer to the

documentation of PRISM for more detail.
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7.1.1 Parallel composition

Assume two modules M1 = (Var1, Act1, C1) and M2 = (Var2, Act2, C2) with Var1 ∩ Var2 = ;. We

first define the composition c ⊗ c′ of two commands c and c′, given by c = [α] g → p1 : f1 +

. . . + pn : fn ∈ C1 and c′ = [α] g ′ → p′1 : f ′1 + . . . + p′m : f ′m ∈ C2. We define the operation

⊗ for commands, which basically builds the conjunction of the guards and the component-

wise multiplication of the probabilities a well as the component-wise update of the variable

update functions. In detail, for two functions fi : VVar → VVar1
and f ′j : VVar → VVar2

we define

fi ⊗ f ′j : VVar → VVar1∪Var2
such that for all ν ∈ VVar we have that ( fi ⊗ f ′j )(ν)(ξ) equals fi(ν)(ξ)

for each ξ ∈ Var1 and f ′j (ν)(ξ) for each ξ ∈ Var2. Altogether, we have:

c⊗ c′ = [α] g ∧ g ′ →
n
∑

i=1

m
∑

j=1

pi · p′j : fi ⊗ f ′j .

Using this, the parallel composition M = M1 ‖ M2 = (Var, Act, C) is given by Var = Var1 ∪ Var2,

Act= Act1 ∪ Act2, and

C = { c | c ∈ C1 ∪ C2 ∧ act(c) ∈ {τ} ∪ (Act1 \ Act2)∪ (Act2 \ Act1) }
∪ { c⊗ c′| c ∈ C1 ∧ c′ ∈ C2 ∧ act(c) = act(c′) ∈ Act1 ∩ Act2 } .

Intuitively, commands labeled with non-synchronizing actions are executed individually while for

synchronizing actions one command from each synchronizing module is executed simultaneously

together with the others. Note that if a module has an action in its synchronizing action set but

no commands labeled with this action, this module will block the execution of commands with

this action in the composition. This is considered to be a modeling error and the corresponding

commands are ignored.

7.1.2 PA semantics of PRISM models

The operational semantics of a model M = (Var, Act, C) as defined above is a PA. As we do

not consider compositional verification, we assume a model (Var= {ξ1, . . . ,ξm}, sI, {M}) with a

single module M = (Var, Act, C) which will not be subject to parallel composition any more.

The state space S of the corresponding PA M = (S, sI, Act,P , L) is given by the set of all

possible variable assignments VVar, i. e., a state s is a vector (v1, . . . , vm) with vi being a value of

the variable ξi ∈ Var. To construct the transitions, we observe that the guard g of each command

c = [α] g → p1 : f1+ . . .+ pn : fn ∈ C

defines a subset of the state space Sc ⊆ VVar with s ∈ Sc iff s satisfies g. For each state s ∈ Sc we
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Figure 7.1: PAM

define a probability distribution µc,s : VVar→ [0,1] with

µc,s(s
′) =

∑

{1≤i≤n| fi(s)=s′}
pi

for each s′ ∈ VVar. The probabilistic transition relation P : VVar → 2Act×Distr(VVar) is given by

P(s) = {(α,µc,s) | c ∈ C ∧ act(c) = α∧ s ∈ Sc} for all s ∈ VVar.

Example 30 We first make a connection to the running example of this thesis. Reconsider the PA

(MDP) in Figure 7.1 as in the previous PA examples. We define a model M = (Var, Act, C) such

that Var = {x1, x2, x3} and Act = {α,β}. As in Example 6 on Page 42 concerning the symbolic

representation of a DTMC, we implicitly use the following (binary) encoding for the state space and

ignore the absorbing state s8.
x1 x2 x3

s0 0 0 0

s1 0 0 1

s2 0 1 0

s3 0 1 1

s4 1 1 1

s5 1 1 0

s6 1 0 0

s7 1 0 1
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Let in the following the updated value of variable v be denoted by v′. Accordingly, if we have a

command of the form c = [τ] ¬x1 ∧ x2→ 0.4: x ′1+ 0.6: ¬x ′1, this means that if the guard is true,

i. e., x1 = false and x2 = true, we set x1 to true with probability 0.4 and with probability 0.6 it

is set to false, while x2 is not changed. Consider the following set of commands:

[τ] ¬x1 ∧¬x2 ∧¬x3 → 0.5: x ′3+ 0.25: x ′2+ 0.25: x ′1 ∧ x ′2
[α] ¬x1 ∧¬x2 ∧ x3 → 0.5: x ′2 ∧¬x ′3+ 0.5: x ′2
[β] ¬x1 ∧¬x2 ∧ x3 → 1: x ′2 ∧¬x ′3
[α] ¬x1 ∧ x2 ∧¬x3 → 0.5: ¬x ′2 ∧ x ′3+ 0.5: x ′1 ∧ x ′2 ∧ x ′3
[β] ¬x1 ∧ x2 ∧¬x3 → 1: ¬x ′2 ∧ x3

[τ] ¬x1 ∧ x2 ∧ x3 → 1: true

[τ] x1 ∧ x2 ∧ x3 → 0.7: ¬x ′1 ∧¬x ′2+ 0.3: ¬x ′1
[τ] x1 ∧ x2 ∧¬x3 → 1: ¬x ′2
[τ] x1 ∧¬x2 ∧¬x3 → 0.5: ¬x ′1 ∧ x ′2 ∧ x ′3+ 0.5: x ′3
[τ] x1 ∧¬x2 ∧ x3 → 0.25: x ′2 ∧¬x ′3+ 0.25: ¬x ′3

This set of commands defines exactly the PA as in Figure 7.1, if s0 = (0,0,0) is the initial variable

assignment. Note that we deliberately named the actions of the nondeterministic transitions α and β .

If these were also τ-labeled actions, the semantics would be the same. If a command has as update

only the value 1: true, this corresponds to a self-loop.

We also want to provide a more praxis-oriented example, taken from the PRISM benchmark

suite [KNP12].

Example 31 We consider the shared coin protocol of a randomized consensus algorithm [AH90].

The protocol returns a preference between two choices with a certain probability. A shared integer

variable c is incremented or decremented by each process depending on the internal result of a coin

flipping. If the value of c becomes lower than a threshold left or higher than a threshold right,

the result is heads or tails, respectively.

The protocol, which is the same for each participating process, has the following local variables:

coin which is either 0 or 1, flip which is true iff the coin shall be flipped, flipped which is true

iff the coin has already been flipped, check which is true iff the value of c shall be checked. Initially,

c has a value between left and right, flip is true, and flipped and check are false. Consider

a simplified version of the original PRISM code:

[τ] flip → 0.5: coin=0&flip=false&flipped=true

+ 0.5: coin=1&flip=false&flipped=true (7.1)
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[τ] flipped&coin=0&c≤right → 1: c=c-1&flipped=false&check=true (7.2)

[τ] flipped&coin=1&left≤c → 1: c=c+1&flipped=false&check=true (7.3)

[τ] c<left → 1: heads=true (7.4)

[τ] c>right → 1: tails=true (7.5)

[τ] check&c≤right&c≥left → 1: check=false&flip=true (7.6)

Command 7.1 sets coin to 0 or 1, each with probability 0.5. Commands 7.2 and 7.3 increment

or decrement the shared counter c depending on the value of coin. Commands 7.4 and 7.5 check

whether the value of c is above or below the boundaries left and right and return heads or

tails, respectively. If no boundary is violated, Command 7.6 sets flip to true which enables

Command 7.1 again.

7.2 Computing high-level counterexamples

We are now ready to introduce our concepts of computing smallest critical command sets. For

this, we introduce a generalization of this problem, namely smallest critical label sets, state the

complexity, and specify an MILP formulation to solve this problem.

7.2.1 Smallest critical labelings

Let in the followingM = (S, sI, Act,P , L) be a PA, T ⊆ S a set of target states, and Lab a finite

set of labels. Assume furthermore a partial labeling function L : S×Act× subDistr(S)×S 7→ 2Lab

such that L (s,η, s′) is defined iff η ∈ P (s) and s′ ∈ supp(η). Recall that we abbreviate η =

(α,µ) ∈ Act× subDistr(S) and write supp(η) = supp(µ).

We need to restrict a given PA with respect to a set of labels.

Definition 58 (Restricted PA) Given a PAM and a subset of labels Lab′ ⊆ Lab, the restricted

PA induced by Lab′ is given byM|Lab′ = (S, sI, Act,P|Lab′ , L) such that for all s ∈ S:

P|Lab′(s) = {(α,µ|Lab′) ∈ Act× subDistr(S) | (α,µ) ∈ P (s)∧ ∃s′ ∈ S. L(s,α,µ, s′)⊆ Lab′}

with ∀s′ ∈ S.µ|Lab′(s
′) =







µ(s′) if L (s,α,µ, s′)⊆ Lab′

0 otherwise.

Intuitively, in the restricted PAM|Lab′ all branches have been removed where the labeling is

not a subset of Lab′. We now use this definition to state our central problem, where we want to

have a labeling that is minimal with respect to a cost function.

178



7.2. COMPUTING HIGH-LEVEL COUNTEREXAMPLES

Definition 59 (Smallest critical label set (SCL) problem) Let M , T , Lab, and L be de-

fined as above and ψ = P≤λ(◊T) be a reachability property with M 6|= ψ. A set of labels

Lab′ ⊆ Lab and the restricted PAM|Lab′ = (S, sI, Act,P ′) are called critical if Pr
M|Lab′
sI

(◊T )> λ.

Given a weight function w : Lab→ R≥0, the smallest critical label set (SCL) problem is to

determine a critical subset Lab′ ⊆ Lab such that w(Lab′) =
∑

`∈Lab′ w(`) is minimal among all

critical subsets of Lab.

Theorem 14 To decide whether there is a critical label set Lab′ ⊆ Lab with w(Lab′)≤ k for a given

integer k ≥ 0 is NP-complete.

The proof of this theorem is a reduction from exact 3-cover (X3C) [GJ79], similar to a proof

in [CV10] for Theorem 8 on Page 137 concerning the complexity of finding minimal critical

subsystems. The proof is given in [1].

7.2.2 Applications of smallest critical labelings

As mentioned before, we utilize the concept of smallest critical label sets to compute different

kinds of counterexamples that are minimal with respect to different quantities. We now list six

instances of the SCL problem that we deem helpful in debugging a probabilistic system.

Commands Our foremost motivation was to minimize the number of involved commands of a

PRISM program that together induce a critical system. We call such a set a critical command set.

LetM = (S, sI, Act,P , L) be a PA generated by the modules Mi = (Vari , Acti , Ci) for i = 1, . . ., k.

For each module Mi and each command c ∈ Ci we introduce a unique label `c,i having the

weight w(`c,i) = 1. In the following we abbreviate `c if the index i is clear from the context. We

define the labeling function L : S × Act×Distr(S)× S 7→ 2Lab such that the labels in L (s,η, s′)
correspond to the set of commands which together generate this transition η ∈ P (s). Note that

if several command sets generate the same transition, we introduce copies of the transition. Note

furthermore that synchronizing commands together may create one certain transition, i. e., a

transition may be labeled by multiple commands. An SCL then corresponds to a smallest critical

command set.

Modules A more coarse notion of a counterexample would be to minimize the number of

modules involved to form a critical system. This can simply be done by using the same label

for all commands in a module. This is a justified concept as many systems, e. g., in the PRISM
benchmark suite [KNP12], consist partly of many copies of the same module. These modules

contain exactly the same commands, only the local variables are renamed. Consider for instance

a network consisting of a certain number of nodes that want to transmit messages using an access

protocol, see, e. g., a typical wireless protocol [KNS02], which is ran by all nodes of the network.

Additionally, there may be a module describing the communication channel. When fixing an
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erroneous system, one wants to preserve the identical structure of the different nodes. Therefore

the selected commands should contain the same subset of commands from all identical modules.

Let againM = (S, sI, Act,P , L) be a PA generated by the modules M1, . . . , Mk while there exists

an index 1 ≤ k′ ≤ k such that Mi = M j for 1 ≤ i, j ≤ k′, i. e., they are equal up to variable

renaming, and Mi 6= M j for k′ < i, j ≤ k. For each module Mi = (Vari , Acti , Ci) with i ≤ k′ and

each command c ∈ Ci we use the same label ` having the weight w(`c,i) = k′. Contrary, for each

module Mi = (Vari , Acti , Ci) with i > k′ we introduce labels as in the previous paragraph. We

basically assign the same label to all corresponding commands from the symmetric modules and

use the number of symmetric modules as its weight.

Deletion of unnecessary branches In addition to minimize the number of commands one

might want to simplify commands in the sense that certain branches of a probability distribution

are not necessary to render the subsystem critical. We utilize the SCL problem to delete these

sort of branches. For this we identify a smallest set of command branches that need to be

preserved in order for the induced sub-PA still to violate the reachability property. The resulting

command branches can be removed, still yielding an erroneous system. Assume a single module

M = (Var, Act, C) with C = {c1, . . . , cm}. Given a command ci of the form

[α] g → p1 : f1+ p2 : f2+ · · ·+ pn : fn,

we assign a unique label `i, j with weight w(`i, j) = 1 for each command branch p j : f j for

1≤ i ≤ m and 1≤ j ≤ n. Let Lab be the set of all such labels. When the parallel composition of

modules is computed, see Section 7.1, we build the union of the labelings of the synchronizing

command branches being executed together. When computing the corresponding PA M , we

transfer this labeling to the transition branches ofM : We define the labeling function L such

that L (s,η, s′) contains the labels of all command branches that are involved in generating the

branch from s to s′ via the transition η.

Variable domains In PRISM-programs one can define arbitrary large but finite variable domains.

This might results in unnecessary large state spaces. In particular, the part of the system inducing

critical behavior can be formed by a small subset of variable evaluations. We therefore define a

labeling suited to use an SCL to reduce the domains of variables in the PRISM program. Let Var

be the set of variables of a model andM = (S, sI, Act,P , L) the corresponding PA. Note that each

state s ∈ S corresponds to an assignment of the variables in Var. For a variable ξ ∈ Var we denote

the value of ξ in state s by s(ξ). Let Lab= {`ξ,v | ξ ∈ Var∧ v ∈ dom(ξ)} be the set of labels, each

with weight 1. We define the labeling of transition branches by corresponding variable values

as L (s,η, s′) = {`ξ,v | ξ ∈ Var ∧ s′(ξ) = v}. A smallest critical labeling then induces a critical

subsystem with a minimum number of variable values.
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Variable intervals The previous reduction technique removes a maximum number of values

from the variables’ domains. Originally the domains are intervals in Z. Minimization, however,

yields sets that are in general not intervals anymore. We can also minimize the size of the

intervals instead. To do so we need to impose further constraints on the valid label sets Lab′.
Details are presented in Section 7.2.5.

States Finally, the state-minimal critical subsystems as introduced in Chapter 6 can be obtained

as a special case of smallest critical label sets. We introduce a label `s with weight 1 for each state.

Then we set set L (s,η, s′) = {`s′} for all s ∈ S, η ∈ P (s) and s′ ∈ supp(η). This corresponds to

labeling each transition of the PA with the label belonging to its source state. Thereby, an SCL

Lab′ ⊆ Lab= {`s | s ∈ S} induces a state-minimal critical subsystem.

Moreover, a combination of the aforementioned applications is possible. For instance, one

could first remove all commands which are not necessary for a violation of the property, then

remove all unnecessary branches of the remaining commands, and finally reduce the domains of

the variables as much as possible.

7.2.3 An MILP encoding for smallest critical labelings

In this section we give an MILP encoding that is dedicated to the SCL problem as introduced

above. With the exception of the reduction of variable intervals this offers a blackbox algorithm

for all concepts of high-level counterexamples listed in the previous section.

In the following, we assume an PA M = (S, sI, Act,P , L) where all irrelevant states and

incident edges have been removed, see Definition 24 on Page 34. Moreover, recall the notions

of problematic states and problematic action-distribution pairs as in Definition 56 on Page 138.

Let again Sprobl(T ) denote the problematic states for a set of target states T ⊆ S. Let for all

problematic states s ∈ Sprobl(T ) the set of problematic action-distribution pairs be denoted by

Hprobl(T )(s). Furthermore, we assume all labels that do not occur in the relevant part of the PA to

be removed. We are now ready to present the encoding.

Intuition The basic idea is to compute a minimal labeling Lab′ ⊆ Lab such that the PA that is

restricted to this labeling is critical. As already explained in Section 6.2 for the computation of

minimal critical subsystems for PAs, the key problem is to encode the nondeterministic choices

to be made into the MILP formula, which shall be resolved by a deterministic memoryless

scheduler, see Definition 21 on Page 30. Again we introduce binary variables that indicate

the choice of an action-distribution pair. For the particular scenario of the SCL problem, we

need to explicitly “activate” or “deactivate” the probability contribution of branches (s,η, s′) ∈
S × Act× subDistr(S)× S with respect to the inclusion of their individual set of labels. As always

for PAs, the backward reachability of target states needs to be ensured for problematic states.
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Variables We use the following variables. For the sake of the autonomy of this chapter we

explain all variables in detail in spite of redundancy regarding the previous chapter.

x` ∈ {0,1} ⊆ Z for each label ` ∈ Lab is a characteristic variable which is assigned 1 iff ` shall be

part of the critical label set.

σs,η ∈ {0, 1} ⊆ Z is a binary variable for each state s ∈ S \ T and each pair of action and distri-

bution η ∈ P (s) that is available at s such that σs,η = 1 iff η is selected in state s by the

scheduler that induces by the critical subsystem. Note that it is possible for the scheduler

not to choose a pair η for s.

ps,η,s′ ∈ [0, 1]⊆ R for each branch (s,η, s′) with s ∈ S, η ∈ P (s) and s′ ∈ supp(η) is a variable

which is assigned 0 if not all labels in L (s,η, s′) are contained in Lab′, and at most η(s′)
otherwise, i. e., the actual probability to move from s to s′ under the condition that η ∈ P (s)
is chosen by the scheduler.

ps ∈ [0, 1]⊆ R for each state s ∈ S is a variable whose value is assigned at most the probability

to reach a target out of T starting at s under the selected scheduler within the subsystem

induced by the selected label set.

r←s ∈ [0, 1]⊆ R for all problematic states s ∈ Sprobl(T ) are used to encode the backward reacha-

bility of non-problematic states.

t←s,s′ ∈ {0,1} ⊆ Z are used for the reachability of non-problematic states to determine the ex-

istence of a transition in the MCS between problematic states s, s′ ∈ SMprobl(T ) where the

action-distribution pair η ∈ Hprobl(T )(s) is problematic.

Encoding Let in the following wmin =min
�

w(`) | ` ∈ Lab∧w(`)> 0
	

be the smallest positive

weight that is assigned to any label.

minimize − 1

2
wmin · psI

+
∑

`∈Lab

w(`) · x` (7.7a)

such that

psI
> λ (7.7b)

∀s ∈ T. ps = 1 (7.7c)

∀s ∈ S \ T.
∑

η∈P (s)
σs,η ≤ 1 (7.7d)

∀s ∈ S \ T. ps ≤
∑

η∈P (s)
σs,η (7.7e)

∀s ∈ S \ T.∀η ∈ P (s).∀s′ ∈ supp(η).∀` ∈ L (s,η, s′).

ps,η,s′ ≤ x` (7.7f)
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∀s ∈ S \ T.∀η ∈ P (s).∀s′ ∈ supp(η). ps,η,s′ ≤ η(s′) · ps′ (7.7g)

∀s ∈ S \ T.∀η ∈ P (s). ps ≤ (1−σs,η) +
∑

s′∈supp(η)

ps,η,s′ (7.7h)

∀s ∈ Sprobl(T ).∀η ∈ Hprobl(T )(s). σs,η =
∑

s′∈supp(η)

t←s,s′ (7.7i)

∀s ∈ Sprobl(T ).∀η ∈ Hprobl(T )(s).∀s′ ∈ supp(η). r←s < r←s′ + (1− t←s,s′) (7.7j)

Explanation Constraints 7.7b–7.7j describe a critical label set. First, Constraint 7.7b ensures

that the probability of the initial state sI exceeds the probability bound λ. The probability of

target states is forced to be assigned 1 (Constraint 7.7c). For each state s ∈ S \ T the scheduler

selects at most one action-distribution pair η ∈ P (s). This is enforced as at most one scheduler

variable σs,η ∈ P (s) can be assigned 1 (Constraint 7.7d). Note that there may be states where no

transition is chosen. In this case the probability of a state is explicitly set to 0 (Constraint 7.7e).

The next two constraints enforce the correct computation of the probability contribution of

the branch for η ∈ P (s) and s to s′: If a label ` ∈ L (s,η, s′) is not contained in the selected

subset of labels, the probability of the branch is assigned 0 (Constraint 7.7f). Otherwise this

constraint is satisfied for all possible values of ps,η,s′ ∈ [0, 1]⊆ R. Then Constraint 7.7g imposes

an upper bound on the contribution of this branch which is defined to be the correct probability

η(s′) multiplied by the probability of the successor state s′. Constraint 7.7h is trivially satisfied if

σs,η = 0, i. e., if the scheduler does not select the current transition. Otherwise the probability ps

of state s is assigned at most the sum of the probabilities of its outgoing branches.

The reachability of at least one deadlocking or a non-problematic state is ensured by Con-

straints 7.7i and 7.7j. First, if a problematic action-distribution pair η ∈ Hprobl(T )(s) of a state s

is selected by the scheduler then exactly one transition branch flag must be activated. Second,

for all paths along activated branches of problematic transitions, an increasing order on the

problematic states is enforced. Because of this order, no problematic states can be revisited on

an increasing path which enforces the final reachability of a non-problematic or a deadlocking

state. For more explanation to the reachability constraints see Section 6.1.2.3.

These constraints assure that each satisfying assignment of the label variables x` corresponds

to a critical label set. By now minimizing the total weight of the selected labels we obtain a

smallest critical label set with respect to the weight function. By the additional term −1
2
wmin · psI

we obtain not only a smallest critical label set but one with maximal probability as already

explained in Section 6.1 for the computation of minimal critical subsystems for DTMCs‚.

Formula size Let l = |Lab| denote the number of labels, and—as usual—nM = |S| the number

of states of the PA M . Let here mM denote the number of branches (s,η, s) ∈ S × Act ×
subDistr(S)× S of PA M . The number of integer variables in this MILP is in O(l + mM ), the
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number of real variables in O(nM +mM ), and the number of constraints in O(nM + l ·mM ).

7.2.4 Optimizations

As for the computation of minimal critical subsystem we present a number of optimizations in

the form of redundant constraints for the MILP, see Section 6.1.2.

7.2.4.1 Scheduler constraints

Intuition We want to exclude solutions of the constraint set for which a non-deadlocking state

s has only deadlocking successors with respect to the selected scheduler. Note that such solutions

would define ps = 0, i. e., s does not contribute to the probability of reaching target states and

will not be included in a minimal solution. Analogously, we require for each non-initial state

s with a selected action-distribution pair η ∈ P (s) that there is a selected action-distribution

pair leading to s. We call these optimizations scheduler forward cuts and scheduler backward cuts,

respectively.

Remark 30 Note that these sort of redundant constraints can also be used for the computation of

minimal critical subsystems for PAs, see Section 6.2.

Constraints

∀s ∈ S \ T.∀η ∈ P (s) with supp(η)∩ T = ;. σs,η ≤
∑

s′∈supp(η)\{s}

∑

η′∈P (s′)
σs′,η′ (7.8)

∀s ∈ S \ {sI}.
∑

η∈P (s)
σs,η ≤

∑

s′∈{s′′∈S\{s}|∃η∈P (s′′). s∈supp(η)}

∑

η′∈{η′′∈P (s′)|s∈supp(η′′)}
σs′,η′ (7.9)

Explanation Consider Constraint 7.8 for the scheduler forwards cuts. For all states s ∈ S \ T

that are not target states and action-distribution pairs η ∈ P (s) that do not induce transitions

leading to target states, it is enforced that if the corresponding scheduler variable σs,η is assigned

1, for one successor s′ apart from s itself there is another scheduler σs′,η variable selected for one

action-distribution pair η ∈ P (s′). Otherwise, the constraint is trivially true.

The other way around, see Constraint 7.9 for the scheduler backward cuts. For all states

s ∈ S \ {sI}, the sum of all action-distribution pairs η ∈ P (s) available at s is considered. If

this sum is greater than or equal to 1, i. e., one η is selected, for states s′ apart from s that are

predecessors of s, a scheduler variable leading to s is selected.

As special cases of these cuts, we can simply enforce that the initial state has at least one

activated outgoing transition and that at least one of the target states has a selected incoming

transition. This induces that the initial state is not temporarily selected as a deadlock state and

that at least one predecessor of the target states is no deadlock state. These special cuts come

with very few additional constraints and often have a great impact on the solving times.
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7.2.4.2 Label cuts

Intuition Intermediately, the solver might select inconsistent pairs of label variables and sched-

uler variables. In order to prevent this, we enforce for every selected label ` at least one scheduler

variable σs,η to be selected.

Encoding

∀` ∈ Lab. x` ≤
∑

s∈S

∑

η∈{η′∈P (s)|∃s′∈supp(η′).`∈L (s,η′,s′)}
σs,η (7.10)

Explanation For all labels ` ∈ Lab it holds for the corresponding label variable x` that—if

selected—for each state s and each action-distribution pair η ∈ P (s) available at s that at least

one scheduler variable σs,η is selected where ` ∈ L (s,η, s′).

7.2.4.3 Synchronization cuts

The previously introduced scheduler and label cuts are generally applicable to the smallest

critical label set problem. We introduce the so-called synchronization cuts that are dedicated to

the computation of minimal critical command sets, see Section 7.2.2.

Intuition Basically, for each synchronizing commands it is ensured that a command is selected

in all other modules where there is a corresponding command.

Encoding We present the encoding on the example of two modules M1, M1 which synchronize

on action α. Let c be a command of M1 with this action α, and C2,α the set of commands that

also have action α in module M2. We have the constraint

x`c
≤

∑

d∈C2,α

x`d
. (7.11)

Explanation If c is selected by assigning 1 to the variable x lc , then at least one command

d ∈ C2,α is selected, too. Similar constraints can be formulated for minimization of command

branches.

7.2.5 Reduction of variable intervals

As mentioned before, for reducing variable intervals without just reducing the domains, addi-

tional constraints are in order. For each variable ξ ∈ Var, we want to minimize the interval

[lξ, uξ]⊆ dom(ξ)⊆ Z .

185



7.3. CORRECTNESS PROOF

To encode these upper and lower bounds, we need to introduce for each variable ξ ∈ Var and

possible variable values v ∈ dom(ξ) two additional variables hu
ξ,v , hl

ξ,v ∈ {0,1} ⊆ Z defining the

interval.

Intuition Intuitively, these Boolean variables are assigned 1 if and only if they induce an actual

upper or lower bound of the interval, not including the maximal or minimal values that are

assigned. More formally, we have that hu
ξ,v = 1 iff v > uξ and hl

ξ,v = 1 iff v < lξ. The remaining

values v ∈ dom(ξ) with hu
ξ,v = 0 and hl

ξ,v = 0 induce the interval.

Encoding The following constraints are added to the encoding for computing a minimal critical

labeling, see Constraints 7.7a–7.7j.

∀ξ ∈ Var.∀v ∈ dom(ξ). v 6=min
�

dom(ξ)
�

. hl
ξ,v ≤ hl

ξ,v−1 (7.12a)

∀ξ ∈ Var.∀v ∈ dom(ξ). v 6=max
�

dom(ξ)
�

. hu
ξ,v ≤ hu

ξ,v+1 (7.12b)

∀ξ ∈ Var.∀v ∈ dom(ξ). hl
ξ,v + hu

ξ,v + x`ξ,v
= 1 (7.12c)

Explanation Constraint 7.12a ensures that each for each lower bound defined by hl
ξ,v = 1,

also the lower value the value v − 1 is neglected, i. e., hl
ξ,v−1 = 1. The same holds for hu

ξ,v and

the successor value v + 1 (Constraint 7.12b). Finally, Constraint 7.12c connects the decision

variables x`ξ,v
for the labeling with the auxiliary variables hl

ξ,v and hu
ξ,v: Exactly one of these

three variables has to be set to 1—either v is below the lower bound (hl
ξ,v = 1) or above the

upper bound (hu
ξ,v = 1), or the label `ξ,v is contained in the computed label set.

7.3 Correctness proof

For the correctness of the MILP formulation given by Constraints 7.7a–7.7j we proceed as in

Section 6.3 and show that from each satisfying assignment of the MILP one can construct a

minimal critical label set (soundness) and that for each critical label set there is a satisfying

assignment of the MILP (completeness).

As setting we have a PA M , a set of target states T , a labeling function L, a set of labels

Lab and a PA M|Lab′ that is induced by Lab′ ⊆ Lab. Recall that we abbreviate η = (α,µ) ∈
Act× subDistr(S).

Lemma 23 The MILP formulation (7.7a)–(7.7j) is sound.

Proof 26 Let ν be a satisfying assignment of the MILP and Lab′ = {` ∈ Lab | ν(x`) = 1} the

induced label set. We define the scheduler σ : S 7→ Act× subDistr(S) by dom(σ) = {s ∈ S | ∃η ∈
P (s).ν(σs,η) = 1 ∧ ∃s′ ∈ supp(η). L(s,η, s′) ⊆ Lab′} with respect to the assignment, i. e., for

each s ∈ dom(σ) we set σ(s) = η with ν(σs,η) = 1. Due to Constraint 7.7d there is at most one
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transition η ∈ P (s) for σs,η = 1 which induces a well-defined scheduler. If s /∈ dom(σ), s is a

deadlock state w. r. t.σ with no outgoing transition.

Let σ|Lab′ : S 7→ Act × subDistr(S) be the scheduler resulting from σ by removing branches

whose labels are not included in Lab′, i. e., dom(σ|Lab′) = dom(σ) and for each s ∈ dom(σ|Lab′)

and s′ ∈ S we have

σ|Lab′(s)(s
′) =







σ(s)(s′) if L(s,σ(s), s′)⊆ Lab′

0 otherwise .

To reduce notation, let in the following D =Mσ denote the DTMC that is induced byM and

σ, see Definition 20 on Page 30. Let U be the set of states from which T is not reachable in D1,

D the deadlock states in U , and R the states in U whose scheduled transitions were reduced by

removing some branches due to the selected label set:

U = {s ∈ S | T is unreachable from s in D}
D = U \ dom(σ|Lab′)

R= {s ∈ U ∩ dom(σ|Lab′) |σ(s) 6= σ|Lab′(s)} .

The reachability probabilities qs = PrDs (◊T) are now computed by the linear equation system

for computing reachability probabilities, see Section 2.3.1.1), using the predefined sets:

qs =











1 for s ∈ T ,

0 for s ∈ U ,
∑

s′∈S σ|Lab′(s)(s
′) · qs′ otherwise.

(7.13)

This equation system is well defined, since, if σ|Lab′(s) is undefined, either s is a target state or

the target states are unreachable from s. In the following we have to prove the correct probability

computations:

ν(ps) = 1 for s ∈ T , (7.14)

ν(ps) = 0 for s ∈ U , (7.15)

ν(ps)≤ qs otherwise . (7.16)

Thus ν(ps)≤ qs for each s ∈ S. With (7.7b) we get qsI
> λ, i. e., Lab′ is critical.

It remains to show that (7.14)–(7.16) hold.

(7.14) is straightforward for target states s ∈ T due to (7.7c).

1Note that the order of operations is not arbitrary here. We have (Mσ)|Lab′ = (M|Lab′)σ|Lab′ .
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(7.15) First we observe that from all states s ∈ U a state in D ∪ R is reachable: Constraints 7.7i

and 7.7j ensure that from each problematic state in U we can reach a state from D∪R, see

Section 6.3.3.4. From the non-problematic states in U the target states T are reachable

inM under each scheduler. Therefore, the unreachability of T from those states in D is

due to the selected label set, where certain branches on each path leading to T are not

available any more. Thus also from each non-problematic state in U we can reach a state

in D ∪ R.

Now we show that ν(ps) = 0 for all s ∈ U . Assume the opposite and let s ∈ U with

ν(ps) = ξmax = max{ν(ps′) | s′ ∈ U} > 0. Then s ∈ dom(σ|Lab′) by Constraints 7.7e–7.7h,

and for σ|Lab′(s) = η we get:

ξmax = ν(ps) ≤
∑

s′∈supp(η)

η(s′) · ν(ps′) ≤
∑

s′∈supp(η)

η(s′) · ξmax

= ξmax ·
∑

s′∈supp(η)

η(s′) ≤ ξmax .
(7.17)

Therefore all inequalities have to hold with equality. Since ξmax is assumed to be pos-

itive, this is possible only if
∑

s′∈supp(η)η(s
′) = 1, i. e., s ∈ U \ R, and ν(ps′) = ξmax

for all s′ ∈ supp(η). By induction we conclude that ν(ps′) = ξmax and s′ ∈ U \ R for

all states s′ that are reachable from s under σ|Lab′ . We know that from each s ∈ U ei-

ther a state s′ ∈ D or a state s′ ∈ R is reachable. For the former case s′ ∈ D, from

(7.7e)–(7.7h) we imply ν(ps′) = 0, contradicting to ν(ps′) = ξmax > 0. In the latter

case s′ ∈ R, the definition of R implies
∑

s′′∈supp(σ|Lab′ (s′))
σ|Lab′(s

′)(s′′) < 1, contradicting

to
∑

s′′∈supp(σ|Lab′ (s′))
σ|Lab′(s

′)(s′′) = 1. Therefore our assumption was wrong and we have

proven ν(ps) = 0 for each s ∈ U .

(7.16) Finally we show that ν(ps) ≤ qs for each s ∈ S \ (T ∪ U). Constraints 7.7f–7.7h can be

simplified for the chosen action σ|Lab′(s) = η to:

ps ≤
∑

s′∈supp(η)

η(s′) · ps′ (7.18)

Let νopt be a satisfying assignment such that νopt(ps) is maximal among all satisfying

assignments (this maximum exists, since the set of satisfying assignments is compact). We

claim that for all s′ ∈ S \ (T ∪U) reachable from s in the induced DTMC D, Constraint 7.18

is satisfied by νopt with equality. Assume the converse is true, i. e., there is a state s′ ∈
S \ (T ∪ U) that is reachable from s in D such that σ|Lab′(s) = η and

0< ε =
�

∑

s′′∈supp(η)

η(s′′) · νopt(ps′′)
�

− νopt(ps′) .

Let s = s0η0s1η1 . . . sn = s′ be an acyclic path in D from s to s′. We could increase the value
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νopt(psn
) by at least εn = ε (moreover, if psn

also appears on the right-hand side; note that

0 ≤ ηi(si) < 1 holds for all i = 0, . . . , n). This would not violate any inequality, since in

the inequalities for the other states psn
appears only in upper bounds on the right-hand

sides with a non-negative coefficient. Assume that, for some i ≤ n, we have increased

the value of si by εi. Then the right-hand side of the inequality for si−1 increases by at

least ηi−1(si) · εi > 0. Therefore we could also increase the value of psi−1
by ηi−1(si) · εi.

This could be continued along the path back to s = s0, whose value could be increased

by ε0 = ε ·
∏n−1

i=0 ηi(si+1) > 0. But then νopt(ps) would not be optimal, contradicting our

assumption ε > 0.

This means, the inequalities for all states that are reachable from s are satisfied with

equality for νopt, with other words, νopt encodes the solution νopt(ps) = qs to (7.13). Since

νopt is maximal for s, all other assignments satisfy ν(ps)≤ qs.

It remains to show the minimality of the induced critical labeling. With Lab′ = {` ∈
Lab |ν(x`) = 1} and w(Lab′) =

∑

`∈Lab′ w(`) =
∑

`∈Lab w(`) · ν(x`), for the objective func-

tion it holds that

w(Lab′)−wmin <−
1

2
wmin · ν(psI

) +w(Lab′)< w(Lab′) .

By minimizing the objective function, we obtain a smallest critical label set.

Lemma 24 The MILP formulation (7.7b)–(7.7j) on Page 182 is complete.

Proof 27 Let Lab′ ⊆ Lab be a critical label set. Then Pr
M|Lab′
sI

(◊T )> λ and there is a deterministic

memoryless scheduler σ forM|Lab′ with PrD|Lab′ (sI,◊T ) = PrM|Lab′ (sI,◊T )> λ and s ∈ dom(σ) iff

Pr
M|Lab′
s (◊T )> 0, for all s ∈ S \ T , where again D denotes the induced DTMCMσ that is induced

byM and σ.

Let G = (V, E) be a directed graph with V = dom(σ) ∪ T and E = {(s, s′) ∈ V × V | s′ ∈
supp(σ(s))}. Now consider a smallest (edge-minimal) subgraph G′ = (V, E′) of G containing for

each state s ∈ V a path from s to T . Due to minimality, G′ is loop-free and contains for each state

s ∈ V \ T exactly one outgoing edge. We build the assignment:

ν(x`) =

(

1 if ` ∈ Lab′,
0 otherwise;

ν(σs,η) =

(

1 if s ∈ dom(σ) and σ(s) = η,

0 otherwise;

ν(ps) = Pr
D|Lab′
s (◊T ); ν(ps,η,s′) =

(

η(s′) · ν(ps′) if L (s,η, s′)⊆ Lab′,
0 otherwise;
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ν(ts,η,s′) =

(

1 if s ∈ V ∩ Sprobl(T ) and (s, s′) ∈ E′ and σ(s) = η,

0 otherwise;

ν(rs) =

(

1
2
ν(rs′) if s ∈ V ∩ Sprobl(T ) and(s, s′) ∈ E′,

1 otherwise.

We now systematically check Constraints 7.7b–7.7j:

(7.7b) is satisfied by ν because ν(psI
) = Pr

Dσ|Lab′
sI
(◊T )> λ.

(7.7c) holds because Pr
Dσ|Lab′
sI
(◊T ) = 1 for all target states s ∈ T .

(7.7d) holds since the deterministic memoryless scheduler σ selects at most one transition in each

state.

(7.7e) is trivially satisfied if ν(σs,η) = 1 for some η ∈ P (s). Otherwise, if no action is chosen, s is

a deadlock state and the probability ν(ps) to reach a target state is 0.

(7.7f) is satisfied as ν(ps,η,s′) is defined to be 0 if ` ∈ L (s,η, s′) for some ` 6∈ Lab′.

(7.7g) holds by the definition of ν(ps,η,s′).

(7.7h) is trivially satisfied if ν(σs,η) = 0. In case ν(σs,η) = 1, the constraint reduces to ps ≤
∑

s′∈supp(η) ps,η,s′ ≤
∑

s′∈supp(η)η(s
′)·ps′ with η= σ(s). It is satisfied if ν(ps) = 0. Otherwise,

since ν(ps) is the reachability probability of T inMσ
|Lab′ , it satisfies the following equation,

see Lemma 6 on Page 151.

ν(ps) =
∑

s′∈supp(η)

η(s′) · ν(ps′) =
∑

s′∈supp(η)

ν(ps,η,s′).

Note thatM|Lab′ contains exactly those branches (s,η, s′) of D for which L (s,η, s′)⊆ Lab′

and therefore ν(ps,η,s′) = η(s′) · ν(ps′). For all other branches (s,η, s′) in Mσ, but not

in D|Lab′ , ν(ps,η,s′) = 0 holds. Hence we have ν(ps) =
∑

s′∈supp(η) ν(ps,η,s′) and (7.7h) is

satisfied.

(7.7i) holds if ν(σs,η) = 0, since in this case by definition either s /∈ dom(σ) or η 6= σ(s) and

therefore ν(ts,η,s′) = 0 for all s′ ∈ S. Otherwise ν(σs,η) = 1, i. e., σ(s) = η. By the

construction of G′ there is exactly one s′ ∈ supp(η) with ν(ts,η,s′) = 1.

(7.7j) is straightforward if ν(ts,η,s′) = 0. Otherwise by definition rs =
1
2

rs′ , and since ν(rs),ν(rs′)>

0, the inequation holds.

Theorem 15 The MILP encoding (7.7a)–(7.7j) is sound and complete.

This theorem follows directly by the correctness of Lemma 23 and Lemma 24.
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CHAPTER 8

Implementation and experiments

To demonstrate the feasibility of the approaches presented in this thesis, we now report on our

implementations and experimental results. We first describe the open source tool COMICS and

the set of benchmarks. Sectioned according to the previous chapters describing our theoretical

approaches we then show the results for model checking or computing counterexamples, respec-

tively. We also describe each implementation that is not part of COMICS in the corresponding

sections. We use this chapter to demonstrate the general feasibility of our methods; for more

extensive experimental results, we refer to the corresponding publications.

8.1 The COMICS Tool – Computing Minimal Counterexamples
for DTMCs

Basically, COMICS provides an implementation of the hierarchical counterexample generation as

schematically depicted in Figure 5.3 on Page 90. As a special case, also the incremental generation

of critical subsystems as in Figure 5.4 on Page 93 is integrated. The tool was published in [6,

14]. Note that the implementation of the symbolic counterexample generation as described in

Section 5.7 is not part of this publication but was developed as an extension.

The tool can be used either as a command-line tool or with a GUI, the latter allowing the user

to actively influence the process of finding hierarchical counterexamples. The user may select

exact or floating point arithmetics for the computations. The program consists of approximately

20 000 lines of code in five main components whose interaction is depicted in Fig. 8.1. The GUI

is implemented in Java, all other components in C++.

Let us now list the basic functionalities. The GUI is presented afterwards.

SCCModelCheck performs SCC-based model checking for an input DTMC and returns an abstract
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SCCModelCheck GUI

Concretize
CritSubSys

GlobalSearch LocalSearch

PathSet
GlobalSearch

DTMC DTMC

Result

Result

Figure 8.1: Architecture of COMICS

DTMC to Concretize or to GUI (see Chapter 4).

Concretize selects and concretizes some states, either automatically or user-guided via the

GUI (see Section 5.2.1). Heuristics for the number of states to concretize in a single step

as well as for the choice of states are offered. It is also possible to predefine the number of

concretization steps.

CritSubSys can be invoked on the modified system to compute a critical subsystem (see

Definition 50 on Page 82) using the global search approach (see Section 5.5.1) or the

local/fragment search (see Section 5.5.2). The result is given back to Concretize for

further refinement or returned as the result.

PathSet invokes the global search and yields a set of paths representing a minimal counterex-

ample [HKD09] (see Section 3.1.1).

The GUI provides a graph editor for specifying and modifying DTMCs. A large number of layout

algorithms increase the usability even for large graphs. Both concrete and abstract graphs can be

stored, loaded, abstracted, and concretized by the user. As the most important feature, the user

is able to control the hierarchical concretization of a counterexample. If an input graph seems

too large to display, the tool offers to operate without the graphical representation. In this case

the abstract graph can be computed and refined in order to reduce the size. Figure 8.2 shows

one abstracted instance of the CROWDS protocol benchmark [RR98], where the probability of

reaching the unique target state is displayed in the information panel on the right as well as on

the transition leading from the initial state to the target state. The initial state is abstract and

can therefore be expanded.

For performance tests, several predefined benchmarking options are provided for the command-

line version.
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Figure 8.2: Screenshot of COMICS’s GUI with an instance of the CROWDS protocol

8.2 Experiments

First, we present the different case studies that are used in this thesis. In general, the properties

we are investigating all reduce to reachability properties, see Section 2.3.1, of the form Pr≤λ(◊T ).

We therefore always assume a set of target states that shall be reached with at most probability

λ ∈ Q. For the approaches on counterexample generation our goal is to exceed this λ. If we

use a benchmark only for testing model checking or parametric model checking, no λ is listed.

All benchmarks are available at the PRISM-webpage [PRI10] or as part of the PRISM benchmark

suite [KNP12]. We also used PRISM to generate the explicit state space of each instance. For

some approaches, we utilize the MILP solver Gurobi version 5.6 [Gur13], see Section 2.6.3.

Unless stated otherwise, we defined a timeout of 3600 seconds denoted by TO and a memory

out of 4 GB denoted by MO. The experiments were run on an Intel Core i7® CPU with 4 GHz

and 16GB of main memory under Ubuntu 12.04. For the high-level counterexamples we used a

different setting which is explained later.

8.2.1 Discrete-time Markov chains

The crowds protocol is dedicated to anonymous web browsing [RR98]. Each node sends a

packet with probability p f directly to the target node and with probability 1− p f to a randomly

chosen node in the crowd. With probability pbad a member is corrupt and tries to identify the

sender of a packet. For the non-parametric methods, we have the instantiations p f = 0.8 and

pbad = 0.02. The parameter R denotes the number of rounds in which packets are sent. N is the

number of non-corrupt crowd members. The model statistics for each instance CROWDS-N -K are

given in Table 8.1. Our property states that a sender is identified by a corrupt member at least

once. If this property has a high probability Pr(◊T ) for T being a set of target states labeled with
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Model-N -K |S| |E| Pr(◊T ) λ

CROWDS-5-4 3 515 6 035 0.235 0.23
CROWDS-5-6 18 817 32 677 0.427 0.4
CROWDS-5-8 68 740 120 220 0.591 0.59
CROWDS-5-17 2 888 761 5 127 151 0.933 –
CROWDS-12-6 829 669 2 166 277 0.332 0.1
CROWDS-10-20 4 163 510 716 10 172 513 716 0.931 0.4
CROWDS-20-20 10 173 177 100 089 080 38 403 575 234 221 120 ?? 0.2
SLEADER-4-4 782 1 037 1.0 0.5
SLEADER-4-6 3 902 5 197 1.0 0.5
SLEADER-4-8 12 302 16 397 1.0 0.5
SLEADER-8-4 458 847 524 382 1.0 0.5
NAND-5-2 1 728 2 505 0.611 0.2
NAND-5-3 2 526 3 639 0.611 0.2
NAND-5-4 3 324 4 773 0.611 0.2
NAND-25-2 347 828 541 775 0.565 0.2
BRP-32-2 1 349 1 731 2.61·10−5 –
BRP-128-2 5 381 6 915 2.64·10−5 –
BRP-512-2 21 509 27 651 2.64·10−5 –
BRP-1024-2 43 013 55 299 2.58·10−5 –
BRP-2048-4 139 271 184 323 2.35·10−5 –
BRP-8192-8 983 051 1 327 107 1.58·10−5 –
CONT-5-2 33 790 34 813 0.52 0.5
CONT-5-8 156 670 157 693 0.52 0.5
CONT-7-2 737 278 753 661 0.50 0.48
CONT-7-4 1 654 782 1 671 165 0.50 0.48

Table 8.1: Model statistics for the DTMC benchmarks

the atomic proposition identified, the protocol is considered to be faulty. Note that we were

not able to determine the model checking probability of CROWDS-20-20 using PRISM due to the

system size, this is indicated by “??” in the corresponding table.

Synchronous leader election is a leader election protocol [IR90]. Its purpose is to identify a

leader node in a symmetric synchronous network ring of N participants. Each node randomly

chooses a value from {1, . . . , K} and sends it around the ring. The node with the highest unique

number becomes the leader. If there is no unique number, a new round starts. We measure the

probability of the property which describes if a leader is finally elected, denoted by Pr(◊T ) with

a set of target states T that are labeled with the atomic proposition elected. Each instance

sleader-N -K is parametrized by N and K . The instances we use are listed in Table 8.1 together

with the number of states |S|, the number of transitions |E|, and the probability to reach target

states. Although some of our approaches seem to be capable of handling larger instances of

this protocol, we were not able to build these models due to an internal error of PRISM (e. g.,

194



8.2. EXPERIMENTS

SLEADER-8-5 or SLEADER-4-9).

NAND multiplexing describes a redundancy technique. Basically, it concerns constructing

reliable computation from unreliable components [vN56, NPKS05]. The model operates in

stages, each of which contains N NAND gates that are all doing the same job. Probabilities model

the faultiness of the units (perr = 0.02) and if an input is erroneous (pin = 0.9). For parametric

models, these probabilities are left unspecified. K is the number of stages. We check the property

that never a reliable state is reached for a dedicated set of target states T . NAND instances are

denoted by NAND-N -K , see Table 8.1.

The bounded retransmission protocol is dedicated to transferring files over unreliable net-

works [DJJL01, DKRT97]. A file consists of N chunks. During the transfer to a target node,

chunks might get lost. Therefore each chunk is re-transferred up to K times until the target node

has received it properly and the sender node has obtained an acknowledgment thereof. The

unreliability of those channels is defined by probability ploss = 0.02 which is left unspecified for

parametric models. We check the property that the sender is unsure whether the target node has

successfully received the file, which is again modeled by a reachability property. Instances of this

protocol are denoted by BRP-N -K (Table 8.1).

Probabilistic Contract Signing is a network protocol targeting the fair exchange of critical

information between two parties A and B. In particular, whenever B has obtained A’s commitment

to a contract, B should not be able to prevent A from getting B’s commitment. The reachability

property we are investigating describes an unfair situation where A knows B’s secrets while B

doesn’t know A’s secrets. Each instance of CONT-N -K is given by the number N of data pieces to

exchange and by the size K of each data piece (Table 8.1).

8.2.2 Markov decision processes

The consensus shared coin protocol shall establish agreement between N asynchronous

processes [AH90]. The processes access a global counter which is increased or decreased in

dependence of a coin flipping which is performed when a process enters the protocol. Depending

on the current value of the counter and the values of N and a given constant K , the process

decides whether it agrees or not. The protocol proceeds in rounds as long as no agreement is

achieved. As different processes may try to access the protocol at the same time, it is nonde-

terministically decided which process may flip a coin. The property to investigate is that all

processes have flipped their coin and made their decision, model-wise given by reaching a set of

dedicated target states. Instances are denoted by CONSENSUS-N -K , see Table 8.2.

The CSMA communication protocol concerns the IEEE 802.3 CSMA/CD network protocol

which aims at minimizing data collision, i. e., the simultaneous use of a common channel [NSY92,
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Model-N -K |S| |E| Pr(◊T ) λ

CONSENSUS-2-1 144 208 1.0 0.1
CONSENSUS-2-2 272 400 1.0 0.1
CONSENSUS-2-4 528 784 1.0 0.1
CSMA-2-2 1038 1054 1.0 0.1
CSMA-2-4 7958 7988 1.0 0.1
CSMA-2-6 66718 66788 1.0 0.1
WLAN-0-1 3123 4186 1.0 0.5
WLAN-0-2 6063 8129 0.184 0.1
WLAN-0-5 14883 19958 0.00114 0.0005
WLAN-1-1 8742 11493 1.0 0.5
WLAN-2-1 28597 37119 1.0 0.5
WLAN-2-2 28598 37120 0.184 0.1

Table 8.2: Model statistics for the MDP benchmarks

KNS03]. N is the number of processes that want to access the common channel, K is the maximal

value of a backoff limit for each process, i. e., the waiting time for retransmission. We check

a property expressing all stations successfully sending their messages before a collision with

maximal backoff occurs for each instance CSMA-N -K , see Table 8.2.

Firewire models the Tree Identify Protocol of the IEEE 1394 High Performance Serial Bus

(called “FireWire”) [Sto03]. This is again a leader election protocol which is executed each time

a node enters or leaves the network. The parameter N denotes the delay of the wire as multiples

of 10 ns. We check the probability of finally electing a leader. The instances of the protocol are

only parametrized by N , i. e., we have FW-N , see Table 8.2.

8.2.3 SCC-based model checking

In this section, the model checking performance of COMICS is tested for non-parametric and

parametric models.

8.2.3.1 Model checking of DTMCs

We first measure the performance of the SCC-based model checking [11] as implemented in

COMICS [10] for non-parametric benchmarks. For details we refer to Section 4. We compare the

running times and the memory consumption to that of PRISM 4.0 [KNP11]. The timeout is set

to 3600 seconds and a memory out of 4 GB. The results for a selection of DTMC benchmarks are

depicted in Table 8.3. In each row the best running times are printed boldfaced. Note that we

rounded the values such that the number of decimal places is two. Although this model checking

approach was developed as a preprocessing step for the hierarchical counterexample generation,

see Section 5.2, it proofs competitive for benchmarks with up to 100 000 states. For benchmarks

196



8.2. EXPERIMENTS

where the model checking probability is very small, as in BRP, it even performs better. This is

due to the fact, that on an abstract level of the SCC decomposition all paths leading to absorbing

non-target states are ignored.

8.2.3.2 Model checking of PDTMCs

COMICS PRISM

Model Time Mem. Time Mem.

BRP-32-2 0.00 1.93 0.07 66.23
BRP-128-2 0.03 5.94 0.34 74.10
BRP-512-2 0.48 19.07 2.13 77.18
BRP-1024-2 1.87 36.93 6.49 82.66
BRP-2048-4 73.88 117.62 33.67 90.16
BRP-8192-8 TO – 1291.77 128.24
CROWDS-5-4 0.05 3.58 0.04 66.15
CROWDS-5-6 1.20 15.69 0.09 67.53
CROWDS-5-8 19.72 49.88 0.28 70.73
CROWDS-5-17 TO – 15.65 141.55
CROWDS-12-6 TO – 2.69 94.64
SLEADER-4-4 0.00 1.43 0.02 67.79
SLEADER-4-6 0.01 3.78 0.12 79.13
SLEADER-4-8 0.12 10.10 0.46 96.42
SLEADER-8-4 193.79 341.56 15.97 411.04
NAND-5-2 0.01 2.30 0.03 64.56
NAND-5-3 0.01 2.93 0.05 64.75
NAND-5-4 0.02 3.50 0.06 64.85
NAND-25-2 1594.02 316.76 5.07 87.22

Table 8.3: SCC-based model checking in comparison to PRISM

By means of an extension of COMICS, we implemented our approaches to parametric proba-

bilistic model checking [2], see Section 4.3. The implementation is a C++ prototype using the

arithmetic library GiNaC [BFK02]. Moreover, we implemented the state-elimination approach

used by PARAM [HHWZ10] using our optimized factorization approach to provide a more distinct

comparison.

The experimental setting includes our SCC-based approach (COMICS–SCC MC) using an op-

timized factorization of polynomials, see again [2], the state elimination as in PARAM but also

using the factorization of polynomials, and the PARAM tool itself. Note that no bisimulation

reduction was applied to any of the input models, which would improve the feasibility of all

approaches likewise. For all instances and each tool we list the running time in seconds and the

memory consumption in MB; the best time is boldfaced. Moreover, for our approaches we list

the number of polynomials which are intermediately stored.
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For BRP, COMICS–STATE ELIM always outperforms PARAM and COMICS–SCC MC by up to two

orders of magnitude. On larger instances, COMICS–SCC MC is faster than PARAM while on smaller

ones PARAM is faster and has a smaller memory consumption.

In contrast, the crowds protocol always induces a nested SCC structure, which is very hard

for PARAM since many divisions of polynomials have to be carried out. On larger benchmarks,

it is therefore outperformed by more than three orders of magnitude while COMICS–SCC MC

performs best. This is actually measured by the timeout; using PARAM we could not retrieve

results for larger instances.

To give an example where PARAM performs mostly better than our approaches, we consider

NAND. Its graph is acyclic consisting mainly of single paths leading to states that have a high

number of outgoing edges, i. e.many paths join at these states and diverge again. Together with

a large number of different probabilities, this involves the addition of many polynomials, whose

factorizations are completely stored. The SCC approach performs better here, as for acyclic

graphs just the linear equation system is solved, as described in Section 4.3. This seems to

be superior to the state elimination as implemented in our tool. We don’t know about PARAM’s

interior for these special cases. As a solution, our implementation offers the possibility to limit the

number of stored polynomials, which decreases the memory consumption at the price of losing

information about the factorizations. However, an efficient strategy to manage this bounded

pool of polynomials is not yet implemented. Therefore, we refrain from presenting experimental

results for this scenario.

COMICS–SCC MC COMICS–STATE ELIM PARAM

Model Time Poly Mem. Time Poly Mem. Time Mem.

BRP-32-2 0.10 1163 7.92 0.16 3287 15.08 1.83 7.22
BRP-128-2 4.81 4619 47.03 5.34 13367 163.13 166.58 63.19
BRP-512-2 565.92 18443 776.48 303.25 53687 3091.43 TO –
CROWDS-5-4 0.51 894 7.22 0.30 1530 7.20 12.80 6.45
CROWDS-5-6 2.25 2446 17.41 2.90 4977 16.84 266.82 20.67
CROWDS-5-8 8.78 6139 50.04 19.74 12633 48.33 2695.12 66.76
CROWDS-12-6 TO – – 1722.83 14271 643.07 TO –
CROWDS-5-17 312.16 110078 2463.87 TO – – TO —
NAND-5-2 0.57 2975 18.59 0.49 16042 29.25 0.17 4.70
NAND-5-3 0.69 4088 30.78 0.94 25337 48.92 0.29 5.48
NAND-5-4 1.35 5201 50.62 1.73 34583 77.94 0.47 5.84
NAND-25-2 – – MO – – MO TO –

Table 8.4: Model checking PDTMCs comparing COMICS and PARAM
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8.2.4 Counterexample generation using DiPro

We tested several algorithms of DiPro [ALFLS11] for our benchmark set, namely the extended

best-first search (XBF), the Eppstein algorithm and the K∗ algorithm. For the generated coun-

terexamples, we present in Table 8.5 for each algorithm the size of the critical subsystem in terms

of the number of states (|Smin|), its probability (Prob.), the computation time and the memory.

The best results in terms of the size and the time are printed boldface.

XBF Eppstein K*

Model |Smin| Prob. Time Mem. |Smin| Prob. Time Mem. |Smin| Prob. Time Mem.

CONT-5-2 13311 0.5 1182.79 641.34 13515 0.5 60.40 827.91 14029 0.516 145.01 621.96
CONT-5-8 – – – MO 75075 0.5 266.34 989.39 – – – MO
CONT-7-2 – – TO – – – TO – – – TO –
CONT-7-4 – – TO – – – TO – – – TO –
CROWDS-5-4 2669 0.233 12.01 130.41 – – TO – 2722 0.230 522.65 699.73
CROWDS-5-6 10793 0.401 93.30 204.14 – – TO – – – TO –
CROWDS-5-8 63334 0.590 3376.39 655.80 – TO – – TO –
SLEADER-4-4 1308 0.667 3.83 129.08 920 0.5 1.57 124.71 1025 0.559 4.88 137.89
SLEADER-4-6 8256 0.900 14.20 261.94 4560 0.500 6.52 283.41 4560 0.500 17.79 283.95
SLEADER-4-8 14512 0.506 33.82 454.00 14360 0.5 29.75 438.62 14360 0.5 86.72 507.86
SLEADER-8-4 – – TO – – – TO – – – TO –
NAND-5-2 203 0.210 1.38 86.70 203 0.210 1.58 1111.68 203 0.210 1.13 87.24
NAND-5-3 450 0.351 2.46 98.48 375 0.203 2.06 131.00 399 0.310 4.10 106.80
NAND-5-4 507 0.250 2.18 103.79 479 0.203 2.61 154.66 479 0.253 4.44 115.38
NAND-25-2 7420 0.102 81.17 203.24 – – TO – – – TO –

Table 8.5: Counterexample generation using DiPro

Summarizing, for CONT Eppstein performs best while DiPro is only able to generate critical

subsystems for the smaller instances. On CROWDS, only XBF is able to generate counterexamples.

SLEADER and NAND are handled best by Eppstein, while all instances can be solved within the time

limit.

8.2.5 Hierarchical counterexample generation

To show the feasibility of the hierarchical counterexample generation [10], see Section 5.2, we

proceed as follows: SCC-based model checking is invoked on a benchmark yielding an abstract

DTMC. On this DTMC, COMICS computes a critical subsystem, concretizes heuristically chosen

states and again computes a critical subsystem. This is iterated until the concrete subsystem

results. Note that using our tool properly, a user would decide at an earlier stage of this process

that already enough debugging information is present. The results for our benchmark set are

depicted in Table 8.6.

Both for the local search and for the global search approach we present the size of the critical

subsystem in terms of the number of states (|Smin|), its probability (Prob.), the computation time

and the memory. The best results in terms of the size and the time are printed boldface. We

observe that for graphs having a complicated loop structure as for the CROWDS-benchmark, the

local search is superior both in running times as in the size of the critical subsystem. This is due

to the fact, that the global search will list many paths that differ only in the number of unrollings
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global search local search

Model |Smin| Prob. Time Mem. |Smin| Prob. Time Mem.

CONT-5-2 6824 0.5 0.09 27.04 6657 0.5 11.56 167.18
CONT-5-8 37603 0.5 1.53 126.69 37377 0.5 68.16 905.49
CONT-7-2 134551 0.480 96.13 590.39 – – TO –
CONT-7-4 – – TO – – – TO –
CROWDS-5-4 898 0.230 18.36 842.10 976 0.230 0.81 12.88
CROWDS-5-6 – – – MO 5843 0.4 118.52 47.86
CROWDS-5-8 – – – MO 24675 0.59 2425.91 3094.04
SLEADER-4-4 456 0.5 0.015 2.93 459 0.5 0.06 5.49
SLEADER-4-6 2100 0.5 0.28 6.69 2103 0.5 1.76 73.70
SLEADER-4-8 6422 0.500 0.90 18.15 6423 0.500 23.61 679.02
SLEADER-8-4 229431 0.5 583.60 ? – – TO –
NAND-5-2 102 0.210 0.001 2.64 102 0.210 0.001 2.64
NAND-5-3 185 0.203 0.002 3.59 168 0.203 0.02 3.51
NAND-5-4 234 0.203 0.004 4.51 222 0.206 0.06 4.37

Table 8.6: Hierarchical counterexample generation

of the same loop. For tree-like or directed-acyclic graphs, the global search performs better, as

the number iterations will be asymptotically equal while each iteration of the global search is

less complex.

8.2.6 Explicit counterexample generation

We now basically perform the same tests as for the hierarchical counterexample generation. The

only difference is, that we start directly with a concrete graph. An interesting observation is, that

the hierarchical approach using the fragment search seems to perform better than using the local

(fragment) search directly on the concrete graph. That might be due to the fact, that certain

branches of the graph are excluded on an abstract level avoiding to explore them in detail on the

concrete graph. In general, and as expected, the running times are superior to the ones when

performing the hierarchical concretization.

8.2.7 Symbolic counterexample generation

The symbolic counterexample generation is dedicated to enable the handling of very large DTMCs

and is therefore the only approach that can handle the largest benchmark instances we used.

In Table 8.8, we present results for the approach concerning bounded model checking, see

Section 5.6 and the ones concerning BDD-based graph algorithms, see Section 5.7. For the former

ones, we list results for the global search (Section 5.6.1), the fragment search (Section 5.6.2)

as well as the fragment search together with the heuristics for choosing more probable paths

(Section 5.6.3). For the BDD-based approaches, we give results for the adaptive global search

(Section 5.7.2) and the adaptive symbolic fragment search (Section 5.7.3). For all methods, we
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global search fragment search

Model |Smin| Prob. Time Mem. |Smin| Prob. Time Mem.
CONT-5-2 6822 0.5 0.07 30.96 6657 0.5 10.72 172.14
CONT-5-8 37601 0.5 1.30 143.24 37377 0.5 62.63 922.31
CONT-7-2 134545 0.480 81.44 655.24 – – – MO
CONT-7-4 354825 0.480 217.75 1491.41 – – – MO
CROWDS-5-4 1071 0.230 0.52 104.29 900 0.230 1.41 35.01
CROWDS-5-6 5248 0.400 15.06 3554.73 3260 0.400 49.01 295.15
CROWDS-5-8 – – – MO – – – MO
CROWDS-12-6 591 0.100 1.15 779.43 – – TO –
SLEADER-4-4 395 0.5 0.005 1.85 462 0.505 0.06 4.93
SLEADER-4-6 1957 0.5 0.09 5.57 1962 0.500 1.44 59.84
SLEADER-4-8 6157 0.5 0.17 15.48 6423 0.5 21.50 577.16
SLEADER-8-4 229431 0.5 586.51 516.33 – – – MO
NAND-5-2 102 0.210 0.0007 2.45 102 0.210 0.0008 2.46
NAND-5-3 185 0.203 0.001 3.34 168 0.203 0.02 3.26
NAND-5-4 234 0.203 0.003 4.23 222 0.206 0.05 4.07

Table 8.7: Concrete counterexample generation using COMICS

list the number of states and the probability of the subsystem, the computation time in seconds

and the memory consumption in MB. The results that were completed within the timeout of

3600 seconds and didn’t exceed the bound of 4 GB on the memory consumption, are printed

boldfaced. If the computation time was exceeded, we give the intermediate results.

The results in Table 8.8 show that the adaptive BDD-based global and fragment search signifi-

cantly outperform all other symbolic approaches on our benchmark sets. To evaluate the limits

of adaptive BDD-based search strategies, we generated the instance CROWDS/20-30 with more

than 1016 states and 3.8 · 1016 transitions. Adaptive BDD-based fragment search computed, for

a probability bound λ = 0.2, a subsystem with 76 007 states, and probability 0.208446 within

2972.36 seconds using less than 873 MB of main memory. The adaptive global search returned a

subsystem with 82 944 states and probability 0.207726 within 2497.89 seconds, using roughly

the same amount of memory.

None of the explicit-state tools was able to handle this instance, as we were not even able to

store the explicit state space on hard disk. DiPro did not immediately fail due to the limited

memory, but ran into a timeout with all three search methods.

When comparing the SAT- and the BDD-based approaches one can recognize that the former

performs much worse. The SAT-based approaches ignore the actual transition probabilities, while

the BDD-based approaches always compute the most probable paths. Therefore the BDD-based

methods need in general fewer paths to reach a critical subsystem. Not only the computation

time is higher for the SAT-based approaches, but also the memory consumption: for each found

path an additional clause has to be added to the solver’s clause database to exclude it from the

search space. Moreover a large number of conflict clauses is computed by the solver during the
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search process, which significantly contribute to the memory consumption.

For a more detailed evaluation of the symbolic approaches for counterexample generation, we

refer to [3].
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Adaptive Adapt. BDD SAT SAT SAT frag-

Model BDD global fragment global fragment ment + H

# states # states # states # states # states

Prob. Prob. Prob. Prob. Prob.

Time Time Time Time Time

Mem. Mem. Mem. Mem. Mem.

CROWDS-5-4 830 3190 735 1071 1071

0.231 0.234 0.216 0.234 0.234

2.04 1.3 TO 63.56 197.66

21 19 475 80 87

CROWDS-12-6 1027 436 492 3891 5351

0.106 0.1 0.1 0.04 0.062

6.02 32.08 515.91 TO TO

51 51 202 544 562

CROWDS-10-20 167157 28771 1394 8249 2229

0.40 0.40 0.15 0.04 0.04

43.49 71.59 TO TO TOt

178 178 1139 1708 854

CONT-5-2 7010 6995 6684 6684 6684

0.51 0.507 0.501 0.501 0.501

0.15 0.15 23.11 2494.83 4044.64

33 33 184 2366 2374

CONT-7-2 141060 141029 139302 16535 19833

0.50 0.502 0.501 0.05 0.06

0.32 0.29 495.70 TO TO

41 41 314 6560 7535

CONT-7-4 372228 372197 368706 13985 3196

0.50 0.502 0.501 0.01 0.004

1.18 1.15 2759.95 TO TO

88 87 1202 14295 4021

SLEADER-4-8 6161 6160 6161 6297

0.50 0.50 0.50 0.50

1325.39 119.86 512.15 1662.90

238 238 4587 4771 MO

SLEADER-8-4 6742 9257

0.02 0.02

TO TO

1632 1632 MO MO MO

Table 8.8: Symbolic counterexample generation
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8.2.8 Minimal critical subsystems

This section concerns the generation of minimal critical subsystems for DTMCs and MDPs by

means of a C++-prototype which uses Gurobi version 5.6 [Gur13] as MILP solver. We present

results for MILP encodings for computing minimal critical subsystems for reachability properties

of DTMCs and MDPs and, see Sections 6.1.1 and 6.2.1. We refrain from showing results for the

approaches that use SMT solving, as the MILP approaches are clearly superior. For a detailed

comparison as well as results for ω-regular properties of DTMCs, we refer to [4].

without cuts best cut combination

Model |Smin| |Vars| |Constr| Time Mem. F B S R Time Mem.

CONT-5-2 6656 14030 13502 0.06 27.68 × × × × 0.06 27.68
CONT-5-8 37375 77510 76982 0.30 114.18 × × × × 0.30 114.18
CONT-7-2 133710 282134 273878 1.78 335.36 × × × × 1.78 335.36
CONT-7-4 353931 744526 736270 4.47 833.15 × × × × 4.47 833.15
CROWDS-5-4 732 2140 2119 2.86 19.54

p p
inp × 1.50 20.58

CROWDS-5-6 – 34794 55025 TO(2298) –
p × inp bw TO(2292) –

SLEADER-4-4 395 5200 8832 TO(395) –
p p

inp both 0.13 16.54
SLEADER-4-6 – 7804 11705 TO(1953) – × × × × TO(1953) –
SLEADER-8-4 229389 917694 917693 433.97 907.67 × × inp × 271.84 907.13
NAND-5-2 102 2936 2935 0.08 13.16 × × × × 0.08 13.16
NAND-5-3 165 4532 4531 0.40 17.15 × × × × 0.40 17.15
NAND-5-4 217 6128 6127 0.80 21.52 × × × × 0.80 21.52
NAND-25-2 – 1302116 1745352 TO(2187) – × × inp × TO(2187) –

Table 8.9: Minimal critical subsystems for reachability properties of DTMCs

Table 8.9 shows the results for DTMCs and Table 8.10 the results for MDPs. For every bench-

mark instance, we list the number of states of a critical subsystem (|Smin|), if it was possible to

determine this value within the time limit of 3600 seconds. The block of columns “without cuts”

shows the computation time and memory consumption that was needed without using any opti-

mization in the form of redundant constrains, see Section 6.1.2. If the time limit was exceeded,

we give in parentheses the computed lower bound on the size of the subsystem. Furthermore,

we give the number of used variables (|Vars|) and the number of constraints (|Constr|).
For the last block of columns (“best cut combination”) we ran our tool with all possible

combinations of redundant constraints and report one which needed the smallest computation

time or—in case none terminated within the time limit—the one with the best lower bound on

the size of the MCS. For the reported combination of constraints, the first four columns show

which optimizations were enabled: forward cuts (“F”), backward cuts (“B”), SCC cuts (“S”), and

reachability constraints (“R”). Note that for MDPs we do not have SCC cuts. For the SCC cuts, we

specify whether input cuts (“inp”), output cuts (“out”) or both (“both”) are used. For reachability

constraints, either forward (“fw”), backward (“bw”) constraints or both (“both”) can be used.

Additionally we report, as before, the computation time and memory consumption.

The results show that for many benchmarks the optimizations don’t have much impact on the

contract signing and on the nand benchmark. Contrarily, for crowds and for synchronous leader
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without cuts best cut combination

Model |Smin| |Vars| |Constr| Time Mem. F B S R Time Mem.

CONSENSUS-2-1 7 876 680 2.24 13.8203
p × × × 0.22 11.5156

CONSENSUS-2-2 15 1692 1320 TO(15) —
p × × × 1683.17 341.37

CONSENSUS-2-4 — 3324 4528 TO(35) —
p p × × TO(34) —

CSMA-2-2 195 5444 4175 TO(195) —
p × outp × 338.51 169.23

CSMA-2-4 410 42442 61002 3135.78 1512.28 × p
inp bw 1205.23 239.42

CSMA-2-6 415 359960 200170 1629.26 1103.65 × × inp × 1221.08 864.84
WLAN-0-1 7 8980 3160 0.03 15.8398 × × × both 0.02 15.8594
WLAN-0-2 – 13769 9387 TO(121) – × × none none TO(121) –
WLAN-0-5 – 28136 28287 TO(643) –

p p
none none TO(631) –

WLAN-1-1 7 25837 8779 0.06 30.5898 × × × bw 0.04 30.6289
WLAN-2-1 7 85402 28595 0.18 82.1133

p × input fw 0.15 82.1289
WLAN-2-2 – 81374 31922 TO(121) – × × none none TO(121) –

Table 8.10: Minimal critical subsystems for reachability properties of MDPs

election, the optimizations are the only way to compute solutions within the time limit. Note

that it is not always possible to “predict” good cut combinations. However, in our benchmarking

we achieved good results by testing all possible combinations for small instances of the same

benchmark and using the best combinations for larger ones.

8.2.9 Comparison of the approaches

We now give a short summary of the experiments we conducted above. First, Figure 8.3 shows

the sizes of critical subsystems for the CROWDS-5-4 benchmark for different probability thresholds.

For all thresholds, we chose the optimal results for computing a minimal subsystem, DiPro,

COMICS, and both the symbolic fragment and global search, respectively. Observe first, that the

sizes for DiPro are in general larger as the other ones. This is due to the fact, that DiPro explores

the state space in an on-the-fly manner while the other approaches have the whole state space at

hand yielding a more informed search. The sizes COMICS computes are only slightly larger than

the minimal subsystems while the symbolic approaches yield larger subsystems. Note that the

adaptive symbolic fragment search yields a very large subsystem for thresholds that are near the

actual model checking result. The reason lies in the adaptive nature of the method; in one step

a large number of paths of the same probability is added to the subsystem while the probability

does not increase in a way such that a backtracking is performed.

Figure 8.4 shows the running times for the aforementioned setting. The (explicit) counterex-

ample generation of COMICS is clearly superior to the other ones. The computation of minimal

critical subsystems is for some thresholds significantly slower than the other methods while one

has to keep in mind that an optimal counterexample is computed.

In Figure 8.5, we compare the sizes of critical subsystems for different instances and thresholds

as tested in the previous sections. In case a method was not able to compute the result due to

running out of time or memory, this is indicated by the bar pointing downwards.

For all instances, each method except of DiPro yields a subsystem that is very near the actual

205



8.2. EXPERIMENTS

0.01 0.03 0.05 0.07 0.09 0.11 0.13 0.15 0.17 0.19 0.21 0.23

500

1 000

1500

2000

2500

3000

Probability bound

Number of states

MCS DiPro COMICS SymbolicGlobal SymbolicFragment

Figure 8.3: Size of the critical subsystem of CROWDS-5-4 for different probability bounds

minimal subsystem. However, this will not hold for larger benchmarks, where many unnecessary

parts of a system are explored by path searching algorithms. Note furthermore, that we depict

the best results for the heuristic methods here while other configurations often yield significantly

larger systems.

Finally, we present the running times for all methods and different benchmarks in Figure 8.6.

If the running time exceeds 100 seconds, we cut the bar there indicating that the computation

could be finished within the time limit of 3600 seconds.

For contract, only DiPro was not able to compute results within the time limit for all instances,

while the symbolic implementation performs worse than COMICS and the implementation for

MCS. For larger crowds instances, our implementation is not able to compute a minimal critical

subsystem. For synchronous leader election, the results vary in a way that for one instance DiPro
performs best while for the next one DiPro and COMICS ran into a timeout while the symbolic

implementation and the implementation for MCS are able to compute a result.
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Figure 8.4: Computation time for different probability bounds
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Figure 8.6: Computation time for different benchmarks

8.2.10 High-level counterexamples

Apart from the methods generating explicit or symbolic representations of the state space of

a counterexample, we now present results for the high-level counterexamples introduced in

Chapter 7. For this problem, we developed a prototype in C++ using again the MILP solver

Gurobi [Gur13]. The experiments were performed on an Intel® Xeon® CPU with 3.3 GHz clock
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Figure 8.5: Size of the subsystem for different benchmarks

frequency and 32 GB of main memory, running Ubuntu 12.04. For this setting we use a timeout

of 600 seconds, again denoted by TO.

The results of our experiments computing a smallest critical command set are displayed in

Table 8.11. As in the previous section, we show the results without any optimizations and the

results for the best combination of redundant constraints.

For both variants, we give the computation time in seconds, the memory consumption in MB,

the number of commands in the critical command set (“n”), and—in case the time limit was

exceeded—a lower bound on the size of the smallest critical command set (“lb”).

no cuts best cut combination

Model Var. Constr. Time Mem. n lb Time Mem. n lb σ f σb ` ‖
CONSENSUS-2-1 277 492 TO 855 9 8 69.05 42 9 opt

p p p ×
CONSENSUS-2-2 533 1004 TO 1140 9 6 TO 1111 9 8 × × p p
CONSENSUS-2-4 1045 2028 TO 553 9 6 TO 974 9 7 × p p p
CSMA-2-2 2123 5990 7.30 26 32 opt 4.19 28 32 opt × × × p
CSMA-2-4 15977 46882 196.11 215 36 opt 77.43 261 36 opt × p p p
WLAN-0-2 7072 6602 TO 474 33 15 TO 373 33 31

p p p p
WLAN-0-5 19012 25808 TO 1083 ?? ?? TO 1083 ?? ?? × × × ×
WLAN-2-1 28538 192 1.12 45 8 opt 0.82 45 8 opt

p p × ×
WLAN-2-2 29607 6602 TO 517 33 15 TO 416 33 31

p p × p

Table 8.11: Command minimization

For the experiments without optimizations, we give the number of variables (“Var.”) and

constraints (“Constr.”) of the MILP, and, in—case the time limit was exceeded—a lower bound on

the size of the smallest critical command set (“lb”). An entry “??” for the number of commands

means that the solver was not able to find a non-trivial critical command set within the time
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limit. For the best cut combination, the last four columns specify the combination of cuts leading

to the best running time. Here the column “σ f ” corresponds to scheduler forward cuts, “σb”

to scheduler backward cuts, “`” to label cuts, and “‖” to synchronization cuts. An entry “
p

”

indicates that the corresponding constraints have been added to the MILP, “×” that they were not

used. For details about these optimizations we refer to Section 7.2.4.

Although we ran into many timeouts, in particular without any cuts, in almost all cases a

solution could be found within the time limit. We suppose that also the solutions of the aborted

instances are optimal or close to optimal. It seems that the MILP solver can quickly find good

(or even optimal) solutions due to sophisticated heuristics, but proving their optimality is hard.

Further experiments have shown that the scheduler forward cuts have the strongest effect on the

lower bound. Choosing good cuts consequently helps the solver to obtain optimal solutions.
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CHAPTER 9

Conclusion and future work

In this thesis we presented results obtained over the last years concerning the efficient generation

of counterexamples for discrete-time Markov models. Our approaches range over

• heuristic methods based on graph search algorithms and the utilization of SAT solvers,

• the representation and computation using symbolic data structures such as BDDs,

• and exact methods computing optimal counterexamples in terms of their size.

Moreover, we presented model checking algorithms both for DTMCs and parametric DTMCs. As

a first approach on counterexamples that are readable for humans, we showed how to compute

high-level counterexamples at the design level of stochastic systems.

Our future work will concern the application of counterexamples, for instance further ap-

proaches on probabilistic CEGAR [HWZ08] or assume-guarantee reasoning [KPC12a]. We will

explore possibilities and identify needs, for instance in the field of robotics where environment

and behavior of robots can be modeled probabilistically [PPMT13]. A natural question is whether

the behavior can be improved by means of counterexamples showing undesired behavior.

Another still open question is how a counterexample can actually be used for debugging a sys-

tem. Further research will concern the application of counterexamples in model repair [BGK+11,

19], where a faulty system is automatically repaired such that a certain property holds.

Our model checking algorithm for parametric DTMCs yields improved running times for de-

termining functions in the systems parameters that describe reachability probabilities. In the

future we will explore techniques that enable parameter synthesis for larger systems with more

parameters, where as first step recently the new tool PROHPhESY has been released [17]. A user

needs to be provided with easily accessible information on how parameters need to be instanti-



ated in order to satisfy certain requirements. Moreover, it would be interesting to investigate the

extension to richer models such as continuous-time Markov chains (CTMCs).

High-level counterexamples indicate how a system designer can access debug information at

the design level. Out of the scope of this thesis we presented another approach based on utilizing

a MAX-SAT solver which yielded significant improvements in terms of running times and system

sizes [22]. Current work targets high-level counterexamples for CTMCs.
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